/*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2012-2021 Ruslan Bukin * Copyright (c) 2023-2024 Florian Walpen * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * RME HDSPe driver for FreeBSD (pcm-part). * Supported cards: AIO, RayDAT. */ #include #include #include #include #include #define HDSPE_MATRIX_MAX 8 struct hdspe_latency { uint32_t n; uint32_t period; float ms; }; static struct hdspe_latency latency_map[] = { { 7, 32, 0.7 }, { 0, 64, 1.5 }, { 1, 128, 3 }, { 2, 256, 6 }, { 3, 512, 12 }, { 4, 1024, 23 }, { 5, 2048, 46 }, { 6, 4096, 93 }, { 0, 0, 0 }, }; struct hdspe_rate { uint32_t speed; uint32_t reg; }; static struct hdspe_rate rate_map[] = { { 32000, (HDSPE_FREQ_32000) }, { 44100, (HDSPE_FREQ_44100) }, { 48000, (HDSPE_FREQ_48000) }, { 64000, (HDSPE_FREQ_32000 | HDSPE_FREQ_DOUBLE) }, { 88200, (HDSPE_FREQ_44100 | HDSPE_FREQ_DOUBLE) }, { 96000, (HDSPE_FREQ_48000 | HDSPE_FREQ_DOUBLE) }, { 128000, (HDSPE_FREQ_32000 | HDSPE_FREQ_QUAD) }, { 176400, (HDSPE_FREQ_44100 | HDSPE_FREQ_QUAD) }, { 192000, (HDSPE_FREQ_48000 | HDSPE_FREQ_QUAD) }, { 0, 0 }, }; static uint32_t hdspe_channel_play_ports(struct hdspe_channel *hc) { return (hc->ports & (HDSPE_CHAN_AIO_ALL | HDSPE_CHAN_RAY_ALL)); } static uint32_t hdspe_channel_rec_ports(struct hdspe_channel *hc) { return (hc->ports & (HDSPE_CHAN_AIO_ALL_REC | HDSPE_CHAN_RAY_ALL)); } static unsigned int hdspe_adat_width(uint32_t speed) { if (speed > 96000) return (2); if (speed > 48000) return (4); return (8); } static uint32_t hdspe_port_first(uint32_t ports) { return (ports & (~(ports - 1))); /* Extract first bit set. */ } static uint32_t hdspe_port_first_row(uint32_t ports) { uint32_t ends; /* Restrict ports to one set with contiguous slots. */ if (ports & HDSPE_CHAN_AIO_LINE) ports = HDSPE_CHAN_AIO_LINE; /* Gap in the AIO slots here. */ else if (ports & HDSPE_CHAN_AIO_ALL) ports &= HDSPE_CHAN_AIO_ALL; /* Rest of the AIO slots. */ else if (ports & HDSPE_CHAN_RAY_ALL) ports &= HDSPE_CHAN_RAY_ALL; /* All RayDAT slots. */ /* Ends of port rows are followed by a port which is not in the set. */ ends = ports & (~(ports >> 1)); /* First row of contiguous ports ends in the first row end. */ return (ports & (ends ^ (ends - 1))); } static unsigned int hdspe_channel_count(uint32_t ports, uint32_t adat_width) { unsigned int count = 0; if (ports & HDSPE_CHAN_AIO_ALL) { /* AIO ports. */ if (ports & HDSPE_CHAN_AIO_LINE) count += 2; if (ports & HDSPE_CHAN_AIO_PHONE) count += 2; if (ports & HDSPE_CHAN_AIO_AES) count += 2; if (ports & HDSPE_CHAN_AIO_SPDIF) count += 2; if (ports & HDSPE_CHAN_AIO_ADAT) count += adat_width; } else if (ports & HDSPE_CHAN_RAY_ALL) { /* RayDAT ports. */ if (ports & HDSPE_CHAN_RAY_AES) count += 2; if (ports & HDSPE_CHAN_RAY_SPDIF) count += 2; if (ports & HDSPE_CHAN_RAY_ADAT1) count += adat_width; if (ports & HDSPE_CHAN_RAY_ADAT2) count += adat_width; if (ports & HDSPE_CHAN_RAY_ADAT3) count += adat_width; if (ports & HDSPE_CHAN_RAY_ADAT4) count += adat_width; } return (count); } static unsigned int hdspe_channel_offset(uint32_t subset, uint32_t ports, unsigned int adat_width) { uint32_t preceding; /* Make sure we have a subset of ports. */ subset &= ports; /* Include all ports preceding the first one of the subset. */ preceding = ports & (~subset & (subset - 1)); if (preceding & HDSPE_CHAN_AIO_ALL) preceding &= HDSPE_CHAN_AIO_ALL; /* Contiguous AIO slots. */ else if (preceding & HDSPE_CHAN_RAY_ALL) preceding &= HDSPE_CHAN_RAY_ALL; /* Contiguous RayDAT slots. */ return (hdspe_channel_count(preceding, adat_width)); } static unsigned int hdspe_port_slot_offset(uint32_t port, unsigned int adat_width) { /* Exctract the first port (lowest bit) if set of ports. */ switch (hdspe_port_first(port)) { /* AIO ports */ case HDSPE_CHAN_AIO_LINE: return (0); case HDSPE_CHAN_AIO_PHONE: return (6); case HDSPE_CHAN_AIO_AES: return (8); case HDSPE_CHAN_AIO_SPDIF: return (10); case HDSPE_CHAN_AIO_ADAT: return (12); /* RayDAT ports */ case HDSPE_CHAN_RAY_AES: return (0); case HDSPE_CHAN_RAY_SPDIF: return (2); case HDSPE_CHAN_RAY_ADAT1: return (4); case HDSPE_CHAN_RAY_ADAT2: return (4 + adat_width); case HDSPE_CHAN_RAY_ADAT3: return (4 + 2 * adat_width); case HDSPE_CHAN_RAY_ADAT4: return (4 + 3 * adat_width); default: return (0); } } static unsigned int hdspe_port_slot_width(uint32_t ports, unsigned int adat_width) { uint32_t row; /* Count number of contiguous slots from the first physical port. */ row = hdspe_port_first_row(ports); return (hdspe_channel_count(row, adat_width)); } static int hdspe_hw_mixer(struct sc_chinfo *ch, unsigned int dst, unsigned int src, unsigned short data) { struct sc_pcminfo *scp; struct sc_info *sc; int offs; scp = ch->parent; sc = scp->sc; offs = 0; if (ch->dir == PCMDIR_PLAY) offs = 64; hdspe_write_4(sc, HDSPE_MIXER_BASE + ((offs + src + 128 * dst) * sizeof(uint32_t)), data & 0xFFFF); return (0); }; static int hdspechan_setgain(struct sc_chinfo *ch) { struct sc_info *sc; uint32_t port, ports; unsigned int slot, end_slot; unsigned short volume; sc = ch->parent->sc; /* Iterate through all physical ports of the channel. */ ports = ch->ports; port = hdspe_port_first(ports); while (port != 0) { /* Get slot range of the physical port. */ slot = hdspe_port_slot_offset(port, hdspe_adat_width(sc->speed)); end_slot = slot + hdspe_port_slot_width(port, hdspe_adat_width(sc->speed)); /* Treat first slot as left channel. */ volume = ch->lvol * HDSPE_MAX_GAIN / 100; for (; slot < end_slot; slot++) { hdspe_hw_mixer(ch, slot, slot, volume); /* Subsequent slots all get the right channel volume. */ volume = ch->rvol * HDSPE_MAX_GAIN / 100; } ports &= ~port; port = hdspe_port_first(ports); } return (0); } static int hdspemixer_init(struct snd_mixer *m) { struct sc_pcminfo *scp; struct sc_info *sc; int mask; scp = mix_getdevinfo(m); sc = scp->sc; if (sc == NULL) return (-1); mask = SOUND_MASK_PCM; if (hdspe_channel_play_ports(scp->hc)) mask |= SOUND_MASK_VOLUME; if (hdspe_channel_rec_ports(scp->hc)) mask |= SOUND_MASK_RECLEV; snd_mtxlock(sc->lock); pcm_setflags(scp->dev, pcm_getflags(scp->dev) | SD_F_SOFTPCMVOL); mix_setdevs(m, mask); snd_mtxunlock(sc->lock); return (0); } static int hdspemixer_set(struct snd_mixer *m, unsigned dev, unsigned left, unsigned right) { struct sc_pcminfo *scp; struct sc_chinfo *ch; int i; scp = mix_getdevinfo(m); #if 0 device_printf(scp->dev, "hdspemixer_set() %d %d\n", left, right); #endif for (i = 0; i < scp->chnum; i++) { ch = &scp->chan[i]; if ((dev == SOUND_MIXER_VOLUME && ch->dir == PCMDIR_PLAY) || (dev == SOUND_MIXER_RECLEV && ch->dir == PCMDIR_REC)) { ch->lvol = left; ch->rvol = right; if (ch->run) hdspechan_setgain(ch); } } return (0); } static kobj_method_t hdspemixer_methods[] = { KOBJMETHOD(mixer_init, hdspemixer_init), KOBJMETHOD(mixer_set, hdspemixer_set), KOBJMETHOD_END }; MIXER_DECLARE(hdspemixer); static void hdspechan_enable(struct sc_chinfo *ch, int value) { struct sc_pcminfo *scp; struct sc_info *sc; uint32_t row, ports; int reg; unsigned int slot, end_slot; scp = ch->parent; sc = scp->sc; if (ch->dir == PCMDIR_PLAY) reg = HDSPE_OUT_ENABLE_BASE; else reg = HDSPE_IN_ENABLE_BASE; ch->run = value; /* Iterate through rows of ports with contiguous slots. */ ports = ch->ports; row = hdspe_port_first_row(ports); while (row != 0) { slot = hdspe_port_slot_offset(row, hdspe_adat_width(sc->speed)); end_slot = slot + hdspe_port_slot_width(row, hdspe_adat_width(sc->speed)); for (; slot < end_slot; slot++) { hdspe_write_1(sc, reg + (4 * slot), value); } ports &= ~row; row = hdspe_port_first_row(ports); } } static int hdspe_running(struct sc_info *sc) { struct sc_pcminfo *scp; struct sc_chinfo *ch; device_t *devlist; int devcount; int i, j; int err; if ((err = device_get_children(sc->dev, &devlist, &devcount)) != 0) goto bad; for (i = 0; i < devcount; i++) { scp = device_get_ivars(devlist[i]); for (j = 0; j < scp->chnum; j++) { ch = &scp->chan[j]; if (ch->run) goto bad; } } free(devlist, M_TEMP); return (0); bad: #if 0 device_printf(sc->dev, "hdspe is running\n"); #endif free(devlist, M_TEMP); return (1); } static void hdspe_start_audio(struct sc_info *sc) { sc->ctrl_register |= (HDSPE_AUDIO_INT_ENABLE | HDSPE_ENABLE); hdspe_write_4(sc, HDSPE_CONTROL_REG, sc->ctrl_register); } static void hdspe_stop_audio(struct sc_info *sc) { if (hdspe_running(sc) == 1) return; sc->ctrl_register &= ~(HDSPE_AUDIO_INT_ENABLE | HDSPE_ENABLE); hdspe_write_4(sc, HDSPE_CONTROL_REG, sc->ctrl_register); } static void buffer_mux_write(uint32_t *dma, uint32_t *pcm, unsigned int pos, unsigned int samples, unsigned int slots, unsigned int channels) { int slot; for (; samples > 0; samples--) { for (slot = 0; slot < slots; slot++) { dma[slot * HDSPE_CHANBUF_SAMPLES + pos] = pcm[pos * channels + slot]; } pos = (pos + 1) % HDSPE_CHANBUF_SAMPLES; } } static void buffer_mux_port(uint32_t *dma, uint32_t *pcm, uint32_t subset, uint32_t ports, unsigned int pos, unsigned int samples, unsigned int adat_width, unsigned int pcm_width) { unsigned int slot_offset, slots; unsigned int channels, chan_pos; /* Translate DMA slot offset to DMA buffer offset. */ slot_offset = hdspe_port_slot_offset(subset, adat_width); dma += slot_offset * HDSPE_CHANBUF_SAMPLES; /* Channel position of the port subset and total number of channels. */ chan_pos = hdspe_channel_offset(subset, ports, pcm_width); pcm += chan_pos; channels = hdspe_channel_count(ports, pcm_width); /* Only copy as much as supported by both hardware and pcm channel. */ slots = hdspe_port_slot_width(subset, MIN(adat_width, pcm_width)); /* Let the compiler inline and loop unroll common cases. */ if (slots == 2) buffer_mux_write(dma, pcm, pos, samples, 2, channels); else if (slots == 4) buffer_mux_write(dma, pcm, pos, samples, 4, channels); else if (slots == 8) buffer_mux_write(dma, pcm, pos, samples, 8, channels); else buffer_mux_write(dma, pcm, pos, samples, slots, channels); } static void buffer_demux_read(uint32_t *dma, uint32_t *pcm, unsigned int pos, unsigned int samples, unsigned int slots, unsigned int channels) { int slot; for (; samples > 0; samples--) { for (slot = 0; slot < slots; slot++) { pcm[pos * channels + slot] = dma[slot * HDSPE_CHANBUF_SAMPLES + pos]; } pos = (pos + 1) % HDSPE_CHANBUF_SAMPLES; } } static void buffer_demux_port(uint32_t *dma, uint32_t *pcm, uint32_t subset, uint32_t ports, unsigned int pos, unsigned int samples, unsigned int adat_width, unsigned int pcm_width) { unsigned int slot_offset, slots; unsigned int channels, chan_pos; /* Translate port slot offset to DMA buffer offset. */ slot_offset = hdspe_port_slot_offset(subset, adat_width); dma += slot_offset * HDSPE_CHANBUF_SAMPLES; /* Channel position of the port subset and total number of channels. */ chan_pos = hdspe_channel_offset(subset, ports, pcm_width); pcm += chan_pos; channels = hdspe_channel_count(ports, pcm_width); /* Only copy as much as supported by both hardware and pcm channel. */ slots = hdspe_port_slot_width(subset, MIN(adat_width, pcm_width)); /* Let the compiler inline and loop unroll common cases. */ if (slots == 2) buffer_demux_read(dma, pcm, pos, samples, 2, channels); else if (slots == 4) buffer_demux_read(dma, pcm, pos, samples, 4, channels); else if (slots == 8) buffer_demux_read(dma, pcm, pos, samples, 8, channels); else buffer_demux_read(dma, pcm, pos, samples, slots, channels); } /* Copy data between DMA and PCM buffers. */ static void buffer_copy(struct sc_chinfo *ch) { struct sc_pcminfo *scp; struct sc_info *sc; uint32_t row, ports; uint32_t dma_pos; unsigned int pos, length, offset; unsigned int n; unsigned int adat_width, pcm_width; scp = ch->parent; sc = scp->sc; n = AFMT_CHANNEL(ch->format); /* n channels */ /* Let pcm formats differ from current hardware ADAT width. */ adat_width = hdspe_adat_width(sc->speed); if (n == hdspe_channel_count(ch->ports, 2)) pcm_width = 2; else if (n == hdspe_channel_count(ch->ports, 4)) pcm_width = 4; else pcm_width = 8; /* Derive buffer position and length to be copied. */ if (ch->dir == PCMDIR_PLAY) { /* Position per channel is n times smaller than PCM. */ pos = sndbuf_getreadyptr(ch->buffer) / n; length = sndbuf_getready(ch->buffer) / n; /* Copy no more than 2 periods in advance. */ if (length > (sc->period * 4 * 2)) length = (sc->period * 4 * 2); /* Skip what was already copied last time. */ offset = (ch->position + HDSPE_CHANBUF_SIZE) - pos; offset %= HDSPE_CHANBUF_SIZE; if (offset <= length) { pos = (pos + offset) % HDSPE_CHANBUF_SIZE; length -= offset; } } else { /* Position per channel is n times smaller than PCM. */ pos = sndbuf_getfreeptr(ch->buffer) / n; /* Get DMA buffer write position. */ dma_pos = hdspe_read_2(sc, HDSPE_STATUS_REG); dma_pos &= HDSPE_BUF_POSITION_MASK; /* Copy what is newly available. */ length = (dma_pos + HDSPE_CHANBUF_SIZE) - pos; length %= HDSPE_CHANBUF_SIZE; } /* Position and length in samples (4 bytes). */ pos /= 4; length /= 4; /* Iterate through rows of ports with contiguous slots. */ ports = ch->ports; if (pcm_width == adat_width) row = hdspe_port_first_row(ports); else row = hdspe_port_first(ports); while (row != 0) { if (ch->dir == PCMDIR_PLAY) buffer_mux_port(sc->pbuf, ch->data, row, ch->ports, pos, length, adat_width, pcm_width); else buffer_demux_port(sc->rbuf, ch->data, row, ch->ports, pos, length, adat_width, pcm_width); ports &= ~row; if (pcm_width == adat_width) row = hdspe_port_first_row(ports); else row = hdspe_port_first(ports); } ch->position = ((pos + length) * 4) % HDSPE_CHANBUF_SIZE; } static int clean(struct sc_chinfo *ch) { struct sc_pcminfo *scp; struct sc_info *sc; uint32_t *buf; uint32_t row, ports; unsigned int offset, slots; scp = ch->parent; sc = scp->sc; buf = sc->rbuf; if (ch->dir == PCMDIR_PLAY) buf = sc->pbuf; /* Iterate through rows of ports with contiguous slots. */ ports = ch->ports; row = hdspe_port_first_row(ports); while (row != 0) { offset = hdspe_port_slot_offset(row, hdspe_adat_width(sc->speed)); slots = hdspe_port_slot_width(row, hdspe_adat_width(sc->speed)); bzero(buf + offset * HDSPE_CHANBUF_SAMPLES, slots * HDSPE_CHANBUF_SIZE); ports &= ~row; row = hdspe_port_first_row(ports); } ch->position = 0; return (0); } /* Channel interface. */ static void * hdspechan_init(kobj_t obj, void *devinfo, struct snd_dbuf *b, struct pcm_channel *c, int dir) { struct sc_pcminfo *scp; struct sc_chinfo *ch; struct sc_info *sc; int num; scp = devinfo; sc = scp->sc; snd_mtxlock(sc->lock); num = scp->chnum; ch = &scp->chan[num]; if (dir == PCMDIR_PLAY) ch->ports = hdspe_channel_play_ports(scp->hc); else ch->ports = hdspe_channel_rec_ports(scp->hc); ch->run = 0; ch->lvol = 0; ch->rvol = 0; /* Support all possible ADAT widths as channel formats. */ ch->cap_fmts[0] = SND_FORMAT(AFMT_S32_LE, hdspe_channel_count(ch->ports, 2), 0); ch->cap_fmts[1] = SND_FORMAT(AFMT_S32_LE, hdspe_channel_count(ch->ports, 4), 0); ch->cap_fmts[2] = SND_FORMAT(AFMT_S32_LE, hdspe_channel_count(ch->ports, 8), 0); ch->cap_fmts[3] = 0; ch->caps = malloc(sizeof(struct pcmchan_caps), M_HDSPE, M_NOWAIT); *(ch->caps) = (struct pcmchan_caps) {32000, 192000, ch->cap_fmts, 0}; /* Allocate maximum buffer size. */ ch->size = HDSPE_CHANBUF_SIZE * hdspe_channel_count(ch->ports, 8); ch->data = malloc(ch->size, M_HDSPE, M_NOWAIT); ch->position = 0; ch->buffer = b; ch->channel = c; ch->parent = scp; ch->dir = dir; snd_mtxunlock(sc->lock); if (sndbuf_setup(ch->buffer, ch->data, ch->size) != 0) { device_printf(scp->dev, "Can't setup sndbuf.\n"); return (NULL); } return (ch); } static int hdspechan_trigger(kobj_t obj, void *data, int go) { struct sc_pcminfo *scp; struct sc_chinfo *ch; struct sc_info *sc; ch = data; scp = ch->parent; sc = scp->sc; snd_mtxlock(sc->lock); switch (go) { case PCMTRIG_START: #if 0 device_printf(scp->dev, "hdspechan_trigger(): start\n"); #endif hdspechan_enable(ch, 1); hdspechan_setgain(ch); hdspe_start_audio(sc); break; case PCMTRIG_STOP: case PCMTRIG_ABORT: #if 0 device_printf(scp->dev, "hdspechan_trigger(): stop or abort\n"); #endif clean(ch); hdspechan_enable(ch, 0); hdspe_stop_audio(sc); break; case PCMTRIG_EMLDMAWR: case PCMTRIG_EMLDMARD: if(ch->run) buffer_copy(ch); break; } snd_mtxunlock(sc->lock); return (0); } static uint32_t hdspechan_getptr(kobj_t obj, void *data) { struct sc_pcminfo *scp; struct sc_chinfo *ch; struct sc_info *sc; uint32_t ret, pos; ch = data; scp = ch->parent; sc = scp->sc; snd_mtxlock(sc->lock); ret = hdspe_read_2(sc, HDSPE_STATUS_REG); snd_mtxunlock(sc->lock); pos = ret & HDSPE_BUF_POSITION_MASK; pos *= AFMT_CHANNEL(ch->format); /* Hardbuf with multiple channels. */ return (pos); } static int hdspechan_free(kobj_t obj, void *data) { struct sc_pcminfo *scp; struct sc_chinfo *ch; struct sc_info *sc; ch = data; scp = ch->parent; sc = scp->sc; #if 0 device_printf(scp->dev, "hdspechan_free()\n"); #endif snd_mtxlock(sc->lock); if (ch->data != NULL) { free(ch->data, M_HDSPE); ch->data = NULL; } if (ch->caps != NULL) { free(ch->caps, M_HDSPE); ch->caps = NULL; } snd_mtxunlock(sc->lock); return (0); } static int hdspechan_setformat(kobj_t obj, void *data, uint32_t format) { struct sc_chinfo *ch; ch = data; #if 0 struct sc_pcminfo *scp = ch->parent; device_printf(scp->dev, "hdspechan_setformat(%d)\n", format); #endif ch->format = format; return (0); } static uint32_t hdspechan_setspeed(kobj_t obj, void *data, uint32_t speed) { struct sc_pcminfo *scp; struct hdspe_rate *hr; struct sc_chinfo *ch; struct sc_info *sc; long long period; int threshold; int i; ch = data; scp = ch->parent; sc = scp->sc; hr = NULL; #if 0 device_printf(scp->dev, "hdspechan_setspeed(%d)\n", speed); #endif if (hdspe_running(sc) == 1) goto end; if (sc->force_speed > 0) speed = sc->force_speed; /* First look for equal frequency. */ for (i = 0; rate_map[i].speed != 0; i++) { if (rate_map[i].speed == speed) hr = &rate_map[i]; } /* If no match, just find nearest. */ if (hr == NULL) { for (i = 0; rate_map[i].speed != 0; i++) { hr = &rate_map[i]; threshold = hr->speed + ((rate_map[i + 1].speed != 0) ? ((rate_map[i + 1].speed - hr->speed) >> 1) : 0); if (speed < threshold) break; } } switch (sc->type) { case HDSPE_RAYDAT: case HDSPE_AIO: period = HDSPE_FREQ_AIO; break; default: /* Unsupported card. */ goto end; } /* Write frequency on the device. */ sc->ctrl_register &= ~HDSPE_FREQ_MASK; sc->ctrl_register |= hr->reg; hdspe_write_4(sc, HDSPE_CONTROL_REG, sc->ctrl_register); speed = hr->speed; if (speed > 96000) speed /= 4; else if (speed > 48000) speed /= 2; /* Set DDS value. */ period /= speed; hdspe_write_4(sc, HDSPE_FREQ_REG, period); sc->speed = hr->speed; end: return (sc->speed); } static uint32_t hdspechan_setblocksize(kobj_t obj, void *data, uint32_t blocksize) { struct hdspe_latency *hl; struct sc_pcminfo *scp; struct sc_chinfo *ch; struct sc_info *sc; int threshold; int i; ch = data; scp = ch->parent; sc = scp->sc; hl = NULL; #if 0 device_printf(scp->dev, "hdspechan_setblocksize(%d)\n", blocksize); #endif if (hdspe_running(sc) == 1) goto end; if (blocksize > HDSPE_LAT_BYTES_MAX) blocksize = HDSPE_LAT_BYTES_MAX; else if (blocksize < HDSPE_LAT_BYTES_MIN) blocksize = HDSPE_LAT_BYTES_MIN; blocksize /= 4 /* samples */; if (sc->force_period > 0) blocksize = sc->force_period; /* First look for equal latency. */ for (i = 0; latency_map[i].period != 0; i++) { if (latency_map[i].period == blocksize) hl = &latency_map[i]; } /* If no match, just find nearest. */ if (hl == NULL) { for (i = 0; latency_map[i].period != 0; i++) { hl = &latency_map[i]; threshold = hl->period + ((latency_map[i + 1].period != 0) ? ((latency_map[i + 1].period - hl->period) >> 1) : 0); if (blocksize < threshold) break; } } snd_mtxlock(sc->lock); sc->ctrl_register &= ~HDSPE_LAT_MASK; sc->ctrl_register |= hdspe_encode_latency(hl->n); hdspe_write_4(sc, HDSPE_CONTROL_REG, sc->ctrl_register); sc->period = hl->period; snd_mtxunlock(sc->lock); #if 0 device_printf(scp->dev, "New period=%d\n", sc->period); #endif sndbuf_resize(ch->buffer, (HDSPE_CHANBUF_SIZE * AFMT_CHANNEL(ch->format)) / (sc->period * 4), (sc->period * 4)); end: return (sndbuf_getblksz(ch->buffer)); } static uint32_t hdspe_bkp_fmt[] = { SND_FORMAT(AFMT_S32_LE, 2, 0), 0 }; static struct pcmchan_caps hdspe_bkp_caps = {32000, 192000, hdspe_bkp_fmt, 0}; static struct pcmchan_caps * hdspechan_getcaps(kobj_t obj, void *data) { struct sc_chinfo *ch; ch = data; #if 0 struct sc_pcminfo *scl = ch->parent; device_printf(scp->dev, "hdspechan_getcaps()\n"); #endif if (ch->caps != NULL) return (ch->caps); return (&hdspe_bkp_caps); } static kobj_method_t hdspechan_methods[] = { KOBJMETHOD(channel_init, hdspechan_init), KOBJMETHOD(channel_free, hdspechan_free), KOBJMETHOD(channel_setformat, hdspechan_setformat), KOBJMETHOD(channel_setspeed, hdspechan_setspeed), KOBJMETHOD(channel_setblocksize, hdspechan_setblocksize), KOBJMETHOD(channel_trigger, hdspechan_trigger), KOBJMETHOD(channel_getptr, hdspechan_getptr), KOBJMETHOD(channel_getcaps, hdspechan_getcaps), KOBJMETHOD_END }; CHANNEL_DECLARE(hdspechan); static int hdspe_pcm_probe(device_t dev) { #if 0 device_printf(dev,"hdspe_pcm_probe()\n"); #endif return (0); } static uint32_t hdspe_pcm_intr(struct sc_pcminfo *scp) { struct sc_chinfo *ch; struct sc_info *sc; int i; sc = scp->sc; for (i = 0; i < scp->chnum; i++) { ch = &scp->chan[i]; snd_mtxunlock(sc->lock); chn_intr(ch->channel); snd_mtxlock(sc->lock); } return (0); } static int hdspe_pcm_attach(device_t dev) { char status[SND_STATUSLEN]; struct sc_pcminfo *scp; const char *buf; uint32_t pcm_flags; int err; int play, rec; scp = device_get_ivars(dev); scp->ih = &hdspe_pcm_intr; if (scp->hc->ports & HDSPE_CHAN_AIO_ALL) buf = "AIO"; else if (scp->hc->ports & HDSPE_CHAN_RAY_ALL) buf = "RayDAT"; else buf = "?"; device_set_descf(dev, "HDSPe %s [%s]", buf, scp->hc->descr); /* * We don't register interrupt handler with snd_setup_intr * in pcm device. Mark pcm device as MPSAFE manually. */ pcm_flags = pcm_getflags(dev) | SD_F_MPSAFE; if (hdspe_channel_count(scp->hc->ports, 8) > HDSPE_MATRIX_MAX) /* Disable vchan conversion, too many channels. */ pcm_flags |= SD_F_BITPERFECT; pcm_setflags(dev, pcm_flags); play = (hdspe_channel_play_ports(scp->hc)) ? 1 : 0; rec = (hdspe_channel_rec_ports(scp->hc)) ? 1 : 0; err = pcm_register(dev, scp, play, rec); if (err) { device_printf(dev, "Can't register pcm.\n"); return (ENXIO); } scp->chnum = 0; if (play) { pcm_addchan(dev, PCMDIR_PLAY, &hdspechan_class, scp); scp->chnum++; } if (rec) { pcm_addchan(dev, PCMDIR_REC, &hdspechan_class, scp); scp->chnum++; } snprintf(status, SND_STATUSLEN, "port 0x%jx irq %jd on %s", rman_get_start(scp->sc->cs), rman_get_start(scp->sc->irq), device_get_nameunit(device_get_parent(dev))); pcm_setstatus(dev, status); mixer_init(dev, &hdspemixer_class, scp); return (0); } static int hdspe_pcm_detach(device_t dev) { int err; err = pcm_unregister(dev); if (err) { device_printf(dev, "Can't unregister device.\n"); return (err); } return (0); } static device_method_t hdspe_pcm_methods[] = { DEVMETHOD(device_probe, hdspe_pcm_probe), DEVMETHOD(device_attach, hdspe_pcm_attach), DEVMETHOD(device_detach, hdspe_pcm_detach), { 0, 0 } }; static driver_t hdspe_pcm_driver = { "pcm", hdspe_pcm_methods, PCM_SOFTC_SIZE, }; DRIVER_MODULE(snd_hdspe_pcm, hdspe, hdspe_pcm_driver, 0, 0); MODULE_DEPEND(snd_hdspe, sound, SOUND_MINVER, SOUND_PREFVER, SOUND_MAXVER); MODULE_VERSION(snd_hdspe, 1);