/*-
* SPDX-License-Identifier: BSD-2-Clause
*
* Copyright (c) 2012-2021 Ruslan Bukin
* Copyright (c) 2023-2024 Florian Walpen
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* RME HDSP driver for FreeBSD (pcm-part).
* Supported cards: HDSP 9632, HDSP 9652.
*/
#include
#include
#include
#include
#include
#include
#define HDSP_MATRIX_MAX 8
struct hdsp_latency {
uint32_t n;
uint32_t period;
float ms;
};
static struct hdsp_latency latency_map[] = {
{ 7, 32, 0.7 },
{ 0, 64, 1.5 },
{ 1, 128, 3 },
{ 2, 256, 6 },
{ 3, 512, 12 },
{ 4, 1024, 23 },
{ 5, 2048, 46 },
{ 6, 4096, 93 },
{ 0, 0, 0 },
};
struct hdsp_rate {
uint32_t speed;
uint32_t reg;
};
static struct hdsp_rate rate_map[] = {
{ 32000, (HDSP_FREQ_32000) },
{ 44100, (HDSP_FREQ_44100) },
{ 48000, (HDSP_FREQ_48000) },
{ 64000, (HDSP_FREQ_32000 | HDSP_FREQ_DOUBLE) },
{ 88200, (HDSP_FREQ_44100 | HDSP_FREQ_DOUBLE) },
{ 96000, (HDSP_FREQ_48000 | HDSP_FREQ_DOUBLE) },
{ 128000, (HDSP_FREQ_32000 | HDSP_FREQ_QUAD) },
{ 176400, (HDSP_FREQ_44100 | HDSP_FREQ_QUAD) },
{ 192000, (HDSP_FREQ_48000 | HDSP_FREQ_QUAD) },
{ 0, 0 },
};
static uint32_t
hdsp_adat_slot_map(uint32_t speed)
{
/* ADAT slot bitmap depends on sample rate. */
if (speed <= 48000)
return (0x000000ff); /* 8 channels single speed. */
else if (speed <= 96000)
return (0x000000aa); /* 4 channels (1,3,5,7) double speed. */
else
return (0x00000000); /* ADAT disabled at quad speed. */
}
static uint32_t
hdsp_port_slot_map(uint32_t ports, uint32_t speed)
{
uint32_t slot_map = 0;
if (ports & HDSP_CHAN_9632_ALL) {
/* Map HDSP 9632 ports to slot bitmap. */
if (ports & HDSP_CHAN_9632_ADAT)
slot_map |= (hdsp_adat_slot_map(speed) << 0);
if (ports & HDSP_CHAN_9632_SPDIF)
slot_map |= (0x03 << 8); /* 2 channels SPDIF. */
if (ports & HDSP_CHAN_9632_LINE)
slot_map |= (0x03 << 10); /* 2 channels line. */
if (ports & HDSP_CHAN_9632_EXT_BOARD)
slot_map |= (0x0f << 12); /* 4 channels extension. */
} else if ((ports & HDSP_CHAN_9652_ALL) && (speed <= 96000)) {
/* Map HDSP 9652 ports to slot bitmap, no quad speed. */
if (ports & HDSP_CHAN_9652_ADAT1)
slot_map |= (hdsp_adat_slot_map(speed) << 0);
if (ports & HDSP_CHAN_9652_ADAT2)
slot_map |= (hdsp_adat_slot_map(speed) << 8);
if (ports & HDSP_CHAN_9652_ADAT3)
slot_map |= (hdsp_adat_slot_map(speed) << 16);
if (ports & HDSP_CHAN_9652_SPDIF)
slot_map |= (0x03 << 24); /* 2 channels SPDIF. */
}
return (slot_map);
}
static uint32_t
hdsp_slot_first(uint32_t slots)
{
return (slots & (~(slots - 1))); /* Extract first bit set. */
}
static uint32_t
hdsp_slot_first_row(uint32_t slots)
{
uint32_t ends;
/* Ends of slot rows are followed by a slot which is not in the set. */
ends = slots & (~(slots >> 1));
/* First row of contiguous slots ends in the first row end. */
return (slots & (ends ^ (ends - 1)));
}
static uint32_t
hdsp_slot_first_n(uint32_t slots, unsigned int n)
{
/* Clear all but the first n slots. */
for (uint32_t slot = 1; slot != 0; slot <<= 1) {
if ((slots & slot) && n > 0)
--n;
else
slots &= ~slot;
}
return (slots);
}
static unsigned int
hdsp_slot_count(uint32_t slots)
{
return (bitcount32(slots));
}
static unsigned int
hdsp_slot_offset(uint32_t slots)
{
return (hdsp_slot_count(hdsp_slot_first(slots) - 1));
}
static unsigned int
hdsp_slot_channel_offset(uint32_t subset, uint32_t slots)
{
uint32_t preceding;
/* Make sure we have a subset of slots. */
subset &= slots;
/* Include all slots preceding the first one of the subset. */
preceding = slots & (hdsp_slot_first(subset) - 1);
return (hdsp_slot_count(preceding));
}
static uint32_t
hdsp_port_first(uint32_t ports)
{
return (ports & (~(ports - 1))); /* Extract first bit set. */
}
static unsigned int
hdsp_port_slot_count(uint32_t ports, uint32_t speed)
{
return (hdsp_slot_count(hdsp_port_slot_map(ports, speed)));
}
static unsigned int
hdsp_port_slot_count_max(uint32_t ports)
{
return (hdsp_slot_count(hdsp_port_slot_map(ports, 48000)));
}
static uint32_t
hdsp_channel_play_ports(struct hdsp_channel *hc)
{
return (hc->ports & (HDSP_CHAN_9632_ALL | HDSP_CHAN_9652_ALL));
}
static uint32_t
hdsp_channel_rec_ports(struct hdsp_channel *hc)
{
return (hc->ports & (HDSP_CHAN_9632_ALL | HDSP_CHAN_9652_ALL));
}
static int
hdsp_hw_mixer(struct sc_chinfo *ch, unsigned int dst,
unsigned int src, unsigned short data)
{
struct sc_pcminfo *scp;
struct sc_info *sc;
uint32_t value;
int offset;
scp = ch->parent;
sc = scp->sc;
offset = 0;
value = (HDSP_MIN_GAIN << 16) | (uint16_t) data;
if (ch->dir != PCMDIR_PLAY)
return (0);
switch (sc->type) {
case HDSP_9632:
/* Mixer is 2 rows of sources (inputs, playback) per output. */
offset = dst * (2 * HDSP_MIX_SLOTS_9632);
/* Source index in the second row (playback). */
offset += HDSP_MIX_SLOTS_9632 + src;
break;
case HDSP_9652:
/* Mixer is 2 rows of sources (inputs, playback) per output. */
offset = dst * (2 * HDSP_MIX_SLOTS_9652);
/* Source index in the second row (playback). */
offset += HDSP_MIX_SLOTS_9652 + src;
break;
default:
return (0);
}
/*
* We have to write mixer matrix values in pairs, with the second
* (odd) value in the upper 16 bits of the 32 bit value.
* Make value offset even and shift value accordingly.
* Assume the paired value to be silenced, since we only set gain
* on the diagonal where src and dst are the same.
*/
if (offset % 2) {
offset -= 1;
value = (value << 16) | HDSP_MIN_GAIN;
}
hdsp_write_4(sc, HDSP_MIXER_BASE + offset * sizeof(uint16_t), value);
return (0);
};
static int
hdspchan_setgain(struct sc_chinfo *ch)
{
uint32_t port, ports;
uint32_t slot, slots;
unsigned int offset;
unsigned short volume;
/* Iterate through all physical ports of the channel. */
ports = ch->ports;
port = hdsp_port_first(ports);
while (port != 0) {
/*
* Get slot map from physical port.
* Unlike DMA buffers, the hardware mixer's channel mapping
* does not change with double or quad speed sample rates.
*/
slots = hdsp_port_slot_map(port, 48000);
slot = hdsp_slot_first(slots);
/* Treat first slot as left channel. */
volume = ch->lvol * HDSP_MAX_GAIN / 100;
while (slot != 0) {
offset = hdsp_slot_offset(slot);
hdsp_hw_mixer(ch, offset, offset, volume);
slots &= ~slot;
slot = hdsp_slot_first(slots);
/* Subsequent slots all get the right channel volume. */
volume = ch->rvol * HDSP_MAX_GAIN / 100;
}
ports &= ~port;
port = hdsp_port_first(ports);
}
return (0);
}
static int
hdspmixer_init(struct snd_mixer *m)
{
struct sc_pcminfo *scp;
struct sc_info *sc;
int mask;
scp = mix_getdevinfo(m);
sc = scp->sc;
if (sc == NULL)
return (-1);
mask = SOUND_MASK_PCM;
if (hdsp_channel_play_ports(scp->hc))
mask |= SOUND_MASK_VOLUME;
if (hdsp_channel_rec_ports(scp->hc))
mask |= SOUND_MASK_RECLEV;
snd_mtxlock(sc->lock);
pcm_setflags(scp->dev, pcm_getflags(scp->dev) | SD_F_SOFTPCMVOL);
mix_setdevs(m, mask);
snd_mtxunlock(sc->lock);
return (0);
}
static int
hdspmixer_set(struct snd_mixer *m, unsigned dev,
unsigned left, unsigned right)
{
struct sc_pcminfo *scp;
struct sc_chinfo *ch;
int i;
scp = mix_getdevinfo(m);
#if 0
device_printf(scp->dev, "hdspmixer_set() %d %d\n",
left, right);
#endif
for (i = 0; i < scp->chnum; i++) {
ch = &scp->chan[i];
if ((dev == SOUND_MIXER_VOLUME && ch->dir == PCMDIR_PLAY) ||
(dev == SOUND_MIXER_RECLEV && ch->dir == PCMDIR_REC)) {
ch->lvol = left;
ch->rvol = right;
if (ch->run)
hdspchan_setgain(ch);
}
}
return (0);
}
static kobj_method_t hdspmixer_methods[] = {
KOBJMETHOD(mixer_init, hdspmixer_init),
KOBJMETHOD(mixer_set, hdspmixer_set),
KOBJMETHOD_END
};
MIXER_DECLARE(hdspmixer);
static void
hdspchan_enable(struct sc_chinfo *ch, int value)
{
struct sc_pcminfo *scp;
struct sc_info *sc;
uint32_t slot, slots;
unsigned int offset;
int reg;
scp = ch->parent;
sc = scp->sc;
if (ch->dir == PCMDIR_PLAY)
reg = HDSP_OUT_ENABLE_BASE;
else
reg = HDSP_IN_ENABLE_BASE;
ch->run = value;
/* Iterate through all slots of the channel's physical ports. */
slots = hdsp_port_slot_map(ch->ports, sc->speed);
slot = hdsp_slot_first(slots);
while (slot != 0) {
/* Set register to enable or disable slot. */
offset = hdsp_slot_offset(slot);
hdsp_write_1(sc, reg + (4 * offset), value);
slots &= ~slot;
slot = hdsp_slot_first(slots);
}
}
static int
hdsp_running(struct sc_info *sc)
{
struct sc_pcminfo *scp;
struct sc_chinfo *ch;
device_t *devlist;
int devcount;
int i, j;
int running;
running = 0;
devlist = NULL;
devcount = 0;
if (device_get_children(sc->dev, &devlist, &devcount) != 0)
running = 1; /* On error, avoid channel config changes. */
for (i = 0; running == 0 && i < devcount; i++) {
scp = device_get_ivars(devlist[i]);
for (j = 0; j < scp->chnum; j++) {
ch = &scp->chan[j];
if (ch->run) {
running = 1;
break;
}
}
}
#if 0
if (running == 1)
device_printf(sc->dev, "hdsp is running\n");
#endif
free(devlist, M_TEMP);
return (running);
}
static void
hdsp_start_audio(struct sc_info *sc)
{
sc->ctrl_register |= (HDSP_AUDIO_INT_ENABLE | HDSP_ENABLE);
hdsp_write_4(sc, HDSP_CONTROL_REG, sc->ctrl_register);
}
static void
hdsp_stop_audio(struct sc_info *sc)
{
if (hdsp_running(sc) == 1)
return;
sc->ctrl_register &= ~(HDSP_AUDIO_INT_ENABLE | HDSP_ENABLE);
hdsp_write_4(sc, HDSP_CONTROL_REG, sc->ctrl_register);
}
static void
buffer_mux_write(uint32_t *dma, uint32_t *pcm, unsigned int pos,
unsigned int pos_end, unsigned int width, unsigned int channels)
{
unsigned int slot;
for (; pos < pos_end; ++pos) {
for (slot = 0; slot < width; slot++) {
dma[slot * HDSP_CHANBUF_SAMPLES + pos] =
pcm[pos * channels + slot];
}
}
}
static void
buffer_mux_port(uint32_t *dma, uint32_t *pcm, uint32_t subset, uint32_t slots,
unsigned int pos, unsigned int samples, unsigned int channels)
{
unsigned int slot_offset, width;
unsigned int chan_pos;
/* Translate DMA slot offset to DMA buffer offset. */
slot_offset = hdsp_slot_offset(subset);
dma += slot_offset * HDSP_CHANBUF_SAMPLES;
/* Channel position of the slot subset. */
chan_pos = hdsp_slot_channel_offset(subset, slots);
pcm += chan_pos;
/* Only copy channels supported by both hardware and pcm format. */
width = hdsp_slot_count(subset);
/* Let the compiler inline and loop unroll common cases. */
if (width == 1)
buffer_mux_write(dma, pcm, pos, pos + samples, 1, channels);
else if (width == 2)
buffer_mux_write(dma, pcm, pos, pos + samples, 2, channels);
else if (width == 4)
buffer_mux_write(dma, pcm, pos, pos + samples, 4, channels);
else if (width == 8)
buffer_mux_write(dma, pcm, pos, pos + samples, 8, channels);
else
buffer_mux_write(dma, pcm, pos, pos + samples, width, channels);
}
static void
buffer_demux_read(uint32_t *dma, uint32_t *pcm, unsigned int pos,
unsigned int pos_end, unsigned int width, unsigned int channels)
{
unsigned int slot;
for (; pos < pos_end; ++pos) {
for (slot = 0; slot < width; slot++) {
pcm[pos * channels + slot] =
dma[slot * HDSP_CHANBUF_SAMPLES + pos];
}
}
}
static void
buffer_demux_port(uint32_t *dma, uint32_t *pcm, uint32_t subset, uint32_t slots,
unsigned int pos, unsigned int samples, unsigned int channels)
{
unsigned int slot_offset, width;
unsigned int chan_pos;
/* Translate DMA slot offset to DMA buffer offset. */
slot_offset = hdsp_slot_offset(subset);
dma += slot_offset * HDSP_CHANBUF_SAMPLES;
/* Channel position of the slot subset. */
chan_pos = hdsp_slot_channel_offset(subset, slots);
pcm += chan_pos;
/* Only copy channels supported by both hardware and pcm format. */
width = hdsp_slot_count(subset);
/* Let the compiler inline and loop unroll common cases. */
if (width == 1)
buffer_demux_read(dma, pcm, pos, pos + samples, 1, channels);
else if (width == 2)
buffer_demux_read(dma, pcm, pos, pos + samples, 2, channels);
else if (width == 4)
buffer_demux_read(dma, pcm, pos, pos + samples, 4, channels);
else if (width == 8)
buffer_demux_read(dma, pcm, pos, pos + samples, 8, channels);
else
buffer_demux_read(dma, pcm, pos, pos + samples, width, channels);
}
/* Copy data between DMA and PCM buffers. */
static void
buffer_copy(struct sc_chinfo *ch)
{
struct sc_pcminfo *scp;
struct sc_info *sc;
uint32_t row, slots;
uint32_t dma_pos;
unsigned int pos, length, remainder, offset, buffer_size;
unsigned int channels;
scp = ch->parent;
sc = scp->sc;
channels = AFMT_CHANNEL(ch->format); /* Number of PCM channels. */
/* HDSP cards read / write a double buffer, twice the latency period. */
buffer_size = 2 * sc->period * sizeof(uint32_t);
/* Derive buffer position and length to be copied. */
if (ch->dir == PCMDIR_PLAY) {
/* Buffer position scaled down to a single channel. */
pos = sndbuf_getreadyptr(ch->buffer) / channels;
length = sndbuf_getready(ch->buffer) / channels;
/* Copy no more than 2 periods in advance. */
if (length > buffer_size)
length = buffer_size;
/* Skip what was already copied last time. */
offset = (ch->position + buffer_size) - pos;
offset %= buffer_size;
if (offset <= length) {
pos = (pos + offset) % buffer_size;
length -= offset;
}
} else {
/* Buffer position scaled down to a single channel. */
pos = sndbuf_getfreeptr(ch->buffer) / channels;
/* Get DMA buffer write position. */
dma_pos = hdsp_read_2(sc, HDSP_STATUS_REG);
dma_pos &= HDSP_BUF_POSITION_MASK;
dma_pos %= buffer_size;
/* Copy what is newly available. */
length = (dma_pos + buffer_size) - pos;
length %= buffer_size;
}
/* Position and length in samples (4 bytes). */
pos /= 4;
length /= 4;
buffer_size /= sizeof(uint32_t);
/* Split copy length to wrap around at buffer end. */
remainder = 0;
if (pos + length > buffer_size)
remainder = (pos + length) - buffer_size;
/* Iterate through rows of contiguous slots. */
slots = hdsp_port_slot_map(ch->ports, sc->speed);
slots = hdsp_slot_first_n(slots, channels);
row = hdsp_slot_first_row(slots);
while (row != 0) {
if (ch->dir == PCMDIR_PLAY) {
buffer_mux_port(sc->pbuf, ch->data, row, slots, pos,
length - remainder, channels);
buffer_mux_port(sc->pbuf, ch->data, row, slots, 0,
remainder, channels);
} else {
buffer_demux_port(sc->rbuf, ch->data, row, slots, pos,
length - remainder, channels);
buffer_demux_port(sc->rbuf, ch->data, row, slots, 0,
remainder, channels);
}
slots &= ~row;
row = hdsp_slot_first_row(slots);
}
ch->position = ((pos + length) * 4) % buffer_size;
}
static int
clean(struct sc_chinfo *ch)
{
struct sc_pcminfo *scp;
struct sc_info *sc;
uint32_t *buf;
uint32_t slot, slots;
unsigned int offset;
scp = ch->parent;
sc = scp->sc;
buf = sc->rbuf;
if (ch->dir == PCMDIR_PLAY)
buf = sc->pbuf;
/* Iterate through all of the channel's slots. */
slots = hdsp_port_slot_map(ch->ports, sc->speed);
slot = hdsp_slot_first(slots);
while (slot != 0) {
/* Clear the slot's buffer. */
offset = hdsp_slot_offset(slot);
bzero(buf + offset * HDSP_CHANBUF_SAMPLES, HDSP_CHANBUF_SIZE);
slots &= ~slot;
slot = hdsp_slot_first(slots);
}
ch->position = 0;
return (0);
}
/* Channel interface. */
static void *
hdspchan_init(kobj_t obj, void *devinfo, struct snd_dbuf *b,
struct pcm_channel *c, int dir)
{
struct sc_pcminfo *scp;
struct sc_chinfo *ch;
struct sc_info *sc;
int num;
scp = devinfo;
sc = scp->sc;
snd_mtxlock(sc->lock);
num = scp->chnum;
ch = &scp->chan[num];
if (dir == PCMDIR_PLAY)
ch->ports = hdsp_channel_play_ports(scp->hc);
else
ch->ports = hdsp_channel_rec_ports(scp->hc);
ch->run = 0;
ch->lvol = 0;
ch->rvol = 0;
/* Support all possible ADAT widths as channel formats. */
ch->cap_fmts[0] =
SND_FORMAT(AFMT_S32_LE, hdsp_port_slot_count(ch->ports, 48000), 0);
ch->cap_fmts[1] =
SND_FORMAT(AFMT_S32_LE, hdsp_port_slot_count(ch->ports, 96000), 0);
ch->cap_fmts[2] =
SND_FORMAT(AFMT_S32_LE, hdsp_port_slot_count(ch->ports, 192000), 0);
ch->cap_fmts[3] = 0;
ch->caps = malloc(sizeof(struct pcmchan_caps), M_HDSP, M_NOWAIT);
*(ch->caps) = (struct pcmchan_caps) {32000, 192000, ch->cap_fmts, 0};
/* HDSP 9652 does not support quad speed sample rates. */
if (sc->type == HDSP_9652) {
ch->cap_fmts[2] = SND_FORMAT(AFMT_S32_LE, 2, 0);
ch->caps->maxspeed = 96000;
}
/* Allocate maximum buffer size. */
ch->size = HDSP_CHANBUF_SIZE * hdsp_port_slot_count_max(ch->ports);
ch->data = malloc(ch->size, M_HDSP, M_NOWAIT);
ch->position = 0;
ch->buffer = b;
ch->channel = c;
ch->parent = scp;
ch->dir = dir;
snd_mtxunlock(sc->lock);
if (sndbuf_setup(ch->buffer, ch->data, ch->size) != 0) {
device_printf(scp->dev, "Can't setup sndbuf.\n");
return (NULL);
}
return (ch);
}
static int
hdspchan_trigger(kobj_t obj, void *data, int go)
{
struct sc_pcminfo *scp;
struct sc_chinfo *ch;
struct sc_info *sc;
ch = data;
scp = ch->parent;
sc = scp->sc;
snd_mtxlock(sc->lock);
switch (go) {
case PCMTRIG_START:
#if 0
device_printf(scp->dev, "hdspchan_trigger(): start\n");
#endif
hdspchan_enable(ch, 1);
hdspchan_setgain(ch);
hdsp_start_audio(sc);
break;
case PCMTRIG_STOP:
case PCMTRIG_ABORT:
#if 0
device_printf(scp->dev, "hdspchan_trigger(): stop or abort\n");
#endif
clean(ch);
hdspchan_enable(ch, 0);
hdsp_stop_audio(sc);
break;
case PCMTRIG_EMLDMAWR:
case PCMTRIG_EMLDMARD:
if(ch->run)
buffer_copy(ch);
break;
}
snd_mtxunlock(sc->lock);
return (0);
}
static uint32_t
hdspchan_getptr(kobj_t obj, void *data)
{
struct sc_pcminfo *scp;
struct sc_chinfo *ch;
struct sc_info *sc;
uint32_t ret, pos;
ch = data;
scp = ch->parent;
sc = scp->sc;
snd_mtxlock(sc->lock);
ret = hdsp_read_2(sc, HDSP_STATUS_REG);
snd_mtxunlock(sc->lock);
pos = ret & HDSP_BUF_POSITION_MASK;
pos %= (2 * sc->period * sizeof(uint32_t)); /* Double buffer. */
pos *= AFMT_CHANNEL(ch->format); /* Hardbuf with multiple channels. */
return (pos);
}
static int
hdspchan_free(kobj_t obj, void *data)
{
struct sc_pcminfo *scp;
struct sc_chinfo *ch;
struct sc_info *sc;
ch = data;
scp = ch->parent;
sc = scp->sc;
#if 0
device_printf(scp->dev, "hdspchan_free()\n");
#endif
snd_mtxlock(sc->lock);
if (ch->data != NULL) {
free(ch->data, M_HDSP);
ch->data = NULL;
}
if (ch->caps != NULL) {
free(ch->caps, M_HDSP);
ch->caps = NULL;
}
snd_mtxunlock(sc->lock);
return (0);
}
static int
hdspchan_setformat(kobj_t obj, void *data, uint32_t format)
{
struct sc_chinfo *ch;
ch = data;
#if 0
struct sc_pcminfo *scp = ch->parent;
device_printf(scp->dev, "hdspchan_setformat(%d)\n", format);
#endif
ch->format = format;
return (0);
}
static uint32_t
hdspchan_setspeed(kobj_t obj, void *data, uint32_t speed)
{
struct sc_pcminfo *scp;
struct hdsp_rate *hr;
struct sc_chinfo *ch;
struct sc_info *sc;
int threshold;
int i;
ch = data;
scp = ch->parent;
sc = scp->sc;
hr = NULL;
#if 0
device_printf(scp->dev, "hdspchan_setspeed(%d)\n", speed);
#endif
if (hdsp_running(sc) == 1)
goto end;
/* HDSP 9652 only supports sample rates up to 96kHz. */
if (sc->type == HDSP_9652 && speed > 96000)
speed = 96000;
if (sc->force_speed > 0)
speed = sc->force_speed;
/* First look for equal frequency. */
for (i = 0; rate_map[i].speed != 0; i++) {
if (rate_map[i].speed == speed)
hr = &rate_map[i];
}
/* If no match, just find nearest. */
if (hr == NULL) {
for (i = 0; rate_map[i].speed != 0; i++) {
hr = &rate_map[i];
threshold = hr->speed + ((rate_map[i + 1].speed != 0) ?
((rate_map[i + 1].speed - hr->speed) >> 1) : 0);
if (speed < threshold)
break;
}
}
/* Write frequency on the device. */
sc->ctrl_register &= ~HDSP_FREQ_MASK;
sc->ctrl_register |= hr->reg;
hdsp_write_4(sc, HDSP_CONTROL_REG, sc->ctrl_register);
if (sc->type == HDSP_9632) {
/* Set DDS value. */
hdsp_write_4(sc, HDSP_FREQ_REG, hdsp_freq_reg_value(hr->speed));
}
sc->speed = hr->speed;
end:
return (sc->speed);
}
static uint32_t
hdspchan_setblocksize(kobj_t obj, void *data, uint32_t blocksize)
{
struct hdsp_latency *hl;
struct sc_pcminfo *scp;
struct sc_chinfo *ch;
struct sc_info *sc;
int threshold;
int i;
ch = data;
scp = ch->parent;
sc = scp->sc;
hl = NULL;
#if 0
device_printf(scp->dev, "hdspchan_setblocksize(%d)\n", blocksize);
#endif
if (hdsp_running(sc) == 1)
goto end;
if (blocksize > HDSP_LAT_BYTES_MAX)
blocksize = HDSP_LAT_BYTES_MAX;
else if (blocksize < HDSP_LAT_BYTES_MIN)
blocksize = HDSP_LAT_BYTES_MIN;
blocksize /= 4 /* samples */;
if (sc->force_period > 0)
blocksize = sc->force_period;
/* First look for equal latency. */
for (i = 0; latency_map[i].period != 0; i++) {
if (latency_map[i].period == blocksize)
hl = &latency_map[i];
}
/* If no match, just find nearest. */
if (hl == NULL) {
for (i = 0; latency_map[i].period != 0; i++) {
hl = &latency_map[i];
threshold = hl->period + ((latency_map[i + 1].period != 0) ?
((latency_map[i + 1].period - hl->period) >> 1) : 0);
if (blocksize < threshold)
break;
}
}
snd_mtxlock(sc->lock);
sc->ctrl_register &= ~HDSP_LAT_MASK;
sc->ctrl_register |= hdsp_encode_latency(hl->n);
hdsp_write_4(sc, HDSP_CONTROL_REG, sc->ctrl_register);
sc->period = hl->period;
snd_mtxunlock(sc->lock);
#if 0
device_printf(scp->dev, "New period=%d\n", sc->period);
#endif
sndbuf_resize(ch->buffer, 2,
(sc->period * AFMT_CHANNEL(ch->format) * sizeof(uint32_t)));
/* Reset pointer, rewrite frequency (same register) for 9632. */
hdsp_write_4(sc, HDSP_RESET_POINTER, 0);
if (sc->type == HDSP_9632)
hdsp_write_4(sc, HDSP_FREQ_REG, hdsp_freq_reg_value(sc->speed));
end:
return (sndbuf_getblksz(ch->buffer));
}
static uint32_t hdsp_bkp_fmt[] = {
SND_FORMAT(AFMT_S32_LE, 2, 0),
0
};
/* Capabilities fallback, no quad speed for HDSP 9652 compatibility. */
static struct pcmchan_caps hdsp_bkp_caps = {32000, 96000, hdsp_bkp_fmt, 0};
static struct pcmchan_caps *
hdspchan_getcaps(kobj_t obj, void *data)
{
struct sc_chinfo *ch;
ch = data;
#if 0
device_printf(ch->parent->dev, "hdspchan_getcaps()\n");
#endif
if (ch->caps != NULL)
return (ch->caps);
return (&hdsp_bkp_caps);
}
static kobj_method_t hdspchan_methods[] = {
KOBJMETHOD(channel_init, hdspchan_init),
KOBJMETHOD(channel_free, hdspchan_free),
KOBJMETHOD(channel_setformat, hdspchan_setformat),
KOBJMETHOD(channel_setspeed, hdspchan_setspeed),
KOBJMETHOD(channel_setblocksize, hdspchan_setblocksize),
KOBJMETHOD(channel_trigger, hdspchan_trigger),
KOBJMETHOD(channel_getptr, hdspchan_getptr),
KOBJMETHOD(channel_getcaps, hdspchan_getcaps),
KOBJMETHOD_END
};
CHANNEL_DECLARE(hdspchan);
static int
hdsp_pcm_probe(device_t dev)
{
#if 0
device_printf(dev,"hdsp_pcm_probe()\n");
#endif
return (0);
}
static uint32_t
hdsp_pcm_intr(struct sc_pcminfo *scp)
{
struct sc_chinfo *ch;
struct sc_info *sc;
int i;
sc = scp->sc;
for (i = 0; i < scp->chnum; i++) {
ch = &scp->chan[i];
snd_mtxunlock(sc->lock);
chn_intr(ch->channel);
snd_mtxlock(sc->lock);
}
return (0);
}
static int
hdsp_pcm_attach(device_t dev)
{
char status[SND_STATUSLEN];
struct sc_pcminfo *scp;
const char *buf;
uint32_t pcm_flags;
int err;
int play, rec;
scp = device_get_ivars(dev);
scp->ih = &hdsp_pcm_intr;
if (scp->hc->ports & HDSP_CHAN_9632_ALL)
buf = "9632";
else if (scp->hc->ports & HDSP_CHAN_9652_ALL)
buf = "9652";
else
buf = "?";
device_set_descf(dev, "HDSP %s [%s]", buf, scp->hc->descr);
/*
* We don't register interrupt handler with snd_setup_intr
* in pcm device. Mark pcm device as MPSAFE manually.
*/
pcm_flags = pcm_getflags(dev) | SD_F_MPSAFE;
if (hdsp_port_slot_count_max(scp->hc->ports) > HDSP_MATRIX_MAX)
/* Disable vchan conversion, too many channels. */
pcm_flags |= SD_F_BITPERFECT;
pcm_setflags(dev, pcm_flags);
play = (hdsp_channel_play_ports(scp->hc)) ? 1 : 0;
rec = (hdsp_channel_rec_ports(scp->hc)) ? 1 : 0;
err = pcm_register(dev, scp, play, rec);
if (err) {
device_printf(dev, "Can't register pcm.\n");
return (ENXIO);
}
scp->chnum = 0;
if (play) {
pcm_addchan(dev, PCMDIR_PLAY, &hdspchan_class, scp);
scp->chnum++;
}
if (rec) {
pcm_addchan(dev, PCMDIR_REC, &hdspchan_class, scp);
scp->chnum++;
}
snprintf(status, SND_STATUSLEN, "port 0x%jx irq %jd on %s",
rman_get_start(scp->sc->cs),
rman_get_start(scp->sc->irq),
device_get_nameunit(device_get_parent(dev)));
pcm_setstatus(dev, status);
mixer_init(dev, &hdspmixer_class, scp);
return (0);
}
static int
hdsp_pcm_detach(device_t dev)
{
int err;
err = pcm_unregister(dev);
if (err) {
device_printf(dev, "Can't unregister device.\n");
return (err);
}
return (0);
}
static device_method_t hdsp_pcm_methods[] = {
DEVMETHOD(device_probe, hdsp_pcm_probe),
DEVMETHOD(device_attach, hdsp_pcm_attach),
DEVMETHOD(device_detach, hdsp_pcm_detach),
{ 0, 0 }
};
static driver_t hdsp_pcm_driver = {
"pcm",
hdsp_pcm_methods,
PCM_SOFTC_SIZE,
};
DRIVER_MODULE(snd_hdsp_pcm, hdsp, hdsp_pcm_driver, 0, 0);
MODULE_DEPEND(snd_hdsp, sound, SOUND_MINVER, SOUND_PREFVER, SOUND_MAXVER);
MODULE_VERSION(snd_hdsp, 1);