/*-
* SPDX-License-Identifier: BSD-2-Clause
*
* Copyright (c) 2012-2021 Ruslan Bukin
* Copyright (c) 2023-2024 Florian Walpen
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* RME HDSPe driver for FreeBSD (pcm-part).
* Supported cards: AIO, RayDAT.
*/
#include
#include
#include
#include
#include
#define HDSPE_MATRIX_MAX 8
struct hdspe_latency {
uint32_t n;
uint32_t period;
float ms;
};
static struct hdspe_latency latency_map[] = {
{ 7, 32, 0.7 },
{ 0, 64, 1.5 },
{ 1, 128, 3 },
{ 2, 256, 6 },
{ 3, 512, 12 },
{ 4, 1024, 23 },
{ 5, 2048, 46 },
{ 6, 4096, 93 },
{ 0, 0, 0 },
};
struct hdspe_rate {
uint32_t speed;
uint32_t reg;
};
static struct hdspe_rate rate_map[] = {
{ 32000, (HDSPE_FREQ_32000) },
{ 44100, (HDSPE_FREQ_44100) },
{ 48000, (HDSPE_FREQ_48000) },
{ 64000, (HDSPE_FREQ_32000 | HDSPE_FREQ_DOUBLE) },
{ 88200, (HDSPE_FREQ_44100 | HDSPE_FREQ_DOUBLE) },
{ 96000, (HDSPE_FREQ_48000 | HDSPE_FREQ_DOUBLE) },
{ 128000, (HDSPE_FREQ_32000 | HDSPE_FREQ_QUAD) },
{ 176400, (HDSPE_FREQ_44100 | HDSPE_FREQ_QUAD) },
{ 192000, (HDSPE_FREQ_48000 | HDSPE_FREQ_QUAD) },
{ 0, 0 },
};
static uint32_t
hdspe_channel_play_ports(struct hdspe_channel *hc)
{
return (hc->ports & (HDSPE_CHAN_AIO_ALL | HDSPE_CHAN_RAY_ALL));
}
static uint32_t
hdspe_channel_rec_ports(struct hdspe_channel *hc)
{
return (hc->ports & (HDSPE_CHAN_AIO_ALL_REC | HDSPE_CHAN_RAY_ALL));
}
static unsigned int
hdspe_adat_width(uint32_t speed)
{
if (speed > 96000)
return (2);
if (speed > 48000)
return (4);
return (8);
}
static uint32_t
hdspe_port_first(uint32_t ports)
{
return (ports & (~(ports - 1))); /* Extract first bit set. */
}
static uint32_t
hdspe_port_first_row(uint32_t ports)
{
uint32_t ends;
/* Restrict ports to one set with contiguous slots. */
if (ports & HDSPE_CHAN_AIO_LINE)
ports = HDSPE_CHAN_AIO_LINE; /* Gap in the AIO slots here. */
else if (ports & HDSPE_CHAN_AIO_ALL)
ports &= HDSPE_CHAN_AIO_ALL; /* Rest of the AIO slots. */
else if (ports & HDSPE_CHAN_RAY_ALL)
ports &= HDSPE_CHAN_RAY_ALL; /* All RayDAT slots. */
/* Ends of port rows are followed by a port which is not in the set. */
ends = ports & (~(ports >> 1));
/* First row of contiguous ports ends in the first row end. */
return (ports & (ends ^ (ends - 1)));
}
static unsigned int
hdspe_channel_count(uint32_t ports, uint32_t adat_width)
{
unsigned int count = 0;
if (ports & HDSPE_CHAN_AIO_ALL) {
/* AIO ports. */
if (ports & HDSPE_CHAN_AIO_LINE)
count += 2;
if (ports & HDSPE_CHAN_AIO_PHONE)
count += 2;
if (ports & HDSPE_CHAN_AIO_AES)
count += 2;
if (ports & HDSPE_CHAN_AIO_SPDIF)
count += 2;
if (ports & HDSPE_CHAN_AIO_ADAT)
count += adat_width;
} else if (ports & HDSPE_CHAN_RAY_ALL) {
/* RayDAT ports. */
if (ports & HDSPE_CHAN_RAY_AES)
count += 2;
if (ports & HDSPE_CHAN_RAY_SPDIF)
count += 2;
if (ports & HDSPE_CHAN_RAY_ADAT1)
count += adat_width;
if (ports & HDSPE_CHAN_RAY_ADAT2)
count += adat_width;
if (ports & HDSPE_CHAN_RAY_ADAT3)
count += adat_width;
if (ports & HDSPE_CHAN_RAY_ADAT4)
count += adat_width;
}
return (count);
}
static unsigned int
hdspe_channel_offset(uint32_t subset, uint32_t ports, unsigned int adat_width)
{
uint32_t preceding;
/* Make sure we have a subset of ports. */
subset &= ports;
/* Include all ports preceding the first one of the subset. */
preceding = ports & (~subset & (subset - 1));
if (preceding & HDSPE_CHAN_AIO_ALL)
preceding &= HDSPE_CHAN_AIO_ALL; /* Contiguous AIO slots. */
else if (preceding & HDSPE_CHAN_RAY_ALL)
preceding &= HDSPE_CHAN_RAY_ALL; /* Contiguous RayDAT slots. */
return (hdspe_channel_count(preceding, adat_width));
}
static unsigned int
hdspe_port_slot_offset(uint32_t port, unsigned int adat_width)
{
/* Exctract the first port (lowest bit) if set of ports. */
switch (hdspe_port_first(port)) {
/* AIO ports */
case HDSPE_CHAN_AIO_LINE:
return (0);
case HDSPE_CHAN_AIO_PHONE:
return (6);
case HDSPE_CHAN_AIO_AES:
return (8);
case HDSPE_CHAN_AIO_SPDIF:
return (10);
case HDSPE_CHAN_AIO_ADAT:
return (12);
/* RayDAT ports */
case HDSPE_CHAN_RAY_AES:
return (0);
case HDSPE_CHAN_RAY_SPDIF:
return (2);
case HDSPE_CHAN_RAY_ADAT1:
return (4);
case HDSPE_CHAN_RAY_ADAT2:
return (4 + adat_width);
case HDSPE_CHAN_RAY_ADAT3:
return (4 + 2 * adat_width);
case HDSPE_CHAN_RAY_ADAT4:
return (4 + 3 * adat_width);
default:
return (0);
}
}
static unsigned int
hdspe_port_slot_width(uint32_t ports, unsigned int adat_width)
{
uint32_t row;
/* Count number of contiguous slots from the first physical port. */
row = hdspe_port_first_row(ports);
return (hdspe_channel_count(row, adat_width));
}
static int
hdspe_hw_mixer(struct sc_chinfo *ch, unsigned int dst,
unsigned int src, unsigned short data)
{
struct sc_pcminfo *scp;
struct sc_info *sc;
int offs;
scp = ch->parent;
sc = scp->sc;
offs = 0;
if (ch->dir == PCMDIR_PLAY)
offs = 64;
hdspe_write_4(sc, HDSPE_MIXER_BASE +
((offs + src + 128 * dst) * sizeof(uint32_t)),
data & 0xFFFF);
return (0);
};
static int
hdspechan_setgain(struct sc_chinfo *ch)
{
struct sc_info *sc;
uint32_t port, ports;
unsigned int slot, end_slot;
unsigned short volume;
sc = ch->parent->sc;
/* Iterate through all physical ports of the channel. */
ports = ch->ports;
port = hdspe_port_first(ports);
while (port != 0) {
/* Get slot range of the physical port. */
slot =
hdspe_port_slot_offset(port, hdspe_adat_width(sc->speed));
end_slot = slot +
hdspe_port_slot_width(port, hdspe_adat_width(sc->speed));
/* Treat first slot as left channel. */
volume = ch->lvol * HDSPE_MAX_GAIN / 100;
for (; slot < end_slot; slot++) {
hdspe_hw_mixer(ch, slot, slot, volume);
/* Subsequent slots all get the right channel volume. */
volume = ch->rvol * HDSPE_MAX_GAIN / 100;
}
ports &= ~port;
port = hdspe_port_first(ports);
}
return (0);
}
static int
hdspemixer_init(struct snd_mixer *m)
{
struct sc_pcminfo *scp;
struct sc_info *sc;
int mask;
scp = mix_getdevinfo(m);
sc = scp->sc;
if (sc == NULL)
return (-1);
mask = SOUND_MASK_PCM;
if (hdspe_channel_play_ports(scp->hc))
mask |= SOUND_MASK_VOLUME;
if (hdspe_channel_rec_ports(scp->hc))
mask |= SOUND_MASK_RECLEV;
snd_mtxlock(sc->lock);
pcm_setflags(scp->dev, pcm_getflags(scp->dev) | SD_F_SOFTPCMVOL);
mix_setdevs(m, mask);
snd_mtxunlock(sc->lock);
return (0);
}
static int
hdspemixer_set(struct snd_mixer *m, unsigned dev,
unsigned left, unsigned right)
{
struct sc_pcminfo *scp;
struct sc_chinfo *ch;
int i;
scp = mix_getdevinfo(m);
#if 0
device_printf(scp->dev, "hdspemixer_set() %d %d\n",
left, right);
#endif
for (i = 0; i < scp->chnum; i++) {
ch = &scp->chan[i];
if ((dev == SOUND_MIXER_VOLUME && ch->dir == PCMDIR_PLAY) ||
(dev == SOUND_MIXER_RECLEV && ch->dir == PCMDIR_REC)) {
ch->lvol = left;
ch->rvol = right;
if (ch->run)
hdspechan_setgain(ch);
}
}
return (0);
}
static kobj_method_t hdspemixer_methods[] = {
KOBJMETHOD(mixer_init, hdspemixer_init),
KOBJMETHOD(mixer_set, hdspemixer_set),
KOBJMETHOD_END
};
MIXER_DECLARE(hdspemixer);
static void
hdspechan_enable(struct sc_chinfo *ch, int value)
{
struct sc_pcminfo *scp;
struct sc_info *sc;
uint32_t row, ports;
int reg;
unsigned int slot, end_slot;
scp = ch->parent;
sc = scp->sc;
if (ch->dir == PCMDIR_PLAY)
reg = HDSPE_OUT_ENABLE_BASE;
else
reg = HDSPE_IN_ENABLE_BASE;
ch->run = value;
/* Iterate through rows of ports with contiguous slots. */
ports = ch->ports;
row = hdspe_port_first_row(ports);
while (row != 0) {
slot =
hdspe_port_slot_offset(row, hdspe_adat_width(sc->speed));
end_slot = slot +
hdspe_port_slot_width(row, hdspe_adat_width(sc->speed));
for (; slot < end_slot; slot++) {
hdspe_write_1(sc, reg + (4 * slot), value);
}
ports &= ~row;
row = hdspe_port_first_row(ports);
}
}
static int
hdspe_running(struct sc_info *sc)
{
struct sc_pcminfo *scp;
struct sc_chinfo *ch;
device_t *devlist;
int devcount;
int i, j;
int err;
if ((err = device_get_children(sc->dev, &devlist, &devcount)) != 0)
goto bad;
for (i = 0; i < devcount; i++) {
scp = device_get_ivars(devlist[i]);
for (j = 0; j < scp->chnum; j++) {
ch = &scp->chan[j];
if (ch->run)
goto bad;
}
}
free(devlist, M_TEMP);
return (0);
bad:
#if 0
device_printf(sc->dev, "hdspe is running\n");
#endif
free(devlist, M_TEMP);
return (1);
}
static void
hdspe_start_audio(struct sc_info *sc)
{
sc->ctrl_register |= (HDSPE_AUDIO_INT_ENABLE | HDSPE_ENABLE);
hdspe_write_4(sc, HDSPE_CONTROL_REG, sc->ctrl_register);
}
static void
hdspe_stop_audio(struct sc_info *sc)
{
if (hdspe_running(sc) == 1)
return;
sc->ctrl_register &= ~(HDSPE_AUDIO_INT_ENABLE | HDSPE_ENABLE);
hdspe_write_4(sc, HDSPE_CONTROL_REG, sc->ctrl_register);
}
static void
buffer_mux_write(uint32_t *dma, uint32_t *pcm, unsigned int pos,
unsigned int samples, unsigned int slots, unsigned int channels)
{
int slot;
for (; samples > 0; samples--) {
for (slot = 0; slot < slots; slot++) {
dma[slot * HDSPE_CHANBUF_SAMPLES + pos] =
pcm[pos * channels + slot];
}
pos = (pos + 1) % HDSPE_CHANBUF_SAMPLES;
}
}
static void
buffer_mux_port(uint32_t *dma, uint32_t *pcm, uint32_t subset, uint32_t ports,
unsigned int pos, unsigned int samples, unsigned int adat_width,
unsigned int pcm_width)
{
unsigned int slot_offset, slots;
unsigned int channels, chan_pos;
/* Translate DMA slot offset to DMA buffer offset. */
slot_offset = hdspe_port_slot_offset(subset, adat_width);
dma += slot_offset * HDSPE_CHANBUF_SAMPLES;
/* Channel position of the port subset and total number of channels. */
chan_pos = hdspe_channel_offset(subset, ports, pcm_width);
pcm += chan_pos;
channels = hdspe_channel_count(ports, pcm_width);
/* Only copy as much as supported by both hardware and pcm channel. */
slots = hdspe_port_slot_width(subset, MIN(adat_width, pcm_width));
/* Let the compiler inline and loop unroll common cases. */
if (slots == 2)
buffer_mux_write(dma, pcm, pos, samples, 2, channels);
else if (slots == 4)
buffer_mux_write(dma, pcm, pos, samples, 4, channels);
else if (slots == 8)
buffer_mux_write(dma, pcm, pos, samples, 8, channels);
else
buffer_mux_write(dma, pcm, pos, samples, slots, channels);
}
static void
buffer_demux_read(uint32_t *dma, uint32_t *pcm, unsigned int pos,
unsigned int samples, unsigned int slots, unsigned int channels)
{
int slot;
for (; samples > 0; samples--) {
for (slot = 0; slot < slots; slot++) {
pcm[pos * channels + slot] =
dma[slot * HDSPE_CHANBUF_SAMPLES + pos];
}
pos = (pos + 1) % HDSPE_CHANBUF_SAMPLES;
}
}
static void
buffer_demux_port(uint32_t *dma, uint32_t *pcm, uint32_t subset, uint32_t ports,
unsigned int pos, unsigned int samples, unsigned int adat_width,
unsigned int pcm_width)
{
unsigned int slot_offset, slots;
unsigned int channels, chan_pos;
/* Translate port slot offset to DMA buffer offset. */
slot_offset = hdspe_port_slot_offset(subset, adat_width);
dma += slot_offset * HDSPE_CHANBUF_SAMPLES;
/* Channel position of the port subset and total number of channels. */
chan_pos = hdspe_channel_offset(subset, ports, pcm_width);
pcm += chan_pos;
channels = hdspe_channel_count(ports, pcm_width);
/* Only copy as much as supported by both hardware and pcm channel. */
slots = hdspe_port_slot_width(subset, MIN(adat_width, pcm_width));
/* Let the compiler inline and loop unroll common cases. */
if (slots == 2)
buffer_demux_read(dma, pcm, pos, samples, 2, channels);
else if (slots == 4)
buffer_demux_read(dma, pcm, pos, samples, 4, channels);
else if (slots == 8)
buffer_demux_read(dma, pcm, pos, samples, 8, channels);
else
buffer_demux_read(dma, pcm, pos, samples, slots, channels);
}
/* Copy data between DMA and PCM buffers. */
static void
buffer_copy(struct sc_chinfo *ch)
{
struct sc_pcminfo *scp;
struct sc_info *sc;
uint32_t row, ports;
uint32_t dma_pos;
unsigned int pos, length, offset;
unsigned int n;
unsigned int adat_width, pcm_width;
scp = ch->parent;
sc = scp->sc;
n = AFMT_CHANNEL(ch->format); /* n channels */
/* Let pcm formats differ from current hardware ADAT width. */
adat_width = hdspe_adat_width(sc->speed);
if (n == hdspe_channel_count(ch->ports, 2))
pcm_width = 2;
else if (n == hdspe_channel_count(ch->ports, 4))
pcm_width = 4;
else
pcm_width = 8;
/* Derive buffer position and length to be copied. */
if (ch->dir == PCMDIR_PLAY) {
/* Position per channel is n times smaller than PCM. */
pos = sndbuf_getreadyptr(ch->buffer) / n;
length = sndbuf_getready(ch->buffer) / n;
/* Copy no more than 2 periods in advance. */
if (length > (sc->period * 4 * 2))
length = (sc->period * 4 * 2);
/* Skip what was already copied last time. */
offset = (ch->position + HDSPE_CHANBUF_SIZE) - pos;
offset %= HDSPE_CHANBUF_SIZE;
if (offset <= length) {
pos = (pos + offset) % HDSPE_CHANBUF_SIZE;
length -= offset;
}
} else {
/* Position per channel is n times smaller than PCM. */
pos = sndbuf_getfreeptr(ch->buffer) / n;
/* Get DMA buffer write position. */
dma_pos = hdspe_read_2(sc, HDSPE_STATUS_REG);
dma_pos &= HDSPE_BUF_POSITION_MASK;
/* Copy what is newly available. */
length = (dma_pos + HDSPE_CHANBUF_SIZE) - pos;
length %= HDSPE_CHANBUF_SIZE;
}
/* Position and length in samples (4 bytes). */
pos /= 4;
length /= 4;
/* Iterate through rows of ports with contiguous slots. */
ports = ch->ports;
if (pcm_width == adat_width)
row = hdspe_port_first_row(ports);
else
row = hdspe_port_first(ports);
while (row != 0) {
if (ch->dir == PCMDIR_PLAY)
buffer_mux_port(sc->pbuf, ch->data, row, ch->ports, pos,
length, adat_width, pcm_width);
else
buffer_demux_port(sc->rbuf, ch->data, row, ch->ports,
pos, length, adat_width, pcm_width);
ports &= ~row;
if (pcm_width == adat_width)
row = hdspe_port_first_row(ports);
else
row = hdspe_port_first(ports);
}
ch->position = ((pos + length) * 4) % HDSPE_CHANBUF_SIZE;
}
static int
clean(struct sc_chinfo *ch)
{
struct sc_pcminfo *scp;
struct sc_info *sc;
uint32_t *buf;
uint32_t row, ports;
unsigned int offset, slots;
scp = ch->parent;
sc = scp->sc;
buf = sc->rbuf;
if (ch->dir == PCMDIR_PLAY)
buf = sc->pbuf;
/* Iterate through rows of ports with contiguous slots. */
ports = ch->ports;
row = hdspe_port_first_row(ports);
while (row != 0) {
offset = hdspe_port_slot_offset(row,
hdspe_adat_width(sc->speed));
slots = hdspe_port_slot_width(row, hdspe_adat_width(sc->speed));
bzero(buf + offset * HDSPE_CHANBUF_SAMPLES,
slots * HDSPE_CHANBUF_SIZE);
ports &= ~row;
row = hdspe_port_first_row(ports);
}
ch->position = 0;
return (0);
}
/* Channel interface. */
static void *
hdspechan_init(kobj_t obj, void *devinfo, struct snd_dbuf *b,
struct pcm_channel *c, int dir)
{
struct sc_pcminfo *scp;
struct sc_chinfo *ch;
struct sc_info *sc;
int num;
scp = devinfo;
sc = scp->sc;
snd_mtxlock(sc->lock);
num = scp->chnum;
ch = &scp->chan[num];
if (dir == PCMDIR_PLAY)
ch->ports = hdspe_channel_play_ports(scp->hc);
else
ch->ports = hdspe_channel_rec_ports(scp->hc);
ch->run = 0;
ch->lvol = 0;
ch->rvol = 0;
/* Support all possible ADAT widths as channel formats. */
ch->cap_fmts[0] =
SND_FORMAT(AFMT_S32_LE, hdspe_channel_count(ch->ports, 2), 0);
ch->cap_fmts[1] =
SND_FORMAT(AFMT_S32_LE, hdspe_channel_count(ch->ports, 4), 0);
ch->cap_fmts[2] =
SND_FORMAT(AFMT_S32_LE, hdspe_channel_count(ch->ports, 8), 0);
ch->cap_fmts[3] = 0;
ch->caps = malloc(sizeof(struct pcmchan_caps), M_HDSPE, M_NOWAIT);
*(ch->caps) = (struct pcmchan_caps) {32000, 192000, ch->cap_fmts, 0};
/* Allocate maximum buffer size. */
ch->size = HDSPE_CHANBUF_SIZE * hdspe_channel_count(ch->ports, 8);
ch->data = malloc(ch->size, M_HDSPE, M_NOWAIT);
ch->position = 0;
ch->buffer = b;
ch->channel = c;
ch->parent = scp;
ch->dir = dir;
snd_mtxunlock(sc->lock);
if (sndbuf_setup(ch->buffer, ch->data, ch->size) != 0) {
device_printf(scp->dev, "Can't setup sndbuf.\n");
return (NULL);
}
return (ch);
}
static int
hdspechan_trigger(kobj_t obj, void *data, int go)
{
struct sc_pcminfo *scp;
struct sc_chinfo *ch;
struct sc_info *sc;
ch = data;
scp = ch->parent;
sc = scp->sc;
snd_mtxlock(sc->lock);
switch (go) {
case PCMTRIG_START:
#if 0
device_printf(scp->dev, "hdspechan_trigger(): start\n");
#endif
hdspechan_enable(ch, 1);
hdspechan_setgain(ch);
hdspe_start_audio(sc);
break;
case PCMTRIG_STOP:
case PCMTRIG_ABORT:
#if 0
device_printf(scp->dev, "hdspechan_trigger(): stop or abort\n");
#endif
clean(ch);
hdspechan_enable(ch, 0);
hdspe_stop_audio(sc);
break;
case PCMTRIG_EMLDMAWR:
case PCMTRIG_EMLDMARD:
if(ch->run)
buffer_copy(ch);
break;
}
snd_mtxunlock(sc->lock);
return (0);
}
static uint32_t
hdspechan_getptr(kobj_t obj, void *data)
{
struct sc_pcminfo *scp;
struct sc_chinfo *ch;
struct sc_info *sc;
uint32_t ret, pos;
ch = data;
scp = ch->parent;
sc = scp->sc;
snd_mtxlock(sc->lock);
ret = hdspe_read_2(sc, HDSPE_STATUS_REG);
snd_mtxunlock(sc->lock);
pos = ret & HDSPE_BUF_POSITION_MASK;
pos *= AFMT_CHANNEL(ch->format); /* Hardbuf with multiple channels. */
return (pos);
}
static int
hdspechan_free(kobj_t obj, void *data)
{
struct sc_pcminfo *scp;
struct sc_chinfo *ch;
struct sc_info *sc;
ch = data;
scp = ch->parent;
sc = scp->sc;
#if 0
device_printf(scp->dev, "hdspechan_free()\n");
#endif
snd_mtxlock(sc->lock);
if (ch->data != NULL) {
free(ch->data, M_HDSPE);
ch->data = NULL;
}
if (ch->caps != NULL) {
free(ch->caps, M_HDSPE);
ch->caps = NULL;
}
snd_mtxunlock(sc->lock);
return (0);
}
static int
hdspechan_setformat(kobj_t obj, void *data, uint32_t format)
{
struct sc_chinfo *ch;
ch = data;
#if 0
struct sc_pcminfo *scp = ch->parent;
device_printf(scp->dev, "hdspechan_setformat(%d)\n", format);
#endif
ch->format = format;
return (0);
}
static uint32_t
hdspechan_setspeed(kobj_t obj, void *data, uint32_t speed)
{
struct sc_pcminfo *scp;
struct hdspe_rate *hr;
struct sc_chinfo *ch;
struct sc_info *sc;
long long period;
int threshold;
int i;
ch = data;
scp = ch->parent;
sc = scp->sc;
hr = NULL;
#if 0
device_printf(scp->dev, "hdspechan_setspeed(%d)\n", speed);
#endif
if (hdspe_running(sc) == 1)
goto end;
if (sc->force_speed > 0)
speed = sc->force_speed;
/* First look for equal frequency. */
for (i = 0; rate_map[i].speed != 0; i++) {
if (rate_map[i].speed == speed)
hr = &rate_map[i];
}
/* If no match, just find nearest. */
if (hr == NULL) {
for (i = 0; rate_map[i].speed != 0; i++) {
hr = &rate_map[i];
threshold = hr->speed + ((rate_map[i + 1].speed != 0) ?
((rate_map[i + 1].speed - hr->speed) >> 1) : 0);
if (speed < threshold)
break;
}
}
switch (sc->type) {
case HDSPE_RAYDAT:
case HDSPE_AIO:
period = HDSPE_FREQ_AIO;
break;
default:
/* Unsupported card. */
goto end;
}
/* Write frequency on the device. */
sc->ctrl_register &= ~HDSPE_FREQ_MASK;
sc->ctrl_register |= hr->reg;
hdspe_write_4(sc, HDSPE_CONTROL_REG, sc->ctrl_register);
speed = hr->speed;
if (speed > 96000)
speed /= 4;
else if (speed > 48000)
speed /= 2;
/* Set DDS value. */
period /= speed;
hdspe_write_4(sc, HDSPE_FREQ_REG, period);
sc->speed = hr->speed;
end:
return (sc->speed);
}
static uint32_t
hdspechan_setblocksize(kobj_t obj, void *data, uint32_t blocksize)
{
struct hdspe_latency *hl;
struct sc_pcminfo *scp;
struct sc_chinfo *ch;
struct sc_info *sc;
int threshold;
int i;
ch = data;
scp = ch->parent;
sc = scp->sc;
hl = NULL;
#if 0
device_printf(scp->dev, "hdspechan_setblocksize(%d)\n", blocksize);
#endif
if (hdspe_running(sc) == 1)
goto end;
if (blocksize > HDSPE_LAT_BYTES_MAX)
blocksize = HDSPE_LAT_BYTES_MAX;
else if (blocksize < HDSPE_LAT_BYTES_MIN)
blocksize = HDSPE_LAT_BYTES_MIN;
blocksize /= 4 /* samples */;
if (sc->force_period > 0)
blocksize = sc->force_period;
/* First look for equal latency. */
for (i = 0; latency_map[i].period != 0; i++) {
if (latency_map[i].period == blocksize)
hl = &latency_map[i];
}
/* If no match, just find nearest. */
if (hl == NULL) {
for (i = 0; latency_map[i].period != 0; i++) {
hl = &latency_map[i];
threshold = hl->period + ((latency_map[i + 1].period != 0) ?
((latency_map[i + 1].period - hl->period) >> 1) : 0);
if (blocksize < threshold)
break;
}
}
snd_mtxlock(sc->lock);
sc->ctrl_register &= ~HDSPE_LAT_MASK;
sc->ctrl_register |= hdspe_encode_latency(hl->n);
hdspe_write_4(sc, HDSPE_CONTROL_REG, sc->ctrl_register);
sc->period = hl->period;
snd_mtxunlock(sc->lock);
#if 0
device_printf(scp->dev, "New period=%d\n", sc->period);
#endif
sndbuf_resize(ch->buffer,
(HDSPE_CHANBUF_SIZE * AFMT_CHANNEL(ch->format)) / (sc->period * 4),
(sc->period * 4));
end:
return (sndbuf_getblksz(ch->buffer));
}
static uint32_t hdspe_bkp_fmt[] = {
SND_FORMAT(AFMT_S32_LE, 2, 0),
0
};
static struct pcmchan_caps hdspe_bkp_caps = {32000, 192000, hdspe_bkp_fmt, 0};
static struct pcmchan_caps *
hdspechan_getcaps(kobj_t obj, void *data)
{
struct sc_chinfo *ch;
ch = data;
#if 0
struct sc_pcminfo *scl = ch->parent;
device_printf(scp->dev, "hdspechan_getcaps()\n");
#endif
if (ch->caps != NULL)
return (ch->caps);
return (&hdspe_bkp_caps);
}
static kobj_method_t hdspechan_methods[] = {
KOBJMETHOD(channel_init, hdspechan_init),
KOBJMETHOD(channel_free, hdspechan_free),
KOBJMETHOD(channel_setformat, hdspechan_setformat),
KOBJMETHOD(channel_setspeed, hdspechan_setspeed),
KOBJMETHOD(channel_setblocksize, hdspechan_setblocksize),
KOBJMETHOD(channel_trigger, hdspechan_trigger),
KOBJMETHOD(channel_getptr, hdspechan_getptr),
KOBJMETHOD(channel_getcaps, hdspechan_getcaps),
KOBJMETHOD_END
};
CHANNEL_DECLARE(hdspechan);
static int
hdspe_pcm_probe(device_t dev)
{
#if 0
device_printf(dev,"hdspe_pcm_probe()\n");
#endif
return (0);
}
static uint32_t
hdspe_pcm_intr(struct sc_pcminfo *scp)
{
struct sc_chinfo *ch;
struct sc_info *sc;
int i;
sc = scp->sc;
for (i = 0; i < scp->chnum; i++) {
ch = &scp->chan[i];
snd_mtxunlock(sc->lock);
chn_intr(ch->channel);
snd_mtxlock(sc->lock);
}
return (0);
}
static int
hdspe_pcm_attach(device_t dev)
{
char status[SND_STATUSLEN];
struct sc_pcminfo *scp;
const char *buf;
uint32_t pcm_flags;
int err;
int play, rec;
scp = device_get_ivars(dev);
scp->ih = &hdspe_pcm_intr;
if (scp->hc->ports & HDSPE_CHAN_AIO_ALL)
buf = "AIO";
else if (scp->hc->ports & HDSPE_CHAN_RAY_ALL)
buf = "RayDAT";
else
buf = "?";
device_set_descf(dev, "HDSPe %s [%s]", buf, scp->hc->descr);
/*
* We don't register interrupt handler with snd_setup_intr
* in pcm device. Mark pcm device as MPSAFE manually.
*/
pcm_flags = pcm_getflags(dev) | SD_F_MPSAFE;
if (hdspe_channel_count(scp->hc->ports, 8) > HDSPE_MATRIX_MAX)
/* Disable vchan conversion, too many channels. */
pcm_flags |= SD_F_BITPERFECT;
pcm_setflags(dev, pcm_flags);
play = (hdspe_channel_play_ports(scp->hc)) ? 1 : 0;
rec = (hdspe_channel_rec_ports(scp->hc)) ? 1 : 0;
err = pcm_register(dev, scp, play, rec);
if (err) {
device_printf(dev, "Can't register pcm.\n");
return (ENXIO);
}
scp->chnum = 0;
if (play) {
pcm_addchan(dev, PCMDIR_PLAY, &hdspechan_class, scp);
scp->chnum++;
}
if (rec) {
pcm_addchan(dev, PCMDIR_REC, &hdspechan_class, scp);
scp->chnum++;
}
snprintf(status, SND_STATUSLEN, "port 0x%jx irq %jd on %s",
rman_get_start(scp->sc->cs),
rman_get_start(scp->sc->irq),
device_get_nameunit(device_get_parent(dev)));
pcm_setstatus(dev, status);
mixer_init(dev, &hdspemixer_class, scp);
return (0);
}
static int
hdspe_pcm_detach(device_t dev)
{
int err;
err = pcm_unregister(dev);
if (err) {
device_printf(dev, "Can't unregister device.\n");
return (err);
}
return (0);
}
static device_method_t hdspe_pcm_methods[] = {
DEVMETHOD(device_probe, hdspe_pcm_probe),
DEVMETHOD(device_attach, hdspe_pcm_attach),
DEVMETHOD(device_detach, hdspe_pcm_detach),
{ 0, 0 }
};
static driver_t hdspe_pcm_driver = {
"pcm",
hdspe_pcm_methods,
PCM_SOFTC_SIZE,
};
DRIVER_MODULE(snd_hdspe_pcm, hdspe, hdspe_pcm_driver, 0, 0);
MODULE_DEPEND(snd_hdspe, sound, SOUND_MINVER, SOUND_PREFVER, SOUND_MAXVER);
MODULE_VERSION(snd_hdspe, 1);