/*-
* SPDX-License-Identifier: BSD-2-Clause
*
* Copyright (c) 2012-2016 Ruslan Bukin
* Copyright (c) 2023-2024 Florian Walpen
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* RME HDSP driver for FreeBSD.
* Supported cards: HDSP 9632, HDSP 9652.
*/
#include
#include
#include
#include
#include
#include
#include
static bool hdsp_unified_pcm = false;
static SYSCTL_NODE(_hw, OID_AUTO, hdsp, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
"PCI HDSP");
SYSCTL_BOOL(_hw_hdsp, OID_AUTO, unified_pcm, CTLFLAG_RWTUN,
&hdsp_unified_pcm, 0, "Combine physical ports in one unified pcm device");
static struct hdsp_clock_source hdsp_clock_source_table_9632[] = {
{ "internal", HDSP_CLOCK_INTERNAL },
{ "adat", HDSP_CLOCK_ADAT1 },
{ "spdif", HDSP_CLOCK_SPDIF },
{ "word", HDSP_CLOCK_WORD },
{ NULL, HDSP_CLOCK_INTERNAL }
};
static struct hdsp_clock_source hdsp_clock_source_table_9652[] = {
{ "internal", HDSP_CLOCK_INTERNAL },
{ "adat1", HDSP_CLOCK_ADAT1 },
{ "adat2", HDSP_CLOCK_ADAT2 },
{ "adat3", HDSP_CLOCK_ADAT3 },
{ "spdif", HDSP_CLOCK_SPDIF },
{ "word", HDSP_CLOCK_WORD },
{ "adat_sync", HDSP_CLOCK_ADAT_SYNC },
{ NULL, HDSP_CLOCK_INTERNAL }
};
static struct hdsp_channel chan_map_9632[] = {
{ HDSP_CHAN_9632_ADAT, "adat" },
{ HDSP_CHAN_9632_SPDIF, "s/pdif" },
{ HDSP_CHAN_9632_LINE, "line" },
{ HDSP_CHAN_9632_EXT, "ext" },
{ 0, NULL },
};
static struct hdsp_channel chan_map_9632_uni[] = {
{ HDSP_CHAN_9632_ALL, "all" },
{ 0, NULL },
};
static struct hdsp_channel chan_map_9652[] = {
{ HDSP_CHAN_9652_ADAT1, "adat1" },
{ HDSP_CHAN_9652_ADAT2, "adat2" },
{ HDSP_CHAN_9652_ADAT3, "adat3" },
{ HDSP_CHAN_9652_SPDIF, "s/pdif" },
{ 0, NULL },
};
static struct hdsp_channel chan_map_9652_uni[] = {
{ HDSP_CHAN_9652_ALL, "all" },
{ 0, NULL },
};
static void
hdsp_intr(void *p)
{
struct sc_pcminfo *scp;
struct sc_info *sc;
device_t *devlist;
int devcount;
int status;
int err;
int i;
sc = (struct sc_info *)p;
snd_mtxlock(sc->lock);
status = hdsp_read_1(sc, HDSP_STATUS_REG);
if (status & HDSP_AUDIO_IRQ_PENDING) {
if ((err = device_get_children(sc->dev, &devlist, &devcount)) != 0)
return;
for (i = 0; i < devcount; i++) {
scp = device_get_ivars(devlist[i]);
if (scp->ih != NULL)
scp->ih(scp);
}
hdsp_write_1(sc, HDSP_INTERRUPT_ACK, 0);
free(devlist, M_TEMP);
}
snd_mtxunlock(sc->lock);
}
static void
hdsp_dmapsetmap(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
#if 0
device_printf(sc->dev, "hdsp_dmapsetmap()\n");
#endif
}
static int
hdsp_alloc_resources(struct sc_info *sc)
{
/* Allocate resource. */
sc->csid = PCIR_BAR(0);
sc->cs = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
&sc->csid, RF_ACTIVE);
if (!sc->cs) {
device_printf(sc->dev, "Unable to map SYS_RES_MEMORY.\n");
return (ENXIO);
}
sc->cst = rman_get_bustag(sc->cs);
sc->csh = rman_get_bushandle(sc->cs);
/* Allocate interrupt resource. */
sc->irqid = 0;
sc->irq = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &sc->irqid,
RF_ACTIVE | RF_SHAREABLE);
if (!sc->irq ||
bus_setup_intr(sc->dev, sc->irq, INTR_MPSAFE | INTR_TYPE_AV,
NULL, hdsp_intr, sc, &sc->ih)) {
device_printf(sc->dev, "Unable to alloc interrupt resource.\n");
return (ENXIO);
}
/* Allocate DMA resources. */
if (bus_dma_tag_create(/*parent*/bus_get_dma_tag(sc->dev),
/*alignment*/4,
/*boundary*/0,
/*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
/*highaddr*/BUS_SPACE_MAXADDR,
/*filter*/NULL,
/*filterarg*/NULL,
/*maxsize*/2 * HDSP_DMASEGSIZE,
/*nsegments*/2,
/*maxsegsz*/HDSP_DMASEGSIZE,
/*flags*/0,
/*lockfunc*/NULL,
/*lockarg*/NULL,
/*dmatag*/&sc->dmat) != 0) {
device_printf(sc->dev, "Unable to create dma tag.\n");
return (ENXIO);
}
sc->bufsize = HDSP_DMASEGSIZE;
/* pbuf (play buffer). */
if (bus_dmamem_alloc(sc->dmat, (void **)&sc->pbuf, BUS_DMA_WAITOK,
&sc->pmap)) {
device_printf(sc->dev, "Can't alloc pbuf.\n");
return (ENXIO);
}
if (bus_dmamap_load(sc->dmat, sc->pmap, sc->pbuf, sc->bufsize,
hdsp_dmapsetmap, sc, BUS_DMA_NOWAIT)) {
device_printf(sc->dev, "Can't load pbuf.\n");
return (ENXIO);
}
/* rbuf (rec buffer). */
if (bus_dmamem_alloc(sc->dmat, (void **)&sc->rbuf, BUS_DMA_WAITOK,
&sc->rmap)) {
device_printf(sc->dev, "Can't alloc rbuf.\n");
return (ENXIO);
}
if (bus_dmamap_load(sc->dmat, sc->rmap, sc->rbuf, sc->bufsize,
hdsp_dmapsetmap, sc, BUS_DMA_NOWAIT)) {
device_printf(sc->dev, "Can't load rbuf.\n");
return (ENXIO);
}
bzero(sc->pbuf, sc->bufsize);
bzero(sc->rbuf, sc->bufsize);
return (0);
}
static void
hdsp_map_dmabuf(struct sc_info *sc)
{
uint32_t paddr, raddr;
paddr = vtophys(sc->pbuf);
raddr = vtophys(sc->rbuf);
hdsp_write_4(sc, HDSP_PAGE_ADDR_BUF_OUT, paddr);
hdsp_write_4(sc, HDSP_PAGE_ADDR_BUF_IN, raddr);
}
static int
hdsp_sysctl_sample_rate(SYSCTL_HANDLER_ARGS)
{
struct sc_info *sc = oidp->oid_arg1;
int error;
unsigned int speed, multiplier;
speed = sc->force_speed;
/* Process sysctl (unsigned) integer request. */
error = sysctl_handle_int(oidp, &speed, 0, req);
if (error != 0 || req->newptr == NULL)
return (error);
/* Speed from 32000 to 192000, 0 falls back to pcm speed setting. */
sc->force_speed = 0;
if (speed > 0) {
multiplier = 1;
if ((speed > (96000 + 128000) / 2) && sc->type == HDSP_9632)
multiplier = 4;
else if (speed > (48000 + 64000) / 2)
multiplier = 2;
if (speed < ((32000 + 44100) / 2) * multiplier)
sc->force_speed = 32000 * multiplier;
else if (speed < ((44100 + 48000) / 2) * multiplier)
sc->force_speed = 44100 * multiplier;
else
sc->force_speed = 48000 * multiplier;
}
return (0);
}
static int
hdsp_sysctl_period(SYSCTL_HANDLER_ARGS)
{
struct sc_info *sc = oidp->oid_arg1;
int error;
unsigned int period;
period = sc->force_period;
/* Process sysctl (unsigned) integer request. */
error = sysctl_handle_int(oidp, &period, 0, req);
if (error != 0 || req->newptr == NULL)
return (error);
/* Period is from 2^5 to 2^14, 0 falls back to pcm latency settings. */
sc->force_period = 0;
if (period > 0) {
sc->force_period = 32;
while (sc->force_period < period && sc->force_period < 4096)
sc->force_period <<= 1;
}
return (0);
}
static uint32_t
hdsp_control_clock_preference(enum hdsp_clock_type type)
{
switch (type) {
case HDSP_CLOCK_INTERNAL:
return (HDSP_CONTROL_MASTER);
case HDSP_CLOCK_ADAT1:
return (HDSP_CONTROL_CLOCK(0));
case HDSP_CLOCK_ADAT2:
return (HDSP_CONTROL_CLOCK(1));
case HDSP_CLOCK_ADAT3:
return (HDSP_CONTROL_CLOCK(2));
case HDSP_CLOCK_SPDIF:
return (HDSP_CONTROL_CLOCK(3));
case HDSP_CLOCK_WORD:
return (HDSP_CONTROL_CLOCK(4));
case HDSP_CLOCK_ADAT_SYNC:
return (HDSP_CONTROL_CLOCK(5));
default:
return (HDSP_CONTROL_MASTER);
}
}
static int
hdsp_sysctl_clock_preference(SYSCTL_HANDLER_ARGS)
{
struct sc_info *sc;
struct hdsp_clock_source *clock_table, *clock;
char buf[16] = "invalid";
int error;
uint32_t control;
sc = oidp->oid_arg1;
/* Select sync ports table for device type. */
if (sc->type == HDSP_9632)
clock_table = hdsp_clock_source_table_9632;
else if (sc->type == HDSP_9652)
clock_table = hdsp_clock_source_table_9652;
else
return (ENXIO);
/* Extract preferred clock source from control register. */
control = sc->ctrl_register & HDSP_CONTROL_CLOCK_MASK;
for (clock = clock_table; clock->name != NULL; ++clock) {
if (hdsp_control_clock_preference(clock->type) == control)
break;
}
if (clock->name != NULL)
strlcpy(buf, clock->name, sizeof(buf));
/* Process sysctl string request. */
error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
if (error != 0 || req->newptr == NULL)
return (error);
/* Find clock source matching the sysctl string. */
for (clock = clock_table; clock->name != NULL; ++clock) {
if (strncasecmp(buf, clock->name, sizeof(buf)) == 0)
break;
}
/* Set preferred clock source in control register. */
if (clock->name != NULL) {
control = hdsp_control_clock_preference(clock->type);
control &= HDSP_CONTROL_CLOCK_MASK;
snd_mtxlock(sc->lock);
sc->ctrl_register &= ~HDSP_CONTROL_CLOCK_MASK;
sc->ctrl_register |= control;
hdsp_write_4(sc, HDSP_CONTROL_REG, sc->ctrl_register);
snd_mtxunlock(sc->lock);
}
return (0);
}
static uint32_t
hdsp_status2_clock_source(enum hdsp_clock_type type)
{
switch (type) {
case HDSP_CLOCK_INTERNAL:
return (0);
case HDSP_CLOCK_ADAT1:
return (HDSP_STATUS2_CLOCK(0));
case HDSP_CLOCK_ADAT2:
return (HDSP_STATUS2_CLOCK(1));
case HDSP_CLOCK_ADAT3:
return (HDSP_STATUS2_CLOCK(2));
case HDSP_CLOCK_SPDIF:
return (HDSP_STATUS2_CLOCK(3));
case HDSP_CLOCK_WORD:
return (HDSP_STATUS2_CLOCK(4));
case HDSP_CLOCK_ADAT_SYNC:
return (HDSP_STATUS2_CLOCK(5));
default:
return (0);
}
}
static int
hdsp_sysctl_clock_source(SYSCTL_HANDLER_ARGS)
{
struct sc_info *sc;
struct hdsp_clock_source *clock_table, *clock;
char buf[16] = "invalid";
uint32_t status2;
sc = oidp->oid_arg1;
/* Select sync ports table for device type. */
if (sc->type == HDSP_9632)
clock_table = hdsp_clock_source_table_9632;
else if (sc->type == HDSP_9652)
clock_table = hdsp_clock_source_table_9652;
else
return (ENXIO);
/* Read current (autosync) clock source from status2 register. */
snd_mtxlock(sc->lock);
status2 = hdsp_read_4(sc, HDSP_STATUS2_REG);
status2 &= HDSP_STATUS2_CLOCK_MASK;
snd_mtxunlock(sc->lock);
/* Translate status2 register value to clock source. */
for (clock = clock_table; clock->name != NULL; ++clock) {
/* In clock master mode, override with internal clock source. */
if (sc->ctrl_register & HDSP_CONTROL_MASTER) {
if (clock->type == HDSP_CLOCK_INTERNAL)
break;
} else if (hdsp_status2_clock_source(clock->type) == status2)
break;
}
/* Process sysctl string request. */
if (clock->name != NULL)
strlcpy(buf, clock->name, sizeof(buf));
return (sysctl_handle_string(oidp, buf, sizeof(buf), req));
}
static int
hdsp_sysctl_clock_list(SYSCTL_HANDLER_ARGS)
{
struct sc_info *sc;
struct hdsp_clock_source *clock_table, *clock;
char buf[256];
int n;
sc = oidp->oid_arg1;
n = 0;
/* Select clock source table for device type. */
if (sc->type == HDSP_9632)
clock_table = hdsp_clock_source_table_9632;
else if (sc->type == HDSP_9652)
clock_table = hdsp_clock_source_table_9652;
else
return (ENXIO);
/* List available clock sources. */
buf[0] = 0;
for (clock = clock_table; clock->name != NULL; ++clock) {
if (n > 0)
n += strlcpy(buf + n, ",", sizeof(buf) - n);
n += strlcpy(buf + n, clock->name, sizeof(buf) - n);
}
return (sysctl_handle_string(oidp, buf, sizeof(buf), req));
}
static bool
hdsp_clock_source_locked(enum hdsp_clock_type type, uint32_t status,
uint32_t status2)
{
switch (type) {
case HDSP_CLOCK_INTERNAL:
return (true);
case HDSP_CLOCK_ADAT1:
return ((status >> 3) & 0x01);
case HDSP_CLOCK_ADAT2:
return ((status >> 2) & 0x01);
case HDSP_CLOCK_ADAT3:
return ((status >> 1) & 0x01);
case HDSP_CLOCK_SPDIF:
return (!((status >> 25) & 0x01));
case HDSP_CLOCK_WORD:
return ((status2 >> 3) & 0x01);
case HDSP_CLOCK_ADAT_SYNC:
return ((status >> 5) & 0x01);
default:
return (false);
}
}
static bool
hdsp_clock_source_synced(enum hdsp_clock_type type, uint32_t status,
uint32_t status2)
{
switch (type) {
case HDSP_CLOCK_INTERNAL:
return (true);
case HDSP_CLOCK_ADAT1:
return ((status >> 18) & 0x01);
case HDSP_CLOCK_ADAT2:
return ((status >> 17) & 0x01);
case HDSP_CLOCK_ADAT3:
return ((status >> 16) & 0x01);
case HDSP_CLOCK_SPDIF:
return (((status >> 4) & 0x01) && !((status >> 25) & 0x01));
case HDSP_CLOCK_WORD:
return ((status2 >> 4) & 0x01);
case HDSP_CLOCK_ADAT_SYNC:
return ((status >> 27) & 0x01);
default:
return (false);
}
}
static int
hdsp_sysctl_sync_status(SYSCTL_HANDLER_ARGS)
{
struct sc_info *sc;
struct hdsp_clock_source *clock_table, *clock;
char buf[256];
char *state;
int n;
uint32_t status, status2;
sc = oidp->oid_arg1;
n = 0;
/* Select sync ports table for device type. */
if (sc->type == HDSP_9632)
clock_table = hdsp_clock_source_table_9632;
else if (sc->type == HDSP_9652)
clock_table = hdsp_clock_source_table_9652;
else
return (ENXIO);
/* Read current lock and sync bits from status registers. */
snd_mtxlock(sc->lock);
status = hdsp_read_4(sc, HDSP_STATUS_REG);
status2 = hdsp_read_4(sc, HDSP_STATUS2_REG);
snd_mtxunlock(sc->lock);
/* List clock sources with lock and sync state. */
for (clock = clock_table; clock->name != NULL; ++clock) {
if (clock->type == HDSP_CLOCK_INTERNAL)
continue;
if (n > 0)
n += strlcpy(buf + n, ",", sizeof(buf) - n);
state = "none";
if (hdsp_clock_source_locked(clock->type, status, status2)) {
if (hdsp_clock_source_synced(clock->type, status,
status2))
state = "sync";
else
state = "lock";
}
n += snprintf(buf + n, sizeof(buf) - n, "%s(%s)",
clock->name, state);
}
return (sysctl_handle_string(oidp, buf, sizeof(buf), req));
}
static int
hdsp_probe(device_t dev)
{
uint32_t rev;
if (pci_get_vendor(dev) == PCI_VENDOR_XILINX &&
pci_get_device(dev) == PCI_DEVICE_XILINX_HDSP) {
rev = pci_get_revid(dev);
switch (rev) {
case PCI_REVISION_9632:
device_set_desc(dev, "RME HDSP 9632");
return (0);
case PCI_REVISION_9652:
device_set_desc(dev, "RME HDSP 9652");
return (0);
}
}
return (ENXIO);
}
static int
hdsp_init(struct sc_info *sc)
{
unsigned mixer_controls;
/* Set latency. */
sc->period = 256;
/*
* The pcm channel latency settings propagate unreliable blocksizes,
* different for recording and playback, and skewed due to rounding
* and total buffer size limits.
* Force period to a consistent default until these issues are fixed.
*/
sc->force_period = 256;
sc->ctrl_register = hdsp_encode_latency(2);
/* Set rate. */
sc->speed = HDSP_SPEED_DEFAULT;
sc->force_speed = 0;
sc->ctrl_register &= ~HDSP_FREQ_MASK;
sc->ctrl_register |= HDSP_FREQ_MASK_DEFAULT;
/* Set internal clock source (master). */
sc->ctrl_register &= ~HDSP_CONTROL_CLOCK_MASK;
sc->ctrl_register |= HDSP_CONTROL_MASTER;
/* SPDIF from coax in, line out. */
sc->ctrl_register &= ~HDSP_CONTROL_SPDIF_COAX;
sc->ctrl_register |= HDSP_CONTROL_SPDIF_COAX;
sc->ctrl_register &= ~HDSP_CONTROL_LINE_OUT;
sc->ctrl_register |= HDSP_CONTROL_LINE_OUT;
hdsp_write_4(sc, HDSP_CONTROL_REG, sc->ctrl_register);
if (sc->type == HDSP_9652)
hdsp_write_4(sc, HDSP_CONTROL2_REG, HDSP_CONTROL2_9652_MIXER);
else
hdsp_write_4(sc, HDSP_CONTROL2_REG, 0);
switch (sc->type) {
case HDSP_9632:
/* Mixer matrix is 2 source rows (input, playback) per output. */
mixer_controls = 2 * HDSP_MIX_SLOTS_9632 * HDSP_MIX_SLOTS_9632;
break;
case HDSP_9652:
/* Mixer matrix is 2 source rows (input, playback) per output. */
mixer_controls = 2 * HDSP_MIX_SLOTS_9652 * HDSP_MIX_SLOTS_9652;
break;
default:
return (ENXIO);
}
/* Initialize mixer matrix by silencing all controls. */
for (unsigned offset = 0; offset < mixer_controls * 2; offset += 4) {
/* Only accepts 4 byte values, pairs of 16 bit volume controls. */
hdsp_write_4(sc, HDSP_MIXER_BASE + offset,
(HDSP_MIN_GAIN << 16) | HDSP_MIN_GAIN);
}
/* Reset pointer, rewrite frequency (same register) for 9632. */
hdsp_write_4(sc, HDSP_RESET_POINTER, 0);
if (sc->type == HDSP_9632) {
/* Set DDS value. */
hdsp_write_4(sc, HDSP_FREQ_REG, hdsp_freq_reg_value(sc->speed));
}
return (0);
}
static int
hdsp_attach(device_t dev)
{
struct hdsp_channel *chan_map;
struct sc_pcminfo *scp;
struct sc_info *sc;
uint32_t rev;
int i, err;
#if 0
device_printf(dev, "hdsp_attach()\n");
#endif
sc = device_get_softc(dev);
sc->lock = snd_mtxcreate(device_get_nameunit(dev),
"snd_hdsp softc");
sc->dev = dev;
pci_enable_busmaster(dev);
rev = pci_get_revid(dev);
switch (rev) {
case PCI_REVISION_9632:
sc->type = HDSP_9632;
chan_map = hdsp_unified_pcm ? chan_map_9632_uni : chan_map_9632;
break;
case PCI_REVISION_9652:
sc->type = HDSP_9652;
chan_map = hdsp_unified_pcm ? chan_map_9652_uni : chan_map_9652;
break;
default:
return (ENXIO);
}
/* Allocate resources. */
err = hdsp_alloc_resources(sc);
if (err) {
device_printf(dev, "Unable to allocate system resources.\n");
return (ENXIO);
}
if (hdsp_init(sc) != 0)
return (ENXIO);
for (i = 0; i < HDSP_MAX_CHANS && chan_map[i].descr != NULL; i++) {
scp = malloc(sizeof(struct sc_pcminfo), M_DEVBUF, M_NOWAIT | M_ZERO);
scp->hc = &chan_map[i];
scp->sc = sc;
scp->dev = device_add_child(dev, "pcm", -1);
device_set_ivars(scp->dev, scp);
}
hdsp_map_dmabuf(sc);
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
"sync_status", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
sc, 0, hdsp_sysctl_sync_status, "A",
"List clock source signal lock and sync status");
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
"clock_source", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
sc, 0, hdsp_sysctl_clock_source, "A",
"Currently effective clock source");
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
"clock_preference", CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
sc, 0, hdsp_sysctl_clock_preference, "A",
"Set 'internal' (master) or preferred autosync clock source");
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
"clock_list", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
sc, 0, hdsp_sysctl_clock_list, "A",
"List of supported clock sources");
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
"period", CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE,
sc, 0, hdsp_sysctl_period, "A",
"Force period of samples per interrupt (32, 64, ... 4096)");
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
"sample_rate", CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE,
sc, 0, hdsp_sysctl_sample_rate, "A",
"Force sample rate (32000, 44100, 48000, ... 192000)");
return (bus_generic_attach(dev));
}
static void
hdsp_dmafree(struct sc_info *sc)
{
bus_dmamap_unload(sc->dmat, sc->rmap);
bus_dmamap_unload(sc->dmat, sc->pmap);
bus_dmamem_free(sc->dmat, sc->rbuf, sc->rmap);
bus_dmamem_free(sc->dmat, sc->pbuf, sc->pmap);
sc->rbuf = sc->pbuf = NULL;
}
static int
hdsp_detach(device_t dev)
{
struct sc_info *sc;
int err;
sc = device_get_softc(dev);
if (sc == NULL) {
device_printf(dev,"Can't detach: softc is null.\n");
return (0);
}
err = device_delete_children(dev);
if (err)
return (err);
hdsp_dmafree(sc);
if (sc->ih)
bus_teardown_intr(dev, sc->irq, sc->ih);
if (sc->dmat)
bus_dma_tag_destroy(sc->dmat);
if (sc->irq)
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->irq);
if (sc->cs)
bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0), sc->cs);
if (sc->lock)
snd_mtxfree(sc->lock);
return (0);
}
static device_method_t hdsp_methods[] = {
DEVMETHOD(device_probe, hdsp_probe),
DEVMETHOD(device_attach, hdsp_attach),
DEVMETHOD(device_detach, hdsp_detach),
{ 0, 0 }
};
static driver_t hdsp_driver = {
"hdsp",
hdsp_methods,
PCM_SOFTC_SIZE,
};
DRIVER_MODULE(snd_hdsp, pci, hdsp_driver, 0, 0);