/*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2012-2021 Ruslan Bukin * Copyright (c) 2023-2024 Florian Walpen * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * RME HDSP driver for FreeBSD (pcm-part). * Supported cards: HDSP 9632, HDSP 9652. */ #include #include #include #include #include #include #define HDSP_MATRIX_MAX 8 struct hdsp_latency { uint32_t n; uint32_t period; float ms; }; static struct hdsp_latency latency_map[] = { { 7, 32, 0.7 }, { 0, 64, 1.5 }, { 1, 128, 3 }, { 2, 256, 6 }, { 3, 512, 12 }, { 4, 1024, 23 }, { 5, 2048, 46 }, { 6, 4096, 93 }, { 0, 0, 0 }, }; struct hdsp_rate { uint32_t speed; uint32_t reg; }; static struct hdsp_rate rate_map[] = { { 32000, (HDSP_FREQ_32000) }, { 44100, (HDSP_FREQ_44100) }, { 48000, (HDSP_FREQ_48000) }, { 64000, (HDSP_FREQ_32000 | HDSP_FREQ_DOUBLE) }, { 88200, (HDSP_FREQ_44100 | HDSP_FREQ_DOUBLE) }, { 96000, (HDSP_FREQ_48000 | HDSP_FREQ_DOUBLE) }, { 128000, (HDSP_FREQ_32000 | HDSP_FREQ_QUAD) }, { 176400, (HDSP_FREQ_44100 | HDSP_FREQ_QUAD) }, { 192000, (HDSP_FREQ_48000 | HDSP_FREQ_QUAD) }, { 0, 0 }, }; static uint32_t hdsp_adat_slot_map(uint32_t speed) { /* ADAT slot bitmap depends on sample rate. */ if (speed <= 48000) return (0x000000ff); /* 8 channels single speed. */ else if (speed <= 96000) return (0x000000aa); /* 4 channels (1,3,5,7) double speed. */ else return (0x00000000); /* ADAT disabled at quad speed. */ } static uint32_t hdsp_port_slot_map(uint32_t ports, uint32_t speed) { uint32_t slot_map = 0; if (ports & HDSP_CHAN_9632_ALL) { /* Map HDSP 9632 ports to slot bitmap. */ if (ports & HDSP_CHAN_9632_ADAT) slot_map |= (hdsp_adat_slot_map(speed) << 0); if (ports & HDSP_CHAN_9632_SPDIF) slot_map |= (0x03 << 8); /* 2 channels SPDIF. */ if (ports & HDSP_CHAN_9632_LINE) slot_map |= (0x03 << 10); /* 2 channels line. */ if (ports & HDSP_CHAN_9632_EXT_BOARD) slot_map |= (0x0f << 12); /* 4 channels extension. */ } else if ((ports & HDSP_CHAN_9652_ALL) && (speed <= 96000)) { /* Map HDSP 9652 ports to slot bitmap, no quad speed. */ if (ports & HDSP_CHAN_9652_ADAT1) slot_map |= (hdsp_adat_slot_map(speed) << 0); if (ports & HDSP_CHAN_9652_ADAT2) slot_map |= (hdsp_adat_slot_map(speed) << 8); if (ports & HDSP_CHAN_9652_ADAT3) slot_map |= (hdsp_adat_slot_map(speed) << 16); if (ports & HDSP_CHAN_9652_SPDIF) slot_map |= (0x03 << 24); /* 2 channels SPDIF. */ } return (slot_map); } static uint32_t hdsp_slot_first(uint32_t slots) { return (slots & (~(slots - 1))); /* Extract first bit set. */ } static uint32_t hdsp_slot_first_row(uint32_t slots) { uint32_t ends; /* Ends of slot rows are followed by a slot which is not in the set. */ ends = slots & (~(slots >> 1)); /* First row of contiguous slots ends in the first row end. */ return (slots & (ends ^ (ends - 1))); } static uint32_t hdsp_slot_first_n(uint32_t slots, unsigned int n) { /* Clear all but the first n slots. */ for (uint32_t slot = 1; slot != 0; slot <<= 1) { if ((slots & slot) && n > 0) --n; else slots &= ~slot; } return (slots); } static unsigned int hdsp_slot_count(uint32_t slots) { return (bitcount32(slots)); } static unsigned int hdsp_slot_offset(uint32_t slots) { return (hdsp_slot_count(hdsp_slot_first(slots) - 1)); } static unsigned int hdsp_slot_channel_offset(uint32_t subset, uint32_t slots) { uint32_t preceding; /* Make sure we have a subset of slots. */ subset &= slots; /* Include all slots preceding the first one of the subset. */ preceding = slots & (hdsp_slot_first(subset) - 1); return (hdsp_slot_count(preceding)); } static uint32_t hdsp_port_first(uint32_t ports) { return (ports & (~(ports - 1))); /* Extract first bit set. */ } static unsigned int hdsp_port_slot_count(uint32_t ports, uint32_t speed) { return (hdsp_slot_count(hdsp_port_slot_map(ports, speed))); } static unsigned int hdsp_port_slot_count_max(uint32_t ports) { return (hdsp_slot_count(hdsp_port_slot_map(ports, 48000))); } static uint32_t hdsp_channel_play_ports(struct hdsp_channel *hc) { return (hc->ports & (HDSP_CHAN_9632_ALL | HDSP_CHAN_9652_ALL)); } static uint32_t hdsp_channel_rec_ports(struct hdsp_channel *hc) { return (hc->ports & (HDSP_CHAN_9632_ALL | HDSP_CHAN_9652_ALL)); } static int hdsp_hw_mixer(struct sc_chinfo *ch, unsigned int dst, unsigned int src, unsigned short data) { struct sc_pcminfo *scp; struct sc_info *sc; uint32_t value; int offset; scp = ch->parent; sc = scp->sc; offset = 0; value = (HDSP_MIN_GAIN << 16) | (uint16_t) data; if (ch->dir != PCMDIR_PLAY) return (0); switch (sc->type) { case HDSP_9632: /* Mixer is 2 rows of sources (inputs, playback) per output. */ offset = dst * (2 * HDSP_MIX_SLOTS_9632); /* Source index in the second row (playback). */ offset += HDSP_MIX_SLOTS_9632 + src; break; case HDSP_9652: /* Mixer is 2 rows of sources (inputs, playback) per output. */ offset = dst * (2 * HDSP_MIX_SLOTS_9652); /* Source index in the second row (playback). */ offset += HDSP_MIX_SLOTS_9652 + src; break; default: return (0); } /* * We have to write mixer matrix values in pairs, with the second * (odd) value in the upper 16 bits of the 32 bit value. * Make value offset even and shift value accordingly. * Assume the paired value to be silenced, since we only set gain * on the diagonal where src and dst are the same. */ if (offset % 2) { offset -= 1; value = (value << 16) | HDSP_MIN_GAIN; } hdsp_write_4(sc, HDSP_MIXER_BASE + offset * sizeof(uint16_t), value); return (0); }; static int hdspchan_setgain(struct sc_chinfo *ch) { uint32_t port, ports; uint32_t slot, slots; unsigned int offset; unsigned short volume; /* Iterate through all physical ports of the channel. */ ports = ch->ports; port = hdsp_port_first(ports); while (port != 0) { /* * Get slot map from physical port. * Unlike DMA buffers, the hardware mixer's channel mapping * does not change with double or quad speed sample rates. */ slots = hdsp_port_slot_map(port, 48000); slot = hdsp_slot_first(slots); /* Treat first slot as left channel. */ volume = ch->lvol * HDSP_MAX_GAIN / 100; while (slot != 0) { offset = hdsp_slot_offset(slot); hdsp_hw_mixer(ch, offset, offset, volume); slots &= ~slot; slot = hdsp_slot_first(slots); /* Subsequent slots all get the right channel volume. */ volume = ch->rvol * HDSP_MAX_GAIN / 100; } ports &= ~port; port = hdsp_port_first(ports); } return (0); } static int hdspmixer_init(struct snd_mixer *m) { struct sc_pcminfo *scp; struct sc_info *sc; int mask; scp = mix_getdevinfo(m); sc = scp->sc; if (sc == NULL) return (-1); mask = SOUND_MASK_PCM; if (hdsp_channel_play_ports(scp->hc)) mask |= SOUND_MASK_VOLUME; if (hdsp_channel_rec_ports(scp->hc)) mask |= SOUND_MASK_RECLEV; snd_mtxlock(sc->lock); pcm_setflags(scp->dev, pcm_getflags(scp->dev) | SD_F_SOFTPCMVOL); mix_setdevs(m, mask); snd_mtxunlock(sc->lock); return (0); } static int hdspmixer_set(struct snd_mixer *m, unsigned dev, unsigned left, unsigned right) { struct sc_pcminfo *scp; struct sc_chinfo *ch; int i; scp = mix_getdevinfo(m); #if 0 device_printf(scp->dev, "hdspmixer_set() %d %d\n", left, right); #endif for (i = 0; i < scp->chnum; i++) { ch = &scp->chan[i]; if ((dev == SOUND_MIXER_VOLUME && ch->dir == PCMDIR_PLAY) || (dev == SOUND_MIXER_RECLEV && ch->dir == PCMDIR_REC)) { ch->lvol = left; ch->rvol = right; if (ch->run) hdspchan_setgain(ch); } } return (0); } static kobj_method_t hdspmixer_methods[] = { KOBJMETHOD(mixer_init, hdspmixer_init), KOBJMETHOD(mixer_set, hdspmixer_set), KOBJMETHOD_END }; MIXER_DECLARE(hdspmixer); static void hdspchan_enable(struct sc_chinfo *ch, int value) { struct sc_pcminfo *scp; struct sc_info *sc; uint32_t slot, slots; unsigned int offset; int reg; scp = ch->parent; sc = scp->sc; if (ch->dir == PCMDIR_PLAY) reg = HDSP_OUT_ENABLE_BASE; else reg = HDSP_IN_ENABLE_BASE; ch->run = value; /* Iterate through all slots of the channel's physical ports. */ slots = hdsp_port_slot_map(ch->ports, sc->speed); slot = hdsp_slot_first(slots); while (slot != 0) { /* Set register to enable or disable slot. */ offset = hdsp_slot_offset(slot); hdsp_write_1(sc, reg + (4 * offset), value); slots &= ~slot; slot = hdsp_slot_first(slots); } } static int hdsp_running(struct sc_info *sc) { struct sc_pcminfo *scp; struct sc_chinfo *ch; device_t *devlist; int devcount; int i, j; int running; running = 0; devlist = NULL; devcount = 0; if (device_get_children(sc->dev, &devlist, &devcount) != 0) running = 1; /* On error, avoid channel config changes. */ for (i = 0; running == 0 && i < devcount; i++) { scp = device_get_ivars(devlist[i]); for (j = 0; j < scp->chnum; j++) { ch = &scp->chan[j]; if (ch->run) { running = 1; break; } } } #if 0 if (running == 1) device_printf(sc->dev, "hdsp is running\n"); #endif free(devlist, M_TEMP); return (running); } static void hdsp_start_audio(struct sc_info *sc) { sc->ctrl_register |= (HDSP_AUDIO_INT_ENABLE | HDSP_ENABLE); hdsp_write_4(sc, HDSP_CONTROL_REG, sc->ctrl_register); } static void hdsp_stop_audio(struct sc_info *sc) { if (hdsp_running(sc) == 1) return; sc->ctrl_register &= ~(HDSP_AUDIO_INT_ENABLE | HDSP_ENABLE); hdsp_write_4(sc, HDSP_CONTROL_REG, sc->ctrl_register); } static void buffer_mux_write(uint32_t *dma, uint32_t *pcm, unsigned int pos, unsigned int pos_end, unsigned int width, unsigned int channels) { unsigned int slot; for (; pos < pos_end; ++pos) { for (slot = 0; slot < width; slot++) { dma[slot * HDSP_CHANBUF_SAMPLES + pos] = pcm[pos * channels + slot]; } } } static void buffer_mux_port(uint32_t *dma, uint32_t *pcm, uint32_t subset, uint32_t slots, unsigned int pos, unsigned int samples, unsigned int channels) { unsigned int slot_offset, width; unsigned int chan_pos; /* Translate DMA slot offset to DMA buffer offset. */ slot_offset = hdsp_slot_offset(subset); dma += slot_offset * HDSP_CHANBUF_SAMPLES; /* Channel position of the slot subset. */ chan_pos = hdsp_slot_channel_offset(subset, slots); pcm += chan_pos; /* Only copy channels supported by both hardware and pcm format. */ width = hdsp_slot_count(subset); /* Let the compiler inline and loop unroll common cases. */ if (width == 1) buffer_mux_write(dma, pcm, pos, pos + samples, 1, channels); else if (width == 2) buffer_mux_write(dma, pcm, pos, pos + samples, 2, channels); else if (width == 4) buffer_mux_write(dma, pcm, pos, pos + samples, 4, channels); else if (width == 8) buffer_mux_write(dma, pcm, pos, pos + samples, 8, channels); else buffer_mux_write(dma, pcm, pos, pos + samples, width, channels); } static void buffer_demux_read(uint32_t *dma, uint32_t *pcm, unsigned int pos, unsigned int pos_end, unsigned int width, unsigned int channels) { unsigned int slot; for (; pos < pos_end; ++pos) { for (slot = 0; slot < width; slot++) { pcm[pos * channels + slot] = dma[slot * HDSP_CHANBUF_SAMPLES + pos]; } } } static void buffer_demux_port(uint32_t *dma, uint32_t *pcm, uint32_t subset, uint32_t slots, unsigned int pos, unsigned int samples, unsigned int channels) { unsigned int slot_offset, width; unsigned int chan_pos; /* Translate DMA slot offset to DMA buffer offset. */ slot_offset = hdsp_slot_offset(subset); dma += slot_offset * HDSP_CHANBUF_SAMPLES; /* Channel position of the slot subset. */ chan_pos = hdsp_slot_channel_offset(subset, slots); pcm += chan_pos; /* Only copy channels supported by both hardware and pcm format. */ width = hdsp_slot_count(subset); /* Let the compiler inline and loop unroll common cases. */ if (width == 1) buffer_demux_read(dma, pcm, pos, pos + samples, 1, channels); else if (width == 2) buffer_demux_read(dma, pcm, pos, pos + samples, 2, channels); else if (width == 4) buffer_demux_read(dma, pcm, pos, pos + samples, 4, channels); else if (width == 8) buffer_demux_read(dma, pcm, pos, pos + samples, 8, channels); else buffer_demux_read(dma, pcm, pos, pos + samples, width, channels); } /* Copy data between DMA and PCM buffers. */ static void buffer_copy(struct sc_chinfo *ch) { struct sc_pcminfo *scp; struct sc_info *sc; uint32_t row, slots; uint32_t dma_pos; unsigned int pos, length, remainder, offset, buffer_size; unsigned int channels; scp = ch->parent; sc = scp->sc; channels = AFMT_CHANNEL(ch->format); /* Number of PCM channels. */ /* HDSP cards read / write a double buffer, twice the latency period. */ buffer_size = 2 * sc->period * sizeof(uint32_t); /* Derive buffer position and length to be copied. */ if (ch->dir == PCMDIR_PLAY) { /* Buffer position scaled down to a single channel. */ pos = sndbuf_getreadyptr(ch->buffer) / channels; length = sndbuf_getready(ch->buffer) / channels; /* Copy no more than 2 periods in advance. */ if (length > buffer_size) length = buffer_size; /* Skip what was already copied last time. */ offset = (ch->position + buffer_size) - pos; offset %= buffer_size; if (offset <= length) { pos = (pos + offset) % buffer_size; length -= offset; } } else { /* Buffer position scaled down to a single channel. */ pos = sndbuf_getfreeptr(ch->buffer) / channels; /* Get DMA buffer write position. */ dma_pos = hdsp_read_2(sc, HDSP_STATUS_REG); dma_pos &= HDSP_BUF_POSITION_MASK; dma_pos %= buffer_size; /* Copy what is newly available. */ length = (dma_pos + buffer_size) - pos; length %= buffer_size; } /* Position and length in samples (4 bytes). */ pos /= 4; length /= 4; buffer_size /= sizeof(uint32_t); /* Split copy length to wrap around at buffer end. */ remainder = 0; if (pos + length > buffer_size) remainder = (pos + length) - buffer_size; /* Iterate through rows of contiguous slots. */ slots = hdsp_port_slot_map(ch->ports, sc->speed); slots = hdsp_slot_first_n(slots, channels); row = hdsp_slot_first_row(slots); while (row != 0) { if (ch->dir == PCMDIR_PLAY) { buffer_mux_port(sc->pbuf, ch->data, row, slots, pos, length - remainder, channels); buffer_mux_port(sc->pbuf, ch->data, row, slots, 0, remainder, channels); } else { buffer_demux_port(sc->rbuf, ch->data, row, slots, pos, length - remainder, channels); buffer_demux_port(sc->rbuf, ch->data, row, slots, 0, remainder, channels); } slots &= ~row; row = hdsp_slot_first_row(slots); } ch->position = ((pos + length) * 4) % buffer_size; } static int clean(struct sc_chinfo *ch) { struct sc_pcminfo *scp; struct sc_info *sc; uint32_t *buf; uint32_t slot, slots; unsigned int offset; scp = ch->parent; sc = scp->sc; buf = sc->rbuf; if (ch->dir == PCMDIR_PLAY) buf = sc->pbuf; /* Iterate through all of the channel's slots. */ slots = hdsp_port_slot_map(ch->ports, sc->speed); slot = hdsp_slot_first(slots); while (slot != 0) { /* Clear the slot's buffer. */ offset = hdsp_slot_offset(slot); bzero(buf + offset * HDSP_CHANBUF_SAMPLES, HDSP_CHANBUF_SIZE); slots &= ~slot; slot = hdsp_slot_first(slots); } ch->position = 0; return (0); } /* Channel interface. */ static void * hdspchan_init(kobj_t obj, void *devinfo, struct snd_dbuf *b, struct pcm_channel *c, int dir) { struct sc_pcminfo *scp; struct sc_chinfo *ch; struct sc_info *sc; int num; scp = devinfo; sc = scp->sc; snd_mtxlock(sc->lock); num = scp->chnum; ch = &scp->chan[num]; if (dir == PCMDIR_PLAY) ch->ports = hdsp_channel_play_ports(scp->hc); else ch->ports = hdsp_channel_rec_ports(scp->hc); ch->run = 0; ch->lvol = 0; ch->rvol = 0; /* Support all possible ADAT widths as channel formats. */ ch->cap_fmts[0] = SND_FORMAT(AFMT_S32_LE, hdsp_port_slot_count(ch->ports, 48000), 0); ch->cap_fmts[1] = SND_FORMAT(AFMT_S32_LE, hdsp_port_slot_count(ch->ports, 96000), 0); ch->cap_fmts[2] = SND_FORMAT(AFMT_S32_LE, hdsp_port_slot_count(ch->ports, 192000), 0); ch->cap_fmts[3] = 0; ch->caps = malloc(sizeof(struct pcmchan_caps), M_HDSP, M_NOWAIT); *(ch->caps) = (struct pcmchan_caps) {32000, 192000, ch->cap_fmts, 0}; /* HDSP 9652 does not support quad speed sample rates. */ if (sc->type == HDSP_9652) { ch->cap_fmts[2] = SND_FORMAT(AFMT_S32_LE, 2, 0); ch->caps->maxspeed = 96000; } /* Allocate maximum buffer size. */ ch->size = HDSP_CHANBUF_SIZE * hdsp_port_slot_count_max(ch->ports); ch->data = malloc(ch->size, M_HDSP, M_NOWAIT); ch->position = 0; ch->buffer = b; ch->channel = c; ch->parent = scp; ch->dir = dir; snd_mtxunlock(sc->lock); if (sndbuf_setup(ch->buffer, ch->data, ch->size) != 0) { device_printf(scp->dev, "Can't setup sndbuf.\n"); return (NULL); } return (ch); } static int hdspchan_trigger(kobj_t obj, void *data, int go) { struct sc_pcminfo *scp; struct sc_chinfo *ch; struct sc_info *sc; ch = data; scp = ch->parent; sc = scp->sc; snd_mtxlock(sc->lock); switch (go) { case PCMTRIG_START: #if 0 device_printf(scp->dev, "hdspchan_trigger(): start\n"); #endif hdspchan_enable(ch, 1); hdspchan_setgain(ch); hdsp_start_audio(sc); break; case PCMTRIG_STOP: case PCMTRIG_ABORT: #if 0 device_printf(scp->dev, "hdspchan_trigger(): stop or abort\n"); #endif clean(ch); hdspchan_enable(ch, 0); hdsp_stop_audio(sc); break; case PCMTRIG_EMLDMAWR: case PCMTRIG_EMLDMARD: if(ch->run) buffer_copy(ch); break; } snd_mtxunlock(sc->lock); return (0); } static uint32_t hdspchan_getptr(kobj_t obj, void *data) { struct sc_pcminfo *scp; struct sc_chinfo *ch; struct sc_info *sc; uint32_t ret, pos; ch = data; scp = ch->parent; sc = scp->sc; snd_mtxlock(sc->lock); ret = hdsp_read_2(sc, HDSP_STATUS_REG); snd_mtxunlock(sc->lock); pos = ret & HDSP_BUF_POSITION_MASK; pos %= (2 * sc->period * sizeof(uint32_t)); /* Double buffer. */ pos *= AFMT_CHANNEL(ch->format); /* Hardbuf with multiple channels. */ return (pos); } static int hdspchan_free(kobj_t obj, void *data) { struct sc_pcminfo *scp; struct sc_chinfo *ch; struct sc_info *sc; ch = data; scp = ch->parent; sc = scp->sc; #if 0 device_printf(scp->dev, "hdspchan_free()\n"); #endif snd_mtxlock(sc->lock); if (ch->data != NULL) { free(ch->data, M_HDSP); ch->data = NULL; } if (ch->caps != NULL) { free(ch->caps, M_HDSP); ch->caps = NULL; } snd_mtxunlock(sc->lock); return (0); } static int hdspchan_setformat(kobj_t obj, void *data, uint32_t format) { struct sc_chinfo *ch; ch = data; #if 0 struct sc_pcminfo *scp = ch->parent; device_printf(scp->dev, "hdspchan_setformat(%d)\n", format); #endif ch->format = format; return (0); } static uint32_t hdspchan_setspeed(kobj_t obj, void *data, uint32_t speed) { struct sc_pcminfo *scp; struct hdsp_rate *hr; struct sc_chinfo *ch; struct sc_info *sc; int threshold; int i; ch = data; scp = ch->parent; sc = scp->sc; hr = NULL; #if 0 device_printf(scp->dev, "hdspchan_setspeed(%d)\n", speed); #endif if (hdsp_running(sc) == 1) goto end; /* HDSP 9652 only supports sample rates up to 96kHz. */ if (sc->type == HDSP_9652 && speed > 96000) speed = 96000; if (sc->force_speed > 0) speed = sc->force_speed; /* First look for equal frequency. */ for (i = 0; rate_map[i].speed != 0; i++) { if (rate_map[i].speed == speed) hr = &rate_map[i]; } /* If no match, just find nearest. */ if (hr == NULL) { for (i = 0; rate_map[i].speed != 0; i++) { hr = &rate_map[i]; threshold = hr->speed + ((rate_map[i + 1].speed != 0) ? ((rate_map[i + 1].speed - hr->speed) >> 1) : 0); if (speed < threshold) break; } } /* Write frequency on the device. */ sc->ctrl_register &= ~HDSP_FREQ_MASK; sc->ctrl_register |= hr->reg; hdsp_write_4(sc, HDSP_CONTROL_REG, sc->ctrl_register); if (sc->type == HDSP_9632) { /* Set DDS value. */ hdsp_write_4(sc, HDSP_FREQ_REG, hdsp_freq_reg_value(hr->speed)); } sc->speed = hr->speed; end: return (sc->speed); } static uint32_t hdspchan_setblocksize(kobj_t obj, void *data, uint32_t blocksize) { struct hdsp_latency *hl; struct sc_pcminfo *scp; struct sc_chinfo *ch; struct sc_info *sc; int threshold; int i; ch = data; scp = ch->parent; sc = scp->sc; hl = NULL; #if 0 device_printf(scp->dev, "hdspchan_setblocksize(%d)\n", blocksize); #endif if (hdsp_running(sc) == 1) goto end; if (blocksize > HDSP_LAT_BYTES_MAX) blocksize = HDSP_LAT_BYTES_MAX; else if (blocksize < HDSP_LAT_BYTES_MIN) blocksize = HDSP_LAT_BYTES_MIN; blocksize /= 4 /* samples */; if (sc->force_period > 0) blocksize = sc->force_period; /* First look for equal latency. */ for (i = 0; latency_map[i].period != 0; i++) { if (latency_map[i].period == blocksize) hl = &latency_map[i]; } /* If no match, just find nearest. */ if (hl == NULL) { for (i = 0; latency_map[i].period != 0; i++) { hl = &latency_map[i]; threshold = hl->period + ((latency_map[i + 1].period != 0) ? ((latency_map[i + 1].period - hl->period) >> 1) : 0); if (blocksize < threshold) break; } } snd_mtxlock(sc->lock); sc->ctrl_register &= ~HDSP_LAT_MASK; sc->ctrl_register |= hdsp_encode_latency(hl->n); hdsp_write_4(sc, HDSP_CONTROL_REG, sc->ctrl_register); sc->period = hl->period; snd_mtxunlock(sc->lock); #if 0 device_printf(scp->dev, "New period=%d\n", sc->period); #endif sndbuf_resize(ch->buffer, 2, (sc->period * AFMT_CHANNEL(ch->format) * sizeof(uint32_t))); /* Reset pointer, rewrite frequency (same register) for 9632. */ hdsp_write_4(sc, HDSP_RESET_POINTER, 0); if (sc->type == HDSP_9632) hdsp_write_4(sc, HDSP_FREQ_REG, hdsp_freq_reg_value(sc->speed)); end: return (sndbuf_getblksz(ch->buffer)); } static uint32_t hdsp_bkp_fmt[] = { SND_FORMAT(AFMT_S32_LE, 2, 0), 0 }; /* Capabilities fallback, no quad speed for HDSP 9652 compatibility. */ static struct pcmchan_caps hdsp_bkp_caps = {32000, 96000, hdsp_bkp_fmt, 0}; static struct pcmchan_caps * hdspchan_getcaps(kobj_t obj, void *data) { struct sc_chinfo *ch; ch = data; #if 0 device_printf(ch->parent->dev, "hdspchan_getcaps()\n"); #endif if (ch->caps != NULL) return (ch->caps); return (&hdsp_bkp_caps); } static kobj_method_t hdspchan_methods[] = { KOBJMETHOD(channel_init, hdspchan_init), KOBJMETHOD(channel_free, hdspchan_free), KOBJMETHOD(channel_setformat, hdspchan_setformat), KOBJMETHOD(channel_setspeed, hdspchan_setspeed), KOBJMETHOD(channel_setblocksize, hdspchan_setblocksize), KOBJMETHOD(channel_trigger, hdspchan_trigger), KOBJMETHOD(channel_getptr, hdspchan_getptr), KOBJMETHOD(channel_getcaps, hdspchan_getcaps), KOBJMETHOD_END }; CHANNEL_DECLARE(hdspchan); static int hdsp_pcm_probe(device_t dev) { #if 0 device_printf(dev,"hdsp_pcm_probe()\n"); #endif return (0); } static uint32_t hdsp_pcm_intr(struct sc_pcminfo *scp) { struct sc_chinfo *ch; struct sc_info *sc; int i; sc = scp->sc; for (i = 0; i < scp->chnum; i++) { ch = &scp->chan[i]; snd_mtxunlock(sc->lock); chn_intr(ch->channel); snd_mtxlock(sc->lock); } return (0); } static int hdsp_pcm_attach(device_t dev) { char status[SND_STATUSLEN]; struct sc_pcminfo *scp; const char *buf; uint32_t pcm_flags; int err; int play, rec; scp = device_get_ivars(dev); scp->ih = &hdsp_pcm_intr; if (scp->hc->ports & HDSP_CHAN_9632_ALL) buf = "9632"; else if (scp->hc->ports & HDSP_CHAN_9652_ALL) buf = "9652"; else buf = "?"; device_set_descf(dev, "HDSP %s [%s]", buf, scp->hc->descr); /* * We don't register interrupt handler with snd_setup_intr * in pcm device. Mark pcm device as MPSAFE manually. */ pcm_flags = pcm_getflags(dev) | SD_F_MPSAFE; if (hdsp_port_slot_count_max(scp->hc->ports) > HDSP_MATRIX_MAX) /* Disable vchan conversion, too many channels. */ pcm_flags |= SD_F_BITPERFECT; pcm_setflags(dev, pcm_flags); play = (hdsp_channel_play_ports(scp->hc)) ? 1 : 0; rec = (hdsp_channel_rec_ports(scp->hc)) ? 1 : 0; err = pcm_register(dev, scp, play, rec); if (err) { device_printf(dev, "Can't register pcm.\n"); return (ENXIO); } scp->chnum = 0; if (play) { pcm_addchan(dev, PCMDIR_PLAY, &hdspchan_class, scp); scp->chnum++; } if (rec) { pcm_addchan(dev, PCMDIR_REC, &hdspchan_class, scp); scp->chnum++; } snprintf(status, SND_STATUSLEN, "port 0x%jx irq %jd on %s", rman_get_start(scp->sc->cs), rman_get_start(scp->sc->irq), device_get_nameunit(device_get_parent(dev))); pcm_setstatus(dev, status); mixer_init(dev, &hdspmixer_class, scp); return (0); } static int hdsp_pcm_detach(device_t dev) { int err; err = pcm_unregister(dev); if (err) { device_printf(dev, "Can't unregister device.\n"); return (err); } return (0); } static device_method_t hdsp_pcm_methods[] = { DEVMETHOD(device_probe, hdsp_pcm_probe), DEVMETHOD(device_attach, hdsp_pcm_attach), DEVMETHOD(device_detach, hdsp_pcm_detach), { 0, 0 } }; static driver_t hdsp_pcm_driver = { "pcm", hdsp_pcm_methods, PCM_SOFTC_SIZE, }; DRIVER_MODULE(snd_hdsp_pcm, hdsp, hdsp_pcm_driver, 0, 0); MODULE_DEPEND(snd_hdsp, sound, SOUND_MINVER, SOUND_PREFVER, SOUND_MAXVER); MODULE_VERSION(snd_hdsp, 1);