/*- * Copyright (c) 2006 Stephane E. Potvin * Copyright (c) 2006 Ariff Abdullah * Copyright (c) 2008 Alexander Motin * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * Intel High Definition Audio (Controller) driver for FreeBSD. Be advised * that this driver still in its early stage, and possible of rewrite are * pretty much guaranteed. There are supposedly several distinct parent/child * busses to make this "perfect", but as for now and for the sake of * simplicity, everything is gobble up within single source. * * List of subsys: * 1) HDA Controller support * 2) HDA Codecs support, which may include * - HDA * - Modem * 3) Widget parser - the real magic of why this driver works on so * many hardwares with minimal vendor specific quirk. The original * parser was written using Ruby and can be found at * http://people.freebsd.org/~ariff/HDA/parser.rb . This crude * ruby parser take the verbose dmesg dump as its input. Refer to * http://www.microsoft.com/whdc/device/audio/default.mspx for various * interesting documents, especially UAA (Universal Audio Architecture). * 4) Possible vendor specific support. * (snd_hda_intel, snd_hda_ati, etc..) * * Thanks to Ahmad Ubaidah Omar @ Defenxis Sdn. Bhd. for the * Compaq V3000 with Conexant HDA. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * This driver is a collaborative effort made by: * * * * * * Stephane E. Potvin * * * Andrea Bittau * * * Wesley Morgan * * * Daniel Eischen * * * Maxime Guillaud * * * Ariff Abdullah * * * Alexander Motin * * * * * * ....and various people from freebsd-multimedia@FreeBSD.org * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ #ifdef HAVE_KERNEL_OPTION_HEADERS #include "opt_snd.h" #endif #include #include #include #include #include #include #include #include #include #include "mixer_if.h" #define HDA_DRV_TEST_REV "20100226_0142" SND_DECLARE_FILE("$FreeBSD$"); #define HDA_BOOTVERBOSE(stmt) do { \ if (bootverbose != 0 || snd_verbose > 3) { \ stmt \ } \ } while (0) #define HDA_BOOTHVERBOSE(stmt) do { \ if (snd_verbose > 3) { \ stmt \ } \ } while (0) #if 1 #undef HDAC_INTR_EXTRA #define HDAC_INTR_EXTRA 1 #endif #define hdac_lock(sc) snd_mtxlock((sc)->lock) #define hdac_unlock(sc) snd_mtxunlock((sc)->lock) #define hdac_lockassert(sc) snd_mtxassert((sc)->lock) #define hdac_lockowned(sc) mtx_owned((sc)->lock) #define HDA_FLAG_MATCH(fl, v) (((fl) & (v)) == (v)) #define HDA_DEV_MATCH(fl, v) ((fl) == (v) || \ (fl) == 0xffffffff || \ (((fl) & 0xffff0000) == 0xffff0000 && \ ((fl) & 0x0000ffff) == ((v) & 0x0000ffff)) || \ (((fl) & 0x0000ffff) == 0x0000ffff && \ ((fl) & 0xffff0000) == ((v) & 0xffff0000))) #define HDA_MATCH_ALL 0xffffffff #define HDAC_INVALID 0xffffffff /* Default controller / jack sense poll: 250ms */ #define HDAC_POLL_INTERVAL max(hz >> 2, 1) /* * Make room for possible 4096 playback/record channels, in 100 years to come. */ #define HDAC_TRIGGER_NONE 0x00000000 #define HDAC_TRIGGER_PLAY 0x00000fff #define HDAC_TRIGGER_REC 0x00fff000 #define HDAC_TRIGGER_UNSOL 0x80000000 #define HDA_MODEL_CONSTRUCT(vendor, model) \ (((uint32_t)(model) << 16) | ((vendor##_VENDORID) & 0xffff)) /* Controller models */ /* Intel */ #define INTEL_VENDORID 0x8086 #define HDA_INTEL_CPT HDA_MODEL_CONSTRUCT(INTEL, 0x1c20) #define HDA_INTEL_82801F HDA_MODEL_CONSTRUCT(INTEL, 0x2668) #define HDA_INTEL_63XXESB HDA_MODEL_CONSTRUCT(INTEL, 0x269a) #define HDA_INTEL_82801G HDA_MODEL_CONSTRUCT(INTEL, 0x27d8) #define HDA_INTEL_82801H HDA_MODEL_CONSTRUCT(INTEL, 0x284b) #define HDA_INTEL_82801I HDA_MODEL_CONSTRUCT(INTEL, 0x293e) #define HDA_INTEL_82801JI HDA_MODEL_CONSTRUCT(INTEL, 0x3a3e) #define HDA_INTEL_82801JD HDA_MODEL_CONSTRUCT(INTEL, 0x3a6e) #define HDA_INTEL_PCH HDA_MODEL_CONSTRUCT(INTEL, 0x3b56) #define HDA_INTEL_SCH HDA_MODEL_CONSTRUCT(INTEL, 0x811b) #define HDA_INTEL_ALL HDA_MODEL_CONSTRUCT(INTEL, 0xffff) /* Nvidia */ #define NVIDIA_VENDORID 0x10de #define HDA_NVIDIA_MCP51 HDA_MODEL_CONSTRUCT(NVIDIA, 0x026c) #define HDA_NVIDIA_MCP55 HDA_MODEL_CONSTRUCT(NVIDIA, 0x0371) #define HDA_NVIDIA_MCP61_1 HDA_MODEL_CONSTRUCT(NVIDIA, 0x03e4) #define HDA_NVIDIA_MCP61_2 HDA_MODEL_CONSTRUCT(NVIDIA, 0x03f0) #define HDA_NVIDIA_MCP65_1 HDA_MODEL_CONSTRUCT(NVIDIA, 0x044a) #define HDA_NVIDIA_MCP65_2 HDA_MODEL_CONSTRUCT(NVIDIA, 0x044b) #define HDA_NVIDIA_MCP67_1 HDA_MODEL_CONSTRUCT(NVIDIA, 0x055c) #define HDA_NVIDIA_MCP67_2 HDA_MODEL_CONSTRUCT(NVIDIA, 0x055d) #define HDA_NVIDIA_MCP78_1 HDA_MODEL_CONSTRUCT(NVIDIA, 0x0774) #define HDA_NVIDIA_MCP78_2 HDA_MODEL_CONSTRUCT(NVIDIA, 0x0775) #define HDA_NVIDIA_MCP78_3 HDA_MODEL_CONSTRUCT(NVIDIA, 0x0776) #define HDA_NVIDIA_MCP78_4 HDA_MODEL_CONSTRUCT(NVIDIA, 0x0777) #define HDA_NVIDIA_MCP73_1 HDA_MODEL_CONSTRUCT(NVIDIA, 0x07fc) #define HDA_NVIDIA_MCP73_2 HDA_MODEL_CONSTRUCT(NVIDIA, 0x07fd) #define HDA_NVIDIA_MCP79_1 HDA_MODEL_CONSTRUCT(NVIDIA, 0x0ac0) #define HDA_NVIDIA_MCP79_2 HDA_MODEL_CONSTRUCT(NVIDIA, 0x0ac1) #define HDA_NVIDIA_MCP79_3 HDA_MODEL_CONSTRUCT(NVIDIA, 0x0ac2) #define HDA_NVIDIA_MCP79_4 HDA_MODEL_CONSTRUCT(NVIDIA, 0x0ac3) #define HDA_NVIDIA_MCP89_1 HDA_MODEL_CONSTRUCT(NVIDIA, 0x0d94) #define HDA_NVIDIA_MCP89_2 HDA_MODEL_CONSTRUCT(NVIDIA, 0x0d95) #define HDA_NVIDIA_MCP89_3 HDA_MODEL_CONSTRUCT(NVIDIA, 0x0d96) #define HDA_NVIDIA_MCP89_4 HDA_MODEL_CONSTRUCT(NVIDIA, 0x0d97) #define HDA_NVIDIA_ALL HDA_MODEL_CONSTRUCT(NVIDIA, 0xffff) /* ATI */ #define ATI_VENDORID 0x1002 #define HDA_ATI_SB450 HDA_MODEL_CONSTRUCT(ATI, 0x437b) #define HDA_ATI_SB600 HDA_MODEL_CONSTRUCT(ATI, 0x4383) #define HDA_ATI_RS600 HDA_MODEL_CONSTRUCT(ATI, 0x793b) #define HDA_ATI_RS690 HDA_MODEL_CONSTRUCT(ATI, 0x7919) #define HDA_ATI_RS780 HDA_MODEL_CONSTRUCT(ATI, 0x960f) #define HDA_ATI_R600 HDA_MODEL_CONSTRUCT(ATI, 0xaa00) #define HDA_ATI_RV630 HDA_MODEL_CONSTRUCT(ATI, 0xaa08) #define HDA_ATI_RV610 HDA_MODEL_CONSTRUCT(ATI, 0xaa10) #define HDA_ATI_RV670 HDA_MODEL_CONSTRUCT(ATI, 0xaa18) #define HDA_ATI_RV635 HDA_MODEL_CONSTRUCT(ATI, 0xaa20) #define HDA_ATI_RV620 HDA_MODEL_CONSTRUCT(ATI, 0xaa28) #define HDA_ATI_RV770 HDA_MODEL_CONSTRUCT(ATI, 0xaa30) #define HDA_ATI_RV730 HDA_MODEL_CONSTRUCT(ATI, 0xaa38) #define HDA_ATI_RV710 HDA_MODEL_CONSTRUCT(ATI, 0xaa40) #define HDA_ATI_RV740 HDA_MODEL_CONSTRUCT(ATI, 0xaa48) #define HDA_ATI_ALL HDA_MODEL_CONSTRUCT(ATI, 0xffff) /* VIA */ #define VIA_VENDORID 0x1106 #define HDA_VIA_VT82XX HDA_MODEL_CONSTRUCT(VIA, 0x3288) #define HDA_VIA_ALL HDA_MODEL_CONSTRUCT(VIA, 0xffff) /* SiS */ #define SIS_VENDORID 0x1039 #define HDA_SIS_966 HDA_MODEL_CONSTRUCT(SIS, 0x7502) #define HDA_SIS_ALL HDA_MODEL_CONSTRUCT(SIS, 0xffff) /* ULI */ #define ULI_VENDORID 0x10b9 #define HDA_ULI_M5461 HDA_MODEL_CONSTRUCT(ULI, 0x5461) #define HDA_ULI_ALL HDA_MODEL_CONSTRUCT(ULI, 0xffff) /* OEM/subvendors */ /* Intel */ #define INTEL_D101GGC_SUBVENDOR HDA_MODEL_CONSTRUCT(INTEL, 0xd600) /* HP/Compaq */ #define HP_VENDORID 0x103c #define HP_V3000_SUBVENDOR HDA_MODEL_CONSTRUCT(HP, 0x30b5) #define HP_NX7400_SUBVENDOR HDA_MODEL_CONSTRUCT(HP, 0x30a2) #define HP_NX6310_SUBVENDOR HDA_MODEL_CONSTRUCT(HP, 0x30aa) #define HP_NX6325_SUBVENDOR HDA_MODEL_CONSTRUCT(HP, 0x30b0) #define HP_XW4300_SUBVENDOR HDA_MODEL_CONSTRUCT(HP, 0x3013) #define HP_3010_SUBVENDOR HDA_MODEL_CONSTRUCT(HP, 0x3010) #define HP_DV5000_SUBVENDOR HDA_MODEL_CONSTRUCT(HP, 0x30a5) #define HP_DC7700S_SUBVENDOR HDA_MODEL_CONSTRUCT(HP, 0x2801) #define HP_DC7700_SUBVENDOR HDA_MODEL_CONSTRUCT(HP, 0x2802) #define HP_ALL_SUBVENDOR HDA_MODEL_CONSTRUCT(HP, 0xffff) /* What is wrong with XN 2563 anyway? (Got the picture ?) */ #define HP_NX6325_SUBVENDORX 0x103c30b0 /* Dell */ #define DELL_VENDORID 0x1028 #define DELL_D630_SUBVENDOR HDA_MODEL_CONSTRUCT(DELL, 0x01f9) #define DELL_D820_SUBVENDOR HDA_MODEL_CONSTRUCT(DELL, 0x01cc) #define DELL_V1400_SUBVENDOR HDA_MODEL_CONSTRUCT(DELL, 0x0227) #define DELL_V1500_SUBVENDOR HDA_MODEL_CONSTRUCT(DELL, 0x0228) #define DELL_I1300_SUBVENDOR HDA_MODEL_CONSTRUCT(DELL, 0x01c9) #define DELL_XPSM1210_SUBVENDOR HDA_MODEL_CONSTRUCT(DELL, 0x01d7) #define DELL_OPLX745_SUBVENDOR HDA_MODEL_CONSTRUCT(DELL, 0x01da) #define DELL_ALL_SUBVENDOR HDA_MODEL_CONSTRUCT(DELL, 0xffff) /* Clevo */ #define CLEVO_VENDORID 0x1558 #define CLEVO_D900T_SUBVENDOR HDA_MODEL_CONSTRUCT(CLEVO, 0x0900) #define CLEVO_ALL_SUBVENDOR HDA_MODEL_CONSTRUCT(CLEVO, 0xffff) /* Acer */ #define ACER_VENDORID 0x1025 #define ACER_A5050_SUBVENDOR HDA_MODEL_CONSTRUCT(ACER, 0x010f) #define ACER_A4520_SUBVENDOR HDA_MODEL_CONSTRUCT(ACER, 0x0127) #define ACER_A4710_SUBVENDOR HDA_MODEL_CONSTRUCT(ACER, 0x012f) #define ACER_A4715_SUBVENDOR HDA_MODEL_CONSTRUCT(ACER, 0x0133) #define ACER_3681WXM_SUBVENDOR HDA_MODEL_CONSTRUCT(ACER, 0x0110) #define ACER_T6292_SUBVENDOR HDA_MODEL_CONSTRUCT(ACER, 0x011b) #define ACER_T5320_SUBVENDOR HDA_MODEL_CONSTRUCT(ACER, 0x011f) #define ACER_ALL_SUBVENDOR HDA_MODEL_CONSTRUCT(ACER, 0xffff) /* Asus */ #define ASUS_VENDORID 0x1043 #define ASUS_A8X_SUBVENDOR HDA_MODEL_CONSTRUCT(ASUS, 0x1153) #define ASUS_U5F_SUBVENDOR HDA_MODEL_CONSTRUCT(ASUS, 0x1263) #define ASUS_W6F_SUBVENDOR HDA_MODEL_CONSTRUCT(ASUS, 0x1263) #define ASUS_A7M_SUBVENDOR HDA_MODEL_CONSTRUCT(ASUS, 0x1323) #define ASUS_F3JC_SUBVENDOR HDA_MODEL_CONSTRUCT(ASUS, 0x1338) #define ASUS_G2K_SUBVENDOR HDA_MODEL_CONSTRUCT(ASUS, 0x1339) #define ASUS_A7T_SUBVENDOR HDA_MODEL_CONSTRUCT(ASUS, 0x13c2) #define ASUS_W2J_SUBVENDOR HDA_MODEL_CONSTRUCT(ASUS, 0x1971) #define ASUS_M5200_SUBVENDOR HDA_MODEL_CONSTRUCT(ASUS, 0x1993) #define ASUS_P5PL2_SUBVENDOR HDA_MODEL_CONSTRUCT(ASUS, 0x817f) #define ASUS_P1AH2_SUBVENDOR HDA_MODEL_CONSTRUCT(ASUS, 0x81cb) #define ASUS_M2NPVMX_SUBVENDOR HDA_MODEL_CONSTRUCT(ASUS, 0x81cb) #define ASUS_M2V_SUBVENDOR HDA_MODEL_CONSTRUCT(ASUS, 0x81e7) #define ASUS_P5BWD_SUBVENDOR HDA_MODEL_CONSTRUCT(ASUS, 0x81ec) #define ASUS_M2N_SUBVENDOR HDA_MODEL_CONSTRUCT(ASUS, 0x8234) #define ASUS_A8NVMCSM_SUBVENDOR HDA_MODEL_CONSTRUCT(NVIDIA, 0xcb84) #define ASUS_ALL_SUBVENDOR HDA_MODEL_CONSTRUCT(ASUS, 0xffff) /* IBM / Lenovo */ #define IBM_VENDORID 0x1014 #define IBM_M52_SUBVENDOR HDA_MODEL_CONSTRUCT(IBM, 0x02f6) #define IBM_ALL_SUBVENDOR HDA_MODEL_CONSTRUCT(IBM, 0xffff) /* Lenovo */ #define LENOVO_VENDORID 0x17aa #define LENOVO_3KN100_SUBVENDOR HDA_MODEL_CONSTRUCT(LENOVO, 0x2066) #define LENOVO_3KN200_SUBVENDOR HDA_MODEL_CONSTRUCT(LENOVO, 0x384e) #define LENOVO_TCA55_SUBVENDOR HDA_MODEL_CONSTRUCT(LENOVO, 0x1015) #define LENOVO_ALL_SUBVENDOR HDA_MODEL_CONSTRUCT(LENOVO, 0xffff) /* Samsung */ #define SAMSUNG_VENDORID 0x144d #define SAMSUNG_Q1_SUBVENDOR HDA_MODEL_CONSTRUCT(SAMSUNG, 0xc027) #define SAMSUNG_ALL_SUBVENDOR HDA_MODEL_CONSTRUCT(SAMSUNG, 0xffff) /* Medion ? */ #define MEDION_VENDORID 0x161f #define MEDION_MD95257_SUBVENDOR HDA_MODEL_CONSTRUCT(MEDION, 0x203d) #define MEDION_ALL_SUBVENDOR HDA_MODEL_CONSTRUCT(MEDION, 0xffff) /* Apple Computer Inc. */ #define APPLE_VENDORID 0x106b #define APPLE_MB3_SUBVENDOR HDA_MODEL_CONSTRUCT(APPLE, 0x00a1) /* Sony */ #define SONY_VENDORID 0x104d #define SONY_S5_SUBVENDOR HDA_MODEL_CONSTRUCT(SONY, 0x81cc) #define SONY_ALL_SUBVENDOR HDA_MODEL_CONSTRUCT(SONY, 0xffff) /* * Apple Intel MacXXXX seems using Sigmatel codec/vendor id * instead of their own, which is beyond my comprehension * (see HDA_CODEC_STAC9221 below). */ #define APPLE_INTEL_MAC 0x76808384 #define APPLE_MACBOOKPRO55 0xcb7910de /* LG Electronics */ #define LG_VENDORID 0x1854 #define LG_LW20_SUBVENDOR HDA_MODEL_CONSTRUCT(LG, 0x0018) #define LG_ALL_SUBVENDOR HDA_MODEL_CONSTRUCT(LG, 0xffff) /* Fujitsu Siemens */ #define FS_VENDORID 0x1734 #define FS_PA1510_SUBVENDOR HDA_MODEL_CONSTRUCT(FS, 0x10b8) #define FS_SI1848_SUBVENDOR HDA_MODEL_CONSTRUCT(FS, 0x10cd) #define FS_ALL_SUBVENDOR HDA_MODEL_CONSTRUCT(FS, 0xffff) /* Fujitsu Limited */ #define FL_VENDORID 0x10cf #define FL_S7020D_SUBVENDOR HDA_MODEL_CONSTRUCT(FL, 0x1326) #define FL_U1010_SUBVENDOR HDA_MODEL_CONSTRUCT(FL, 0x142d) #define FL_ALL_SUBVENDOR HDA_MODEL_CONSTRUCT(FL, 0xffff) /* Toshiba */ #define TOSHIBA_VENDORID 0x1179 #define TOSHIBA_U200_SUBVENDOR HDA_MODEL_CONSTRUCT(TOSHIBA, 0x0001) #define TOSHIBA_A135_SUBVENDOR HDA_MODEL_CONSTRUCT(TOSHIBA, 0xff01) #define TOSHIBA_ALL_SUBVENDOR HDA_MODEL_CONSTRUCT(TOSHIBA, 0xffff) /* Micro-Star International (MSI) */ #define MSI_VENDORID 0x1462 #define MSI_MS1034_SUBVENDOR HDA_MODEL_CONSTRUCT(MSI, 0x0349) #define MSI_MS034A_SUBVENDOR HDA_MODEL_CONSTRUCT(MSI, 0x034a) #define MSI_ALL_SUBVENDOR HDA_MODEL_CONSTRUCT(MSI, 0xffff) /* Giga-Byte Technology */ #define GB_VENDORID 0x1458 #define GB_G33S2H_SUBVENDOR HDA_MODEL_CONSTRUCT(GB, 0xa022) #define GP_ALL_SUBVENDOR HDA_MODEL_CONSTRUCT(GB, 0xffff) /* Uniwill ? */ #define UNIWILL_VENDORID 0x1584 #define UNIWILL_9075_SUBVENDOR HDA_MODEL_CONSTRUCT(UNIWILL, 0x9075) #define UNIWILL_9080_SUBVENDOR HDA_MODEL_CONSTRUCT(UNIWILL, 0x9080) /* Misc constants.. */ #define HDA_AMP_VOL_DEFAULT (-1) #define HDA_AMP_MUTE_DEFAULT (0xffffffff) #define HDA_AMP_MUTE_NONE (0) #define HDA_AMP_MUTE_LEFT (1 << 0) #define HDA_AMP_MUTE_RIGHT (1 << 1) #define HDA_AMP_MUTE_ALL (HDA_AMP_MUTE_LEFT | HDA_AMP_MUTE_RIGHT) #define HDA_AMP_LEFT_MUTED(v) ((v) & (HDA_AMP_MUTE_LEFT)) #define HDA_AMP_RIGHT_MUTED(v) (((v) & HDA_AMP_MUTE_RIGHT) >> 1) #define HDA_ADC_MONITOR (1 << 0) #define HDA_CTL_OUT 1 #define HDA_CTL_IN 2 #define HDA_GPIO_MAX 8 /* 0 - 7 = GPIO , 8 = Flush */ #define HDA_QUIRK_GPIO0 (1 << 0) #define HDA_QUIRK_GPIO1 (1 << 1) #define HDA_QUIRK_GPIO2 (1 << 2) #define HDA_QUIRK_GPIO3 (1 << 3) #define HDA_QUIRK_GPIO4 (1 << 4) #define HDA_QUIRK_GPIO5 (1 << 5) #define HDA_QUIRK_GPIO6 (1 << 6) #define HDA_QUIRK_GPIO7 (1 << 7) #define HDA_QUIRK_GPIOFLUSH (1 << 8) /* 9 - 25 = anything else */ #define HDA_QUIRK_SOFTPCMVOL (1 << 9) #define HDA_QUIRK_FIXEDRATE (1 << 10) #define HDA_QUIRK_FORCESTEREO (1 << 11) #define HDA_QUIRK_EAPDINV (1 << 12) #define HDA_QUIRK_DMAPOS (1 << 13) #define HDA_QUIRK_SENSEINV (1 << 14) /* 26 - 31 = vrefs */ #define HDA_QUIRK_IVREF50 (1 << 26) #define HDA_QUIRK_IVREF80 (1 << 27) #define HDA_QUIRK_IVREF100 (1 << 28) #define HDA_QUIRK_OVREF50 (1 << 29) #define HDA_QUIRK_OVREF80 (1 << 30) #define HDA_QUIRK_OVREF100 (1 << 31) #define HDA_QUIRK_IVREF (HDA_QUIRK_IVREF50 | HDA_QUIRK_IVREF80 | \ HDA_QUIRK_IVREF100) #define HDA_QUIRK_OVREF (HDA_QUIRK_OVREF50 | HDA_QUIRK_OVREF80 | \ HDA_QUIRK_OVREF100) #define HDA_QUIRK_VREF (HDA_QUIRK_IVREF | HDA_QUIRK_OVREF) #if __FreeBSD_version < 600000 #define taskqueue_drain(...) #endif static const struct { char *key; uint32_t value; } hdac_quirks_tab[] = { { "gpio0", HDA_QUIRK_GPIO0 }, { "gpio1", HDA_QUIRK_GPIO1 }, { "gpio2", HDA_QUIRK_GPIO2 }, { "gpio3", HDA_QUIRK_GPIO3 }, { "gpio4", HDA_QUIRK_GPIO4 }, { "gpio5", HDA_QUIRK_GPIO5 }, { "gpio6", HDA_QUIRK_GPIO6 }, { "gpio7", HDA_QUIRK_GPIO7 }, { "gpioflush", HDA_QUIRK_GPIOFLUSH }, { "softpcmvol", HDA_QUIRK_SOFTPCMVOL }, { "fixedrate", HDA_QUIRK_FIXEDRATE }, { "forcestereo", HDA_QUIRK_FORCESTEREO }, { "eapdinv", HDA_QUIRK_EAPDINV }, { "dmapos", HDA_QUIRK_DMAPOS }, { "senseinv", HDA_QUIRK_SENSEINV }, { "ivref50", HDA_QUIRK_IVREF50 }, { "ivref80", HDA_QUIRK_IVREF80 }, { "ivref100", HDA_QUIRK_IVREF100 }, { "ovref50", HDA_QUIRK_OVREF50 }, { "ovref80", HDA_QUIRK_OVREF80 }, { "ovref100", HDA_QUIRK_OVREF100 }, { "ivref", HDA_QUIRK_IVREF }, { "ovref", HDA_QUIRK_OVREF }, { "vref", HDA_QUIRK_VREF }, }; #define HDAC_QUIRKS_TAB_LEN \ (sizeof(hdac_quirks_tab) / sizeof(hdac_quirks_tab[0])) #define HDA_BDL_MIN 2 #define HDA_BDL_MAX 256 #define HDA_BDL_DEFAULT HDA_BDL_MIN #define HDA_BLK_MIN HDAC_DMA_ALIGNMENT #define HDA_BLK_ALIGN (~(HDA_BLK_MIN - 1)) #define HDA_BUFSZ_MIN 4096 #define HDA_BUFSZ_MAX 65536 #define HDA_BUFSZ_DEFAULT 16384 #define HDA_PARSE_MAXDEPTH 10 #define HDAC_UNSOLTAG_EVENT_HP 0x00 MALLOC_DEFINE(M_HDAC, "hdac", "High Definition Audio Controller"); const char *HDA_COLORS[16] = {"Unknown", "Black", "Grey", "Blue", "Green", "Red", "Orange", "Yellow", "Purple", "Pink", "Res.A", "Res.B", "Res.C", "Res.D", "White", "Other"}; const char *HDA_DEVS[16] = {"Line-out", "Speaker", "Headphones", "CD", "SPDIF-out", "Digital-out", "Modem-line", "Modem-handset", "Line-in", "AUX", "Mic", "Telephony", "SPDIF-in", "Digital-in", "Res.E", "Other"}; const char *HDA_CONNS[4] = {"Jack", "None", "Fixed", "Both"}; /* Default */ static uint32_t hdac_fmt[] = { SND_FORMAT(AFMT_S16_LE, 2, 0), 0 }; static struct pcmchan_caps hdac_caps = {48000, 48000, hdac_fmt, 0}; #define HDAC_NO_MSI 1 #define HDAC_NO_64BIT 2 static const struct { uint32_t model; char *desc; char flags; } hdac_devices[] = { { HDA_INTEL_CPT, "Intel Cougar Point", 0 }, { HDA_INTEL_82801F, "Intel 82801F", 0 }, { HDA_INTEL_63XXESB, "Intel 631x/632xESB", 0 }, { HDA_INTEL_82801G, "Intel 82801G", 0 }, { HDA_INTEL_82801H, "Intel 82801H", 0 }, { HDA_INTEL_82801I, "Intel 82801I", 0 }, { HDA_INTEL_82801JI, "Intel 82801JI", 0 }, { HDA_INTEL_82801JD, "Intel 82801JD", 0 }, { HDA_INTEL_PCH, "Intel PCH", 0 }, { HDA_INTEL_SCH, "Intel SCH", 0 }, { HDA_NVIDIA_MCP51, "NVidia MCP51", HDAC_NO_MSI }, { HDA_NVIDIA_MCP55, "NVidia MCP55", HDAC_NO_MSI }, { HDA_NVIDIA_MCP61_1, "NVidia MCP61", 0 }, { HDA_NVIDIA_MCP61_2, "NVidia MCP61", 0 }, { HDA_NVIDIA_MCP65_1, "NVidia MCP65", 0 }, { HDA_NVIDIA_MCP65_2, "NVidia MCP65", 0 }, { HDA_NVIDIA_MCP67_1, "NVidia MCP67", 0 }, { HDA_NVIDIA_MCP67_2, "NVidia MCP67", 0 }, { HDA_NVIDIA_MCP73_1, "NVidia MCP73", 0 }, { HDA_NVIDIA_MCP73_2, "NVidia MCP73", 0 }, { HDA_NVIDIA_MCP78_1, "NVidia MCP78", HDAC_NO_64BIT }, { HDA_NVIDIA_MCP78_2, "NVidia MCP78", HDAC_NO_64BIT }, { HDA_NVIDIA_MCP78_3, "NVidia MCP78", HDAC_NO_64BIT }, { HDA_NVIDIA_MCP78_4, "NVidia MCP78", HDAC_NO_64BIT }, { HDA_NVIDIA_MCP79_1, "NVidia MCP79", 0 }, { HDA_NVIDIA_MCP79_2, "NVidia MCP79", 0 }, { HDA_NVIDIA_MCP79_3, "NVidia MCP79", 0 }, { HDA_NVIDIA_MCP79_4, "NVidia MCP79", 0 }, { HDA_NVIDIA_MCP89_1, "NVidia MCP89", 0 }, { HDA_NVIDIA_MCP89_2, "NVidia MCP89", 0 }, { HDA_NVIDIA_MCP89_3, "NVidia MCP89", 0 }, { HDA_NVIDIA_MCP89_4, "NVidia MCP89", 0 }, { HDA_ATI_SB450, "ATI SB450", 0 }, { HDA_ATI_SB600, "ATI SB600", 0 }, { HDA_ATI_RS600, "ATI RS600", 0 }, { HDA_ATI_RS690, "ATI RS690", 0 }, { HDA_ATI_RS780, "ATI RS780", 0 }, { HDA_ATI_R600, "ATI R600", 0 }, { HDA_ATI_RV610, "ATI RV610", 0 }, { HDA_ATI_RV620, "ATI RV620", 0 }, { HDA_ATI_RV630, "ATI RV630", 0 }, { HDA_ATI_RV635, "ATI RV635", 0 }, { HDA_ATI_RV710, "ATI RV710", 0 }, { HDA_ATI_RV730, "ATI RV730", 0 }, { HDA_ATI_RV740, "ATI RV740", 0 }, { HDA_ATI_RV770, "ATI RV770", 0 }, { HDA_VIA_VT82XX, "VIA VT8251/8237A",0 }, { HDA_SIS_966, "SiS 966", 0 }, { HDA_ULI_M5461, "ULI M5461", 0 }, /* Unknown */ { HDA_INTEL_ALL, "Intel (Unknown)" }, { HDA_NVIDIA_ALL, "NVidia (Unknown)" }, { HDA_ATI_ALL, "ATI (Unknown)" }, { HDA_VIA_ALL, "VIA (Unknown)" }, { HDA_SIS_ALL, "SiS (Unknown)" }, { HDA_ULI_ALL, "ULI (Unknown)" }, }; #define HDAC_DEVICES_LEN (sizeof(hdac_devices) / sizeof(hdac_devices[0])) static const struct { uint16_t vendor; uint8_t reg; uint8_t mask; uint8_t enable; } hdac_pcie_snoop[] = { { INTEL_VENDORID, 0x00, 0x00, 0x00 }, { ATI_VENDORID, 0x42, 0xf8, 0x02 }, { NVIDIA_VENDORID, 0x4e, 0xf0, 0x0f }, }; #define HDAC_PCIESNOOP_LEN \ (sizeof(hdac_pcie_snoop) / sizeof(hdac_pcie_snoop[0])) static const struct { uint32_t rate; int valid; uint16_t base; uint16_t mul; uint16_t div; } hda_rate_tab[] = { { 8000, 1, 0x0000, 0x0000, 0x0500 }, /* (48000 * 1) / 6 */ { 9600, 0, 0x0000, 0x0000, 0x0400 }, /* (48000 * 1) / 5 */ { 12000, 0, 0x0000, 0x0000, 0x0300 }, /* (48000 * 1) / 4 */ { 16000, 1, 0x0000, 0x0000, 0x0200 }, /* (48000 * 1) / 3 */ { 18000, 0, 0x0000, 0x1000, 0x0700 }, /* (48000 * 3) / 8 */ { 19200, 0, 0x0000, 0x0800, 0x0400 }, /* (48000 * 2) / 5 */ { 24000, 0, 0x0000, 0x0000, 0x0100 }, /* (48000 * 1) / 2 */ { 28800, 0, 0x0000, 0x1000, 0x0400 }, /* (48000 * 3) / 5 */ { 32000, 1, 0x0000, 0x0800, 0x0200 }, /* (48000 * 2) / 3 */ { 36000, 0, 0x0000, 0x1000, 0x0300 }, /* (48000 * 3) / 4 */ { 38400, 0, 0x0000, 0x1800, 0x0400 }, /* (48000 * 4) / 5 */ { 48000, 1, 0x0000, 0x0000, 0x0000 }, /* (48000 * 1) / 1 */ { 64000, 0, 0x0000, 0x1800, 0x0200 }, /* (48000 * 4) / 3 */ { 72000, 0, 0x0000, 0x1000, 0x0100 }, /* (48000 * 3) / 2 */ { 96000, 1, 0x0000, 0x0800, 0x0000 }, /* (48000 * 2) / 1 */ { 144000, 0, 0x0000, 0x1000, 0x0000 }, /* (48000 * 3) / 1 */ { 192000, 1, 0x0000, 0x1800, 0x0000 }, /* (48000 * 4) / 1 */ { 8820, 0, 0x4000, 0x0000, 0x0400 }, /* (44100 * 1) / 5 */ { 11025, 1, 0x4000, 0x0000, 0x0300 }, /* (44100 * 1) / 4 */ { 12600, 0, 0x4000, 0x0800, 0x0600 }, /* (44100 * 2) / 7 */ { 14700, 0, 0x4000, 0x0000, 0x0200 }, /* (44100 * 1) / 3 */ { 17640, 0, 0x4000, 0x0800, 0x0400 }, /* (44100 * 2) / 5 */ { 18900, 0, 0x4000, 0x1000, 0x0600 }, /* (44100 * 3) / 7 */ { 22050, 1, 0x4000, 0x0000, 0x0100 }, /* (44100 * 1) / 2 */ { 25200, 0, 0x4000, 0x1800, 0x0600 }, /* (44100 * 4) / 7 */ { 26460, 0, 0x4000, 0x1000, 0x0400 }, /* (44100 * 3) / 5 */ { 29400, 0, 0x4000, 0x0800, 0x0200 }, /* (44100 * 2) / 3 */ { 33075, 0, 0x4000, 0x1000, 0x0300 }, /* (44100 * 3) / 4 */ { 35280, 0, 0x4000, 0x1800, 0x0400 }, /* (44100 * 4) / 5 */ { 44100, 1, 0x4000, 0x0000, 0x0000 }, /* (44100 * 1) / 1 */ { 58800, 0, 0x4000, 0x1800, 0x0200 }, /* (44100 * 4) / 3 */ { 66150, 0, 0x4000, 0x1000, 0x0100 }, /* (44100 * 3) / 2 */ { 88200, 1, 0x4000, 0x0800, 0x0000 }, /* (44100 * 2) / 1 */ { 132300, 0, 0x4000, 0x1000, 0x0000 }, /* (44100 * 3) / 1 */ { 176400, 1, 0x4000, 0x1800, 0x0000 }, /* (44100 * 4) / 1 */ }; #define HDA_RATE_TAB_LEN (sizeof(hda_rate_tab) / sizeof(hda_rate_tab[0])) /* All codecs you can eat... */ #define HDA_CODEC_CONSTRUCT(vendor, id) \ (((uint32_t)(vendor##_VENDORID) << 16) | ((id) & 0xffff)) /* Cirrus Logic */ #define CIRRUSLOGIC_VENDORID 0x1013 #define HDA_CODEC_CS4206 HDA_CODEC_CONSTRUCT(CIRRUSLOGIC, 0x4206) #define HDA_CODEC_CS4207 HDA_CODEC_CONSTRUCT(CIRRUSLOGIC, 0x4207) #define HDA_CODEC_CSXXXX HDA_CODEC_CONSTRUCT(CIRRUSLOGIC, 0xffff) /* Realtek */ #define REALTEK_VENDORID 0x10ec #define HDA_CODEC_ALC260 HDA_CODEC_CONSTRUCT(REALTEK, 0x0260) #define HDA_CODEC_ALC262 HDA_CODEC_CONSTRUCT(REALTEK, 0x0262) #define HDA_CODEC_ALC267 HDA_CODEC_CONSTRUCT(REALTEK, 0x0267) #define HDA_CODEC_ALC268 HDA_CODEC_CONSTRUCT(REALTEK, 0x0268) #define HDA_CODEC_ALC269 HDA_CODEC_CONSTRUCT(REALTEK, 0x0269) #define HDA_CODEC_ALC270 HDA_CODEC_CONSTRUCT(REALTEK, 0x0270) #define HDA_CODEC_ALC272 HDA_CODEC_CONSTRUCT(REALTEK, 0x0272) #define HDA_CODEC_ALC273 HDA_CODEC_CONSTRUCT(REALTEK, 0x0273) #define HDA_CODEC_ALC275 HDA_CODEC_CONSTRUCT(REALTEK, 0x0275) #define HDA_CODEC_ALC660 HDA_CODEC_CONSTRUCT(REALTEK, 0x0660) #define HDA_CODEC_ALC662 HDA_CODEC_CONSTRUCT(REALTEK, 0x0662) #define HDA_CODEC_ALC663 HDA_CODEC_CONSTRUCT(REALTEK, 0x0663) #define HDA_CODEC_ALC665 HDA_CODEC_CONSTRUCT(REALTEK, 0x0665) #define HDA_CODEC_ALC861 HDA_CODEC_CONSTRUCT(REALTEK, 0x0861) #define HDA_CODEC_ALC861VD HDA_CODEC_CONSTRUCT(REALTEK, 0x0862) #define HDA_CODEC_ALC880 HDA_CODEC_CONSTRUCT(REALTEK, 0x0880) #define HDA_CODEC_ALC882 HDA_CODEC_CONSTRUCT(REALTEK, 0x0882) #define HDA_CODEC_ALC883 HDA_CODEC_CONSTRUCT(REALTEK, 0x0883) #define HDA_CODEC_ALC885 HDA_CODEC_CONSTRUCT(REALTEK, 0x0885) #define HDA_CODEC_ALC887 HDA_CODEC_CONSTRUCT(REALTEK, 0x0887) #define HDA_CODEC_ALC888 HDA_CODEC_CONSTRUCT(REALTEK, 0x0888) #define HDA_CODEC_ALC889 HDA_CODEC_CONSTRUCT(REALTEK, 0x0889) #define HDA_CODEC_ALC892 HDA_CODEC_CONSTRUCT(REALTEK, 0x0892) #define HDA_CODEC_ALCXXXX HDA_CODEC_CONSTRUCT(REALTEK, 0xffff) /* Analog Devices */ #define ANALOGDEVICES_VENDORID 0x11d4 #define HDA_CODEC_AD1884A HDA_CODEC_CONSTRUCT(ANALOGDEVICES, 0x184a) #define HDA_CODEC_AD1882 HDA_CODEC_CONSTRUCT(ANALOGDEVICES, 0x1882) #define HDA_CODEC_AD1883 HDA_CODEC_CONSTRUCT(ANALOGDEVICES, 0x1883) #define HDA_CODEC_AD1884 HDA_CODEC_CONSTRUCT(ANALOGDEVICES, 0x1884) #define HDA_CODEC_AD1984A HDA_CODEC_CONSTRUCT(ANALOGDEVICES, 0x194a) #define HDA_CODEC_AD1984B HDA_CODEC_CONSTRUCT(ANALOGDEVICES, 0x194b) #define HDA_CODEC_AD1981HD HDA_CODEC_CONSTRUCT(ANALOGDEVICES, 0x1981) #define HDA_CODEC_AD1983 HDA_CODEC_CONSTRUCT(ANALOGDEVICES, 0x1983) #define HDA_CODEC_AD1984 HDA_CODEC_CONSTRUCT(ANALOGDEVICES, 0x1984) #define HDA_CODEC_AD1986A HDA_CODEC_CONSTRUCT(ANALOGDEVICES, 0x1986) #define HDA_CODEC_AD1987 HDA_CODEC_CONSTRUCT(ANALOGDEVICES, 0x1987) #define HDA_CODEC_AD1988 HDA_CODEC_CONSTRUCT(ANALOGDEVICES, 0x1988) #define HDA_CODEC_AD1988B HDA_CODEC_CONSTRUCT(ANALOGDEVICES, 0x198b) #define HDA_CODEC_AD1882A HDA_CODEC_CONSTRUCT(ANALOGDEVICES, 0x882a) #define HDA_CODEC_AD1989B HDA_CODEC_CONSTRUCT(ANALOGDEVICES, 0x989b) #define HDA_CODEC_ADXXXX HDA_CODEC_CONSTRUCT(ANALOGDEVICES, 0xffff) /* CMedia */ #define CMEDIA_VENDORID 0x434d #define HDA_CODEC_CMI9880 HDA_CODEC_CONSTRUCT(CMEDIA, 0x4980) #define HDA_CODEC_CMIXXXX HDA_CODEC_CONSTRUCT(CMEDIA, 0xffff) /* Sigmatel */ #define SIGMATEL_VENDORID 0x8384 #define HDA_CODEC_STAC9230X HDA_CODEC_CONSTRUCT(SIGMATEL, 0x7612) #define HDA_CODEC_STAC9230D HDA_CODEC_CONSTRUCT(SIGMATEL, 0x7613) #define HDA_CODEC_STAC9229X HDA_CODEC_CONSTRUCT(SIGMATEL, 0x7614) #define HDA_CODEC_STAC9229D HDA_CODEC_CONSTRUCT(SIGMATEL, 0x7615) #define HDA_CODEC_STAC9228X HDA_CODEC_CONSTRUCT(SIGMATEL, 0x7616) #define HDA_CODEC_STAC9228D HDA_CODEC_CONSTRUCT(SIGMATEL, 0x7617) #define HDA_CODEC_STAC9227X HDA_CODEC_CONSTRUCT(SIGMATEL, 0x7618) #define HDA_CODEC_STAC9227D HDA_CODEC_CONSTRUCT(SIGMATEL, 0x7619) #define HDA_CODEC_STAC9274 HDA_CODEC_CONSTRUCT(SIGMATEL, 0x7620) #define HDA_CODEC_STAC9274D HDA_CODEC_CONSTRUCT(SIGMATEL, 0x7621) #define HDA_CODEC_STAC9273X HDA_CODEC_CONSTRUCT(SIGMATEL, 0x7622) #define HDA_CODEC_STAC9273D HDA_CODEC_CONSTRUCT(SIGMATEL, 0x7623) #define HDA_CODEC_STAC9272X HDA_CODEC_CONSTRUCT(SIGMATEL, 0x7624) #define HDA_CODEC_STAC9272D HDA_CODEC_CONSTRUCT(SIGMATEL, 0x7625) #define HDA_CODEC_STAC9271X HDA_CODEC_CONSTRUCT(SIGMATEL, 0x7626) #define HDA_CODEC_STAC9271D HDA_CODEC_CONSTRUCT(SIGMATEL, 0x7627) #define HDA_CODEC_STAC9274X5NH HDA_CODEC_CONSTRUCT(SIGMATEL, 0x7628) #define HDA_CODEC_STAC9274D5NH HDA_CODEC_CONSTRUCT(SIGMATEL, 0x7629) #define HDA_CODEC_STAC9250 HDA_CODEC_CONSTRUCT(SIGMATEL, 0x7634) #define HDA_CODEC_STAC9251 HDA_CODEC_CONSTRUCT(SIGMATEL, 0x7636) #define HDA_CODEC_IDT92HD700X HDA_CODEC_CONSTRUCT(SIGMATEL, 0x7638) #define HDA_CODEC_IDT92HD700D HDA_CODEC_CONSTRUCT(SIGMATEL, 0x7639) #define HDA_CODEC_IDT92HD206X HDA_CODEC_CONSTRUCT(SIGMATEL, 0x7645) #define HDA_CODEC_IDT92HD206D HDA_CODEC_CONSTRUCT(SIGMATEL, 0x7646) #define HDA_CODEC_CXD9872RDK HDA_CODEC_CONSTRUCT(SIGMATEL, 0x7661) #define HDA_CODEC_STAC9872AK HDA_CODEC_CONSTRUCT(SIGMATEL, 0x7662) #define HDA_CODEC_CXD9872AKD HDA_CODEC_CONSTRUCT(SIGMATEL, 0x7664) #define HDA_CODEC_STAC9221 HDA_CODEC_CONSTRUCT(SIGMATEL, 0x7680) #define HDA_CODEC_STAC922XD HDA_CODEC_CONSTRUCT(SIGMATEL, 0x7681) #define HDA_CODEC_STAC9221_A2 HDA_CODEC_CONSTRUCT(SIGMATEL, 0x7682) #define HDA_CODEC_STAC9221D HDA_CODEC_CONSTRUCT(SIGMATEL, 0x7683) #define HDA_CODEC_STAC9220 HDA_CODEC_CONSTRUCT(SIGMATEL, 0x7690) #define HDA_CODEC_STAC9200D HDA_CODEC_CONSTRUCT(SIGMATEL, 0x7691) #define HDA_CODEC_IDT92HD005 HDA_CODEC_CONSTRUCT(SIGMATEL, 0x7698) #define HDA_CODEC_IDT92HD005D HDA_CODEC_CONSTRUCT(SIGMATEL, 0x7699) #define HDA_CODEC_STAC9205X HDA_CODEC_CONSTRUCT(SIGMATEL, 0x76a0) #define HDA_CODEC_STAC9205D HDA_CODEC_CONSTRUCT(SIGMATEL, 0x76a1) #define HDA_CODEC_STAC9204X HDA_CODEC_CONSTRUCT(SIGMATEL, 0x76a2) #define HDA_CODEC_STAC9204D HDA_CODEC_CONSTRUCT(SIGMATEL, 0x76a3) #define HDA_CODEC_STAC9220_A2 HDA_CODEC_CONSTRUCT(SIGMATEL, 0x7880) #define HDA_CODEC_STAC9220_A1 HDA_CODEC_CONSTRUCT(SIGMATEL, 0x7882) #define HDA_CODEC_STACXXXX HDA_CODEC_CONSTRUCT(SIGMATEL, 0xffff) /* IDT */ #define IDT_VENDORID 0x111d #define HDA_CODEC_IDT92HD75BX HDA_CODEC_CONSTRUCT(IDT, 0x7603) #define HDA_CODEC_IDT92HD83C1X HDA_CODEC_CONSTRUCT(IDT, 0x7604) #define HDA_CODEC_IDT92HD81B1X HDA_CODEC_CONSTRUCT(IDT, 0x7605) #define HDA_CODEC_IDT92HD75B3 HDA_CODEC_CONSTRUCT(IDT, 0x7608) #define HDA_CODEC_IDT92HD73D1 HDA_CODEC_CONSTRUCT(IDT, 0x7674) #define HDA_CODEC_IDT92HD73C1 HDA_CODEC_CONSTRUCT(IDT, 0x7675) #define HDA_CODEC_IDT92HD73E1 HDA_CODEC_CONSTRUCT(IDT, 0x7676) #define HDA_CODEC_IDT92HD71B8 HDA_CODEC_CONSTRUCT(IDT, 0x76b0) #define HDA_CODEC_IDT92HD71B7 HDA_CODEC_CONSTRUCT(IDT, 0x76b2) #define HDA_CODEC_IDT92HD71B5 HDA_CODEC_CONSTRUCT(IDT, 0x76b6) #define HDA_CODEC_IDT92HD83C1C HDA_CODEC_CONSTRUCT(IDT, 0x76d4) #define HDA_CODEC_IDT92HD81B1C HDA_CODEC_CONSTRUCT(IDT, 0x76d5) #define HDA_CODEC_IDTXXXX HDA_CODEC_CONSTRUCT(IDT, 0xffff) /* Silicon Image */ #define SII_VENDORID 0x1095 #define HDA_CODEC_SII1390 HDA_CODEC_CONSTRUCT(SII, 0x1390) #define HDA_CODEC_SII1392 HDA_CODEC_CONSTRUCT(SII, 0x1392) #define HDA_CODEC_SIIXXXX HDA_CODEC_CONSTRUCT(SII, 0xffff) /* Lucent/Agere */ #define AGERE_VENDORID 0x11c1 #define HDA_CODEC_AGEREXXXX HDA_CODEC_CONSTRUCT(AGERE, 0xffff) /* Conexant */ #define CONEXANT_VENDORID 0x14f1 #define HDA_CODEC_CX20549 HDA_CODEC_CONSTRUCT(CONEXANT, 0x5045) #define HDA_CODEC_CX20551 HDA_CODEC_CONSTRUCT(CONEXANT, 0x5047) #define HDA_CODEC_CX20561 HDA_CODEC_CONSTRUCT(CONEXANT, 0x5051) #define HDA_CODEC_CX20582 HDA_CODEC_CONSTRUCT(CONEXANT, 0x5066) #define HDA_CODEC_CX20583 HDA_CODEC_CONSTRUCT(CONEXANT, 0x5067) #define HDA_CODEC_CX20585 HDA_CODEC_CONSTRUCT(CONEXANT, 0x5069) #define HDA_CODEC_CXXXXX HDA_CODEC_CONSTRUCT(CONEXANT, 0xffff) /* VIA */ #define HDA_CODEC_VT1708_8 HDA_CODEC_CONSTRUCT(VIA, 0x1708) #define HDA_CODEC_VT1708_9 HDA_CODEC_CONSTRUCT(VIA, 0x1709) #define HDA_CODEC_VT1708_A HDA_CODEC_CONSTRUCT(VIA, 0x170a) #define HDA_CODEC_VT1708_B HDA_CODEC_CONSTRUCT(VIA, 0x170b) #define HDA_CODEC_VT1709_0 HDA_CODEC_CONSTRUCT(VIA, 0xe710) #define HDA_CODEC_VT1709_1 HDA_CODEC_CONSTRUCT(VIA, 0xe711) #define HDA_CODEC_VT1709_2 HDA_CODEC_CONSTRUCT(VIA, 0xe712) #define HDA_CODEC_VT1709_3 HDA_CODEC_CONSTRUCT(VIA, 0xe713) #define HDA_CODEC_VT1709_4 HDA_CODEC_CONSTRUCT(VIA, 0xe714) #define HDA_CODEC_VT1709_5 HDA_CODEC_CONSTRUCT(VIA, 0xe715) #define HDA_CODEC_VT1709_6 HDA_CODEC_CONSTRUCT(VIA, 0xe716) #define HDA_CODEC_VT1709_7 HDA_CODEC_CONSTRUCT(VIA, 0xe717) #define HDA_CODEC_VT1708B_0 HDA_CODEC_CONSTRUCT(VIA, 0xe720) #define HDA_CODEC_VT1708B_1 HDA_CODEC_CONSTRUCT(VIA, 0xe721) #define HDA_CODEC_VT1708B_2 HDA_CODEC_CONSTRUCT(VIA, 0xe722) #define HDA_CODEC_VT1708B_3 HDA_CODEC_CONSTRUCT(VIA, 0xe723) #define HDA_CODEC_VT1708B_4 HDA_CODEC_CONSTRUCT(VIA, 0xe724) #define HDA_CODEC_VT1708B_5 HDA_CODEC_CONSTRUCT(VIA, 0xe725) #define HDA_CODEC_VT1708B_6 HDA_CODEC_CONSTRUCT(VIA, 0xe726) #define HDA_CODEC_VT1708B_7 HDA_CODEC_CONSTRUCT(VIA, 0xe727) #define HDA_CODEC_VT1708S_0 HDA_CODEC_CONSTRUCT(VIA, 0x0397) #define HDA_CODEC_VT1708S_1 HDA_CODEC_CONSTRUCT(VIA, 0x1397) #define HDA_CODEC_VT1708S_2 HDA_CODEC_CONSTRUCT(VIA, 0x2397) #define HDA_CODEC_VT1708S_3 HDA_CODEC_CONSTRUCT(VIA, 0x3397) #define HDA_CODEC_VT1708S_4 HDA_CODEC_CONSTRUCT(VIA, 0x4397) #define HDA_CODEC_VT1708S_5 HDA_CODEC_CONSTRUCT(VIA, 0x5397) #define HDA_CODEC_VT1708S_6 HDA_CODEC_CONSTRUCT(VIA, 0x6397) #define HDA_CODEC_VT1708S_7 HDA_CODEC_CONSTRUCT(VIA, 0x7397) #define HDA_CODEC_VT1702_0 HDA_CODEC_CONSTRUCT(VIA, 0x0398) #define HDA_CODEC_VT1702_1 HDA_CODEC_CONSTRUCT(VIA, 0x1398) #define HDA_CODEC_VT1702_2 HDA_CODEC_CONSTRUCT(VIA, 0x2398) #define HDA_CODEC_VT1702_3 HDA_CODEC_CONSTRUCT(VIA, 0x3398) #define HDA_CODEC_VT1702_4 HDA_CODEC_CONSTRUCT(VIA, 0x4398) #define HDA_CODEC_VT1702_5 HDA_CODEC_CONSTRUCT(VIA, 0x5398) #define HDA_CODEC_VT1702_6 HDA_CODEC_CONSTRUCT(VIA, 0x6398) #define HDA_CODEC_VT1702_7 HDA_CODEC_CONSTRUCT(VIA, 0x7398) #define HDA_CODEC_VT1716S_0 HDA_CODEC_CONSTRUCT(VIA, 0x0433) #define HDA_CODEC_VT1716S_1 HDA_CODEC_CONSTRUCT(VIA, 0xa721) #define HDA_CODEC_VT1718S_0 HDA_CODEC_CONSTRUCT(VIA, 0x0428) #define HDA_CODEC_VT1718S_1 HDA_CODEC_CONSTRUCT(VIA, 0x4428) #define HDA_CODEC_VT1812 HDA_CODEC_CONSTRUCT(VIA, 0x0448) #define HDA_CODEC_VT1818S HDA_CODEC_CONSTRUCT(VIA, 0x0440) #define HDA_CODEC_VT1828S HDA_CODEC_CONSTRUCT(VIA, 0x4441) #define HDA_CODEC_VT2002P_0 HDA_CODEC_CONSTRUCT(VIA, 0x0438) #define HDA_CODEC_VT2002P_1 HDA_CODEC_CONSTRUCT(VIA, 0x4438) #define HDA_CODEC_VT2020 HDA_CODEC_CONSTRUCT(VIA, 0x0441) #define HDA_CODEC_VTXXXX HDA_CODEC_CONSTRUCT(VIA, 0xffff) /* ATI */ #define HDA_CODEC_ATIRS600_1 HDA_CODEC_CONSTRUCT(ATI, 0x793c) #define HDA_CODEC_ATIRS600_2 HDA_CODEC_CONSTRUCT(ATI, 0x7919) #define HDA_CODEC_ATIRS690 HDA_CODEC_CONSTRUCT(ATI, 0x791a) #define HDA_CODEC_ATIR6XX HDA_CODEC_CONSTRUCT(ATI, 0xaa01) #define HDA_CODEC_ATIXXXX HDA_CODEC_CONSTRUCT(ATI, 0xffff) /* NVIDIA */ #define HDA_CODEC_NVIDIAMCP78 HDA_CODEC_CONSTRUCT(NVIDIA, 0x0002) #define HDA_CODEC_NVIDIAMCP78_2 HDA_CODEC_CONSTRUCT(NVIDIA, 0x0006) #define HDA_CODEC_NVIDIAMCP7A HDA_CODEC_CONSTRUCT(NVIDIA, 0x0007) #define HDA_CODEC_NVIDIAGT220 HDA_CODEC_CONSTRUCT(NVIDIA, 0x000a) #define HDA_CODEC_NVIDIAGT21X HDA_CODEC_CONSTRUCT(NVIDIA, 0x000b) #define HDA_CODEC_NVIDIAMCP89 HDA_CODEC_CONSTRUCT(NVIDIA, 0x000c) #define HDA_CODEC_NVIDIAGT240 HDA_CODEC_CONSTRUCT(NVIDIA, 0x000d) #define HDA_CODEC_NVIDIAMCP67 HDA_CODEC_CONSTRUCT(NVIDIA, 0x0067) #define HDA_CODEC_NVIDIAMCP73 HDA_CODEC_CONSTRUCT(NVIDIA, 0x8001) #define HDA_CODEC_NVIDIAXXXX HDA_CODEC_CONSTRUCT(NVIDIA, 0xffff) /* INTEL */ #define HDA_CODEC_INTELG45_1 HDA_CODEC_CONSTRUCT(INTEL, 0x2801) #define HDA_CODEC_INTELG45_2 HDA_CODEC_CONSTRUCT(INTEL, 0x2802) #define HDA_CODEC_INTELG45_3 HDA_CODEC_CONSTRUCT(INTEL, 0x2803) #define HDA_CODEC_INTELG45_4 HDA_CODEC_CONSTRUCT(INTEL, 0x2804) #define HDA_CODEC_INTELG45_5 HDA_CODEC_CONSTRUCT(INTEL, 0x29fb) #define HDA_CODEC_INTELQ57 HDA_CODEC_CONSTRUCT(INTEL, 0x0054) #define HDA_CODEC_INTELXXXX HDA_CODEC_CONSTRUCT(INTEL, 0xffff) /* Codecs */ static const struct { uint32_t id; char *name; } hdac_codecs[] = { { HDA_CODEC_CS4206, "Cirrus Logic CS4206" }, { HDA_CODEC_CS4207, "Cirrus Logic CS4207" }, { HDA_CODEC_ALC260, "Realtek ALC260" }, { HDA_CODEC_ALC262, "Realtek ALC262" }, { HDA_CODEC_ALC267, "Realtek ALC267" }, { HDA_CODEC_ALC268, "Realtek ALC268" }, { HDA_CODEC_ALC269, "Realtek ALC269" }, { HDA_CODEC_ALC270, "Realtek ALC270" }, { HDA_CODEC_ALC272, "Realtek ALC272" }, { HDA_CODEC_ALC273, "Realtek ALC273" }, { HDA_CODEC_ALC275, "Realtek ALC275" }, { HDA_CODEC_ALC660, "Realtek ALC660" }, { HDA_CODEC_ALC662, "Realtek ALC662" }, { HDA_CODEC_ALC663, "Realtek ALC663" }, { HDA_CODEC_ALC665, "Realtek ALC665" }, { HDA_CODEC_ALC861, "Realtek ALC861" }, { HDA_CODEC_ALC861VD, "Realtek ALC861-VD" }, { HDA_CODEC_ALC880, "Realtek ALC880" }, { HDA_CODEC_ALC882, "Realtek ALC882" }, { HDA_CODEC_ALC883, "Realtek ALC883" }, { HDA_CODEC_ALC885, "Realtek ALC885" }, { HDA_CODEC_ALC887, "Realtek ALC887" }, { HDA_CODEC_ALC888, "Realtek ALC888" }, { HDA_CODEC_ALC889, "Realtek ALC889" }, { HDA_CODEC_ALC892, "Realtek ALC892" }, { HDA_CODEC_AD1882, "Analog Devices AD1882" }, { HDA_CODEC_AD1882A, "Analog Devices AD1882A" }, { HDA_CODEC_AD1883, "Analog Devices AD1883" }, { HDA_CODEC_AD1884, "Analog Devices AD1884" }, { HDA_CODEC_AD1884A, "Analog Devices AD1884A" }, { HDA_CODEC_AD1981HD, "Analog Devices AD1981HD" }, { HDA_CODEC_AD1983, "Analog Devices AD1983" }, { HDA_CODEC_AD1984, "Analog Devices AD1984" }, { HDA_CODEC_AD1984A, "Analog Devices AD1984A" }, { HDA_CODEC_AD1984B, "Analog Devices AD1984B" }, { HDA_CODEC_AD1986A, "Analog Devices AD1986A" }, { HDA_CODEC_AD1987, "Analog Devices AD1987" }, { HDA_CODEC_AD1988, "Analog Devices AD1988A" }, { HDA_CODEC_AD1988B, "Analog Devices AD1988B" }, { HDA_CODEC_AD1989B, "Analog Devices AD1989B" }, { HDA_CODEC_CMI9880, "CMedia CMI9880" }, { HDA_CODEC_CXD9872RDK, "Sigmatel CXD9872RD/K" }, { HDA_CODEC_CXD9872AKD, "Sigmatel CXD9872AKD" }, { HDA_CODEC_STAC9200D, "Sigmatel STAC9200D" }, { HDA_CODEC_STAC9204X, "Sigmatel STAC9204X" }, { HDA_CODEC_STAC9204D, "Sigmatel STAC9204D" }, { HDA_CODEC_STAC9205X, "Sigmatel STAC9205X" }, { HDA_CODEC_STAC9205D, "Sigmatel STAC9205D" }, { HDA_CODEC_STAC9220, "Sigmatel STAC9220" }, { HDA_CODEC_STAC9220_A1, "Sigmatel STAC9220_A1" }, { HDA_CODEC_STAC9220_A2, "Sigmatel STAC9220_A2" }, { HDA_CODEC_STAC9221, "Sigmatel STAC9221" }, { HDA_CODEC_STAC9221_A2, "Sigmatel STAC9221_A2" }, { HDA_CODEC_STAC9221D, "Sigmatel STAC9221D" }, { HDA_CODEC_STAC922XD, "Sigmatel STAC9220D/9223D" }, { HDA_CODEC_STAC9227X, "Sigmatel STAC9227X" }, { HDA_CODEC_STAC9227D, "Sigmatel STAC9227D" }, { HDA_CODEC_STAC9228X, "Sigmatel STAC9228X" }, { HDA_CODEC_STAC9228D, "Sigmatel STAC9228D" }, { HDA_CODEC_STAC9229X, "Sigmatel STAC9229X" }, { HDA_CODEC_STAC9229D, "Sigmatel STAC9229D" }, { HDA_CODEC_STAC9230X, "Sigmatel STAC9230X" }, { HDA_CODEC_STAC9230D, "Sigmatel STAC9230D" }, { HDA_CODEC_STAC9250, "Sigmatel STAC9250" }, { HDA_CODEC_STAC9251, "Sigmatel STAC9251" }, { HDA_CODEC_STAC9271X, "Sigmatel STAC9271X" }, { HDA_CODEC_STAC9271D, "Sigmatel STAC9271D" }, { HDA_CODEC_STAC9272X, "Sigmatel STAC9272X" }, { HDA_CODEC_STAC9272D, "Sigmatel STAC9272D" }, { HDA_CODEC_STAC9273X, "Sigmatel STAC9273X" }, { HDA_CODEC_STAC9273D, "Sigmatel STAC9273D" }, { HDA_CODEC_STAC9274, "Sigmatel STAC9274" }, { HDA_CODEC_STAC9274D, "Sigmatel STAC9274D" }, { HDA_CODEC_STAC9274X5NH, "Sigmatel STAC9274X5NH" }, { HDA_CODEC_STAC9274D5NH, "Sigmatel STAC9274D5NH" }, { HDA_CODEC_STAC9872AK, "Sigmatel STAC9872AK" }, { HDA_CODEC_IDT92HD005, "IDT 92HD005" }, { HDA_CODEC_IDT92HD005D, "IDT 92HD005D" }, { HDA_CODEC_IDT92HD206X, "IDT 92HD206X" }, { HDA_CODEC_IDT92HD206D, "IDT 92HD206D" }, { HDA_CODEC_IDT92HD700X, "IDT 92HD700X" }, { HDA_CODEC_IDT92HD700D, "IDT 92HD700D" }, { HDA_CODEC_IDT92HD71B5, "IDT 92HD71B5" }, { HDA_CODEC_IDT92HD71B7, "IDT 92HD71B7" }, { HDA_CODEC_IDT92HD71B8, "IDT 92HD71B8" }, { HDA_CODEC_IDT92HD73C1, "IDT 92HD73C1" }, { HDA_CODEC_IDT92HD73D1, "IDT 92HD73D1" }, { HDA_CODEC_IDT92HD73E1, "IDT 92HD73E1" }, { HDA_CODEC_IDT92HD75B3, "IDT 92HD75B3" }, { HDA_CODEC_IDT92HD75BX, "IDT 92HD75BX" }, { HDA_CODEC_IDT92HD81B1C, "IDT 92HD81B1C" }, { HDA_CODEC_IDT92HD81B1X, "IDT 92HD81B1X" }, { HDA_CODEC_IDT92HD83C1C, "IDT 92HD83C1C" }, { HDA_CODEC_IDT92HD83C1X, "IDT 92HD83C1X" }, { HDA_CODEC_CX20549, "Conexant CX20549 (Venice)" }, { HDA_CODEC_CX20551, "Conexant CX20551 (Waikiki)" }, { HDA_CODEC_CX20561, "Conexant CX20561 (Hermosa)" }, { HDA_CODEC_CX20582, "Conexant CX20582 (Pebble)" }, { HDA_CODEC_CX20583, "Conexant CX20583 (Pebble HSF)" }, { HDA_CODEC_CX20585, "Conexant CX20585" }, { HDA_CODEC_VT1708_8, "VIA VT1708_8" }, { HDA_CODEC_VT1708_9, "VIA VT1708_9" }, { HDA_CODEC_VT1708_A, "VIA VT1708_A" }, { HDA_CODEC_VT1708_B, "VIA VT1708_B" }, { HDA_CODEC_VT1709_0, "VIA VT1709_0" }, { HDA_CODEC_VT1709_1, "VIA VT1709_1" }, { HDA_CODEC_VT1709_2, "VIA VT1709_2" }, { HDA_CODEC_VT1709_3, "VIA VT1709_3" }, { HDA_CODEC_VT1709_4, "VIA VT1709_4" }, { HDA_CODEC_VT1709_5, "VIA VT1709_5" }, { HDA_CODEC_VT1709_6, "VIA VT1709_6" }, { HDA_CODEC_VT1709_7, "VIA VT1709_7" }, { HDA_CODEC_VT1708B_0, "VIA VT1708B_0" }, { HDA_CODEC_VT1708B_1, "VIA VT1708B_1" }, { HDA_CODEC_VT1708B_2, "VIA VT1708B_2" }, { HDA_CODEC_VT1708B_3, "VIA VT1708B_3" }, { HDA_CODEC_VT1708B_4, "VIA VT1708B_4" }, { HDA_CODEC_VT1708B_5, "VIA VT1708B_5" }, { HDA_CODEC_VT1708B_6, "VIA VT1708B_6" }, { HDA_CODEC_VT1708B_7, "VIA VT1708B_7" }, { HDA_CODEC_VT1708S_0, "VIA VT1708S_0" }, { HDA_CODEC_VT1708S_1, "VIA VT1708S_1" }, { HDA_CODEC_VT1708S_2, "VIA VT1708S_2" }, { HDA_CODEC_VT1708S_3, "VIA VT1708S_3" }, { HDA_CODEC_VT1708S_4, "VIA VT1708S_4" }, { HDA_CODEC_VT1708S_5, "VIA VT1708S_5" }, { HDA_CODEC_VT1708S_6, "VIA VT1708S_6" }, { HDA_CODEC_VT1708S_7, "VIA VT1708S_7" }, { HDA_CODEC_VT1702_0, "VIA VT1702_0" }, { HDA_CODEC_VT1702_1, "VIA VT1702_1" }, { HDA_CODEC_VT1702_2, "VIA VT1702_2" }, { HDA_CODEC_VT1702_3, "VIA VT1702_3" }, { HDA_CODEC_VT1702_4, "VIA VT1702_4" }, { HDA_CODEC_VT1702_5, "VIA VT1702_5" }, { HDA_CODEC_VT1702_6, "VIA VT1702_6" }, { HDA_CODEC_VT1702_7, "VIA VT1702_7" }, { HDA_CODEC_VT1716S_0, "VIA VT1716S_0" }, { HDA_CODEC_VT1716S_1, "VIA VT1716S_1" }, { HDA_CODEC_VT1718S_0, "VIA VT1718S_0" }, { HDA_CODEC_VT1718S_1, "VIA VT1718S_1" }, { HDA_CODEC_VT1812, "VIA VT1812" }, { HDA_CODEC_VT1818S, "VIA VT1818S" }, { HDA_CODEC_VT1828S, "VIA VT1828S" }, { HDA_CODEC_VT2002P_0, "VIA VT2002P_0" }, { HDA_CODEC_VT2002P_1, "VIA VT2002P_1" }, { HDA_CODEC_VT2020, "VIA VT2020" }, { HDA_CODEC_ATIRS600_1,"ATI RS600 HDMI" }, { HDA_CODEC_ATIRS600_2,"ATI RS600 HDMI" }, { HDA_CODEC_ATIRS690, "ATI RS690/780 HDMI" }, { HDA_CODEC_ATIR6XX, "ATI R6xx HDMI" }, { HDA_CODEC_NVIDIAMCP67, "NVidia MCP67 HDMI" }, { HDA_CODEC_NVIDIAMCP73, "NVidia MCP73 HDMI" }, { HDA_CODEC_NVIDIAMCP78, "NVidia MCP78 HDMI" }, { HDA_CODEC_NVIDIAMCP78_2, "NVidia MCP78 HDMI" }, { HDA_CODEC_NVIDIAMCP7A, "NVidia MCP7A HDMI" }, { HDA_CODEC_NVIDIAGT220, "NVidia GT220 HDMI" }, { HDA_CODEC_NVIDIAGT21X, "NVidia GT21x HDMI" }, { HDA_CODEC_NVIDIAMCP89, "NVidia MCP89 HDMI" }, { HDA_CODEC_NVIDIAGT240, "NVidia GT240 HDMI" }, { HDA_CODEC_INTELG45_1, "Intel G45 HDMI" }, { HDA_CODEC_INTELG45_2, "Intel G45 HDMI" }, { HDA_CODEC_INTELG45_3, "Intel G45 HDMI" }, { HDA_CODEC_INTELG45_4, "Intel G45 HDMI" }, { HDA_CODEC_INTELG45_5, "Intel G45 HDMI" }, { HDA_CODEC_INTELQ57, "Intel Q57 HDMI" }, { HDA_CODEC_SII1390, "Silicon Image SiI1390 HDMI" }, { HDA_CODEC_SII1392, "Silicon Image SiI1392 HDMI" }, /* Unknown codec */ { HDA_CODEC_ALCXXXX, "Realtek (Unknown)" }, { HDA_CODEC_ADXXXX, "Analog Devices (Unknown)" }, { HDA_CODEC_CSXXXX, "Cirrus Logic (Unknown)" }, { HDA_CODEC_CMIXXXX, "CMedia (Unknown)" }, { HDA_CODEC_STACXXXX, "Sigmatel (Unknown)" }, { HDA_CODEC_SIIXXXX, "Silicon Image (Unknown)" }, { HDA_CODEC_AGEREXXXX, "Lucent/Agere Systems (Unknown)" }, { HDA_CODEC_CXXXXX, "Conexant (Unknown)" }, { HDA_CODEC_VTXXXX, "VIA (Unknown)" }, { HDA_CODEC_ATIXXXX, "ATI (Unknown)" }, { HDA_CODEC_NVIDIAXXXX,"NVidia (Unknown)" }, { HDA_CODEC_INTELXXXX, "Intel (Unknown)" }, { HDA_CODEC_IDTXXXX, "IDT (Unknown)" }, }; #define HDAC_CODECS_LEN (sizeof(hdac_codecs) / sizeof(hdac_codecs[0])) /**************************************************************************** * Function prototypes ****************************************************************************/ static void hdac_intr_handler(void *); static int hdac_reset(struct hdac_softc *, int); static int hdac_get_capabilities(struct hdac_softc *); static void hdac_dma_cb(void *, bus_dma_segment_t *, int, int); static int hdac_dma_alloc(struct hdac_softc *, struct hdac_dma *, bus_size_t); static void hdac_dma_free(struct hdac_softc *, struct hdac_dma *); static int hdac_mem_alloc(struct hdac_softc *); static void hdac_mem_free(struct hdac_softc *); static int hdac_irq_alloc(struct hdac_softc *); static void hdac_irq_free(struct hdac_softc *); static void hdac_corb_init(struct hdac_softc *); static void hdac_rirb_init(struct hdac_softc *); static void hdac_corb_start(struct hdac_softc *); static void hdac_rirb_start(struct hdac_softc *); static void hdac_scan_codecs(struct hdac_softc *); static void hdac_probe_codec(struct hdac_codec *); static void hdac_probe_function(struct hdac_codec *, nid_t); static int hdac_pcmchannel_setup(struct hdac_chan *); static void hdac_attach2(void *); static uint32_t hdac_command_sendone_internal(struct hdac_softc *, uint32_t, int); static void hdac_command_send_internal(struct hdac_softc *, struct hdac_command_list *, int); static int hdac_probe(device_t); static int hdac_attach(device_t); static int hdac_detach(device_t); static int hdac_suspend(device_t); static int hdac_resume(device_t); static void hdac_widget_connection_select(struct hdac_widget *, uint8_t); static void hdac_audio_ctl_amp_set(struct hdac_audio_ctl *, uint32_t, int, int); static struct hdac_audio_ctl *hdac_audio_ctl_amp_get(struct hdac_devinfo *, nid_t, int, int, int); static void hdac_audio_ctl_amp_set_internal(struct hdac_softc *, nid_t, nid_t, int, int, int, int, int, int); static struct hdac_widget *hdac_widget_get(struct hdac_devinfo *, nid_t); static int hdac_rirb_flush(struct hdac_softc *sc); static int hdac_unsolq_flush(struct hdac_softc *sc); static void hdac_dump_pin_config(struct hdac_widget *w, uint32_t conf); #define hdac_command(a1, a2, a3) \ hdac_command_sendone_internal(a1, a2, a3) #define hdac_codec_id(c) \ ((uint32_t)((c == NULL) ? 0x00000000 : \ ((((uint32_t)(c)->vendor_id & 0x0000ffff) << 16) | \ ((uint32_t)(c)->device_id & 0x0000ffff)))) static char * hdac_codec_name(struct hdac_codec *codec) { uint32_t id; int i; id = hdac_codec_id(codec); for (i = 0; i < HDAC_CODECS_LEN; i++) { if (HDA_DEV_MATCH(hdac_codecs[i].id, id)) return (hdac_codecs[i].name); } return ((id == 0x00000000) ? "NULL Codec" : "Unknown Codec"); } static char * hdac_audio_ctl_ossmixer_mask2allname(uint32_t mask, char *buf, size_t len) { static char *ossname[] = SOUND_DEVICE_NAMES; int i, first = 1; bzero(buf, len); for (i = 0; i < SOUND_MIXER_NRDEVICES; i++) { if (mask & (1 << i)) { if (first == 0) strlcat(buf, ", ", len); strlcat(buf, ossname[i], len); first = 0; } } return (buf); } static struct hdac_audio_ctl * hdac_audio_ctl_each(struct hdac_devinfo *devinfo, int *index) { if (devinfo == NULL || devinfo->node_type != HDA_PARAM_FCT_GRP_TYPE_NODE_TYPE_AUDIO || index == NULL || devinfo->function.audio.ctl == NULL || devinfo->function.audio.ctlcnt < 1 || *index < 0 || *index >= devinfo->function.audio.ctlcnt) return (NULL); return (&devinfo->function.audio.ctl[(*index)++]); } static struct hdac_audio_ctl * hdac_audio_ctl_amp_get(struct hdac_devinfo *devinfo, nid_t nid, int dir, int index, int cnt) { struct hdac_audio_ctl *ctl; int i, found = 0; if (devinfo == NULL || devinfo->function.audio.ctl == NULL) return (NULL); i = 0; while ((ctl = hdac_audio_ctl_each(devinfo, &i)) != NULL) { if (ctl->enable == 0) continue; if (ctl->widget->nid != nid) continue; if (dir && ctl->ndir != dir) continue; if (index >= 0 && ctl->ndir == HDA_CTL_IN && ctl->dir == ctl->ndir && ctl->index != index) continue; found++; if (found == cnt || cnt <= 0) return (ctl); } return (NULL); } /* * Jack detection (Speaker/HP redirection) event handler. */ static void hdac_hp_switch_handler(struct hdac_devinfo *devinfo) { struct hdac_audio_as *as; struct hdac_softc *sc; struct hdac_widget *w; struct hdac_audio_ctl *ctl; uint32_t val, res; int i, j; nid_t cad; if (devinfo == NULL || devinfo->codec == NULL || devinfo->codec->sc == NULL) return; sc = devinfo->codec->sc; cad = devinfo->codec->cad; as = devinfo->function.audio.as; for (i = 0; i < devinfo->function.audio.ascnt; i++) { if (as[i].hpredir < 0) continue; w = hdac_widget_get(devinfo, as[i].pins[15]); if (w == NULL || w->enable == 0 || w->type != HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_PIN_COMPLEX) continue; res = hdac_command(sc, HDA_CMD_GET_PIN_SENSE(cad, as[i].pins[15]), cad); HDA_BOOTVERBOSE( device_printf(sc->dev, "Pin sense: nid=%d res=0x%08x\n", as[i].pins[15], res); ); res = HDA_CMD_GET_PIN_SENSE_PRESENCE_DETECT(res); if (devinfo->function.audio.quirks & HDA_QUIRK_SENSEINV) res ^= 1; /* (Un)Mute headphone pin. */ ctl = hdac_audio_ctl_amp_get(devinfo, as[i].pins[15], HDA_CTL_IN, -1, 1); if (ctl != NULL && ctl->mute) { /* If pin has muter - use it. */ val = (res != 0) ? 0 : 1; if (val != ctl->forcemute) { ctl->forcemute = val; hdac_audio_ctl_amp_set(ctl, HDA_AMP_MUTE_DEFAULT, HDA_AMP_VOL_DEFAULT, HDA_AMP_VOL_DEFAULT); } } else { /* If there is no muter - disable pin output. */ w = hdac_widget_get(devinfo, as[i].pins[15]); if (w != NULL && w->type == HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_PIN_COMPLEX) { if (res != 0) val = w->wclass.pin.ctrl | HDA_CMD_SET_PIN_WIDGET_CTRL_OUT_ENABLE; else val = w->wclass.pin.ctrl & ~HDA_CMD_SET_PIN_WIDGET_CTRL_OUT_ENABLE; if (val != w->wclass.pin.ctrl) { w->wclass.pin.ctrl = val; hdac_command(sc, HDA_CMD_SET_PIN_WIDGET_CTRL(cad, w->nid, w->wclass.pin.ctrl), cad); } } } /* (Un)Mute other pins. */ for (j = 0; j < 15; j++) { if (as[i].pins[j] <= 0) continue; ctl = hdac_audio_ctl_amp_get(devinfo, as[i].pins[j], HDA_CTL_IN, -1, 1); if (ctl != NULL && ctl->mute) { /* If pin has muter - use it. */ val = (res != 0) ? 1 : 0; if (val == ctl->forcemute) continue; ctl->forcemute = val; hdac_audio_ctl_amp_set(ctl, HDA_AMP_MUTE_DEFAULT, HDA_AMP_VOL_DEFAULT, HDA_AMP_VOL_DEFAULT); continue; } /* If there is no muter - disable pin output. */ w = hdac_widget_get(devinfo, as[i].pins[j]); if (w != NULL && w->type == HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_PIN_COMPLEX) { if (res != 0) val = w->wclass.pin.ctrl & ~HDA_CMD_SET_PIN_WIDGET_CTRL_OUT_ENABLE; else val = w->wclass.pin.ctrl | HDA_CMD_SET_PIN_WIDGET_CTRL_OUT_ENABLE; if (val != w->wclass.pin.ctrl) { w->wclass.pin.ctrl = val; hdac_command(sc, HDA_CMD_SET_PIN_WIDGET_CTRL(cad, w->nid, w->wclass.pin.ctrl), cad); } } } } } /* * Callback for poll based jack detection. */ static void hdac_jack_poll_callback(void *arg) { struct hdac_devinfo *devinfo = arg; struct hdac_softc *sc; if (devinfo == NULL || devinfo->codec == NULL || devinfo->codec->sc == NULL) return; sc = devinfo->codec->sc; hdac_lock(sc); if (sc->poll_ival == 0) { hdac_unlock(sc); return; } hdac_hp_switch_handler(devinfo); callout_reset(&sc->poll_jack, sc->poll_ival, hdac_jack_poll_callback, devinfo); hdac_unlock(sc); } /* * Jack detection initializer. */ static void hdac_hp_switch_init(struct hdac_devinfo *devinfo) { struct hdac_softc *sc = devinfo->codec->sc; struct hdac_audio_as *as = devinfo->function.audio.as; struct hdac_widget *w; uint32_t id; int i, enable = 0, poll = 0; nid_t cad; id = hdac_codec_id(devinfo->codec); cad = devinfo->codec->cad; for (i = 0; i < devinfo->function.audio.ascnt; i++) { if (as[i].hpredir < 0) continue; w = hdac_widget_get(devinfo, as[i].pins[15]); if (w == NULL || w->enable == 0 || w->type != HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_PIN_COMPLEX) continue; if (HDA_PARAM_PIN_CAP_PRESENCE_DETECT_CAP(w->wclass.pin.cap) == 0 || (HDA_CONFIG_DEFAULTCONF_MISC(w->wclass.pin.config) & 1) != 0) { device_printf(sc->dev, "No jack detection support at pin %d\n", as[i].pins[15]); continue; } enable = 1; if (HDA_PARAM_AUDIO_WIDGET_CAP_UNSOL_CAP(w->param.widget_cap)) { hdac_command(sc, HDA_CMD_SET_UNSOLICITED_RESPONSE(cad, w->nid, HDA_CMD_SET_UNSOLICITED_RESPONSE_ENABLE | HDAC_UNSOLTAG_EVENT_HP), cad); } else poll = 1; HDA_BOOTVERBOSE( device_printf(sc->dev, "Enabling headphone/speaker " "audio routing switching:\n"); device_printf(sc->dev, "\tas=%d sense nid=%d [%s]\n", i, w->nid, (poll != 0) ? "POLL" : "UNSOL"); ); } if (enable) { hdac_hp_switch_handler(devinfo); if (poll) { callout_reset(&sc->poll_jack, 1, hdac_jack_poll_callback, devinfo); } } } /* * Unsolicited messages handler. */ static void hdac_unsolicited_handler(struct hdac_codec *codec, uint32_t tag) { struct hdac_softc *sc; struct hdac_devinfo *devinfo = NULL; int i; if (codec == NULL || codec->sc == NULL) return; sc = codec->sc; HDA_BOOTVERBOSE( device_printf(sc->dev, "Unsol Tag: 0x%08x\n", tag); ); for (i = 0; i < codec->num_fgs; i++) { if (codec->fgs[i].node_type == HDA_PARAM_FCT_GRP_TYPE_NODE_TYPE_AUDIO) { devinfo = &codec->fgs[i]; break; } } if (devinfo == NULL) return; switch (tag) { case HDAC_UNSOLTAG_EVENT_HP: hdac_hp_switch_handler(devinfo); break; default: device_printf(sc->dev, "Unknown unsol tag: 0x%08x!\n", tag); break; } } static int hdac_stream_intr(struct hdac_softc *sc, struct hdac_chan *ch) { /* XXX to be removed */ #ifdef HDAC_INTR_EXTRA uint32_t res; #endif if (!(ch->flags & HDAC_CHN_RUNNING)) return (0); /* XXX to be removed */ #ifdef HDAC_INTR_EXTRA res = HDAC_READ_1(&sc->mem, ch->off + HDAC_SDSTS); #endif /* XXX to be removed */ #ifdef HDAC_INTR_EXTRA HDA_BOOTVERBOSE( if (res & (HDAC_SDSTS_DESE | HDAC_SDSTS_FIFOE)) device_printf(ch->pdevinfo->dev, "PCMDIR_%s intr triggered beyond stream boundary:" "%08x\n", (ch->dir == PCMDIR_PLAY) ? "PLAY" : "REC", res); ); #endif HDAC_WRITE_1(&sc->mem, ch->off + HDAC_SDSTS, HDAC_SDSTS_DESE | HDAC_SDSTS_FIFOE | HDAC_SDSTS_BCIS ); /* XXX to be removed */ #ifdef HDAC_INTR_EXTRA if (res & HDAC_SDSTS_BCIS) { #endif return (1); /* XXX to be removed */ #ifdef HDAC_INTR_EXTRA } #endif return (0); } /**************************************************************************** * void hdac_intr_handler(void *) * * Interrupt handler. Processes interrupts received from the hdac. ****************************************************************************/ static void hdac_intr_handler(void *context) { struct hdac_softc *sc; uint32_t intsts; uint8_t rirbsts; struct hdac_rirb *rirb_base; uint32_t trigger; int i; sc = (struct hdac_softc *)context; hdac_lock(sc); if (sc->polling != 0) { hdac_unlock(sc); return; } /* Do we have anything to do? */ intsts = HDAC_READ_4(&sc->mem, HDAC_INTSTS); if (!HDA_FLAG_MATCH(intsts, HDAC_INTSTS_GIS)) { hdac_unlock(sc); return; } trigger = 0; /* Was this a controller interrupt? */ if (HDA_FLAG_MATCH(intsts, HDAC_INTSTS_CIS)) { rirb_base = (struct hdac_rirb *)sc->rirb_dma.dma_vaddr; rirbsts = HDAC_READ_1(&sc->mem, HDAC_RIRBSTS); /* Get as many responses that we can */ while (HDA_FLAG_MATCH(rirbsts, HDAC_RIRBSTS_RINTFL)) { HDAC_WRITE_1(&sc->mem, HDAC_RIRBSTS, HDAC_RIRBSTS_RINTFL); if (hdac_rirb_flush(sc) != 0) trigger |= HDAC_TRIGGER_UNSOL; rirbsts = HDAC_READ_1(&sc->mem, HDAC_RIRBSTS); } /* XXX to be removed */ /* Clear interrupt and exit */ #ifdef HDAC_INTR_EXTRA HDAC_WRITE_4(&sc->mem, HDAC_INTSTS, HDAC_INTSTS_CIS); #endif } if (intsts & HDAC_INTSTS_SIS_MASK) { for (i = 0; i < sc->num_chans; i++) { if ((intsts & (1 << (sc->chans[i].off >> 5))) && hdac_stream_intr(sc, &sc->chans[i]) != 0) trigger |= (1 << i); } /* XXX to be removed */ #ifdef HDAC_INTR_EXTRA HDAC_WRITE_4(&sc->mem, HDAC_INTSTS, intsts & HDAC_INTSTS_SIS_MASK); #endif } hdac_unlock(sc); for (i = 0; i < sc->num_chans; i++) { if (trigger & (1 << i)) chn_intr(sc->chans[i].c); } if (trigger & HDAC_TRIGGER_UNSOL) taskqueue_enqueue(taskqueue_thread, &sc->unsolq_task); } /**************************************************************************** * int hdac_reset(hdac_softc *, int) * * Reset the hdac to a quiescent and known state. ****************************************************************************/ static int hdac_reset(struct hdac_softc *sc, int wakeup) { uint32_t gctl; int count, i; /* * Stop all Streams DMA engine */ for (i = 0; i < sc->num_iss; i++) HDAC_WRITE_4(&sc->mem, HDAC_ISDCTL(sc, i), 0x0); for (i = 0; i < sc->num_oss; i++) HDAC_WRITE_4(&sc->mem, HDAC_OSDCTL(sc, i), 0x0); for (i = 0; i < sc->num_bss; i++) HDAC_WRITE_4(&sc->mem, HDAC_BSDCTL(sc, i), 0x0); /* * Stop Control DMA engines. */ HDAC_WRITE_1(&sc->mem, HDAC_CORBCTL, 0x0); HDAC_WRITE_1(&sc->mem, HDAC_RIRBCTL, 0x0); /* * Reset DMA position buffer. */ HDAC_WRITE_4(&sc->mem, HDAC_DPIBLBASE, 0x0); HDAC_WRITE_4(&sc->mem, HDAC_DPIBUBASE, 0x0); /* * Reset the controller. The reset must remain asserted for * a minimum of 100us. */ gctl = HDAC_READ_4(&sc->mem, HDAC_GCTL); HDAC_WRITE_4(&sc->mem, HDAC_GCTL, gctl & ~HDAC_GCTL_CRST); count = 10000; do { gctl = HDAC_READ_4(&sc->mem, HDAC_GCTL); if (!(gctl & HDAC_GCTL_CRST)) break; DELAY(10); } while (--count); if (gctl & HDAC_GCTL_CRST) { device_printf(sc->dev, "Unable to put hdac in reset\n"); return (ENXIO); } /* If wakeup is not requested - leave the controller in reset state. */ if (!wakeup) return (0); DELAY(100); gctl = HDAC_READ_4(&sc->mem, HDAC_GCTL); HDAC_WRITE_4(&sc->mem, HDAC_GCTL, gctl | HDAC_GCTL_CRST); count = 10000; do { gctl = HDAC_READ_4(&sc->mem, HDAC_GCTL); if (gctl & HDAC_GCTL_CRST) break; DELAY(10); } while (--count); if (!(gctl & HDAC_GCTL_CRST)) { device_printf(sc->dev, "Device stuck in reset\n"); return (ENXIO); } /* * Wait for codecs to finish their own reset sequence. The delay here * should be of 250us but for some reasons, on it's not enough on my * computer. Let's use twice as much as necessary to make sure that * it's reset properly. */ DELAY(1000); return (0); } /**************************************************************************** * int hdac_get_capabilities(struct hdac_softc *); * * Retreive the general capabilities of the hdac; * Number of Input Streams * Number of Output Streams * Number of bidirectional Streams * 64bit ready * CORB and RIRB sizes ****************************************************************************/ static int hdac_get_capabilities(struct hdac_softc *sc) { uint16_t gcap; uint8_t corbsize, rirbsize; gcap = HDAC_READ_2(&sc->mem, HDAC_GCAP); sc->num_iss = HDAC_GCAP_ISS(gcap); sc->num_oss = HDAC_GCAP_OSS(gcap); sc->num_bss = HDAC_GCAP_BSS(gcap); sc->num_sdo = HDAC_GCAP_NSDO(gcap); sc->support_64bit = HDA_FLAG_MATCH(gcap, HDAC_GCAP_64OK); corbsize = HDAC_READ_1(&sc->mem, HDAC_CORBSIZE); if ((corbsize & HDAC_CORBSIZE_CORBSZCAP_256) == HDAC_CORBSIZE_CORBSZCAP_256) sc->corb_size = 256; else if ((corbsize & HDAC_CORBSIZE_CORBSZCAP_16) == HDAC_CORBSIZE_CORBSZCAP_16) sc->corb_size = 16; else if ((corbsize & HDAC_CORBSIZE_CORBSZCAP_2) == HDAC_CORBSIZE_CORBSZCAP_2) sc->corb_size = 2; else { device_printf(sc->dev, "%s: Invalid corb size (%x)\n", __func__, corbsize); return (ENXIO); } rirbsize = HDAC_READ_1(&sc->mem, HDAC_RIRBSIZE); if ((rirbsize & HDAC_RIRBSIZE_RIRBSZCAP_256) == HDAC_RIRBSIZE_RIRBSZCAP_256) sc->rirb_size = 256; else if ((rirbsize & HDAC_RIRBSIZE_RIRBSZCAP_16) == HDAC_RIRBSIZE_RIRBSZCAP_16) sc->rirb_size = 16; else if ((rirbsize & HDAC_RIRBSIZE_RIRBSZCAP_2) == HDAC_RIRBSIZE_RIRBSZCAP_2) sc->rirb_size = 2; else { device_printf(sc->dev, "%s: Invalid rirb size (%x)\n", __func__, rirbsize); return (ENXIO); } HDA_BOOTVERBOSE( device_printf(sc->dev, "Caps: OSS %d, ISS %d, BSS %d, " "NSDO %d%s, CORB %d, RIRB %d\n", sc->num_oss, sc->num_iss, sc->num_bss, 1 << sc->num_sdo, sc->support_64bit ? ", 64bit" : "", sc->corb_size, sc->rirb_size); ); return (0); } /**************************************************************************** * void hdac_dma_cb * * This function is called by bus_dmamap_load when the mapping has been * established. We just record the physical address of the mapping into * the struct hdac_dma passed in. ****************************************************************************/ static void hdac_dma_cb(void *callback_arg, bus_dma_segment_t *segs, int nseg, int error) { struct hdac_dma *dma; if (error == 0) { dma = (struct hdac_dma *)callback_arg; dma->dma_paddr = segs[0].ds_addr; } } /**************************************************************************** * int hdac_dma_alloc * * This function allocate and setup a dma region (struct hdac_dma). * It must be freed by a corresponding hdac_dma_free. ****************************************************************************/ static int hdac_dma_alloc(struct hdac_softc *sc, struct hdac_dma *dma, bus_size_t size) { bus_size_t roundsz; int result; roundsz = roundup2(size, HDAC_DMA_ALIGNMENT); bzero(dma, sizeof(*dma)); /* * Create a DMA tag */ result = bus_dma_tag_create( bus_get_dma_tag(sc->dev), /* parent */ HDAC_DMA_ALIGNMENT, /* alignment */ 0, /* boundary */ (sc->support_64bit) ? BUS_SPACE_MAXADDR : BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, /* filtfunc */ NULL, /* fistfuncarg */ roundsz, /* maxsize */ 1, /* nsegments */ roundsz, /* maxsegsz */ 0, /* flags */ NULL, /* lockfunc */ NULL, /* lockfuncarg */ &dma->dma_tag); /* dmat */ if (result != 0) { device_printf(sc->dev, "%s: bus_dma_tag_create failed (%x)\n", __func__, result); goto hdac_dma_alloc_fail; } /* * Allocate DMA memory */ result = bus_dmamem_alloc(dma->dma_tag, (void **)&dma->dma_vaddr, BUS_DMA_NOWAIT | BUS_DMA_ZERO | ((sc->flags & HDAC_F_DMA_NOCACHE) ? BUS_DMA_NOCACHE : 0), &dma->dma_map); if (result != 0) { device_printf(sc->dev, "%s: bus_dmamem_alloc failed (%x)\n", __func__, result); goto hdac_dma_alloc_fail; } dma->dma_size = roundsz; /* * Map the memory */ result = bus_dmamap_load(dma->dma_tag, dma->dma_map, (void *)dma->dma_vaddr, roundsz, hdac_dma_cb, (void *)dma, 0); if (result != 0 || dma->dma_paddr == 0) { if (result == 0) result = ENOMEM; device_printf(sc->dev, "%s: bus_dmamem_load failed (%x)\n", __func__, result); goto hdac_dma_alloc_fail; } HDA_BOOTHVERBOSE( device_printf(sc->dev, "%s: size=%ju -> roundsz=%ju\n", __func__, (uintmax_t)size, (uintmax_t)roundsz); ); return (0); hdac_dma_alloc_fail: hdac_dma_free(sc, dma); return (result); } /**************************************************************************** * void hdac_dma_free(struct hdac_softc *, struct hdac_dma *) * * Free a struct dhac_dma that has been previously allocated via the * hdac_dma_alloc function. ****************************************************************************/ static void hdac_dma_free(struct hdac_softc *sc, struct hdac_dma *dma) { if (dma->dma_map != NULL) { #if 0 /* Flush caches */ bus_dmamap_sync(dma->dma_tag, dma->dma_map, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); #endif bus_dmamap_unload(dma->dma_tag, dma->dma_map); } if (dma->dma_vaddr != NULL) { bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map); dma->dma_vaddr = NULL; } dma->dma_map = NULL; if (dma->dma_tag != NULL) { bus_dma_tag_destroy(dma->dma_tag); dma->dma_tag = NULL; } dma->dma_size = 0; } /**************************************************************************** * int hdac_mem_alloc(struct hdac_softc *) * * Allocate all the bus resources necessary to speak with the physical * controller. ****************************************************************************/ static int hdac_mem_alloc(struct hdac_softc *sc) { struct hdac_mem *mem; mem = &sc->mem; mem->mem_rid = PCIR_BAR(0); mem->mem_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, &mem->mem_rid, RF_ACTIVE); if (mem->mem_res == NULL) { device_printf(sc->dev, "%s: Unable to allocate memory resource\n", __func__); return (ENOMEM); } mem->mem_tag = rman_get_bustag(mem->mem_res); mem->mem_handle = rman_get_bushandle(mem->mem_res); return (0); } /**************************************************************************** * void hdac_mem_free(struct hdac_softc *) * * Free up resources previously allocated by hdac_mem_alloc. ****************************************************************************/ static void hdac_mem_free(struct hdac_softc *sc) { struct hdac_mem *mem; mem = &sc->mem; if (mem->mem_res != NULL) bus_release_resource(sc->dev, SYS_RES_MEMORY, mem->mem_rid, mem->mem_res); mem->mem_res = NULL; } /**************************************************************************** * int hdac_irq_alloc(struct hdac_softc *) * * Allocate and setup the resources necessary for interrupt handling. ****************************************************************************/ static int hdac_irq_alloc(struct hdac_softc *sc) { struct hdac_irq *irq; int result; irq = &sc->irq; irq->irq_rid = 0x0; if ((sc->flags & HDAC_F_MSI) && (result = pci_msi_count(sc->dev)) == 1 && pci_alloc_msi(sc->dev, &result) == 0) irq->irq_rid = 0x1; else sc->flags &= ~HDAC_F_MSI; irq->irq_res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &irq->irq_rid, RF_SHAREABLE | RF_ACTIVE); if (irq->irq_res == NULL) { device_printf(sc->dev, "%s: Unable to allocate irq\n", __func__); goto hdac_irq_alloc_fail; } result = bus_setup_intr(sc->dev, irq->irq_res, INTR_MPSAFE | INTR_TYPE_AV, NULL, hdac_intr_handler, sc, &irq->irq_handle); if (result != 0) { device_printf(sc->dev, "%s: Unable to setup interrupt handler (%x)\n", __func__, result); goto hdac_irq_alloc_fail; } return (0); hdac_irq_alloc_fail: hdac_irq_free(sc); return (ENXIO); } /**************************************************************************** * void hdac_irq_free(struct hdac_softc *) * * Free up resources previously allocated by hdac_irq_alloc. ****************************************************************************/ static void hdac_irq_free(struct hdac_softc *sc) { struct hdac_irq *irq; irq = &sc->irq; if (irq->irq_res != NULL && irq->irq_handle != NULL) bus_teardown_intr(sc->dev, irq->irq_res, irq->irq_handle); if (irq->irq_res != NULL) bus_release_resource(sc->dev, SYS_RES_IRQ, irq->irq_rid, irq->irq_res); if (irq->irq_rid == 0x1) pci_release_msi(sc->dev); irq->irq_handle = NULL; irq->irq_res = NULL; irq->irq_rid = 0x0; } /**************************************************************************** * void hdac_corb_init(struct hdac_softc *) * * Initialize the corb registers for operations but do not start it up yet. * The CORB engine must not be running when this function is called. ****************************************************************************/ static void hdac_corb_init(struct hdac_softc *sc) { uint8_t corbsize; uint64_t corbpaddr; /* Setup the CORB size. */ switch (sc->corb_size) { case 256: corbsize = HDAC_CORBSIZE_CORBSIZE(HDAC_CORBSIZE_CORBSIZE_256); break; case 16: corbsize = HDAC_CORBSIZE_CORBSIZE(HDAC_CORBSIZE_CORBSIZE_16); break; case 2: corbsize = HDAC_CORBSIZE_CORBSIZE(HDAC_CORBSIZE_CORBSIZE_2); break; default: panic("%s: Invalid CORB size (%x)\n", __func__, sc->corb_size); } HDAC_WRITE_1(&sc->mem, HDAC_CORBSIZE, corbsize); /* Setup the CORB Address in the hdac */ corbpaddr = (uint64_t)sc->corb_dma.dma_paddr; HDAC_WRITE_4(&sc->mem, HDAC_CORBLBASE, (uint32_t)corbpaddr); HDAC_WRITE_4(&sc->mem, HDAC_CORBUBASE, (uint32_t)(corbpaddr >> 32)); /* Set the WP and RP */ sc->corb_wp = 0; HDAC_WRITE_2(&sc->mem, HDAC_CORBWP, sc->corb_wp); HDAC_WRITE_2(&sc->mem, HDAC_CORBRP, HDAC_CORBRP_CORBRPRST); /* * The HDA specification indicates that the CORBRPRST bit will always * read as zero. Unfortunately, it seems that at least the 82801G * doesn't reset the bit to zero, which stalls the corb engine. * manually reset the bit to zero before continuing. */ HDAC_WRITE_2(&sc->mem, HDAC_CORBRP, 0x0); /* Enable CORB error reporting */ #if 0 HDAC_WRITE_1(&sc->mem, HDAC_CORBCTL, HDAC_CORBCTL_CMEIE); #endif } /**************************************************************************** * void hdac_rirb_init(struct hdac_softc *) * * Initialize the rirb registers for operations but do not start it up yet. * The RIRB engine must not be running when this function is called. ****************************************************************************/ static void hdac_rirb_init(struct hdac_softc *sc) { uint8_t rirbsize; uint64_t rirbpaddr; /* Setup the RIRB size. */ switch (sc->rirb_size) { case 256: rirbsize = HDAC_RIRBSIZE_RIRBSIZE(HDAC_RIRBSIZE_RIRBSIZE_256); break; case 16: rirbsize = HDAC_RIRBSIZE_RIRBSIZE(HDAC_RIRBSIZE_RIRBSIZE_16); break; case 2: rirbsize = HDAC_RIRBSIZE_RIRBSIZE(HDAC_RIRBSIZE_RIRBSIZE_2); break; default: panic("%s: Invalid RIRB size (%x)\n", __func__, sc->rirb_size); } HDAC_WRITE_1(&sc->mem, HDAC_RIRBSIZE, rirbsize); /* Setup the RIRB Address in the hdac */ rirbpaddr = (uint64_t)sc->rirb_dma.dma_paddr; HDAC_WRITE_4(&sc->mem, HDAC_RIRBLBASE, (uint32_t)rirbpaddr); HDAC_WRITE_4(&sc->mem, HDAC_RIRBUBASE, (uint32_t)(rirbpaddr >> 32)); /* Setup the WP and RP */ sc->rirb_rp = 0; HDAC_WRITE_2(&sc->mem, HDAC_RIRBWP, HDAC_RIRBWP_RIRBWPRST); /* Setup the interrupt threshold */ HDAC_WRITE_2(&sc->mem, HDAC_RINTCNT, sc->rirb_size / 2); /* Enable Overrun and response received reporting */ #if 0 HDAC_WRITE_1(&sc->mem, HDAC_RIRBCTL, HDAC_RIRBCTL_RIRBOIC | HDAC_RIRBCTL_RINTCTL); #else HDAC_WRITE_1(&sc->mem, HDAC_RIRBCTL, HDAC_RIRBCTL_RINTCTL); #endif #if 0 /* * Make sure that the Host CPU cache doesn't contain any dirty * cache lines that falls in the rirb. If I understood correctly, it * should be sufficient to do this only once as the rirb is purely * read-only from now on. */ bus_dmamap_sync(sc->rirb_dma.dma_tag, sc->rirb_dma.dma_map, BUS_DMASYNC_PREREAD); #endif } /**************************************************************************** * void hdac_corb_start(hdac_softc *) * * Startup the corb DMA engine ****************************************************************************/ static void hdac_corb_start(struct hdac_softc *sc) { uint32_t corbctl; corbctl = HDAC_READ_1(&sc->mem, HDAC_CORBCTL); corbctl |= HDAC_CORBCTL_CORBRUN; HDAC_WRITE_1(&sc->mem, HDAC_CORBCTL, corbctl); } /**************************************************************************** * void hdac_rirb_start(hdac_softc *) * * Startup the rirb DMA engine ****************************************************************************/ static void hdac_rirb_start(struct hdac_softc *sc) { uint32_t rirbctl; rirbctl = HDAC_READ_1(&sc->mem, HDAC_RIRBCTL); rirbctl |= HDAC_RIRBCTL_RIRBDMAEN; HDAC_WRITE_1(&sc->mem, HDAC_RIRBCTL, rirbctl); } /**************************************************************************** * void hdac_scan_codecs(struct hdac_softc *, int) * * Scan the bus for available codecs, starting with num. ****************************************************************************/ static void hdac_scan_codecs(struct hdac_softc *sc) { struct hdac_codec *codec; int i; uint16_t statests; statests = HDAC_READ_2(&sc->mem, HDAC_STATESTS); for (i = 0; i < HDAC_CODEC_MAX; i++) { if (HDAC_STATESTS_SDIWAKE(statests, i)) { /* We have found a codec. */ codec = (struct hdac_codec *)malloc(sizeof(*codec), M_HDAC, M_ZERO | M_NOWAIT); if (codec == NULL) { device_printf(sc->dev, "Unable to allocate memory for codec\n"); continue; } codec->commands = NULL; codec->responses_received = 0; codec->verbs_sent = 0; codec->sc = sc; codec->cad = i; sc->codecs[i] = codec; hdac_probe_codec(codec); } } /* All codecs have been probed, now try to attach drivers to them */ /* bus_generic_attach(sc->dev); */ } /**************************************************************************** * void hdac_probe_codec(struct hdac_softc *, int) * * Probe a the given codec_id for available function groups. ****************************************************************************/ static void hdac_probe_codec(struct hdac_codec *codec) { struct hdac_softc *sc = codec->sc; uint32_t vendorid, revisionid, subnode; int startnode; int endnode; int i; nid_t cad = codec->cad; HDA_BOOTVERBOSE( device_printf(sc->dev, "Probing codec #%d...\n", cad); ); vendorid = hdac_command(sc, HDA_CMD_GET_PARAMETER(cad, 0x0, HDA_PARAM_VENDOR_ID), cad); revisionid = hdac_command(sc, HDA_CMD_GET_PARAMETER(cad, 0x0, HDA_PARAM_REVISION_ID), cad); codec->vendor_id = HDA_PARAM_VENDOR_ID_VENDOR_ID(vendorid); codec->device_id = HDA_PARAM_VENDOR_ID_DEVICE_ID(vendorid); codec->revision_id = HDA_PARAM_REVISION_ID_REVISION_ID(revisionid); codec->stepping_id = HDA_PARAM_REVISION_ID_STEPPING_ID(revisionid); if (vendorid == HDAC_INVALID && revisionid == HDAC_INVALID) { device_printf(sc->dev, "Codec #%d is not responding!" " Probing aborted.\n", cad); return; } device_printf(sc->dev, "HDA Codec #%d: %s\n", cad, hdac_codec_name(codec)); HDA_BOOTVERBOSE( device_printf(sc->dev, " HDA Codec ID: 0x%08x\n", hdac_codec_id(codec)); device_printf(sc->dev, " Vendor: 0x%04x\n", codec->vendor_id); device_printf(sc->dev, " Device: 0x%04x\n", codec->device_id); device_printf(sc->dev, " Revision: 0x%02x\n", codec->revision_id); device_printf(sc->dev, " Stepping: 0x%02x\n", codec->stepping_id); device_printf(sc->dev, "PCI Subvendor: 0x%08x\n", sc->pci_subvendor); ); subnode = hdac_command(sc, HDA_CMD_GET_PARAMETER(cad, 0x0, HDA_PARAM_SUB_NODE_COUNT), cad); startnode = HDA_PARAM_SUB_NODE_COUNT_START(subnode); endnode = startnode + HDA_PARAM_SUB_NODE_COUNT_TOTAL(subnode); HDA_BOOTHVERBOSE( device_printf(sc->dev, "\tstartnode=%d endnode=%d\n", startnode, endnode); ); codec->fgs = (struct hdac_devinfo *)malloc(sizeof(struct hdac_devinfo) * (endnode - startnode), M_HDAC, M_NOWAIT | M_ZERO); if (codec->fgs == NULL) { device_printf(sc->dev, "%s: Unable to allocate function groups\n", __func__); return; } for (i = startnode; i < endnode; i++) hdac_probe_function(codec, i); return; } /* * Probe codec function and add it to the list. */ static void hdac_probe_function(struct hdac_codec *codec, nid_t nid) { struct hdac_softc *sc = codec->sc; struct hdac_devinfo *devinfo = &codec->fgs[codec->num_fgs]; uint32_t fctgrptype; uint32_t res; nid_t cad = codec->cad; fctgrptype = HDA_PARAM_FCT_GRP_TYPE_NODE_TYPE(hdac_command(sc, HDA_CMD_GET_PARAMETER(cad, nid, HDA_PARAM_FCT_GRP_TYPE), cad)); devinfo->nid = nid; devinfo->node_type = fctgrptype; devinfo->codec = codec; res = hdac_command(sc, HDA_CMD_GET_PARAMETER(cad , nid, HDA_PARAM_SUB_NODE_COUNT), cad); devinfo->nodecnt = HDA_PARAM_SUB_NODE_COUNT_TOTAL(res); devinfo->startnode = HDA_PARAM_SUB_NODE_COUNT_START(res); devinfo->endnode = devinfo->startnode + devinfo->nodecnt; HDA_BOOTVERBOSE( device_printf(sc->dev, "\tFound %s FG nid=%d startnode=%d endnode=%d total=%d\n", (fctgrptype == HDA_PARAM_FCT_GRP_TYPE_NODE_TYPE_AUDIO) ? "audio": (fctgrptype == HDA_PARAM_FCT_GRP_TYPE_NODE_TYPE_MODEM) ? "modem": "unknown", nid, devinfo->startnode, devinfo->endnode, devinfo->nodecnt); ); if (devinfo->nodecnt > 0) devinfo->widget = (struct hdac_widget *)malloc( sizeof(*(devinfo->widget)) * devinfo->nodecnt, M_HDAC, M_NOWAIT | M_ZERO); else devinfo->widget = NULL; if (devinfo->widget == NULL) { device_printf(sc->dev, "unable to allocate widgets!\n"); devinfo->endnode = devinfo->startnode; devinfo->nodecnt = 0; return; } codec->num_fgs++; } static void hdac_widget_connection_parse(struct hdac_widget *w) { struct hdac_softc *sc = w->devinfo->codec->sc; uint32_t res; int i, j, max, ents, entnum; nid_t cad = w->devinfo->codec->cad; nid_t nid = w->nid; nid_t cnid, addcnid, prevcnid; w->nconns = 0; res = hdac_command(sc, HDA_CMD_GET_PARAMETER(cad, nid, HDA_PARAM_CONN_LIST_LENGTH), cad); ents = HDA_PARAM_CONN_LIST_LENGTH_LIST_LENGTH(res); if (ents < 1) return; entnum = HDA_PARAM_CONN_LIST_LENGTH_LONG_FORM(res) ? 2 : 4; max = (sizeof(w->conns) / sizeof(w->conns[0])) - 1; prevcnid = 0; #define CONN_RMASK(e) (1 << ((32 / (e)) - 1)) #define CONN_NMASK(e) (CONN_RMASK(e) - 1) #define CONN_RESVAL(r, e, n) ((r) >> ((32 / (e)) * (n))) #define CONN_RANGE(r, e, n) (CONN_RESVAL(r, e, n) & CONN_RMASK(e)) #define CONN_CNID(r, e, n) (CONN_RESVAL(r, e, n) & CONN_NMASK(e)) for (i = 0; i < ents; i += entnum) { res = hdac_command(sc, HDA_CMD_GET_CONN_LIST_ENTRY(cad, nid, i), cad); for (j = 0; j < entnum; j++) { cnid = CONN_CNID(res, entnum, j); if (cnid == 0) { if (w->nconns < ents) device_printf(sc->dev, "%s: nid=%d WARNING: zero cnid " "entnum=%d j=%d index=%d " "entries=%d found=%d res=0x%08x\n", __func__, nid, entnum, j, i, ents, w->nconns, res); else goto getconns_out; } if (cnid < w->devinfo->startnode || cnid >= w->devinfo->endnode) { HDA_BOOTVERBOSE( device_printf(sc->dev, "GHOST: nid=%d j=%d " "entnum=%d index=%d res=0x%08x\n", nid, j, entnum, i, res); ); } if (CONN_RANGE(res, entnum, j) == 0) addcnid = cnid; else if (prevcnid == 0 || prevcnid >= cnid) { device_printf(sc->dev, "%s: WARNING: Invalid child range " "nid=%d index=%d j=%d entnum=%d " "prevcnid=%d cnid=%d res=0x%08x\n", __func__, nid, i, j, entnum, prevcnid, cnid, res); addcnid = cnid; } else addcnid = prevcnid + 1; while (addcnid <= cnid) { if (w->nconns > max) { device_printf(sc->dev, "Adding %d (nid=%d): " "Max connection reached! max=%d\n", addcnid, nid, max + 1); goto getconns_out; } w->connsenable[w->nconns] = 1; w->conns[w->nconns++] = addcnid++; } prevcnid = cnid; } } getconns_out: return; } static uint32_t hdac_widget_pin_patch(uint32_t config, const char *str) { char buf[256]; char *key, *value, *rest, *bad; int ival, i; strlcpy(buf, str, sizeof(buf)); rest = buf; while ((key = strsep(&rest, "=")) != NULL) { value = strsep(&rest, " \t"); if (value == NULL) break; ival = strtol(value, &bad, 10); if (strcmp(key, "seq") == 0) { config &= ~HDA_CONFIG_DEFAULTCONF_SEQUENCE_MASK; config |= ((ival << HDA_CONFIG_DEFAULTCONF_SEQUENCE_SHIFT) & HDA_CONFIG_DEFAULTCONF_SEQUENCE_MASK); } else if (strcmp(key, "as") == 0) { config &= ~HDA_CONFIG_DEFAULTCONF_ASSOCIATION_MASK; config |= ((ival << HDA_CONFIG_DEFAULTCONF_ASSOCIATION_SHIFT) & HDA_CONFIG_DEFAULTCONF_ASSOCIATION_MASK); } else if (strcmp(key, "misc") == 0) { config &= ~HDA_CONFIG_DEFAULTCONF_MISC_MASK; config |= ((ival << HDA_CONFIG_DEFAULTCONF_MISC_SHIFT) & HDA_CONFIG_DEFAULTCONF_MISC_MASK); } else if (strcmp(key, "color") == 0) { config &= ~HDA_CONFIG_DEFAULTCONF_COLOR_MASK; if (bad[0] == 0) { config |= ((ival << HDA_CONFIG_DEFAULTCONF_COLOR_SHIFT) & HDA_CONFIG_DEFAULTCONF_COLOR_MASK); }; for (i = 0; i < 16; i++) { if (strcasecmp(HDA_COLORS[i], value) == 0) { config |= (i << HDA_CONFIG_DEFAULTCONF_COLOR_SHIFT); break; } } } else if (strcmp(key, "ctype") == 0) { config &= ~HDA_CONFIG_DEFAULTCONF_CONNECTION_TYPE_MASK; config |= ((ival << HDA_CONFIG_DEFAULTCONF_CONNECTION_TYPE_SHIFT) & HDA_CONFIG_DEFAULTCONF_CONNECTION_TYPE_MASK); } else if (strcmp(key, "device") == 0) { config &= ~HDA_CONFIG_DEFAULTCONF_DEVICE_MASK; if (bad[0] == 0) { config |= ((ival << HDA_CONFIG_DEFAULTCONF_DEVICE_SHIFT) & HDA_CONFIG_DEFAULTCONF_DEVICE_MASK); continue; }; for (i = 0; i < 16; i++) { if (strcasecmp(HDA_DEVS[i], value) == 0) { config |= (i << HDA_CONFIG_DEFAULTCONF_DEVICE_SHIFT); break; } } } else if (strcmp(key, "loc") == 0) { config &= ~HDA_CONFIG_DEFAULTCONF_LOCATION_MASK; config |= ((ival << HDA_CONFIG_DEFAULTCONF_LOCATION_SHIFT) & HDA_CONFIG_DEFAULTCONF_LOCATION_MASK); } else if (strcmp(key, "conn") == 0) { config &= ~HDA_CONFIG_DEFAULTCONF_CONNECTIVITY_MASK; if (bad[0] == 0) { config |= ((ival << HDA_CONFIG_DEFAULTCONF_CONNECTIVITY_SHIFT) & HDA_CONFIG_DEFAULTCONF_CONNECTIVITY_MASK); continue; }; for (i = 0; i < 4; i++) { if (strcasecmp(HDA_CONNS[i], value) == 0) { config |= (i << HDA_CONFIG_DEFAULTCONF_CONNECTIVITY_SHIFT); break; } } } } return (config); } static uint32_t hdac_widget_pin_getconfig(struct hdac_widget *w) { struct hdac_softc *sc; uint32_t config, orig, id; nid_t cad, nid; char buf[32]; const char *res = NULL, *patch = NULL; sc = w->devinfo->codec->sc; cad = w->devinfo->codec->cad; nid = w->nid; id = hdac_codec_id(w->devinfo->codec); config = hdac_command(sc, HDA_CMD_GET_CONFIGURATION_DEFAULT(cad, nid), cad); orig = config; HDA_BOOTVERBOSE( hdac_dump_pin_config(w, orig); ); /* XXX: Old patches require complete review. * Now they may create more problem then solve due to * incorrect associations. */ if (id == HDA_CODEC_ALC880 && sc->pci_subvendor == LG_LW20_SUBVENDOR) { switch (nid) { case 26: config &= ~HDA_CONFIG_DEFAULTCONF_DEVICE_MASK; config |= HDA_CONFIG_DEFAULTCONF_DEVICE_LINE_IN; break; case 27: config &= ~HDA_CONFIG_DEFAULTCONF_DEVICE_MASK; config |= HDA_CONFIG_DEFAULTCONF_DEVICE_HP_OUT; break; default: break; } } else if (id == HDA_CODEC_ALC880 && (sc->pci_subvendor == CLEVO_D900T_SUBVENDOR || sc->pci_subvendor == ASUS_M5200_SUBVENDOR)) { /* * Super broken BIOS */ switch (nid) { case 24: /* MIC1 */ config &= ~HDA_CONFIG_DEFAULTCONF_DEVICE_MASK; config |= HDA_CONFIG_DEFAULTCONF_DEVICE_MIC_IN; break; case 25: /* XXX MIC2 */ config &= ~HDA_CONFIG_DEFAULTCONF_DEVICE_MASK; config |= HDA_CONFIG_DEFAULTCONF_DEVICE_MIC_IN; break; case 26: /* LINE1 */ config &= ~HDA_CONFIG_DEFAULTCONF_DEVICE_MASK; config |= HDA_CONFIG_DEFAULTCONF_DEVICE_LINE_IN; break; case 27: /* XXX LINE2 */ config &= ~HDA_CONFIG_DEFAULTCONF_DEVICE_MASK; config |= HDA_CONFIG_DEFAULTCONF_DEVICE_LINE_IN; break; case 28: /* CD */ config &= ~HDA_CONFIG_DEFAULTCONF_DEVICE_MASK; config |= HDA_CONFIG_DEFAULTCONF_DEVICE_CD; break; } } else if (id == HDA_CODEC_ALC883 && (sc->pci_subvendor == MSI_MS034A_SUBVENDOR || HDA_DEV_MATCH(ACER_ALL_SUBVENDOR, sc->pci_subvendor))) { switch (nid) { case 25: config &= ~(HDA_CONFIG_DEFAULTCONF_DEVICE_MASK | HDA_CONFIG_DEFAULTCONF_CONNECTIVITY_MASK); config |= (HDA_CONFIG_DEFAULTCONF_DEVICE_MIC_IN | HDA_CONFIG_DEFAULTCONF_CONNECTIVITY_FIXED); break; case 28: config &= ~(HDA_CONFIG_DEFAULTCONF_DEVICE_MASK | HDA_CONFIG_DEFAULTCONF_CONNECTIVITY_MASK); config |= (HDA_CONFIG_DEFAULTCONF_DEVICE_CD | HDA_CONFIG_DEFAULTCONF_CONNECTIVITY_FIXED); break; } } else if (id == HDA_CODEC_CX20549 && sc->pci_subvendor == HP_V3000_SUBVENDOR) { switch (nid) { case 18: config &= ~HDA_CONFIG_DEFAULTCONF_CONNECTIVITY_MASK; config |= HDA_CONFIG_DEFAULTCONF_CONNECTIVITY_NONE; break; case 20: config &= ~(HDA_CONFIG_DEFAULTCONF_DEVICE_MASK | HDA_CONFIG_DEFAULTCONF_CONNECTIVITY_MASK); config |= (HDA_CONFIG_DEFAULTCONF_DEVICE_MIC_IN | HDA_CONFIG_DEFAULTCONF_CONNECTIVITY_FIXED); break; case 21: config &= ~(HDA_CONFIG_DEFAULTCONF_DEVICE_MASK | HDA_CONFIG_DEFAULTCONF_CONNECTIVITY_MASK); config |= (HDA_CONFIG_DEFAULTCONF_DEVICE_CD | HDA_CONFIG_DEFAULTCONF_CONNECTIVITY_FIXED); break; } } else if (id == HDA_CODEC_CX20551 && sc->pci_subvendor == HP_DV5000_SUBVENDOR) { switch (nid) { case 20: case 21: config &= ~HDA_CONFIG_DEFAULTCONF_CONNECTIVITY_MASK; config |= HDA_CONFIG_DEFAULTCONF_CONNECTIVITY_NONE; break; } } else if (id == HDA_CODEC_ALC861 && sc->pci_subvendor == ASUS_W6F_SUBVENDOR) { switch (nid) { case 11: config &= ~(HDA_CONFIG_DEFAULTCONF_DEVICE_MASK | HDA_CONFIG_DEFAULTCONF_CONNECTIVITY_MASK); config |= (HDA_CONFIG_DEFAULTCONF_DEVICE_LINE_OUT | HDA_CONFIG_DEFAULTCONF_CONNECTIVITY_FIXED); break; case 12: case 14: case 16: case 31: case 32: config &= ~(HDA_CONFIG_DEFAULTCONF_DEVICE_MASK | HDA_CONFIG_DEFAULTCONF_CONNECTIVITY_MASK); config |= (HDA_CONFIG_DEFAULTCONF_DEVICE_MIC_IN | HDA_CONFIG_DEFAULTCONF_CONNECTIVITY_FIXED); break; case 15: config &= ~(HDA_CONFIG_DEFAULTCONF_DEVICE_MASK | HDA_CONFIG_DEFAULTCONF_CONNECTIVITY_MASK); config |= (HDA_CONFIG_DEFAULTCONF_DEVICE_HP_OUT | HDA_CONFIG_DEFAULTCONF_CONNECTIVITY_JACK); break; } } else if (id == HDA_CODEC_ALC861 && sc->pci_subvendor == UNIWILL_9075_SUBVENDOR) { switch (nid) { case 15: config &= ~(HDA_CONFIG_DEFAULTCONF_DEVICE_MASK | HDA_CONFIG_DEFAULTCONF_CONNECTIVITY_MASK); config |= (HDA_CONFIG_DEFAULTCONF_DEVICE_HP_OUT | HDA_CONFIG_DEFAULTCONF_CONNECTIVITY_JACK); break; } } /* New patches */ if (id == HDA_CODEC_AD1986A && (sc->pci_subvendor == ASUS_M2NPVMX_SUBVENDOR || sc->pci_subvendor == ASUS_A8NVMCSM_SUBVENDOR || sc->pci_subvendor == ASUS_P5PL2_SUBVENDOR)) { switch (nid) { case 26: /* Headphones with redirection */ patch = "as=1 seq=15"; break; case 28: /* 5.1 out => 2.0 out + 1 input */ patch = "device=Line-in as=8 seq=1"; break; case 29: /* Can't use this as input, as the only available mic * preamplifier is busy by front panel mic (nid 31). * If you want to use this rear connector as mic input, * you have to disable the front panel one. */ patch = "as=0"; break; case 31: /* Lot of inputs configured with as=15 and unusable */ patch = "as=8 seq=3"; break; case 32: patch = "as=8 seq=4"; break; case 34: patch = "as=8 seq=5"; break; case 36: patch = "as=8 seq=6"; break; } } else if (id == HDA_CODEC_ALC260 && HDA_DEV_MATCH(SONY_S5_SUBVENDOR, sc->pci_subvendor)) { switch (nid) { case 16: patch = "seq=15 device=Headphones"; break; } } else if (id == HDA_CODEC_ALC268) { if (sc->pci_subvendor == ACER_T5320_SUBVENDOR) { switch (nid) { case 20: /* Headphones Jack */ patch = "as=1 seq=15"; break; } } } if (patch != NULL) config = hdac_widget_pin_patch(config, patch); snprintf(buf, sizeof(buf), "cad%u.nid%u.config", cad, nid); if (resource_string_value(device_get_name(sc->dev), device_get_unit(sc->dev), buf, &res) == 0) { if (strncmp(res, "0x", 2) == 0) { config = strtol(res + 2, NULL, 16); } else { config = hdac_widget_pin_patch(config, res); } } HDA_BOOTVERBOSE( if (config != orig) device_printf(sc->dev, "Patching pin config nid=%u 0x%08x -> 0x%08x\n", nid, orig, config); ); return (config); } static uint32_t hdac_widget_pin_getcaps(struct hdac_widget *w) { struct hdac_softc *sc; uint32_t caps, orig, id; nid_t cad, nid; sc = w->devinfo->codec->sc; cad = w->devinfo->codec->cad; nid = w->nid; id = hdac_codec_id(w->devinfo->codec); caps = hdac_command(sc, HDA_CMD_GET_PARAMETER(cad, nid, HDA_PARAM_PIN_CAP), cad); orig = caps; HDA_BOOTVERBOSE( if (caps != orig) device_printf(sc->dev, "Patching pin caps nid=%u 0x%08x -> 0x%08x\n", nid, orig, caps); ); return (caps); } static void hdac_widget_pin_parse(struct hdac_widget *w) { struct hdac_softc *sc = w->devinfo->codec->sc; uint32_t config, pincap; const char *devstr; nid_t cad = w->devinfo->codec->cad; nid_t nid = w->nid; int conn, color; config = hdac_widget_pin_getconfig(w); w->wclass.pin.config = config; pincap = hdac_widget_pin_getcaps(w); w->wclass.pin.cap = pincap; w->wclass.pin.ctrl = hdac_command(sc, HDA_CMD_GET_PIN_WIDGET_CTRL(cad, nid), cad); if (HDA_PARAM_PIN_CAP_EAPD_CAP(pincap)) { w->param.eapdbtl = hdac_command(sc, HDA_CMD_GET_EAPD_BTL_ENABLE(cad, nid), cad); w->param.eapdbtl &= 0x7; w->param.eapdbtl |= HDA_CMD_SET_EAPD_BTL_ENABLE_EAPD; } else w->param.eapdbtl = HDAC_INVALID; devstr = HDA_DEVS[(config & HDA_CONFIG_DEFAULTCONF_DEVICE_MASK) >> HDA_CONFIG_DEFAULTCONF_DEVICE_SHIFT]; conn = (config & HDA_CONFIG_DEFAULTCONF_CONNECTIVITY_MASK) >> HDA_CONFIG_DEFAULTCONF_CONNECTIVITY_SHIFT; color = (config & HDA_CONFIG_DEFAULTCONF_COLOR_MASK) >> HDA_CONFIG_DEFAULTCONF_COLOR_SHIFT; strlcat(w->name, ": ", sizeof(w->name)); strlcat(w->name, devstr, sizeof(w->name)); strlcat(w->name, " (", sizeof(w->name)); if (conn == 0 && color != 0 && color != 15) { strlcat(w->name, HDA_COLORS[color], sizeof(w->name)); strlcat(w->name, " ", sizeof(w->name)); } strlcat(w->name, HDA_CONNS[conn], sizeof(w->name)); strlcat(w->name, ")", sizeof(w->name)); } static uint32_t hdac_widget_getcaps(struct hdac_widget *w, int *waspin) { struct hdac_softc *sc; uint32_t caps, orig, id; nid_t cad, nid, beeper = -1; sc = w->devinfo->codec->sc; cad = w->devinfo->codec->cad; nid = w->nid; id = hdac_codec_id(w->devinfo->codec); caps = hdac_command(sc, HDA_CMD_GET_PARAMETER(cad, nid, HDA_PARAM_AUDIO_WIDGET_CAP), cad); orig = caps; /* On some codecs beeper is an input pin, but it is not recordable alone. Also most of BIOSes does not declare beeper pin. Change beeper pin node type to beeper to help parser. */ *waspin = 0; switch (id) { case HDA_CODEC_AD1882: case HDA_CODEC_AD1883: case HDA_CODEC_AD1984: case HDA_CODEC_AD1984A: case HDA_CODEC_AD1984B: case HDA_CODEC_AD1987: case HDA_CODEC_AD1988: case HDA_CODEC_AD1988B: case HDA_CODEC_AD1989B: beeper = 26; break; case HDA_CODEC_ALC260: beeper = 23; break; case HDA_CODEC_ALC262: case HDA_CODEC_ALC268: case HDA_CODEC_ALC880: case HDA_CODEC_ALC882: case HDA_CODEC_ALC883: case HDA_CODEC_ALC885: case HDA_CODEC_ALC888: case HDA_CODEC_ALC889: beeper = 29; break; } if (nid == beeper) { caps &= ~HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_MASK; caps |= HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_BEEP_WIDGET << HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_SHIFT; *waspin = 1; } HDA_BOOTVERBOSE( if (caps != orig) { device_printf(sc->dev, "Patching widget caps nid=%u 0x%08x -> 0x%08x\n", nid, orig, caps); } ); return (caps); } static void hdac_widget_parse(struct hdac_widget *w) { struct hdac_softc *sc = w->devinfo->codec->sc; uint32_t wcap, cap; char *typestr; nid_t cad = w->devinfo->codec->cad; nid_t nid = w->nid; wcap = hdac_widget_getcaps(w, &w->waspin); w->param.widget_cap = wcap; w->type = HDA_PARAM_AUDIO_WIDGET_CAP_TYPE(wcap); switch (w->type) { case HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_AUDIO_OUTPUT: typestr = "audio output"; break; case HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_AUDIO_INPUT: typestr = "audio input"; break; case HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_AUDIO_MIXER: typestr = "audio mixer"; break; case HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_AUDIO_SELECTOR: typestr = "audio selector"; break; case HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_PIN_COMPLEX: typestr = "pin"; break; case HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_POWER_WIDGET: typestr = "power widget"; break; case HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_VOLUME_WIDGET: typestr = "volume widget"; break; case HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_BEEP_WIDGET: typestr = "beep widget"; break; case HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_VENDOR_WIDGET: typestr = "vendor widget"; break; default: typestr = "unknown type"; break; } strlcpy(w->name, typestr, sizeof(w->name)); hdac_widget_connection_parse(w); if (HDA_PARAM_AUDIO_WIDGET_CAP_OUT_AMP(wcap)) { if (HDA_PARAM_AUDIO_WIDGET_CAP_AMP_OVR(wcap)) w->param.outamp_cap = hdac_command(sc, HDA_CMD_GET_PARAMETER(cad, nid, HDA_PARAM_OUTPUT_AMP_CAP), cad); else w->param.outamp_cap = w->devinfo->function.audio.outamp_cap; } else w->param.outamp_cap = 0; if (HDA_PARAM_AUDIO_WIDGET_CAP_IN_AMP(wcap)) { if (HDA_PARAM_AUDIO_WIDGET_CAP_AMP_OVR(wcap)) w->param.inamp_cap = hdac_command(sc, HDA_CMD_GET_PARAMETER(cad, nid, HDA_PARAM_INPUT_AMP_CAP), cad); else w->param.inamp_cap = w->devinfo->function.audio.inamp_cap; } else w->param.inamp_cap = 0; if (w->type == HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_AUDIO_OUTPUT || w->type == HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_AUDIO_INPUT) { if (HDA_PARAM_AUDIO_WIDGET_CAP_FORMAT_OVR(wcap)) { cap = hdac_command(sc, HDA_CMD_GET_PARAMETER(cad, nid, HDA_PARAM_SUPP_STREAM_FORMATS), cad); w->param.supp_stream_formats = (cap != 0) ? cap : w->devinfo->function.audio.supp_stream_formats; cap = hdac_command(sc, HDA_CMD_GET_PARAMETER(cad, nid, HDA_PARAM_SUPP_PCM_SIZE_RATE), cad); w->param.supp_pcm_size_rate = (cap != 0) ? cap : w->devinfo->function.audio.supp_pcm_size_rate; } else { w->param.supp_stream_formats = w->devinfo->function.audio.supp_stream_formats; w->param.supp_pcm_size_rate = w->devinfo->function.audio.supp_pcm_size_rate; } } else { w->param.supp_stream_formats = 0; w->param.supp_pcm_size_rate = 0; } if (w->type == HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_PIN_COMPLEX) hdac_widget_pin_parse(w); } static struct hdac_widget * hdac_widget_get(struct hdac_devinfo *devinfo, nid_t nid) { if (devinfo == NULL || devinfo->widget == NULL || nid < devinfo->startnode || nid >= devinfo->endnode) return (NULL); return (&devinfo->widget[nid - devinfo->startnode]); } static __inline int hda_poll_channel(struct hdac_chan *ch) { uint32_t sz, delta; volatile uint32_t ptr; if (!(ch->flags & HDAC_CHN_RUNNING)) return (0); sz = ch->blksz * ch->blkcnt; if (ch->dmapos != NULL) ptr = *(ch->dmapos); else ptr = HDAC_READ_4(&ch->devinfo->codec->sc->mem, ch->off + HDAC_SDLPIB); ch->ptr = ptr; ptr %= sz; ptr &= ~(ch->blksz - 1); delta = (sz + ptr - ch->prevptr) % sz; if (delta < ch->blksz) return (0); ch->prevptr = ptr; return (1); } static void hda_poll_callback(void *arg) { struct hdac_softc *sc = arg; uint32_t trigger; int i, active = 0; if (sc == NULL) return; hdac_lock(sc); if (sc->polling == 0) { hdac_unlock(sc); return; } trigger = 0; for (i = 0; i < sc->num_chans; i++) { if ((sc->chans[i].flags & HDAC_CHN_RUNNING) == 0) continue; active = 1; if (hda_poll_channel(&sc->chans[i])) trigger |= (1 << i); } /* XXX */ if (active) callout_reset(&sc->poll_hda, sc->poll_ticks, hda_poll_callback, sc); hdac_unlock(sc); for (i = 0; i < sc->num_chans; i++) { if (trigger & (1 << i)) chn_intr(sc->chans[i].c); } } static int hdac_rirb_flush(struct hdac_softc *sc) { struct hdac_rirb *rirb_base, *rirb; struct hdac_codec *codec; struct hdac_command_list *commands; nid_t cad; uint32_t resp; uint8_t rirbwp; int ret; rirb_base = (struct hdac_rirb *)sc->rirb_dma.dma_vaddr; rirbwp = HDAC_READ_1(&sc->mem, HDAC_RIRBWP); #if 0 bus_dmamap_sync(sc->rirb_dma.dma_tag, sc->rirb_dma.dma_map, BUS_DMASYNC_POSTREAD); #endif ret = 0; while (sc->rirb_rp != rirbwp) { sc->rirb_rp++; sc->rirb_rp %= sc->rirb_size; rirb = &rirb_base[sc->rirb_rp]; cad = HDAC_RIRB_RESPONSE_EX_SDATA_IN(rirb->response_ex); if (cad < 0 || cad >= HDAC_CODEC_MAX || sc->codecs[cad] == NULL) continue; resp = rirb->response; codec = sc->codecs[cad]; commands = codec->commands; if (rirb->response_ex & HDAC_RIRB_RESPONSE_EX_UNSOLICITED) { sc->unsolq[sc->unsolq_wp++] = (cad << 16) | ((resp >> 26) & 0xffff); sc->unsolq_wp %= HDAC_UNSOLQ_MAX; } else if (commands != NULL && commands->num_commands > 0 && codec->responses_received < commands->num_commands) commands->responses[codec->responses_received++] = resp; ret++; } return (ret); } static int hdac_unsolq_flush(struct hdac_softc *sc) { nid_t cad; uint32_t tag; int ret = 0; if (sc->unsolq_st == HDAC_UNSOLQ_READY) { sc->unsolq_st = HDAC_UNSOLQ_BUSY; while (sc->unsolq_rp != sc->unsolq_wp) { cad = sc->unsolq[sc->unsolq_rp] >> 16; tag = sc->unsolq[sc->unsolq_rp++] & 0xffff; sc->unsolq_rp %= HDAC_UNSOLQ_MAX; hdac_unsolicited_handler(sc->codecs[cad], tag); ret++; } sc->unsolq_st = HDAC_UNSOLQ_READY; } return (ret); } static void hdac_poll_callback(void *arg) { struct hdac_softc *sc = arg; if (sc == NULL) return; hdac_lock(sc); if (sc->polling == 0 || sc->poll_ival == 0) { hdac_unlock(sc); return; } if (hdac_rirb_flush(sc) != 0) hdac_unsolq_flush(sc); callout_reset(&sc->poll_hdac, sc->poll_ival, hdac_poll_callback, sc); hdac_unlock(sc); } static void hdac_poll_reinit(struct hdac_softc *sc) { int i, pollticks, min = 1000000; struct hdac_chan *ch; for (i = 0; i < sc->num_chans; i++) { if ((sc->chans[i].flags & HDAC_CHN_RUNNING) == 0) continue; ch = &sc->chans[i]; pollticks = ((uint64_t)hz * ch->blksz) / ((uint64_t)sndbuf_getalign(ch->b) * sndbuf_getspd(ch->b)); pollticks >>= 1; if (pollticks > hz) pollticks = hz; if (pollticks < 1) { HDA_BOOTVERBOSE( device_printf(sc->dev, "%s: pollticks=%d < 1 !\n", __func__, pollticks); ); pollticks = 1; } if (min > pollticks) min = pollticks; } HDA_BOOTVERBOSE( device_printf(sc->dev, "%s: pollticks %d -> %d\n", __func__, sc->poll_ticks, min); ); sc->poll_ticks = min; if (min == 1000000) callout_stop(&sc->poll_hda); else callout_reset(&sc->poll_hda, 1, hda_poll_callback, sc); } static void hdac_stream_stop(struct hdac_chan *ch) { struct hdac_softc *sc = ch->devinfo->codec->sc; uint32_t ctl; ctl = HDAC_READ_1(&sc->mem, ch->off + HDAC_SDCTL0); ctl &= ~(HDAC_SDCTL_IOCE | HDAC_SDCTL_FEIE | HDAC_SDCTL_DEIE | HDAC_SDCTL_RUN); HDAC_WRITE_1(&sc->mem, ch->off + HDAC_SDCTL0, ctl); ch->flags &= ~HDAC_CHN_RUNNING; if (sc->polling != 0) hdac_poll_reinit(sc); ctl = HDAC_READ_4(&sc->mem, HDAC_INTCTL); ctl &= ~(1 << (ch->off >> 5)); HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, ctl); } static void hdac_stream_start(struct hdac_chan *ch) { struct hdac_softc *sc = ch->devinfo->codec->sc; uint32_t ctl; ch->flags |= HDAC_CHN_RUNNING; if (sc->polling != 0) hdac_poll_reinit(sc); ctl = HDAC_READ_4(&sc->mem, HDAC_INTCTL); ctl |= 1 << (ch->off >> 5); HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, ctl); ctl = HDAC_READ_1(&sc->mem, ch->off + HDAC_SDCTL0); ctl |= HDAC_SDCTL_IOCE | HDAC_SDCTL_FEIE | HDAC_SDCTL_DEIE | HDAC_SDCTL_RUN; HDAC_WRITE_1(&sc->mem, ch->off + HDAC_SDCTL0, ctl); } static void hdac_stream_reset(struct hdac_chan *ch) { struct hdac_softc *sc = ch->devinfo->codec->sc; int timeout = 1000; int to = timeout; uint32_t ctl; ctl = HDAC_READ_1(&sc->mem, ch->off + HDAC_SDCTL0); ctl |= HDAC_SDCTL_SRST; HDAC_WRITE_1(&sc->mem, ch->off + HDAC_SDCTL0, ctl); do { ctl = HDAC_READ_1(&sc->mem, ch->off + HDAC_SDCTL0); if (ctl & HDAC_SDCTL_SRST) break; DELAY(10); } while (--to); if (!(ctl & HDAC_SDCTL_SRST)) { device_printf(sc->dev, "timeout in reset\n"); } ctl &= ~HDAC_SDCTL_SRST; HDAC_WRITE_1(&sc->mem, ch->off + HDAC_SDCTL0, ctl); to = timeout; do { ctl = HDAC_READ_1(&sc->mem, ch->off + HDAC_SDCTL0); if (!(ctl & HDAC_SDCTL_SRST)) break; DELAY(10); } while (--to); if (ctl & HDAC_SDCTL_SRST) device_printf(sc->dev, "can't reset!\n"); } static void hdac_stream_setid(struct hdac_chan *ch) { struct hdac_softc *sc = ch->devinfo->codec->sc; uint32_t ctl; ctl = HDAC_READ_1(&sc->mem, ch->off + HDAC_SDCTL2); ctl &= ~HDAC_SDCTL2_STRM_MASK; ctl |= ch->sid << HDAC_SDCTL2_STRM_SHIFT; HDAC_WRITE_1(&sc->mem, ch->off + HDAC_SDCTL2, ctl); } static void hdac_bdl_setup(struct hdac_chan *ch) { struct hdac_softc *sc = ch->devinfo->codec->sc; struct hdac_bdle *bdle; uint64_t addr; uint32_t blksz, blkcnt; int i; addr = (uint64_t)sndbuf_getbufaddr(ch->b); bdle = (struct hdac_bdle *)ch->bdl_dma.dma_vaddr; blksz = ch->blksz; blkcnt = ch->blkcnt; for (i = 0; i < blkcnt; i++, bdle++) { bdle->addrl = (uint32_t)addr; bdle->addrh = (uint32_t)(addr >> 32); bdle->len = blksz; bdle->ioc = 1; addr += blksz; } HDAC_WRITE_4(&sc->mem, ch->off + HDAC_SDCBL, blksz * blkcnt); HDAC_WRITE_2(&sc->mem, ch->off + HDAC_SDLVI, blkcnt - 1); addr = ch->bdl_dma.dma_paddr; HDAC_WRITE_4(&sc->mem, ch->off + HDAC_SDBDPL, (uint32_t)addr); HDAC_WRITE_4(&sc->mem, ch->off + HDAC_SDBDPU, (uint32_t)(addr >> 32)); if (ch->dmapos != NULL && !(HDAC_READ_4(&sc->mem, HDAC_DPIBLBASE) & 0x00000001)) { addr = sc->pos_dma.dma_paddr; HDAC_WRITE_4(&sc->mem, HDAC_DPIBLBASE, ((uint32_t)addr & HDAC_DPLBASE_DPLBASE_MASK) | 0x00000001); HDAC_WRITE_4(&sc->mem, HDAC_DPIBUBASE, (uint32_t)(addr >> 32)); } } static int hdac_bdl_alloc(struct hdac_chan *ch) { struct hdac_softc *sc = ch->devinfo->codec->sc; int rc; rc = hdac_dma_alloc(sc, &ch->bdl_dma, sizeof(struct hdac_bdle) * HDA_BDL_MAX); if (rc) { device_printf(sc->dev, "can't alloc bdl\n"); return (rc); } return (0); } static void hdac_audio_ctl_amp_set_internal(struct hdac_softc *sc, nid_t cad, nid_t nid, int index, int lmute, int rmute, int left, int right, int dir) { uint16_t v = 0; if (sc == NULL) return; if (left != right || lmute != rmute) { v = (1 << (15 - dir)) | (1 << 13) | (index << 8) | (lmute << 7) | left; hdac_command(sc, HDA_CMD_SET_AMP_GAIN_MUTE(cad, nid, v), cad); v = (1 << (15 - dir)) | (1 << 12) | (index << 8) | (rmute << 7) | right; } else v = (1 << (15 - dir)) | (3 << 12) | (index << 8) | (lmute << 7) | left; hdac_command(sc, HDA_CMD_SET_AMP_GAIN_MUTE(cad, nid, v), cad); } static void hdac_audio_ctl_amp_set(struct hdac_audio_ctl *ctl, uint32_t mute, int left, int right) { struct hdac_softc *sc; nid_t nid, cad; int lmute, rmute; sc = ctl->widget->devinfo->codec->sc; cad = ctl->widget->devinfo->codec->cad; nid = ctl->widget->nid; /* Save new values if valid. */ if (mute != HDA_AMP_MUTE_DEFAULT) ctl->muted = mute; if (left != HDA_AMP_VOL_DEFAULT) ctl->left = left; if (right != HDA_AMP_VOL_DEFAULT) ctl->right = right; /* Prepare effective values */ if (ctl->forcemute) { lmute = 1; rmute = 1; left = 0; right = 0; } else { lmute = HDA_AMP_LEFT_MUTED(ctl->muted); rmute = HDA_AMP_RIGHT_MUTED(ctl->muted); left = ctl->left; right = ctl->right; } /* Apply effective values */ if (ctl->dir & HDA_CTL_OUT) hdac_audio_ctl_amp_set_internal(sc, cad, nid, ctl->index, lmute, rmute, left, right, 0); if (ctl->dir & HDA_CTL_IN) hdac_audio_ctl_amp_set_internal(sc, cad, nid, ctl->index, lmute, rmute, left, right, 1); } static void hdac_widget_connection_select(struct hdac_widget *w, uint8_t index) { if (w == NULL || w->nconns < 1 || index > (w->nconns - 1)) return; hdac_command(w->devinfo->codec->sc, HDA_CMD_SET_CONNECTION_SELECT_CONTROL(w->devinfo->codec->cad, w->nid, index), w->devinfo->codec->cad); w->selconn = index; } /**************************************************************************** * uint32_t hdac_command_sendone_internal * * Wrapper function that sends only one command to a given codec ****************************************************************************/ static uint32_t hdac_command_sendone_internal(struct hdac_softc *sc, uint32_t verb, nid_t cad) { struct hdac_command_list cl; uint32_t response = HDAC_INVALID; if (!hdac_lockowned(sc)) device_printf(sc->dev, "WARNING!!!! mtx not owned!!!!\n"); cl.num_commands = 1; cl.verbs = &verb; cl.responses = &response; hdac_command_send_internal(sc, &cl, cad); return (response); } /**************************************************************************** * hdac_command_send_internal * * Send a command list to the codec via the corb. We queue as much verbs as * we can and msleep on the codec. When the interrupt get the responses * back from the rirb, it will wake us up so we can queue the remaining verbs * if any. ****************************************************************************/ static void hdac_command_send_internal(struct hdac_softc *sc, struct hdac_command_list *commands, nid_t cad) { struct hdac_codec *codec; int corbrp; uint32_t *corb; int timeout; int retry = 10; struct hdac_rirb *rirb_base; if (sc == NULL || sc->codecs[cad] == NULL || commands == NULL || commands->num_commands < 1) return; codec = sc->codecs[cad]; codec->commands = commands; codec->responses_received = 0; codec->verbs_sent = 0; corb = (uint32_t *)sc->corb_dma.dma_vaddr; rirb_base = (struct hdac_rirb *)sc->rirb_dma.dma_vaddr; do { if (codec->verbs_sent != commands->num_commands) { /* Queue as many verbs as possible */ corbrp = HDAC_READ_2(&sc->mem, HDAC_CORBRP); #if 0 bus_dmamap_sync(sc->corb_dma.dma_tag, sc->corb_dma.dma_map, BUS_DMASYNC_PREWRITE); #endif while (codec->verbs_sent != commands->num_commands && ((sc->corb_wp + 1) % sc->corb_size) != corbrp) { sc->corb_wp++; sc->corb_wp %= sc->corb_size; corb[sc->corb_wp] = commands->verbs[codec->verbs_sent++]; } /* Send the verbs to the codecs */ #if 0 bus_dmamap_sync(sc->corb_dma.dma_tag, sc->corb_dma.dma_map, BUS_DMASYNC_POSTWRITE); #endif HDAC_WRITE_2(&sc->mem, HDAC_CORBWP, sc->corb_wp); } timeout = 1000; while (hdac_rirb_flush(sc) == 0 && --timeout) DELAY(10); } while ((codec->verbs_sent != commands->num_commands || codec->responses_received != commands->num_commands) && --retry); if (retry == 0) device_printf(sc->dev, "%s: TIMEOUT numcmd=%d, sent=%d, received=%d\n", __func__, commands->num_commands, codec->verbs_sent, codec->responses_received); codec->commands = NULL; codec->responses_received = 0; codec->verbs_sent = 0; hdac_unsolq_flush(sc); } /**************************************************************************** * Device Methods ****************************************************************************/ /**************************************************************************** * int hdac_probe(device_t) * * Probe for the presence of an hdac. If none is found, check for a generic * match using the subclass of the device. ****************************************************************************/ static int hdac_probe(device_t dev) { int i, result; uint32_t model; uint16_t class, subclass; char desc[64]; model = (uint32_t)pci_get_device(dev) << 16; model |= (uint32_t)pci_get_vendor(dev) & 0x0000ffff; class = pci_get_class(dev); subclass = pci_get_subclass(dev); bzero(desc, sizeof(desc)); result = ENXIO; for (i = 0; i < HDAC_DEVICES_LEN; i++) { if (hdac_devices[i].model == model) { strlcpy(desc, hdac_devices[i].desc, sizeof(desc)); result = BUS_PROBE_DEFAULT; break; } if (HDA_DEV_MATCH(hdac_devices[i].model, model) && class == PCIC_MULTIMEDIA && subclass == PCIS_MULTIMEDIA_HDA) { strlcpy(desc, hdac_devices[i].desc, sizeof(desc)); result = BUS_PROBE_GENERIC; break; } } if (result == ENXIO && class == PCIC_MULTIMEDIA && subclass == PCIS_MULTIMEDIA_HDA) { strlcpy(desc, "Generic", sizeof(desc)); result = BUS_PROBE_GENERIC; } if (result != ENXIO) { strlcat(desc, " High Definition Audio Controller", sizeof(desc)); device_set_desc_copy(dev, desc); } return (result); } static void * hdac_channel_init(kobj_t obj, void *data, struct snd_dbuf *b, struct pcm_channel *c, int dir) { struct hdac_pcm_devinfo *pdevinfo = data; struct hdac_devinfo *devinfo = pdevinfo->devinfo; struct hdac_softc *sc = devinfo->codec->sc; struct hdac_chan *ch; int i, ord = 0, chid; hdac_lock(sc); chid = (dir == PCMDIR_PLAY)?pdevinfo->play:pdevinfo->rec; ch = &sc->chans[chid]; for (i = 0; i < sc->num_chans && i < chid; i++) { if (ch->dir == sc->chans[i].dir) ord++; } if (dir == PCMDIR_PLAY) { ch->off = (sc->num_iss + ord) << 5; } else { ch->off = ord << 5; } if (devinfo->function.audio.quirks & HDA_QUIRK_FIXEDRATE) { ch->caps.minspeed = ch->caps.maxspeed = 48000; ch->pcmrates[0] = 48000; ch->pcmrates[1] = 0; } if (sc->pos_dma.dma_vaddr != NULL) ch->dmapos = (uint32_t *)(sc->pos_dma.dma_vaddr + (sc->streamcnt * 8)); else ch->dmapos = NULL; ch->sid = ++sc->streamcnt; ch->dir = dir; ch->b = b; ch->c = c; ch->blksz = pdevinfo->chan_size / pdevinfo->chan_blkcnt; ch->blkcnt = pdevinfo->chan_blkcnt; hdac_unlock(sc); if (hdac_bdl_alloc(ch) != 0) { ch->blkcnt = 0; return (NULL); } if (sndbuf_alloc(ch->b, sc->chan_dmat, (sc->flags & HDAC_F_DMA_NOCACHE) ? BUS_DMA_NOCACHE : 0, pdevinfo->chan_size) != 0) return (NULL); return (ch); } static int hdac_channel_setformat(kobj_t obj, void *data, uint32_t format) { struct hdac_chan *ch = data; int i; for (i = 0; ch->caps.fmtlist[i] != 0; i++) { if (format == ch->caps.fmtlist[i]) { ch->fmt = format; return (0); } } return (EINVAL); } static uint32_t hdac_channel_setspeed(kobj_t obj, void *data, uint32_t speed) { struct hdac_chan *ch = data; uint32_t spd = 0, threshold; int i; for (i = 0; ch->pcmrates[i] != 0; i++) { spd = ch->pcmrates[i]; threshold = spd + ((ch->pcmrates[i + 1] != 0) ? ((ch->pcmrates[i + 1] - spd) >> 1) : 0); if (speed < threshold) break; } if (spd == 0) /* impossible */ ch->spd = 48000; else ch->spd = spd; return (ch->spd); } static void hdac_stream_setup(struct hdac_chan *ch) { struct hdac_softc *sc = ch->devinfo->codec->sc; struct hdac_audio_as *as = &ch->devinfo->function.audio.as[ch->as]; struct hdac_widget *w; int i, chn, totalchn, c; nid_t cad = ch->devinfo->codec->cad; uint16_t fmt, dfmt; uint16_t chmap[2][5] = {{ 0x0010, 0x0001, 0x0201, 0x0231, 0x0231 }, /* 5.1 */ { 0x0010, 0x0001, 0x2001, 0x2031, 0x2431 }};/* 7.1 */ int map = -1; totalchn = AFMT_CHANNEL(ch->fmt); HDA_BOOTHVERBOSE( device_printf(ch->pdevinfo->dev, "PCMDIR_%s: Stream setup fmt=%08x speed=%d\n", (ch->dir == PCMDIR_PLAY) ? "PLAY" : "REC", ch->fmt, ch->spd); ); fmt = 0; if (ch->fmt & AFMT_S16_LE) fmt |= ch->bit16 << 4; else if (ch->fmt & AFMT_S32_LE) fmt |= ch->bit32 << 4; else fmt |= 1 << 4; for (i = 0; i < HDA_RATE_TAB_LEN; i++) { if (hda_rate_tab[i].valid && ch->spd == hda_rate_tab[i].rate) { fmt |= hda_rate_tab[i].base; fmt |= hda_rate_tab[i].mul; fmt |= hda_rate_tab[i].div; break; } } fmt |= (totalchn - 1); /* Set channel mapping for known speaker setups. */ if (as->pinset == 0x0007 || as->pinset == 0x0013) /* Standard 5.1 */ map = 0; else if (as->pinset == 0x0017) /* Standard 7.1 */ map = 1; HDAC_WRITE_2(&sc->mem, ch->off + HDAC_SDFMT, fmt); dfmt = HDA_CMD_SET_DIGITAL_CONV_FMT1_DIGEN; if (ch->fmt & AFMT_AC3) dfmt |= HDA_CMD_SET_DIGITAL_CONV_FMT1_NAUDIO; chn = 0; for (i = 0; ch->io[i] != -1; i++) { w = hdac_widget_get(ch->devinfo, ch->io[i]); if (w == NULL) continue; /* If HP redirection is enabled, but failed to use same DAC, make last DAC to duplicate first one. */ if (as->fakeredir && i == (as->pincnt - 1)) { c = (ch->sid << 4); } else { if (map >= 0) /* Map known speaker setups. */ chn = (((chmap[map][totalchn / 2] >> i * 4) & 0xf) - 1) * 2; if (chn < 0 || chn >= totalchn) { c = 0; } else { c = (ch->sid << 4) | chn; } } HDA_BOOTHVERBOSE( device_printf(ch->pdevinfo->dev, "PCMDIR_%s: Stream setup nid=%d: " "fmt=0x%04x, dfmt=0x%04x, chan=0x%04x\n", (ch->dir == PCMDIR_PLAY) ? "PLAY" : "REC", ch->io[i], fmt, dfmt, c); ); hdac_command(sc, HDA_CMD_SET_CONV_FMT(cad, ch->io[i], fmt), cad); if (HDA_PARAM_AUDIO_WIDGET_CAP_DIGITAL(w->param.widget_cap)) { hdac_command(sc, HDA_CMD_SET_DIGITAL_CONV_FMT1(cad, ch->io[i], dfmt), cad); } hdac_command(sc, HDA_CMD_SET_CONV_STREAM_CHAN(cad, ch->io[i], c), cad); #if 0 hdac_command(sc, HDA_CMD_SET_CONV_CHAN_COUNT(cad, ch->io[i], 1), cad); hdac_command(sc, HDA_CMD_SET_HDMI_CHAN_SLOT(cad, ch->io[i], 0x00), cad); hdac_command(sc, HDA_CMD_SET_HDMI_CHAN_SLOT(cad, ch->io[i], 0x11), cad); #endif chn += HDA_PARAM_AUDIO_WIDGET_CAP_CC(w->param.widget_cap) + 1; } } /* * Greatest Common Divisor. */ static unsigned gcd(unsigned a, unsigned b) { u_int c; while (b != 0) { c = a; a = b; b = (c % b); } return (a); } /* * Least Common Multiple. */ static unsigned lcm(unsigned a, unsigned b) { return ((a * b) / gcd(a, b)); } static int hdac_channel_setfragments(kobj_t obj, void *data, uint32_t blksz, uint32_t blkcnt) { struct hdac_chan *ch = data; struct hdac_softc *sc = ch->devinfo->codec->sc; blksz -= blksz % lcm(HDAC_DMA_ALIGNMENT, sndbuf_getalign(ch->b)); if (blksz > (sndbuf_getmaxsize(ch->b) / HDA_BDL_MIN)) blksz = sndbuf_getmaxsize(ch->b) / HDA_BDL_MIN; if (blksz < HDA_BLK_MIN) blksz = HDA_BLK_MIN; if (blkcnt > HDA_BDL_MAX) blkcnt = HDA_BDL_MAX; if (blkcnt < HDA_BDL_MIN) blkcnt = HDA_BDL_MIN; while ((blksz * blkcnt) > sndbuf_getmaxsize(ch->b)) { if ((blkcnt >> 1) >= HDA_BDL_MIN) blkcnt >>= 1; else if ((blksz >> 1) >= HDA_BLK_MIN) blksz >>= 1; else break; } if ((sndbuf_getblksz(ch->b) != blksz || sndbuf_getblkcnt(ch->b) != blkcnt) && sndbuf_resize(ch->b, blkcnt, blksz) != 0) device_printf(sc->dev, "%s: failed blksz=%u blkcnt=%u\n", __func__, blksz, blkcnt); ch->blksz = sndbuf_getblksz(ch->b); ch->blkcnt = sndbuf_getblkcnt(ch->b); return (0); } static uint32_t hdac_channel_setblocksize(kobj_t obj, void *data, uint32_t blksz) { struct hdac_chan *ch = data; hdac_channel_setfragments(obj, data, blksz, ch->pdevinfo->chan_blkcnt); return (ch->blksz); } static void hdac_channel_stop(struct hdac_softc *sc, struct hdac_chan *ch) { struct hdac_devinfo *devinfo = ch->devinfo; struct hdac_widget *w; nid_t cad = devinfo->codec->cad; int i; hdac_stream_stop(ch); for (i = 0; ch->io[i] != -1; i++) { w = hdac_widget_get(ch->devinfo, ch->io[i]); if (w == NULL) continue; if (HDA_PARAM_AUDIO_WIDGET_CAP_DIGITAL(w->param.widget_cap)) { hdac_command(sc, HDA_CMD_SET_DIGITAL_CONV_FMT1(cad, ch->io[i], 0), cad); } hdac_command(sc, HDA_CMD_SET_CONV_STREAM_CHAN(cad, ch->io[i], 0), cad); } } static void hdac_channel_start(struct hdac_softc *sc, struct hdac_chan *ch) { ch->ptr = 0; ch->prevptr = 0; hdac_stream_stop(ch); hdac_stream_reset(ch); hdac_bdl_setup(ch); hdac_stream_setid(ch); hdac_stream_setup(ch); hdac_stream_start(ch); } static int hdac_channel_trigger(kobj_t obj, void *data, int go) { struct hdac_chan *ch = data; struct hdac_softc *sc = ch->devinfo->codec->sc; if (!PCMTRIG_COMMON(go)) return (0); hdac_lock(sc); switch (go) { case PCMTRIG_START: hdac_channel_start(sc, ch); break; case PCMTRIG_STOP: case PCMTRIG_ABORT: hdac_channel_stop(sc, ch); break; default: break; } hdac_unlock(sc); return (0); } static uint32_t hdac_channel_getptr(kobj_t obj, void *data) { struct hdac_chan *ch = data; struct hdac_softc *sc = ch->devinfo->codec->sc; uint32_t ptr; hdac_lock(sc); if (sc->polling != 0) ptr = ch->ptr; else if (ch->dmapos != NULL) ptr = *(ch->dmapos); else ptr = HDAC_READ_4(&sc->mem, ch->off + HDAC_SDLPIB); hdac_unlock(sc); /* * Round to available space and force 128 bytes aligment. */ ptr %= ch->blksz * ch->blkcnt; ptr &= HDA_BLK_ALIGN; return (ptr); } static struct pcmchan_caps * hdac_channel_getcaps(kobj_t obj, void *data) { return (&((struct hdac_chan *)data)->caps); } static kobj_method_t hdac_channel_methods[] = { KOBJMETHOD(channel_init, hdac_channel_init), KOBJMETHOD(channel_setformat, hdac_channel_setformat), KOBJMETHOD(channel_setspeed, hdac_channel_setspeed), KOBJMETHOD(channel_setblocksize, hdac_channel_setblocksize), KOBJMETHOD(channel_setfragments, hdac_channel_setfragments), KOBJMETHOD(channel_trigger, hdac_channel_trigger), KOBJMETHOD(channel_getptr, hdac_channel_getptr), KOBJMETHOD(channel_getcaps, hdac_channel_getcaps), KOBJMETHOD_END }; CHANNEL_DECLARE(hdac_channel); static int hdac_audio_ctl_ossmixer_init(struct snd_mixer *m) { struct hdac_pcm_devinfo *pdevinfo = mix_getdevinfo(m); struct hdac_devinfo *devinfo = pdevinfo->devinfo; struct hdac_softc *sc = devinfo->codec->sc; struct hdac_widget *w, *cw; struct hdac_audio_ctl *ctl; uint32_t mask, recmask, id; int i, j, softpcmvol; hdac_lock(sc); /* Make sure that in case of soft volume it won't stay muted. */ for (i = 0; i < SOUND_MIXER_NRDEVICES; i++) { pdevinfo->left[i] = 100; pdevinfo->right[i] = 100; } mask = 0; recmask = 0; id = hdac_codec_id(devinfo->codec); /* Declate EAPD as ogain control. */ if (pdevinfo->play >= 0) { for (i = devinfo->startnode; i < devinfo->endnode; i++) { w = hdac_widget_get(devinfo, i); if (w == NULL || w->enable == 0) continue; if (w->type != HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_PIN_COMPLEX || w->param.eapdbtl == HDAC_INVALID || w->bindas != sc->chans[pdevinfo->play].as) continue; mask |= SOUND_MASK_OGAIN; break; } } /* Declare volume controls assigned to this association. */ i = 0; ctl = NULL; while ((ctl = hdac_audio_ctl_each(devinfo, &i)) != NULL) { if (ctl->enable == 0) continue; if ((pdevinfo->play >= 0 && ctl->widget->bindas == sc->chans[pdevinfo->play].as) || (pdevinfo->rec >= 0 && ctl->widget->bindas == sc->chans[pdevinfo->rec].as) || (ctl->widget->bindas == -2 && pdevinfo->index == 0)) mask |= ctl->ossmask; } /* Declare record sources available to this association. */ if (pdevinfo->rec >= 0) { struct hdac_chan *ch = &sc->chans[pdevinfo->rec]; for (i = 0; ch->io[i] != -1; i++) { w = hdac_widget_get(devinfo, ch->io[i]); if (w == NULL || w->enable == 0) continue; for (j = 0; j < w->nconns; j++) { if (w->connsenable[j] == 0) continue; cw = hdac_widget_get(devinfo, w->conns[j]); if (cw == NULL || cw->enable == 0) continue; if (cw->bindas != sc->chans[pdevinfo->rec].as && cw->bindas != -2) continue; recmask |= cw->ossmask; } } } /* Declare soft PCM volume if needed. */ if (pdevinfo->play >= 0) { ctl = NULL; if ((mask & SOUND_MASK_PCM) == 0 || (devinfo->function.audio.quirks & HDA_QUIRK_SOFTPCMVOL)) { softpcmvol = 1; mask |= SOUND_MASK_PCM; } else { softpcmvol = 0; i = 0; while ((ctl = hdac_audio_ctl_each(devinfo, &i)) != NULL) { if (ctl->enable == 0) continue; if (ctl->widget->bindas != sc->chans[pdevinfo->play].as && (ctl->widget->bindas != -2 || pdevinfo->index != 0)) continue; if (!(ctl->ossmask & SOUND_MASK_PCM)) continue; if (ctl->step > 0) break; } } if (softpcmvol == 1 || ctl == NULL) { pcm_setflags(pdevinfo->dev, pcm_getflags(pdevinfo->dev) | SD_F_SOFTPCMVOL); HDA_BOOTVERBOSE( device_printf(pdevinfo->dev, "%s Soft PCM volume\n", (softpcmvol == 1) ? "Forcing" : "Enabling"); ); } } /* Declare master volume if needed. */ if (pdevinfo->play >= 0) { if ((mask & (SOUND_MASK_VOLUME | SOUND_MASK_PCM)) == SOUND_MASK_PCM) { mask |= SOUND_MASK_VOLUME; mix_setparentchild(m, SOUND_MIXER_VOLUME, SOUND_MASK_PCM); mix_setrealdev(m, SOUND_MIXER_VOLUME, SOUND_MIXER_NONE); HDA_BOOTVERBOSE( device_printf(pdevinfo->dev, "Forcing master volume with PCM\n"); ); } } recmask &= (1 << SOUND_MIXER_NRDEVICES) - 1; mask &= (1 << SOUND_MIXER_NRDEVICES) - 1; mix_setrecdevs(m, recmask); mix_setdevs(m, mask); hdac_unlock(sc); return (0); } static int hdac_audio_ctl_ossmixer_set(struct snd_mixer *m, unsigned dev, unsigned left, unsigned right) { struct hdac_pcm_devinfo *pdevinfo = mix_getdevinfo(m); struct hdac_devinfo *devinfo = pdevinfo->devinfo; struct hdac_softc *sc = devinfo->codec->sc; struct hdac_widget *w; struct hdac_audio_ctl *ctl; uint32_t mute; int lvol, rvol; int i, j; hdac_lock(sc); /* Save new values. */ pdevinfo->left[dev] = left; pdevinfo->right[dev] = right; /* 'ogain' is the special case implemented with EAPD. */ if (dev == SOUND_MIXER_OGAIN) { uint32_t orig; w = NULL; for (i = devinfo->startnode; i < devinfo->endnode; i++) { w = hdac_widget_get(devinfo, i); if (w == NULL || w->enable == 0) continue; if (w->type != HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_PIN_COMPLEX || w->param.eapdbtl == HDAC_INVALID) continue; break; } if (i >= devinfo->endnode) { hdac_unlock(sc); return (-1); } orig = w->param.eapdbtl; if (left == 0) w->param.eapdbtl &= ~HDA_CMD_SET_EAPD_BTL_ENABLE_EAPD; else w->param.eapdbtl |= HDA_CMD_SET_EAPD_BTL_ENABLE_EAPD; if (orig != w->param.eapdbtl) { uint32_t val; val = w->param.eapdbtl; if (devinfo->function.audio.quirks & HDA_QUIRK_EAPDINV) val ^= HDA_CMD_SET_EAPD_BTL_ENABLE_EAPD; hdac_command(sc, HDA_CMD_SET_EAPD_BTL_ENABLE(devinfo->codec->cad, w->nid, val), devinfo->codec->cad); } hdac_unlock(sc); return (left | (left << 8)); } /* Recalculate all controls related to this OSS device. */ i = 0; while ((ctl = hdac_audio_ctl_each(devinfo, &i)) != NULL) { if (ctl->enable == 0 || !(ctl->ossmask & (1 << dev))) continue; if (!((pdevinfo->play >= 0 && ctl->widget->bindas == sc->chans[pdevinfo->play].as) || (pdevinfo->rec >= 0 && ctl->widget->bindas == sc->chans[pdevinfo->rec].as) || ctl->widget->bindas == -2)) continue; lvol = 100; rvol = 100; for (j = 0; j < SOUND_MIXER_NRDEVICES; j++) { if (ctl->ossmask & (1 << j)) { lvol = lvol * pdevinfo->left[j] / 100; rvol = rvol * pdevinfo->right[j] / 100; } } mute = (lvol == 0) ? HDA_AMP_MUTE_LEFT : 0; mute |= (rvol == 0) ? HDA_AMP_MUTE_RIGHT : 0; lvol = (lvol * ctl->step + 50) / 100; rvol = (rvol * ctl->step + 50) / 100; hdac_audio_ctl_amp_set(ctl, mute, lvol, rvol); } hdac_unlock(sc); return (left | (right << 8)); } /* * Commutate specified record source. */ static uint32_t hdac_audio_ctl_recsel_comm(struct hdac_pcm_devinfo *pdevinfo, uint32_t src, nid_t nid, int depth) { struct hdac_devinfo *devinfo = pdevinfo->devinfo; struct hdac_widget *w, *cw; struct hdac_audio_ctl *ctl; char buf[64]; int i, muted; uint32_t res = 0; if (depth > HDA_PARSE_MAXDEPTH) return (0); w = hdac_widget_get(devinfo, nid); if (w == NULL || w->enable == 0) return (0); for (i = 0; i < w->nconns; i++) { if (w->connsenable[i] == 0) continue; cw = hdac_widget_get(devinfo, w->conns[i]); if (cw == NULL || cw->enable == 0 || cw->bindas == -1) continue; /* Call recursively to trace signal to it's source if needed. */ if ((src & cw->ossmask) != 0) { if (cw->ossdev < 0) { res |= hdac_audio_ctl_recsel_comm(pdevinfo, src, w->conns[i], depth + 1); } else { res |= cw->ossmask; } } /* We have two special cases: mixers and others (selectors). */ if (w->type == HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_AUDIO_MIXER) { ctl = hdac_audio_ctl_amp_get(devinfo, w->nid, HDA_CTL_IN, i, 1); if (ctl == NULL) continue; /* If we have input control on this node mute them * according to requested sources. */ muted = (src & cw->ossmask) ? 0 : 1; if (muted != ctl->forcemute) { ctl->forcemute = muted; hdac_audio_ctl_amp_set(ctl, HDA_AMP_MUTE_DEFAULT, HDA_AMP_VOL_DEFAULT, HDA_AMP_VOL_DEFAULT); } HDA_BOOTHVERBOSE( device_printf(pdevinfo->dev, "Recsel (%s): nid %d source %d %s\n", hdac_audio_ctl_ossmixer_mask2allname( src, buf, sizeof(buf)), nid, i, muted?"mute":"unmute"); ); } else { if (w->nconns == 1) break; if ((src & cw->ossmask) == 0) continue; /* If we found requested source - select it and exit. */ hdac_widget_connection_select(w, i); HDA_BOOTHVERBOSE( device_printf(pdevinfo->dev, "Recsel (%s): nid %d source %d select\n", hdac_audio_ctl_ossmixer_mask2allname( src, buf, sizeof(buf)), nid, i); ); break; } } return (res); } static uint32_t hdac_audio_ctl_ossmixer_setrecsrc(struct snd_mixer *m, uint32_t src) { struct hdac_pcm_devinfo *pdevinfo = mix_getdevinfo(m); struct hdac_devinfo *devinfo = pdevinfo->devinfo; struct hdac_widget *w; struct hdac_softc *sc = devinfo->codec->sc; struct hdac_chan *ch; int i; uint32_t ret = 0xffffffff; hdac_lock(sc); /* Commutate requested recsrc for each ADC. */ ch = &sc->chans[pdevinfo->rec]; for (i = 0; ch->io[i] != -1; i++) { w = hdac_widget_get(devinfo, ch->io[i]); if (w == NULL || w->enable == 0) continue; ret &= hdac_audio_ctl_recsel_comm(pdevinfo, src, ch->io[i], 0); } hdac_unlock(sc); return ((ret == 0xffffffff)? 0 : ret); } static kobj_method_t hdac_audio_ctl_ossmixer_methods[] = { KOBJMETHOD(mixer_init, hdac_audio_ctl_ossmixer_init), KOBJMETHOD(mixer_set, hdac_audio_ctl_ossmixer_set), KOBJMETHOD(mixer_setrecsrc, hdac_audio_ctl_ossmixer_setrecsrc), KOBJMETHOD_END }; MIXER_DECLARE(hdac_audio_ctl_ossmixer); static void hdac_unsolq_task(void *context, int pending) { struct hdac_softc *sc; sc = (struct hdac_softc *)context; hdac_lock(sc); hdac_unsolq_flush(sc); hdac_unlock(sc); } /**************************************************************************** * int hdac_attach(device_t) * * Attach the device into the kernel. Interrupts usually won't be enabled * when this function is called. Setup everything that doesn't require * interrupts and defer probing of codecs until interrupts are enabled. ****************************************************************************/ static int hdac_attach(device_t dev) { struct hdac_softc *sc; int result; int i, devid = -1; uint32_t model; uint16_t class, subclass; uint16_t vendor; uint8_t v; device_printf(dev, "HDA Driver Revision: %s\n", HDA_DRV_TEST_REV); model = (uint32_t)pci_get_device(dev) << 16; model |= (uint32_t)pci_get_vendor(dev) & 0x0000ffff; class = pci_get_class(dev); subclass = pci_get_subclass(dev); for (i = 0; i < HDAC_DEVICES_LEN; i++) { if (hdac_devices[i].model == model) { devid = i; break; } if (HDA_DEV_MATCH(hdac_devices[i].model, model) && class == PCIC_MULTIMEDIA && subclass == PCIS_MULTIMEDIA_HDA) { devid = i; break; } } sc = device_get_softc(dev); sc->lock = snd_mtxcreate(device_get_nameunit(dev), HDAC_MTX_NAME); sc->dev = dev; sc->pci_subvendor = (uint32_t)pci_get_subdevice(sc->dev) << 16; sc->pci_subvendor |= (uint32_t)pci_get_subvendor(sc->dev) & 0x0000ffff; vendor = pci_get_vendor(dev); if (sc->pci_subvendor == HP_NX6325_SUBVENDORX) { /* Screw nx6325 - subdevice/subvendor swapped */ sc->pci_subvendor = HP_NX6325_SUBVENDOR; } callout_init(&sc->poll_hda, CALLOUT_MPSAFE); callout_init(&sc->poll_hdac, CALLOUT_MPSAFE); callout_init(&sc->poll_jack, CALLOUT_MPSAFE); TASK_INIT(&sc->unsolq_task, 0, hdac_unsolq_task, sc); sc->poll_ticks = 1000000; sc->poll_ival = HDAC_POLL_INTERVAL; if (resource_int_value(device_get_name(dev), device_get_unit(dev), "polling", &i) == 0 && i != 0) sc->polling = 1; else sc->polling = 0; sc->hdabus = NULL; for (i = 0; i < HDAC_CODEC_MAX; i++) sc->codecs[i] = NULL; pci_enable_busmaster(dev); if (vendor == INTEL_VENDORID) { /* TCSEL -> TC0 */ v = pci_read_config(dev, 0x44, 1); pci_write_config(dev, 0x44, v & 0xf8, 1); HDA_BOOTHVERBOSE( device_printf(dev, "TCSEL: 0x%02d -> 0x%02d\n", v, pci_read_config(dev, 0x44, 1)); ); } if (devid >= 0 && (hdac_devices[devid].flags & HDAC_NO_MSI)) sc->flags &= ~HDAC_F_MSI; else sc->flags |= HDAC_F_MSI; if (resource_int_value(device_get_name(dev), device_get_unit(dev), "msi", &i) == 0) { if (i == 0) sc->flags &= ~HDAC_F_MSI; else sc->flags |= HDAC_F_MSI; } #if defined(__i386__) || defined(__amd64__) sc->flags |= HDAC_F_DMA_NOCACHE; if (resource_int_value(device_get_name(dev), device_get_unit(dev), "snoop", &i) == 0 && i != 0) { #else sc->flags &= ~HDAC_F_DMA_NOCACHE; #endif /* * Try to enable PCIe snoop to avoid messing around with * uncacheable DMA attribute. Since PCIe snoop register * config is pretty much vendor specific, there are no * general solutions on how to enable it, forcing us (even * Microsoft) to enable uncacheable or write combined DMA * by default. * * http://msdn2.microsoft.com/en-us/library/ms790324.aspx */ for (i = 0; i < HDAC_PCIESNOOP_LEN; i++) { if (hdac_pcie_snoop[i].vendor != vendor) continue; sc->flags &= ~HDAC_F_DMA_NOCACHE; if (hdac_pcie_snoop[i].reg == 0x00) break; v = pci_read_config(dev, hdac_pcie_snoop[i].reg, 1); if ((v & hdac_pcie_snoop[i].enable) == hdac_pcie_snoop[i].enable) break; v &= hdac_pcie_snoop[i].mask; v |= hdac_pcie_snoop[i].enable; pci_write_config(dev, hdac_pcie_snoop[i].reg, v, 1); v = pci_read_config(dev, hdac_pcie_snoop[i].reg, 1); if ((v & hdac_pcie_snoop[i].enable) != hdac_pcie_snoop[i].enable) { HDA_BOOTVERBOSE( device_printf(dev, "WARNING: Failed to enable PCIe " "snoop!\n"); ); #if defined(__i386__) || defined(__amd64__) sc->flags |= HDAC_F_DMA_NOCACHE; #endif } break; } #if defined(__i386__) || defined(__amd64__) } #endif HDA_BOOTHVERBOSE( device_printf(dev, "DMA Coherency: %s / vendor=0x%04x\n", (sc->flags & HDAC_F_DMA_NOCACHE) ? "Uncacheable" : "PCIe snoop", vendor); ); /* Allocate resources */ result = hdac_mem_alloc(sc); if (result != 0) goto hdac_attach_fail; result = hdac_irq_alloc(sc); if (result != 0) goto hdac_attach_fail; /* Get Capabilities */ result = hdac_get_capabilities(sc); if (result != 0) goto hdac_attach_fail; if (devid >= 0 && (hdac_devices[devid].flags & HDAC_NO_64BIT)) sc->support_64bit = 0; /* Allocate CORB and RIRB dma memory */ result = hdac_dma_alloc(sc, &sc->corb_dma, sc->corb_size * sizeof(uint32_t)); if (result != 0) goto hdac_attach_fail; result = hdac_dma_alloc(sc, &sc->rirb_dma, sc->rirb_size * sizeof(struct hdac_rirb)); if (result != 0) goto hdac_attach_fail; result = bus_dma_tag_create( bus_get_dma_tag(sc->dev), /* parent */ HDAC_DMA_ALIGNMENT, /* alignment */ 0, /* boundary */ (sc->support_64bit) ? BUS_SPACE_MAXADDR : BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, /* filtfunc */ NULL, /* fistfuncarg */ HDA_BUFSZ_MAX, /* maxsize */ 1, /* nsegments */ HDA_BUFSZ_MAX, /* maxsegsz */ 0, /* flags */ NULL, /* lockfunc */ NULL, /* lockfuncarg */ &sc->chan_dmat); /* dmat */ if (result != 0) { device_printf(dev, "%s: bus_dma_tag_create failed (%x)\n", __func__, result); goto hdac_attach_fail; } /* Quiesce everything */ HDA_BOOTHVERBOSE( device_printf(dev, "Reset controller...\n"); ); hdac_reset(sc, 1); /* Initialize the CORB and RIRB */ hdac_corb_init(sc); hdac_rirb_init(sc); /* Defer remaining of initialization until interrupts are enabled */ sc->intrhook.ich_func = hdac_attach2; sc->intrhook.ich_arg = (void *)sc; if (cold == 0 || config_intrhook_establish(&sc->intrhook) != 0) { sc->intrhook.ich_func = NULL; hdac_attach2((void *)sc); } return (0); hdac_attach_fail: hdac_irq_free(sc); hdac_dma_free(sc, &sc->rirb_dma); hdac_dma_free(sc, &sc->corb_dma); hdac_mem_free(sc); snd_mtxfree(sc->lock); return (ENXIO); } static void hdac_audio_parse(struct hdac_devinfo *devinfo) { struct hdac_codec *codec = devinfo->codec; struct hdac_softc *sc = codec->sc; struct hdac_widget *w; uint32_t res; int i; nid_t cad, nid; cad = devinfo->codec->cad; nid = devinfo->nid; res = hdac_command(sc, HDA_CMD_GET_PARAMETER(cad , nid, HDA_PARAM_GPIO_COUNT), cad); devinfo->function.audio.gpio = res; HDA_BOOTVERBOSE( device_printf(sc->dev, "GPIO: 0x%08x " "NumGPIO=%d NumGPO=%d " "NumGPI=%d GPIWake=%d GPIUnsol=%d\n", devinfo->function.audio.gpio, HDA_PARAM_GPIO_COUNT_NUM_GPIO(devinfo->function.audio.gpio), HDA_PARAM_GPIO_COUNT_NUM_GPO(devinfo->function.audio.gpio), HDA_PARAM_GPIO_COUNT_NUM_GPI(devinfo->function.audio.gpio), HDA_PARAM_GPIO_COUNT_GPI_WAKE(devinfo->function.audio.gpio), HDA_PARAM_GPIO_COUNT_GPI_UNSOL(devinfo->function.audio.gpio)); ); res = hdac_command(sc, HDA_CMD_GET_PARAMETER(cad, nid, HDA_PARAM_SUPP_STREAM_FORMATS), cad); devinfo->function.audio.supp_stream_formats = res; res = hdac_command(sc, HDA_CMD_GET_PARAMETER(cad, nid, HDA_PARAM_SUPP_PCM_SIZE_RATE), cad); devinfo->function.audio.supp_pcm_size_rate = res; res = hdac_command(sc, HDA_CMD_GET_PARAMETER(cad, nid, HDA_PARAM_OUTPUT_AMP_CAP), cad); devinfo->function.audio.outamp_cap = res; res = hdac_command(sc, HDA_CMD_GET_PARAMETER(cad, nid, HDA_PARAM_INPUT_AMP_CAP), cad); devinfo->function.audio.inamp_cap = res; for (i = devinfo->startnode; i < devinfo->endnode; i++) { w = hdac_widget_get(devinfo, i); if (w == NULL) device_printf(sc->dev, "Ghost widget! nid=%d!\n", i); else { w->devinfo = devinfo; w->nid = i; w->enable = 1; w->selconn = -1; w->pflags = 0; w->ossdev = -1; w->bindas = -1; w->param.eapdbtl = HDAC_INVALID; hdac_widget_parse(w); } } } static void hdac_audio_ctl_parse(struct hdac_devinfo *devinfo) { struct hdac_softc *sc = devinfo->codec->sc; struct hdac_audio_ctl *ctls; struct hdac_widget *w, *cw; int i, j, cnt, max, ocap, icap; int mute, offset, step, size; /* XXX This is redundant */ max = 0; for (i = devinfo->startnode; i < devinfo->endnode; i++) { w = hdac_widget_get(devinfo, i); if (w == NULL || w->enable == 0) continue; if (w->param.outamp_cap != 0) max++; if (w->param.inamp_cap != 0) { switch (w->type) { case HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_AUDIO_SELECTOR: case HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_AUDIO_MIXER: for (j = 0; j < w->nconns; j++) { cw = hdac_widget_get(devinfo, w->conns[j]); if (cw == NULL || cw->enable == 0) continue; max++; } break; default: max++; break; } } } devinfo->function.audio.ctlcnt = max; if (max < 1) return; ctls = (struct hdac_audio_ctl *)malloc( sizeof(*ctls) * max, M_HDAC, M_ZERO | M_NOWAIT); if (ctls == NULL) { /* Blekh! */ device_printf(sc->dev, "unable to allocate ctls!\n"); devinfo->function.audio.ctlcnt = 0; return; } cnt = 0; for (i = devinfo->startnode; cnt < max && i < devinfo->endnode; i++) { if (cnt >= max) { device_printf(sc->dev, "%s: Ctl overflow!\n", __func__); break; } w = hdac_widget_get(devinfo, i); if (w == NULL || w->enable == 0) continue; ocap = w->param.outamp_cap; icap = w->param.inamp_cap; if (ocap != 0) { mute = HDA_PARAM_OUTPUT_AMP_CAP_MUTE_CAP(ocap); step = HDA_PARAM_OUTPUT_AMP_CAP_NUMSTEPS(ocap); size = HDA_PARAM_OUTPUT_AMP_CAP_STEPSIZE(ocap); offset = HDA_PARAM_OUTPUT_AMP_CAP_OFFSET(ocap); /*if (offset > step) { HDA_BOOTVERBOSE( device_printf(sc->dev, "BUGGY outamp: nid=%d " "[offset=%d > step=%d]\n", w->nid, offset, step); ); offset = step; }*/ ctls[cnt].enable = 1; ctls[cnt].widget = w; ctls[cnt].mute = mute; ctls[cnt].step = step; ctls[cnt].size = size; ctls[cnt].offset = offset; ctls[cnt].left = offset; ctls[cnt].right = offset; if (w->type == HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_PIN_COMPLEX || w->waspin) ctls[cnt].ndir = HDA_CTL_IN; else ctls[cnt].ndir = HDA_CTL_OUT; ctls[cnt++].dir = HDA_CTL_OUT; } if (icap != 0) { mute = HDA_PARAM_OUTPUT_AMP_CAP_MUTE_CAP(icap); step = HDA_PARAM_OUTPUT_AMP_CAP_NUMSTEPS(icap); size = HDA_PARAM_OUTPUT_AMP_CAP_STEPSIZE(icap); offset = HDA_PARAM_OUTPUT_AMP_CAP_OFFSET(icap); /*if (offset > step) { HDA_BOOTVERBOSE( device_printf(sc->dev, "BUGGY inamp: nid=%d " "[offset=%d > step=%d]\n", w->nid, offset, step); ); offset = step; }*/ switch (w->type) { case HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_AUDIO_SELECTOR: case HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_AUDIO_MIXER: for (j = 0; j < w->nconns; j++) { if (cnt >= max) { device_printf(sc->dev, "%s: Ctl overflow!\n", __func__); break; } cw = hdac_widget_get(devinfo, w->conns[j]); if (cw == NULL || cw->enable == 0) continue; ctls[cnt].enable = 1; ctls[cnt].widget = w; ctls[cnt].childwidget = cw; ctls[cnt].index = j; ctls[cnt].mute = mute; ctls[cnt].step = step; ctls[cnt].size = size; ctls[cnt].offset = offset; ctls[cnt].left = offset; ctls[cnt].right = offset; ctls[cnt].ndir = HDA_CTL_IN; ctls[cnt++].dir = HDA_CTL_IN; } break; default: if (cnt >= max) { device_printf(sc->dev, "%s: Ctl overflow!\n", __func__); break; } ctls[cnt].enable = 1; ctls[cnt].widget = w; ctls[cnt].mute = mute; ctls[cnt].step = step; ctls[cnt].size = size; ctls[cnt].offset = offset; ctls[cnt].left = offset; ctls[cnt].right = offset; if (w->type == HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_PIN_COMPLEX) ctls[cnt].ndir = HDA_CTL_OUT; else ctls[cnt].ndir = HDA_CTL_IN; ctls[cnt++].dir = HDA_CTL_IN; break; } } } devinfo->function.audio.ctl = ctls; } static void hdac_audio_as_parse(struct hdac_devinfo *devinfo) { struct hdac_softc *sc = devinfo->codec->sc; struct hdac_audio_as *as; struct hdac_widget *w; int i, j, cnt, max, type, dir, assoc, seq, first, hpredir; /* Count present associations */ max = 0; for (j = 1; j < 16; j++) { for (i = devinfo->startnode; i < devinfo->endnode; i++) { w = hdac_widget_get(devinfo, i); if (w == NULL || w->enable == 0) continue; if (w->type != HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_PIN_COMPLEX) continue; if (HDA_CONFIG_DEFAULTCONF_ASSOCIATION(w->wclass.pin.config) != j) continue; max++; if (j != 15) /* There could be many 1-pin assocs #15 */ break; } } devinfo->function.audio.ascnt = max; if (max < 1) return; as = (struct hdac_audio_as *)malloc( sizeof(*as) * max, M_HDAC, M_ZERO | M_NOWAIT); if (as == NULL) { /* Blekh! */ device_printf(sc->dev, "unable to allocate assocs!\n"); devinfo->function.audio.ascnt = 0; return; } for (i = 0; i < max; i++) { as[i].hpredir = -1; as[i].chan = -1; as[i].digital = 0; } /* Scan associations skipping as=0. */ cnt = 0; for (j = 1; j < 16; j++) { first = 16; hpredir = 0; for (i = devinfo->startnode; i < devinfo->endnode; i++) { w = hdac_widget_get(devinfo, i); if (w == NULL || w->enable == 0) continue; if (w->type != HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_PIN_COMPLEX) continue; assoc = HDA_CONFIG_DEFAULTCONF_ASSOCIATION(w->wclass.pin.config); seq = HDA_CONFIG_DEFAULTCONF_SEQUENCE(w->wclass.pin.config); if (assoc != j) { continue; } KASSERT(cnt < max, ("%s: Associations owerflow (%d of %d)", __func__, cnt, max)); type = w->wclass.pin.config & HDA_CONFIG_DEFAULTCONF_DEVICE_MASK; /* Get pin direction. */ if (type == HDA_CONFIG_DEFAULTCONF_DEVICE_LINE_OUT || type == HDA_CONFIG_DEFAULTCONF_DEVICE_SPEAKER || type == HDA_CONFIG_DEFAULTCONF_DEVICE_HP_OUT || type == HDA_CONFIG_DEFAULTCONF_DEVICE_SPDIF_OUT || type == HDA_CONFIG_DEFAULTCONF_DEVICE_DIGITAL_OTHER_OUT) dir = HDA_CTL_OUT; else dir = HDA_CTL_IN; /* If this is a first pin - create new association. */ if (as[cnt].pincnt == 0) { as[cnt].enable = 1; as[cnt].index = j; as[cnt].dir = dir; } if (seq < first) first = seq; /* Check association correctness. */ if (as[cnt].pins[seq] != 0) { device_printf(sc->dev, "%s: Duplicate pin %d (%d) " "in association %d! Disabling association.\n", __func__, seq, w->nid, j); as[cnt].enable = 0; } if (dir != as[cnt].dir) { device_printf(sc->dev, "%s: Pin %d has wrong " "direction for association %d! Disabling " "association.\n", __func__, w->nid, j); as[cnt].enable = 0; } if (HDA_PARAM_AUDIO_WIDGET_CAP_DIGITAL(w->param.widget_cap)) { if (HDA_PARAM_PIN_CAP_DP(w->wclass.pin.cap)) as[cnt].digital = 3; else if (HDA_PARAM_PIN_CAP_HDMI(w->wclass.pin.cap)) as[cnt].digital = 2; else as[cnt].digital = 1; } /* Headphones with seq=15 may mean redirection. */ if (type == HDA_CONFIG_DEFAULTCONF_DEVICE_HP_OUT && seq == 15) hpredir = 1; as[cnt].pins[seq] = w->nid; as[cnt].pincnt++; /* Association 15 is a multiple unassociated pins. */ if (j == 15) cnt++; } if (j != 15 && as[cnt].pincnt > 0) { if (hpredir && as[cnt].pincnt > 1) as[cnt].hpredir = first; cnt++; } } HDA_BOOTVERBOSE( device_printf(sc->dev, "%d associations found:\n", max); for (i = 0; i < max; i++) { device_printf(sc->dev, "Association %d (%d) %s%s:\n", i, as[i].index, (as[i].dir == HDA_CTL_IN)?"in":"out", as[i].enable?"":" (disabled)"); for (j = 0; j < 16; j++) { if (as[i].pins[j] == 0) continue; device_printf(sc->dev, " Pin nid=%d seq=%d\n", as[i].pins[j], j); } } ); devinfo->function.audio.as = as; } static const struct { uint32_t model; uint32_t id; uint32_t set, unset; } hdac_quirks[] = { /* * XXX Force stereo quirk. Monoural recording / playback * on few codecs (especially ALC880) seems broken or * perhaps unsupported. */ { HDA_MATCH_ALL, HDA_MATCH_ALL, HDA_QUIRK_FORCESTEREO | HDA_QUIRK_IVREF, 0 }, { ACER_ALL_SUBVENDOR, HDA_MATCH_ALL, HDA_QUIRK_GPIO0, 0 }, { ASUS_G2K_SUBVENDOR, HDA_CODEC_ALC660, HDA_QUIRK_GPIO0, 0 }, { ASUS_M5200_SUBVENDOR, HDA_CODEC_ALC880, HDA_QUIRK_GPIO0, 0 }, { ASUS_A7M_SUBVENDOR, HDA_CODEC_ALC880, HDA_QUIRK_GPIO0, 0 }, { ASUS_A7T_SUBVENDOR, HDA_CODEC_ALC882, HDA_QUIRK_GPIO0, 0 }, { ASUS_W2J_SUBVENDOR, HDA_CODEC_ALC882, HDA_QUIRK_GPIO0, 0 }, { ASUS_U5F_SUBVENDOR, HDA_CODEC_AD1986A, HDA_QUIRK_EAPDINV, 0 }, { ASUS_A8X_SUBVENDOR, HDA_CODEC_AD1986A, HDA_QUIRK_EAPDINV, 0 }, { ASUS_F3JC_SUBVENDOR, HDA_CODEC_ALC861, HDA_QUIRK_OVREF, 0 }, { UNIWILL_9075_SUBVENDOR, HDA_CODEC_ALC861, HDA_QUIRK_OVREF, 0 }, /*{ ASUS_M2N_SUBVENDOR, HDA_CODEC_AD1988, HDA_QUIRK_IVREF80, HDA_QUIRK_IVREF50 | HDA_QUIRK_IVREF100 },*/ { MEDION_MD95257_SUBVENDOR, HDA_CODEC_ALC880, HDA_QUIRK_GPIO1, 0 }, { LENOVO_3KN100_SUBVENDOR, HDA_CODEC_AD1986A, HDA_QUIRK_EAPDINV | HDA_QUIRK_SENSEINV, 0 }, { SAMSUNG_Q1_SUBVENDOR, HDA_CODEC_AD1986A, HDA_QUIRK_EAPDINV, 0 }, { APPLE_MB3_SUBVENDOR, HDA_CODEC_ALC885, HDA_QUIRK_GPIO0 | HDA_QUIRK_OVREF50, 0}, { APPLE_INTEL_MAC, HDA_CODEC_STAC9221, HDA_QUIRK_GPIO0 | HDA_QUIRK_GPIO1, 0 }, { APPLE_MACBOOKPRO55, HDA_CODEC_CS4206, HDA_QUIRK_GPIO1 | HDA_QUIRK_GPIO3, 0 }, { DELL_D630_SUBVENDOR, HDA_CODEC_STAC9205X, HDA_QUIRK_GPIO0, 0 }, { DELL_V1400_SUBVENDOR, HDA_CODEC_STAC9228X, HDA_QUIRK_GPIO2, 0 }, { DELL_V1500_SUBVENDOR, HDA_CODEC_STAC9205X, HDA_QUIRK_GPIO0, 0 }, { HDA_MATCH_ALL, HDA_CODEC_AD1988, HDA_QUIRK_IVREF80, HDA_QUIRK_IVREF50 | HDA_QUIRK_IVREF100 }, { HDA_MATCH_ALL, HDA_CODEC_AD1988B, HDA_QUIRK_IVREF80, HDA_QUIRK_IVREF50 | HDA_QUIRK_IVREF100 }, { HDA_MATCH_ALL, HDA_CODEC_CX20549, 0, HDA_QUIRK_FORCESTEREO } }; #define HDAC_QUIRKS_LEN (sizeof(hdac_quirks) / sizeof(hdac_quirks[0])) static void hdac_vendor_patch_parse(struct hdac_devinfo *devinfo) { struct hdac_widget *w; uint32_t id, subvendor; int i; id = hdac_codec_id(devinfo->codec); subvendor = devinfo->codec->sc->pci_subvendor; /* * Quirks */ for (i = 0; i < HDAC_QUIRKS_LEN; i++) { if (!(HDA_DEV_MATCH(hdac_quirks[i].model, subvendor) && HDA_DEV_MATCH(hdac_quirks[i].id, id))) continue; if (hdac_quirks[i].set != 0) devinfo->function.audio.quirks |= hdac_quirks[i].set; if (hdac_quirks[i].unset != 0) devinfo->function.audio.quirks &= ~(hdac_quirks[i].unset); } switch (id) { case HDA_CODEC_AD1983: /* * This codec has several possible usages, but none * fit the parser best. Help parser to choose better. */ /* Disable direct unmixed playback to get pcm volume. */ w = hdac_widget_get(devinfo, 5); if (w != NULL) w->connsenable[0] = 0; w = hdac_widget_get(devinfo, 6); if (w != NULL) w->connsenable[0] = 0; w = hdac_widget_get(devinfo, 11); if (w != NULL) w->connsenable[0] = 0; /* Disable mic and line selectors. */ w = hdac_widget_get(devinfo, 12); if (w != NULL) w->connsenable[1] = 0; w = hdac_widget_get(devinfo, 13); if (w != NULL) w->connsenable[1] = 0; /* Disable recording from mono playback mix. */ w = hdac_widget_get(devinfo, 20); if (w != NULL) w->connsenable[3] = 0; break; case HDA_CODEC_AD1986A: /* * This codec has overcomplicated input mixing. * Make some cleaning there. */ /* Disable input mono mixer. Not needed and not supported. */ w = hdac_widget_get(devinfo, 43); if (w != NULL) w->enable = 0; /* Disable any with any input mixing mesh. Use separately. */ w = hdac_widget_get(devinfo, 39); if (w != NULL) w->enable = 0; w = hdac_widget_get(devinfo, 40); if (w != NULL) w->enable = 0; w = hdac_widget_get(devinfo, 41); if (w != NULL) w->enable = 0; w = hdac_widget_get(devinfo, 42); if (w != NULL) w->enable = 0; /* Disable duplicate mixer node connector. */ w = hdac_widget_get(devinfo, 15); if (w != NULL) w->connsenable[3] = 0; /* There is only one mic preamplifier, use it effectively. */ w = hdac_widget_get(devinfo, 31); if (w != NULL) { if ((w->wclass.pin.config & HDA_CONFIG_DEFAULTCONF_DEVICE_MASK) == HDA_CONFIG_DEFAULTCONF_DEVICE_MIC_IN) { w = hdac_widget_get(devinfo, 16); if (w != NULL) w->connsenable[2] = 0; } else { w = hdac_widget_get(devinfo, 15); if (w != NULL) w->connsenable[0] = 0; } } w = hdac_widget_get(devinfo, 32); if (w != NULL) { if ((w->wclass.pin.config & HDA_CONFIG_DEFAULTCONF_DEVICE_MASK) == HDA_CONFIG_DEFAULTCONF_DEVICE_MIC_IN) { w = hdac_widget_get(devinfo, 16); if (w != NULL) w->connsenable[0] = 0; } else { w = hdac_widget_get(devinfo, 15); if (w != NULL) w->connsenable[1] = 0; } } if (subvendor == ASUS_A8X_SUBVENDOR) { /* * This is just plain ridiculous.. There * are several A8 series that share the same * pci id but works differently (EAPD). */ w = hdac_widget_get(devinfo, 26); if (w != NULL && w->type == HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_PIN_COMPLEX && (w->wclass.pin.config & HDA_CONFIG_DEFAULTCONF_CONNECTIVITY_MASK) != HDA_CONFIG_DEFAULTCONF_CONNECTIVITY_NONE) devinfo->function.audio.quirks &= ~HDA_QUIRK_EAPDINV; } break; case HDA_CODEC_AD1981HD: /* * This codec has very unusual design with several * points inappropriate for the present parser. */ /* Disable recording from mono playback mix. */ w = hdac_widget_get(devinfo, 21); if (w != NULL) w->connsenable[3] = 0; /* Disable rear to front mic mixer, use separately. */ w = hdac_widget_get(devinfo, 31); if (w != NULL) w->enable = 0; /* Disable direct playback, use mixer. */ w = hdac_widget_get(devinfo, 5); if (w != NULL) w->connsenable[0] = 0; w = hdac_widget_get(devinfo, 6); if (w != NULL) w->connsenable[0] = 0; w = hdac_widget_get(devinfo, 9); if (w != NULL) w->connsenable[0] = 0; w = hdac_widget_get(devinfo, 24); if (w != NULL) w->connsenable[0] = 0; break; } } /* * Trace path from DAC to pin. */ static nid_t hdac_audio_trace_dac(struct hdac_devinfo *devinfo, int as, int seq, nid_t nid, int dupseq, int min, int only, int depth) { struct hdac_widget *w; int i, im = -1; nid_t m = 0, ret; if (depth > HDA_PARSE_MAXDEPTH) return (0); w = hdac_widget_get(devinfo, nid); if (w == NULL || w->enable == 0) return (0); HDA_BOOTHVERBOSE( if (!only) { device_printf(devinfo->codec->sc->dev, " %*stracing via nid %d\n", depth + 1, "", w->nid); } ); /* Use only unused widgets */ if (w->bindas >= 0 && w->bindas != as) { HDA_BOOTHVERBOSE( if (!only) { device_printf(devinfo->codec->sc->dev, " %*snid %d busy by association %d\n", depth + 1, "", w->nid, w->bindas); } ); return (0); } if (dupseq < 0) { if (w->bindseqmask != 0) { HDA_BOOTHVERBOSE( if (!only) { device_printf(devinfo->codec->sc->dev, " %*snid %d busy by seqmask %x\n", depth + 1, "", w->nid, w->bindseqmask); } ); return (0); } } else { /* If this is headphones - allow duplicate first pin. */ if (w->bindseqmask != 0 && (w->bindseqmask & (1 << dupseq)) == 0) { HDA_BOOTHVERBOSE( device_printf(devinfo->codec->sc->dev, " %*snid %d busy by seqmask %x\n", depth + 1, "", w->nid, w->bindseqmask); ); return (0); } } switch (w->type) { case HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_AUDIO_INPUT: /* Do not traverse input. AD1988 has digital monitor for which we are not ready. */ break; case HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_AUDIO_OUTPUT: /* If we are tracing HP take only dac of first pin. */ if ((only == 0 || only == w->nid) && (w->nid >= min) && (dupseq < 0 || w->nid == devinfo->function.audio.as[as].dacs[dupseq])) m = w->nid; break; case HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_PIN_COMPLEX: if (depth > 0) break; /* Fall */ default: /* Find reachable DACs with smallest nid respecting constraints. */ for (i = 0; i < w->nconns; i++) { if (w->connsenable[i] == 0) continue; if (w->selconn != -1 && w->selconn != i) continue; if ((ret = hdac_audio_trace_dac(devinfo, as, seq, w->conns[i], dupseq, min, only, depth + 1)) != 0) { if (m == 0 || ret < m) { m = ret; im = i; } if (only || dupseq >= 0) break; } } if (m && only && ((w->nconns > 1 && w->type != HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_AUDIO_MIXER) || w->type == HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_AUDIO_SELECTOR)) w->selconn = im; break; } if (m && only) { w->bindas = as; w->bindseqmask |= (1 << seq); } HDA_BOOTHVERBOSE( if (!only) { device_printf(devinfo->codec->sc->dev, " %*snid %d returned %d\n", depth + 1, "", w->nid, m); } ); return (m); } /* * Trace path from widget to ADC. */ static nid_t hdac_audio_trace_adc(struct hdac_devinfo *devinfo, int as, int seq, nid_t nid, int only, int depth) { struct hdac_widget *w, *wc; int i, j; nid_t res = 0; if (depth > HDA_PARSE_MAXDEPTH) return (0); w = hdac_widget_get(devinfo, nid); if (w == NULL || w->enable == 0) return (0); HDA_BOOTHVERBOSE( device_printf(devinfo->codec->sc->dev, " %*stracing via nid %d\n", depth + 1, "", w->nid); ); /* Use only unused widgets */ if (w->bindas >= 0 && w->bindas != as) { HDA_BOOTHVERBOSE( device_printf(devinfo->codec->sc->dev, " %*snid %d busy by association %d\n", depth + 1, "", w->nid, w->bindas); ); return (0); } switch (w->type) { case HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_AUDIO_INPUT: /* If we are tracing HP take only dac of first pin. */ if (only == w->nid) res = 1; break; case HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_PIN_COMPLEX: if (depth > 0) break; /* Fall */ default: /* Try to find reachable ADCs with specified nid. */ for (j = devinfo->startnode; j < devinfo->endnode; j++) { wc = hdac_widget_get(devinfo, j); if (wc == NULL || wc->enable == 0) continue; for (i = 0; i < wc->nconns; i++) { if (wc->connsenable[i] == 0) continue; if (wc->conns[i] != nid) continue; if (hdac_audio_trace_adc(devinfo, as, seq, j, only, depth + 1) != 0) { res = 1; if (((wc->nconns > 1 && wc->type != HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_AUDIO_MIXER) || wc->type == HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_AUDIO_SELECTOR) && wc->selconn == -1) wc->selconn = i; } } } break; } if (res) { w->bindas = as; w->bindseqmask |= (1 << seq); } HDA_BOOTHVERBOSE( device_printf(devinfo->codec->sc->dev, " %*snid %d returned %d\n", depth + 1, "", w->nid, res); ); return (res); } /* * Erase trace path of the specified association. */ static void hdac_audio_undo_trace(struct hdac_devinfo *devinfo, int as, int seq) { struct hdac_widget *w; int i; for (i = devinfo->startnode; i < devinfo->endnode; i++) { w = hdac_widget_get(devinfo, i); if (w == NULL || w->enable == 0) continue; if (w->bindas == as) { if (seq >= 0) { w->bindseqmask &= ~(1 << seq); if (w->bindseqmask == 0) { w->bindas = -1; w->selconn = -1; } } else { w->bindas = -1; w->bindseqmask = 0; w->selconn = -1; } } } } /* * Trace association path from DAC to output */ static int hdac_audio_trace_as_out(struct hdac_devinfo *devinfo, int as, int seq) { struct hdac_audio_as *ases = devinfo->function.audio.as; int i, hpredir; nid_t min, res; /* Find next pin */ for (i = seq; i < 16 && ases[as].pins[i] == 0; i++) ; /* Check if there is no any left. If so - we succeeded. */ if (i == 16) return (1); hpredir = (i == 15 && ases[as].fakeredir == 0)?ases[as].hpredir:-1; min = 0; res = 0; do { HDA_BOOTHVERBOSE( device_printf(devinfo->codec->sc->dev, " Tracing pin %d with min nid %d", ases[as].pins[i], min); if (hpredir >= 0) printf(" and hpredir %d", hpredir); printf("\n"); ); /* Trace this pin taking min nid into account. */ res = hdac_audio_trace_dac(devinfo, as, i, ases[as].pins[i], hpredir, min, 0, 0); if (res == 0) { /* If we failed - return to previous and redo it. */ HDA_BOOTVERBOSE( device_printf(devinfo->codec->sc->dev, " Unable to trace pin %d seq %d with min " "nid %d", ases[as].pins[i], i, min); if (hpredir >= 0) printf(" and hpredir %d", hpredir); printf("\n"); ); return (0); } HDA_BOOTVERBOSE( device_printf(devinfo->codec->sc->dev, " Pin %d traced to DAC %d", ases[as].pins[i], res); if (hpredir >= 0) printf(" and hpredir %d", hpredir); if (ases[as].fakeredir) printf(" with fake redirection"); printf("\n"); ); /* Trace again to mark the path */ hdac_audio_trace_dac(devinfo, as, i, ases[as].pins[i], hpredir, min, res, 0); ases[as].dacs[i] = res; /* We succeeded, so call next. */ if (hdac_audio_trace_as_out(devinfo, as, i + 1)) return (1); /* If next failed, we should retry with next min */ hdac_audio_undo_trace(devinfo, as, i); ases[as].dacs[i] = 0; min = res + 1; } while (1); } /* * Trace association path from input to ADC */ static int hdac_audio_trace_as_in(struct hdac_devinfo *devinfo, int as) { struct hdac_audio_as *ases = devinfo->function.audio.as; struct hdac_widget *w; int i, j, k; for (j = devinfo->startnode; j < devinfo->endnode; j++) { w = hdac_widget_get(devinfo, j); if (w == NULL || w->enable == 0) continue; if (w->type != HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_AUDIO_INPUT) continue; if (w->bindas >= 0 && w->bindas != as) continue; /* Find next pin */ for (i = 0; i < 16; i++) { if (ases[as].pins[i] == 0) continue; HDA_BOOTHVERBOSE( device_printf(devinfo->codec->sc->dev, " Tracing pin %d to ADC %d\n", ases[as].pins[i], j); ); /* Trace this pin taking goal into account. */ if (hdac_audio_trace_adc(devinfo, as, i, ases[as].pins[i], j, 0) == 0) { /* If we failed - return to previous and redo it. */ HDA_BOOTVERBOSE( device_printf(devinfo->codec->sc->dev, " Unable to trace pin %d to ADC %d, undo traces\n", ases[as].pins[i], j); ); hdac_audio_undo_trace(devinfo, as, -1); for (k = 0; k < 16; k++) ases[as].dacs[k] = 0; break; } HDA_BOOTVERBOSE( device_printf(devinfo->codec->sc->dev, " Pin %d traced to ADC %d\n", ases[as].pins[i], j); ); ases[as].dacs[i] = j; } if (i == 16) return (1); } return (0); } /* * Trace input monitor path from mixer to output association. */ static int hdac_audio_trace_to_out(struct hdac_devinfo *devinfo, nid_t nid, int depth) { struct hdac_audio_as *ases = devinfo->function.audio.as; struct hdac_widget *w, *wc; int i, j; nid_t res = 0; if (depth > HDA_PARSE_MAXDEPTH) return (0); w = hdac_widget_get(devinfo, nid); if (w == NULL || w->enable == 0) return (0); HDA_BOOTHVERBOSE( device_printf(devinfo->codec->sc->dev, " %*stracing via nid %d\n", depth + 1, "", w->nid); ); /* Use only unused widgets */ if (depth > 0 && w->bindas != -1) { if (w->bindas < 0 || ases[w->bindas].dir == HDA_CTL_OUT) { HDA_BOOTHVERBOSE( device_printf(devinfo->codec->sc->dev, " %*snid %d found output association %d\n", depth + 1, "", w->nid, w->bindas); ); if (w->bindas >= 0) w->pflags |= HDA_ADC_MONITOR; return (1); } else { HDA_BOOTHVERBOSE( device_printf(devinfo->codec->sc->dev, " %*snid %d busy by input association %d\n", depth + 1, "", w->nid, w->bindas); ); return (0); } } switch (w->type) { case HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_AUDIO_INPUT: /* Do not traverse input. AD1988 has digital monitor for which we are not ready. */ break; case HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_PIN_COMPLEX: if (depth > 0) break; /* Fall */ default: /* Try to find reachable ADCs with specified nid. */ for (j = devinfo->startnode; j < devinfo->endnode; j++) { wc = hdac_widget_get(devinfo, j); if (wc == NULL || wc->enable == 0) continue; for (i = 0; i < wc->nconns; i++) { if (wc->connsenable[i] == 0) continue; if (wc->conns[i] != nid) continue; if (hdac_audio_trace_to_out(devinfo, j, depth + 1) != 0) { res = 1; if (wc->type == HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_AUDIO_SELECTOR && wc->selconn == -1) wc->selconn = i; } } } break; } if (res && w->bindas == -1) w->bindas = -2; HDA_BOOTHVERBOSE( device_printf(devinfo->codec->sc->dev, " %*snid %d returned %d\n", depth + 1, "", w->nid, res); ); return (res); } /* * Trace extra associations (beeper, monitor) */ static void hdac_audio_trace_as_extra(struct hdac_devinfo *devinfo) { struct hdac_audio_as *as = devinfo->function.audio.as; struct hdac_widget *w; int j; /* Input monitor */ /* Find mixer associated with input, but supplying signal for output associations. Hope it will be input monitor. */ HDA_BOOTVERBOSE( device_printf(devinfo->codec->sc->dev, "Tracing input monitor\n"); ); for (j = devinfo->startnode; j < devinfo->endnode; j++) { w = hdac_widget_get(devinfo, j); if (w == NULL || w->enable == 0) continue; if (w->type != HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_AUDIO_MIXER) continue; if (w->bindas < 0 || as[w->bindas].dir != HDA_CTL_IN) continue; HDA_BOOTVERBOSE( device_printf(devinfo->codec->sc->dev, " Tracing nid %d to out\n", j); ); if (hdac_audio_trace_to_out(devinfo, w->nid, 0)) { HDA_BOOTVERBOSE( device_printf(devinfo->codec->sc->dev, " nid %d is input monitor\n", w->nid); ); w->ossdev = SOUND_MIXER_IMIX; } } /* Other inputs monitor */ /* Find input pins supplying signal for output associations. Hope it will be input monitoring. */ HDA_BOOTVERBOSE( device_printf(devinfo->codec->sc->dev, "Tracing other input monitors\n"); ); for (j = devinfo->startnode; j < devinfo->endnode; j++) { w = hdac_widget_get(devinfo, j); if (w == NULL || w->enable == 0) continue; if (w->type != HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_PIN_COMPLEX) continue; if (w->bindas < 0 || as[w->bindas].dir != HDA_CTL_IN) continue; HDA_BOOTVERBOSE( device_printf(devinfo->codec->sc->dev, " Tracing nid %d to out\n", j); ); if (hdac_audio_trace_to_out(devinfo, w->nid, 0)) { HDA_BOOTVERBOSE( device_printf(devinfo->codec->sc->dev, " nid %d is input monitor\n", w->nid); ); } } /* Beeper */ HDA_BOOTVERBOSE( device_printf(devinfo->codec->sc->dev, "Tracing beeper\n"); ); for (j = devinfo->startnode; j < devinfo->endnode; j++) { w = hdac_widget_get(devinfo, j); if (w == NULL || w->enable == 0) continue; if (w->type != HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_BEEP_WIDGET) continue; HDA_BOOTHVERBOSE( device_printf(devinfo->codec->sc->dev, " Tracing nid %d to out\n", j); ); if (hdac_audio_trace_to_out(devinfo, w->nid, 0)) { HDA_BOOTVERBOSE( device_printf(devinfo->codec->sc->dev, " nid %d traced to out\n", j); ); } w->bindas = -2; } } /* * Bind assotiations to PCM channels */ static void hdac_audio_bind_as(struct hdac_devinfo *devinfo) { struct hdac_softc *sc = devinfo->codec->sc; struct hdac_audio_as *as = devinfo->function.audio.as; int j, cnt = 0, free; for (j = 0; j < devinfo->function.audio.ascnt; j++) { if (as[j].enable) cnt++; } if (sc->num_chans == 0) { sc->chans = (struct hdac_chan *)malloc( sizeof(struct hdac_chan) * cnt, M_HDAC, M_ZERO | M_NOWAIT); if (sc->chans == NULL) { device_printf(sc->dev, "Channels memory allocation failed!\n"); return; } } else { sc->chans = (struct hdac_chan *)realloc(sc->chans, sizeof(struct hdac_chan) * (sc->num_chans + cnt), M_HDAC, M_ZERO | M_NOWAIT); if (sc->chans == NULL) { sc->num_chans = 0; device_printf(sc->dev, "Channels memory allocation failed!\n"); return; } /* Fixup relative pointers after realloc */ for (j = 0; j < sc->num_chans; j++) sc->chans[j].caps.fmtlist = sc->chans[j].fmtlist; } free = sc->num_chans; sc->num_chans += cnt; for (j = free; j < free + cnt; j++) { sc->chans[j].devinfo = devinfo; sc->chans[j].as = -1; } /* Assign associations in order of their numbers, */ for (j = 0; j < devinfo->function.audio.ascnt; j++) { if (as[j].enable == 0) continue; as[j].chan = free; sc->chans[free].as = j; sc->chans[free].dir = (as[j].dir == HDA_CTL_IN) ? PCMDIR_REC : PCMDIR_PLAY; hdac_pcmchannel_setup(&sc->chans[free]); free++; } } static void hdac_audio_disable_nonaudio(struct hdac_devinfo *devinfo) { struct hdac_widget *w; int i; /* Disable power and volume widgets. */ for (i = devinfo->startnode; i < devinfo->endnode; i++) { w = hdac_widget_get(devinfo, i); if (w == NULL || w->enable == 0) continue; if (w->type == HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_POWER_WIDGET || w->type == HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_VOLUME_WIDGET) { w->enable = 0; HDA_BOOTHVERBOSE( device_printf(devinfo->codec->sc->dev, " Disabling nid %d due to it's" " non-audio type.\n", w->nid); ); } } } static void hdac_audio_disable_useless(struct hdac_devinfo *devinfo) { struct hdac_widget *w, *cw; struct hdac_audio_ctl *ctl; int done, found, i, j, k; /* Disable useless pins. */ for (i = devinfo->startnode; i < devinfo->endnode; i++) { w = hdac_widget_get(devinfo, i); if (w == NULL || w->enable == 0) continue; if (w->type == HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_PIN_COMPLEX) { if ((w->wclass.pin.config & HDA_CONFIG_DEFAULTCONF_CONNECTIVITY_MASK) == HDA_CONFIG_DEFAULTCONF_CONNECTIVITY_NONE) { w->enable = 0; HDA_BOOTHVERBOSE( device_printf(devinfo->codec->sc->dev, " Disabling pin nid %d due" " to None connectivity.\n", w->nid); ); } else if ((w->wclass.pin.config & HDA_CONFIG_DEFAULTCONF_ASSOCIATION_MASK) == 0) { w->enable = 0; HDA_BOOTHVERBOSE( device_printf(devinfo->codec->sc->dev, " Disabling unassociated" " pin nid %d.\n", w->nid); ); } } } do { done = 1; /* Disable and mute controls for disabled widgets. */ i = 0; while ((ctl = hdac_audio_ctl_each(devinfo, &i)) != NULL) { if (ctl->enable == 0) continue; if (ctl->widget->enable == 0 || (ctl->childwidget != NULL && ctl->childwidget->enable == 0)) { ctl->forcemute = 1; ctl->muted = HDA_AMP_MUTE_ALL; ctl->left = 0; ctl->right = 0; ctl->enable = 0; if (ctl->ndir == HDA_CTL_IN) ctl->widget->connsenable[ctl->index] = 0; done = 0; HDA_BOOTHVERBOSE( device_printf(devinfo->codec->sc->dev, " Disabling ctl %d nid %d cnid %d due" " to disabled widget.\n", i, ctl->widget->nid, (ctl->childwidget != NULL)? ctl->childwidget->nid:-1); ); } } /* Disable useless widgets. */ for (i = devinfo->startnode; i < devinfo->endnode; i++) { w = hdac_widget_get(devinfo, i); if (w == NULL || w->enable == 0) continue; /* Disable inputs with disabled child widgets. */ for (j = 0; j < w->nconns; j++) { if (w->connsenable[j]) { cw = hdac_widget_get(devinfo, w->conns[j]); if (cw == NULL || cw->enable == 0) { w->connsenable[j] = 0; HDA_BOOTHVERBOSE( device_printf(devinfo->codec->sc->dev, " Disabling nid %d connection %d due" " to disabled child widget.\n", i, j); ); } } } if (w->type != HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_AUDIO_SELECTOR && w->type != HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_AUDIO_MIXER) continue; /* Disable mixers and selectors without inputs. */ found = 0; for (j = 0; j < w->nconns; j++) { if (w->connsenable[j]) { found = 1; break; } } if (found == 0) { w->enable = 0; done = 0; HDA_BOOTHVERBOSE( device_printf(devinfo->codec->sc->dev, " Disabling nid %d due to all it's" " inputs disabled.\n", w->nid); ); } /* Disable nodes without consumers. */ if (w->type != HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_AUDIO_SELECTOR && w->type != HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_AUDIO_MIXER) continue; found = 0; for (k = devinfo->startnode; k < devinfo->endnode; k++) { cw = hdac_widget_get(devinfo, k); if (cw == NULL || cw->enable == 0) continue; for (j = 0; j < cw->nconns; j++) { if (cw->connsenable[j] && cw->conns[j] == i) { found = 1; break; } } } if (found == 0) { w->enable = 0; done = 0; HDA_BOOTHVERBOSE( device_printf(devinfo->codec->sc->dev, " Disabling nid %d due to all it's" " consumers disabled.\n", w->nid); ); } } } while (done == 0); } static void hdac_audio_disable_unas(struct hdac_devinfo *devinfo) { struct hdac_audio_as *as = devinfo->function.audio.as; struct hdac_widget *w, *cw; struct hdac_audio_ctl *ctl; int i, j, k; /* Disable unassosiated widgets. */ for (i = devinfo->startnode; i < devinfo->endnode; i++) { w = hdac_widget_get(devinfo, i); if (w == NULL || w->enable == 0) continue; if (w->bindas == -1) { w->enable = 0; HDA_BOOTHVERBOSE( device_printf(devinfo->codec->sc->dev, " Disabling unassociated nid %d.\n", w->nid); ); } } /* Disable input connections on input pin and * output on output. */ for (i = devinfo->startnode; i < devinfo->endnode; i++) { w = hdac_widget_get(devinfo, i); if (w == NULL || w->enable == 0) continue; if (w->type != HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_PIN_COMPLEX) continue; if (w->bindas < 0) continue; if (as[w->bindas].dir == HDA_CTL_IN) { for (j = 0; j < w->nconns; j++) { if (w->connsenable[j] == 0) continue; w->connsenable[j] = 0; HDA_BOOTHVERBOSE( device_printf(devinfo->codec->sc->dev, " Disabling connection to input pin " "nid %d conn %d.\n", i, j); ); } ctl = hdac_audio_ctl_amp_get(devinfo, w->nid, HDA_CTL_IN, -1, 1); if (ctl && ctl->enable) { ctl->forcemute = 1; ctl->muted = HDA_AMP_MUTE_ALL; ctl->left = 0; ctl->right = 0; ctl->enable = 0; } } else { ctl = hdac_audio_ctl_amp_get(devinfo, w->nid, HDA_CTL_OUT, -1, 1); if (ctl && ctl->enable) { ctl->forcemute = 1; ctl->muted = HDA_AMP_MUTE_ALL; ctl->left = 0; ctl->right = 0; ctl->enable = 0; } for (k = devinfo->startnode; k < devinfo->endnode; k++) { cw = hdac_widget_get(devinfo, k); if (cw == NULL || cw->enable == 0) continue; for (j = 0; j < cw->nconns; j++) { if (cw->connsenable[j] && cw->conns[j] == i) { cw->connsenable[j] = 0; HDA_BOOTHVERBOSE( device_printf(devinfo->codec->sc->dev, " Disabling connection from output pin " "nid %d conn %d cnid %d.\n", k, j, i); ); if (cw->type == HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_PIN_COMPLEX && cw->nconns > 1) continue; ctl = hdac_audio_ctl_amp_get(devinfo, k, HDA_CTL_IN, j, 1); if (ctl && ctl->enable) { ctl->forcemute = 1; ctl->muted = HDA_AMP_MUTE_ALL; ctl->left = 0; ctl->right = 0; ctl->enable = 0; } } } } } } } static void hdac_audio_disable_notselected(struct hdac_devinfo *devinfo) { struct hdac_audio_as *as = devinfo->function.audio.as; struct hdac_widget *w; int i, j; /* On playback path we can safely disable all unseleted inputs. */ for (i = devinfo->startnode; i < devinfo->endnode; i++) { w = hdac_widget_get(devinfo, i); if (w == NULL || w->enable == 0) continue; if (w->nconns <= 1) continue; if (w->type == HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_AUDIO_MIXER) continue; if (w->bindas < 0 || as[w->bindas].dir == HDA_CTL_IN) continue; for (j = 0; j < w->nconns; j++) { if (w->connsenable[j] == 0) continue; if (w->selconn < 0 || w->selconn == j) continue; w->connsenable[j] = 0; HDA_BOOTHVERBOSE( device_printf(devinfo->codec->sc->dev, " Disabling unselected connection " "nid %d conn %d.\n", i, j); ); } } } static void hdac_audio_disable_crossas(struct hdac_devinfo *devinfo) { struct hdac_audio_as *ases = devinfo->function.audio.as; struct hdac_widget *w, *cw; struct hdac_audio_ctl *ctl; int i, j; /* Disable crossassociatement and unwanted crosschannel connections. */ /* ... using selectors */ for (i = devinfo->startnode; i < devinfo->endnode; i++) { w = hdac_widget_get(devinfo, i); if (w == NULL || w->enable == 0) continue; if (w->nconns <= 1) continue; if (w->type == HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_AUDIO_MIXER) continue; if (w->bindas == -2) continue; for (j = 0; j < w->nconns; j++) { if (w->connsenable[j] == 0) continue; cw = hdac_widget_get(devinfo, w->conns[j]); if (cw == NULL || w->enable == 0) continue; if (cw->bindas == -2 || ((w->pflags & HDA_ADC_MONITOR) && cw->bindas >= 0 && ases[cw->bindas].dir == HDA_CTL_IN)) continue; if (w->bindas == cw->bindas && (w->bindseqmask & cw->bindseqmask) != 0) continue; w->connsenable[j] = 0; HDA_BOOTHVERBOSE( device_printf(devinfo->codec->sc->dev, " Disabling crossassociatement connection " "nid %d conn %d cnid %d.\n", i, j, cw->nid); ); } } /* ... using controls */ i = 0; while ((ctl = hdac_audio_ctl_each(devinfo, &i)) != NULL) { if (ctl->enable == 0 || ctl->childwidget == NULL) continue; if (ctl->widget->bindas == -2) continue; if (ctl->childwidget->bindas == -2 || ((ctl->widget->pflags & HDA_ADC_MONITOR) && ctl->childwidget->bindas >= 0 && ases[ctl->childwidget->bindas].dir == HDA_CTL_IN)) continue; if (ctl->widget->bindas != ctl->childwidget->bindas || (ctl->widget->bindseqmask & ctl->childwidget->bindseqmask) == 0) { ctl->forcemute = 1; ctl->muted = HDA_AMP_MUTE_ALL; ctl->left = 0; ctl->right = 0; ctl->enable = 0; if (ctl->ndir == HDA_CTL_IN) ctl->widget->connsenable[ctl->index] = 0; HDA_BOOTHVERBOSE( device_printf(devinfo->codec->sc->dev, " Disabling crossassociatement connection " "ctl %d nid %d cnid %d.\n", i, ctl->widget->nid, ctl->childwidget->nid); ); } } } #define HDA_CTL_GIVE(ctl) ((ctl)->step?1:0) /* * Find controls to control amplification for source. */ static int hdac_audio_ctl_source_amp(struct hdac_devinfo *devinfo, nid_t nid, int index, int ossdev, int ctlable, int depth, int need) { struct hdac_widget *w, *wc; struct hdac_audio_ctl *ctl; int i, j, conns = 0, rneed; if (depth > HDA_PARSE_MAXDEPTH) return (need); w = hdac_widget_get(devinfo, nid); if (w == NULL || w->enable == 0) return (need); /* Count number of active inputs. */ if (depth > 0) { for (j = 0; j < w->nconns; j++) { if (w->connsenable[j]) conns++; } } /* If this is not a first step - use input mixer. Pins have common input ctl so care must be taken. */ if (depth > 0 && ctlable && (conns == 1 || w->type != HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_PIN_COMPLEX)) { ctl = hdac_audio_ctl_amp_get(devinfo, w->nid, HDA_CTL_IN, index, 1); if (ctl) { if (HDA_CTL_GIVE(ctl) & need) ctl->ossmask |= (1 << ossdev); else ctl->possmask |= (1 << ossdev); need &= ~HDA_CTL_GIVE(ctl); } } /* If widget has own ossdev - not traverse it. It will be traversed on it's own. */ if (w->ossdev >= 0 && depth > 0) return (need); /* We must not traverse pin */ if ((w->type == HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_AUDIO_INPUT || w->type == HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_PIN_COMPLEX) && depth > 0) return (need); /* record that this widget exports such signal, */ w->ossmask |= (1 << ossdev); /* If signals mixed, we can't assign controls farther. * Ignore this on depth zero. Caller must knows why. * Ignore this for static selectors if this input selected. */ if (conns > 1) ctlable = 0; if (ctlable) { ctl = hdac_audio_ctl_amp_get(devinfo, w->nid, HDA_CTL_OUT, -1, 1); if (ctl) { if (HDA_CTL_GIVE(ctl) & need) ctl->ossmask |= (1 << ossdev); else ctl->possmask |= (1 << ossdev); need &= ~HDA_CTL_GIVE(ctl); } } rneed = 0; for (i = devinfo->startnode; i < devinfo->endnode; i++) { wc = hdac_widget_get(devinfo, i); if (wc == NULL || wc->enable == 0) continue; for (j = 0; j < wc->nconns; j++) { if (wc->connsenable[j] && wc->conns[j] == nid) { rneed |= hdac_audio_ctl_source_amp(devinfo, wc->nid, j, ossdev, ctlable, depth + 1, need); } } } rneed &= need; return (rneed); } /* * Find controls to control amplification for destination. */ static void hdac_audio_ctl_dest_amp(struct hdac_devinfo *devinfo, nid_t nid, int index, int ossdev, int depth, int need) { struct hdac_audio_as *as = devinfo->function.audio.as; struct hdac_widget *w, *wc; struct hdac_audio_ctl *ctl; int i, j, consumers; if (depth > HDA_PARSE_MAXDEPTH) return; w = hdac_widget_get(devinfo, nid); if (w == NULL || w->enable == 0) return; if (depth > 0) { /* If this node produce output for several consumers, we can't touch it. */ consumers = 0; for (i = devinfo->startnode; i < devinfo->endnode; i++) { wc = hdac_widget_get(devinfo, i); if (wc == NULL || wc->enable == 0) continue; for (j = 0; j < wc->nconns; j++) { if (wc->connsenable[j] && wc->conns[j] == nid) consumers++; } } /* The only exception is if real HP redirection is configured and this is a duplication point. XXX: Actually exception is not completely correct. XXX: Duplication point check is not perfect. */ if ((consumers == 2 && (w->bindas < 0 || as[w->bindas].hpredir < 0 || as[w->bindas].fakeredir || (w->bindseqmask & (1 << 15)) == 0)) || consumers > 2) return; /* Else use it's output mixer. */ ctl = hdac_audio_ctl_amp_get(devinfo, w->nid, HDA_CTL_OUT, -1, 1); if (ctl) { if (HDA_CTL_GIVE(ctl) & need) ctl->ossmask |= (1 << ossdev); else ctl->possmask |= (1 << ossdev); need &= ~HDA_CTL_GIVE(ctl); } } /* We must not traverse pin */ if (w->type == HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_PIN_COMPLEX && depth > 0) return; for (i = 0; i < w->nconns; i++) { int tneed = need; if (w->connsenable[i] == 0) continue; if (index >= 0 && i != index) continue; ctl = hdac_audio_ctl_amp_get(devinfo, w->nid, HDA_CTL_IN, i, 1); if (ctl) { if (HDA_CTL_GIVE(ctl) & tneed) ctl->ossmask |= (1 << ossdev); else ctl->possmask |= (1 << ossdev); tneed &= ~HDA_CTL_GIVE(ctl); } hdac_audio_ctl_dest_amp(devinfo, w->conns[i], -1, ossdev, depth + 1, tneed); } } /* * Assign OSS names to sound sources */ static void hdac_audio_assign_names(struct hdac_devinfo *devinfo) { struct hdac_audio_as *as = devinfo->function.audio.as; struct hdac_widget *w; int i, j; int type = -1, use, used = 0; static const int types[7][13] = { { SOUND_MIXER_LINE, SOUND_MIXER_LINE1, SOUND_MIXER_LINE2, SOUND_MIXER_LINE3, -1 }, /* line */ { SOUND_MIXER_MONITOR, SOUND_MIXER_MIC, -1 }, /* int mic */ { SOUND_MIXER_MIC, SOUND_MIXER_MONITOR, -1 }, /* ext mic */ { SOUND_MIXER_CD, -1 }, /* cd */ { SOUND_MIXER_SPEAKER, -1 }, /* speaker */ { SOUND_MIXER_DIGITAL1, SOUND_MIXER_DIGITAL2, SOUND_MIXER_DIGITAL3, -1 }, /* digital */ { SOUND_MIXER_LINE, SOUND_MIXER_LINE1, SOUND_MIXER_LINE2, SOUND_MIXER_LINE3, SOUND_MIXER_PHONEIN, SOUND_MIXER_PHONEOUT, SOUND_MIXER_VIDEO, SOUND_MIXER_RADIO, SOUND_MIXER_DIGITAL1, SOUND_MIXER_DIGITAL2, SOUND_MIXER_DIGITAL3, SOUND_MIXER_MONITOR, -1 } /* others */ }; /* Surely known names */ for (i = devinfo->startnode; i < devinfo->endnode; i++) { w = hdac_widget_get(devinfo, i); if (w == NULL || w->enable == 0) continue; if (w->bindas == -1) continue; use = -1; switch (w->type) { case HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_PIN_COMPLEX: if (as[w->bindas].dir == HDA_CTL_OUT) break; type = -1; switch (w->wclass.pin.config & HDA_CONFIG_DEFAULTCONF_DEVICE_MASK) { case HDA_CONFIG_DEFAULTCONF_DEVICE_LINE_IN: type = 0; break; case HDA_CONFIG_DEFAULTCONF_DEVICE_MIC_IN: if ((w->wclass.pin.config & HDA_CONFIG_DEFAULTCONF_CONNECTIVITY_MASK) == HDA_CONFIG_DEFAULTCONF_CONNECTIVITY_JACK) break; type = 1; break; case HDA_CONFIG_DEFAULTCONF_DEVICE_CD: type = 3; break; case HDA_CONFIG_DEFAULTCONF_DEVICE_SPEAKER: type = 4; break; case HDA_CONFIG_DEFAULTCONF_DEVICE_SPDIF_IN: case HDA_CONFIG_DEFAULTCONF_DEVICE_DIGITAL_OTHER_IN: type = 5; break; } if (type == -1) break; j = 0; while (types[type][j] >= 0 && (used & (1 << types[type][j])) != 0) { j++; } if (types[type][j] >= 0) use = types[type][j]; break; case HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_AUDIO_OUTPUT: use = SOUND_MIXER_PCM; break; case HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_BEEP_WIDGET: use = SOUND_MIXER_SPEAKER; break; default: break; } if (use >= 0) { w->ossdev = use; used |= (1 << use); } } /* Semi-known names */ for (i = devinfo->startnode; i < devinfo->endnode; i++) { w = hdac_widget_get(devinfo, i); if (w == NULL || w->enable == 0) continue; if (w->ossdev >= 0) continue; if (w->bindas == -1) continue; if (w->type != HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_PIN_COMPLEX) continue; if (as[w->bindas].dir == HDA_CTL_OUT) continue; type = -1; switch (w->wclass.pin.config & HDA_CONFIG_DEFAULTCONF_DEVICE_MASK) { case HDA_CONFIG_DEFAULTCONF_DEVICE_LINE_OUT: case HDA_CONFIG_DEFAULTCONF_DEVICE_SPEAKER: case HDA_CONFIG_DEFAULTCONF_DEVICE_HP_OUT: case HDA_CONFIG_DEFAULTCONF_DEVICE_AUX: type = 0; break; case HDA_CONFIG_DEFAULTCONF_DEVICE_MIC_IN: type = 2; break; case HDA_CONFIG_DEFAULTCONF_DEVICE_SPDIF_OUT: case HDA_CONFIG_DEFAULTCONF_DEVICE_DIGITAL_OTHER_OUT: type = 5; break; } if (type == -1) break; j = 0; while (types[type][j] >= 0 && (used & (1 << types[type][j])) != 0) { j++; } if (types[type][j] >= 0) { w->ossdev = types[type][j]; used |= (1 << types[type][j]); } } /* Others */ for (i = devinfo->startnode; i < devinfo->endnode; i++) { w = hdac_widget_get(devinfo, i); if (w == NULL || w->enable == 0) continue; if (w->ossdev >= 0) continue; if (w->bindas == -1) continue; if (w->type != HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_PIN_COMPLEX) continue; if (as[w->bindas].dir == HDA_CTL_OUT) continue; j = 0; while (types[6][j] >= 0 && (used & (1 << types[6][j])) != 0) { j++; } if (types[6][j] >= 0) { w->ossdev = types[6][j]; used |= (1 << types[6][j]); } } } static void hdac_audio_build_tree(struct hdac_devinfo *devinfo) { struct hdac_audio_as *as = devinfo->function.audio.as; int j, res; /* Trace all associations in order of their numbers, */ for (j = 0; j < devinfo->function.audio.ascnt; j++) { if (as[j].enable == 0) continue; HDA_BOOTVERBOSE( device_printf(devinfo->codec->sc->dev, "Tracing association %d (%d)\n", j, as[j].index); ); if (as[j].dir == HDA_CTL_OUT) { retry: res = hdac_audio_trace_as_out(devinfo, j, 0); if (res == 0 && as[j].hpredir >= 0 && as[j].fakeredir == 0) { /* If codec can't do analog HP redirection try to make it using one more DAC. */ as[j].fakeredir = 1; goto retry; } } else { res = hdac_audio_trace_as_in(devinfo, j); } if (res) { HDA_BOOTVERBOSE( device_printf(devinfo->codec->sc->dev, "Association %d (%d) trace succeeded\n", j, as[j].index); ); } else { HDA_BOOTVERBOSE( device_printf(devinfo->codec->sc->dev, "Association %d (%d) trace failed\n", j, as[j].index); ); as[j].enable = 0; } } /* Trace mixer and beeper pseudo associations. */ hdac_audio_trace_as_extra(devinfo); } static void hdac_audio_assign_mixers(struct hdac_devinfo *devinfo) { struct hdac_audio_as *as = devinfo->function.audio.as; struct hdac_audio_ctl *ctl; struct hdac_widget *w, *cw; int i, j; /* Assign mixers to the tree. */ for (i = devinfo->startnode; i < devinfo->endnode; i++) { w = hdac_widget_get(devinfo, i); if (w == NULL || w->enable == 0) continue; if (w->type == HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_AUDIO_OUTPUT || w->type == HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_BEEP_WIDGET || (w->type == HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_PIN_COMPLEX && as[w->bindas].dir == HDA_CTL_IN)) { if (w->ossdev < 0) continue; hdac_audio_ctl_source_amp(devinfo, w->nid, -1, w->ossdev, 1, 0, 1); } else if (w->type == HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_AUDIO_INPUT) { hdac_audio_ctl_dest_amp(devinfo, w->nid, -1, SOUND_MIXER_RECLEV, 0, 1); } else if (w->type == HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_PIN_COMPLEX && as[w->bindas].dir == HDA_CTL_OUT) { hdac_audio_ctl_dest_amp(devinfo, w->nid, -1, SOUND_MIXER_VOLUME, 0, 1); } if (w->ossdev == SOUND_MIXER_IMIX) { if (hdac_audio_ctl_source_amp(devinfo, w->nid, -1, w->ossdev, 1, 0, 1)) { /* If we are unable to control input monitor as source - try to control it as destination. */ hdac_audio_ctl_dest_amp(devinfo, w->nid, -1, w->ossdev, 0, 1); } } if (w->pflags & HDA_ADC_MONITOR) { for (j = 0; j < w->nconns; j++) { if (!w->connsenable[j]) continue; cw = hdac_widget_get(devinfo, w->conns[j]); if (cw == NULL || cw->enable == 0) continue; if (cw->bindas == -1) continue; if (cw->bindas >= 0 && as[cw->bindas].dir != HDA_CTL_IN) continue; hdac_audio_ctl_dest_amp(devinfo, w->nid, j, SOUND_MIXER_IGAIN, 0, 1); } } } /* Treat unrequired as possible. */ i = 0; while ((ctl = hdac_audio_ctl_each(devinfo, &i)) != NULL) { if (ctl->ossmask == 0) ctl->ossmask = ctl->possmask; } } static void hdac_audio_prepare_pin_ctrl(struct hdac_devinfo *devinfo) { struct hdac_audio_as *as = devinfo->function.audio.as; struct hdac_widget *w; uint32_t pincap; int i; for (i = 0; i < devinfo->nodecnt; i++) { w = &devinfo->widget[i]; if (w == NULL) continue; if (w->type != HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_PIN_COMPLEX) continue; pincap = w->wclass.pin.cap; /* Disable everything. */ w->wclass.pin.ctrl &= ~( HDA_CMD_SET_PIN_WIDGET_CTRL_HPHN_ENABLE | HDA_CMD_SET_PIN_WIDGET_CTRL_OUT_ENABLE | HDA_CMD_SET_PIN_WIDGET_CTRL_IN_ENABLE | HDA_CMD_SET_PIN_WIDGET_CTRL_VREF_ENABLE_MASK); if (w->enable == 0 || w->bindas < 0 || as[w->bindas].enable == 0) { /* Pin is unused so left it disabled. */ continue; } else if (as[w->bindas].dir == HDA_CTL_IN) { /* Input pin, configure for input. */ if (HDA_PARAM_PIN_CAP_INPUT_CAP(pincap)) w->wclass.pin.ctrl |= HDA_CMD_SET_PIN_WIDGET_CTRL_IN_ENABLE; if ((devinfo->function.audio.quirks & HDA_QUIRK_IVREF100) && HDA_PARAM_PIN_CAP_VREF_CTRL_100(pincap)) w->wclass.pin.ctrl |= HDA_CMD_SET_PIN_WIDGET_CTRL_VREF_ENABLE( HDA_CMD_PIN_WIDGET_CTRL_VREF_ENABLE_100); else if ((devinfo->function.audio.quirks & HDA_QUIRK_IVREF80) && HDA_PARAM_PIN_CAP_VREF_CTRL_80(pincap)) w->wclass.pin.ctrl |= HDA_CMD_SET_PIN_WIDGET_CTRL_VREF_ENABLE( HDA_CMD_PIN_WIDGET_CTRL_VREF_ENABLE_80); else if ((devinfo->function.audio.quirks & HDA_QUIRK_IVREF50) && HDA_PARAM_PIN_CAP_VREF_CTRL_50(pincap)) w->wclass.pin.ctrl |= HDA_CMD_SET_PIN_WIDGET_CTRL_VREF_ENABLE( HDA_CMD_PIN_WIDGET_CTRL_VREF_ENABLE_50); } else { /* Output pin, configure for output. */ if (HDA_PARAM_PIN_CAP_OUTPUT_CAP(pincap)) w->wclass.pin.ctrl |= HDA_CMD_SET_PIN_WIDGET_CTRL_OUT_ENABLE; if (HDA_PARAM_PIN_CAP_HEADPHONE_CAP(pincap) && (w->wclass.pin.config & HDA_CONFIG_DEFAULTCONF_DEVICE_MASK) == HDA_CONFIG_DEFAULTCONF_DEVICE_HP_OUT) w->wclass.pin.ctrl |= HDA_CMD_SET_PIN_WIDGET_CTRL_HPHN_ENABLE; if ((devinfo->function.audio.quirks & HDA_QUIRK_OVREF100) && HDA_PARAM_PIN_CAP_VREF_CTRL_100(pincap)) w->wclass.pin.ctrl |= HDA_CMD_SET_PIN_WIDGET_CTRL_VREF_ENABLE( HDA_CMD_PIN_WIDGET_CTRL_VREF_ENABLE_100); else if ((devinfo->function.audio.quirks & HDA_QUIRK_OVREF80) && HDA_PARAM_PIN_CAP_VREF_CTRL_80(pincap)) w->wclass.pin.ctrl |= HDA_CMD_SET_PIN_WIDGET_CTRL_VREF_ENABLE( HDA_CMD_PIN_WIDGET_CTRL_VREF_ENABLE_80); else if ((devinfo->function.audio.quirks & HDA_QUIRK_OVREF50) && HDA_PARAM_PIN_CAP_VREF_CTRL_50(pincap)) w->wclass.pin.ctrl |= HDA_CMD_SET_PIN_WIDGET_CTRL_VREF_ENABLE( HDA_CMD_PIN_WIDGET_CTRL_VREF_ENABLE_50); } } } static void hdac_audio_ctl_commit(struct hdac_devinfo *devinfo) { struct hdac_audio_ctl *ctl; int i, z; i = 0; while ((ctl = hdac_audio_ctl_each(devinfo, &i)) != NULL) { if (ctl->enable == 0 || ctl->ossmask != 0) { /* Mute disabled and mixer controllable controls. * Last will be initialized by mixer_init(). * This expected to reduce click on startup. */ hdac_audio_ctl_amp_set(ctl, HDA_AMP_MUTE_ALL, 0, 0); continue; } /* Init fixed controls to 0dB amplification. */ z = ctl->offset; if (z > ctl->step) z = ctl->step; hdac_audio_ctl_amp_set(ctl, HDA_AMP_MUTE_NONE, z, z); } } static void hdac_audio_commit(struct hdac_devinfo *devinfo) { struct hdac_softc *sc = devinfo->codec->sc; struct hdac_widget *w; nid_t cad; uint32_t gdata, gmask, gdir; int commitgpio, numgpio; int i; cad = devinfo->codec->cad; if (sc->pci_subvendor == APPLE_INTEL_MAC) hdac_command(sc, HDA_CMD_12BIT(cad, devinfo->nid, 0x7e7, 0), cad); /* Commit controls. */ hdac_audio_ctl_commit(devinfo); /* Commit selectors, pins and EAPD. */ for (i = 0; i < devinfo->nodecnt; i++) { w = &devinfo->widget[i]; if (w == NULL) continue; if (w->selconn == -1) w->selconn = 0; if (w->nconns > 0) hdac_widget_connection_select(w, w->selconn); if (w->type == HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_PIN_COMPLEX) { hdac_command(sc, HDA_CMD_SET_PIN_WIDGET_CTRL(cad, w->nid, w->wclass.pin.ctrl), cad); } if (w->param.eapdbtl != HDAC_INVALID) { uint32_t val; val = w->param.eapdbtl; if (devinfo->function.audio.quirks & HDA_QUIRK_EAPDINV) val ^= HDA_CMD_SET_EAPD_BTL_ENABLE_EAPD; hdac_command(sc, HDA_CMD_SET_EAPD_BTL_ENABLE(cad, w->nid, val), cad); } } /* Commit GPIOs. */ gdata = 0; gmask = 0; gdir = 0; commitgpio = 0; numgpio = HDA_PARAM_GPIO_COUNT_NUM_GPIO( devinfo->function.audio.gpio); if (devinfo->function.audio.quirks & HDA_QUIRK_GPIOFLUSH) commitgpio = (numgpio > 0) ? 1 : 0; else { for (i = 0; i < numgpio && i < HDA_GPIO_MAX; i++) { if (!(devinfo->function.audio.quirks & (1 << i))) continue; if (commitgpio == 0) { commitgpio = 1; HDA_BOOTVERBOSE( gdata = hdac_command(sc, HDA_CMD_GET_GPIO_DATA(cad, devinfo->nid), cad); gmask = hdac_command(sc, HDA_CMD_GET_GPIO_ENABLE_MASK(cad, devinfo->nid), cad); gdir = hdac_command(sc, HDA_CMD_GET_GPIO_DIRECTION(cad, devinfo->nid), cad); device_printf(sc->dev, "GPIO init: data=0x%08x " "mask=0x%08x dir=0x%08x\n", gdata, gmask, gdir); gdata = 0; gmask = 0; gdir = 0; ); } gdata |= 1 << i; gmask |= 1 << i; gdir |= 1 << i; } } if (commitgpio != 0) { HDA_BOOTVERBOSE( device_printf(sc->dev, "GPIO commit: data=0x%08x mask=0x%08x " "dir=0x%08x\n", gdata, gmask, gdir); ); hdac_command(sc, HDA_CMD_SET_GPIO_ENABLE_MASK(cad, devinfo->nid, gmask), cad); hdac_command(sc, HDA_CMD_SET_GPIO_DIRECTION(cad, devinfo->nid, gdir), cad); hdac_command(sc, HDA_CMD_SET_GPIO_DATA(cad, devinfo->nid, gdata), cad); } } static void hdac_powerup(struct hdac_devinfo *devinfo) { struct hdac_softc *sc = devinfo->codec->sc; nid_t cad = devinfo->codec->cad; int i; hdac_command(sc, HDA_CMD_SET_POWER_STATE(cad, devinfo->nid, HDA_CMD_POWER_STATE_D0), cad); DELAY(100); for (i = devinfo->startnode; i < devinfo->endnode; i++) { hdac_command(sc, HDA_CMD_SET_POWER_STATE(cad, i, HDA_CMD_POWER_STATE_D0), cad); } DELAY(1000); } static int hdac_pcmchannel_setup(struct hdac_chan *ch) { struct hdac_devinfo *devinfo = ch->devinfo; struct hdac_audio_as *as = devinfo->function.audio.as; struct hdac_widget *w; uint32_t cap, fmtcap, pcmcap; int i, j, ret, channels, onlystereo; uint16_t pinset; ch->caps = hdac_caps; ch->caps.fmtlist = ch->fmtlist; ch->bit16 = 1; ch->bit32 = 0; ch->pcmrates[0] = 48000; ch->pcmrates[1] = 0; ret = 0; channels = 0; onlystereo = 1; pinset = 0; fmtcap = devinfo->function.audio.supp_stream_formats; pcmcap = devinfo->function.audio.supp_pcm_size_rate; for (i = 0; i < 16; i++) { /* Check as is correct */ if (ch->as < 0) break; /* Cound only present DACs */ if (as[ch->as].dacs[i] <= 0) continue; /* Ignore duplicates */ for (j = 0; j < ret; j++) { if (ch->io[j] == as[ch->as].dacs[i]) break; } if (j < ret) continue; w = hdac_widget_get(devinfo, as[ch->as].dacs[i]); if (w == NULL || w->enable == 0) continue; cap = w->param.supp_stream_formats; if (!HDA_PARAM_SUPP_STREAM_FORMATS_PCM(cap) && !HDA_PARAM_SUPP_STREAM_FORMATS_AC3(cap)) continue; /* Many CODECs does not declare AC3 support on SPDIF. I don't beleave that they doesn't support it! */ if (HDA_PARAM_AUDIO_WIDGET_CAP_DIGITAL(w->param.widget_cap)) cap |= HDA_PARAM_SUPP_STREAM_FORMATS_AC3_MASK; if (ret == 0) { fmtcap = cap; pcmcap = w->param.supp_pcm_size_rate; } else { fmtcap &= cap; pcmcap &= w->param.supp_pcm_size_rate; } ch->io[ret++] = as[ch->as].dacs[i]; /* Do not count redirection pin/dac channels. */ if (i == 15 && as[ch->as].hpredir >= 0) continue; channels += HDA_PARAM_AUDIO_WIDGET_CAP_CC(w->param.widget_cap) + 1; if (HDA_PARAM_AUDIO_WIDGET_CAP_CC(w->param.widget_cap) != 1) onlystereo = 0; pinset |= (1 << i); } ch->io[ret] = -1; if (as[ch->as].fakeredir) ret--; /* Standard speaks only about stereo pins and playback, ... */ if ((!onlystereo) || as[ch->as].dir != HDA_CTL_OUT) pinset = 0; /* ..., but there it gives us info about speakers layout. */ as[ch->as].pinset = pinset; ch->supp_stream_formats = fmtcap; ch->supp_pcm_size_rate = pcmcap; /* * 8bit = 0 * 16bit = 1 * 20bit = 2 * 24bit = 3 * 32bit = 4 */ if (ret > 0) { i = 0; if (HDA_PARAM_SUPP_STREAM_FORMATS_PCM(fmtcap)) { if (HDA_PARAM_SUPP_PCM_SIZE_RATE_16BIT(pcmcap)) ch->bit16 = 1; else if (HDA_PARAM_SUPP_PCM_SIZE_RATE_8BIT(pcmcap)) ch->bit16 = 0; if (HDA_PARAM_SUPP_PCM_SIZE_RATE_32BIT(pcmcap)) ch->bit32 = 4; else if (HDA_PARAM_SUPP_PCM_SIZE_RATE_24BIT(pcmcap)) ch->bit32 = 3; else if (HDA_PARAM_SUPP_PCM_SIZE_RATE_20BIT(pcmcap)) ch->bit32 = 2; if (!(devinfo->function.audio.quirks & HDA_QUIRK_FORCESTEREO)) { ch->fmtlist[i++] = SND_FORMAT(AFMT_S16_LE, 1, 0); if (ch->bit32) ch->fmtlist[i++] = SND_FORMAT(AFMT_S32_LE, 1, 0); } if (channels >= 2) { ch->fmtlist[i++] = SND_FORMAT(AFMT_S16_LE, 2, 0); if (ch->bit32) ch->fmtlist[i++] = SND_FORMAT(AFMT_S32_LE, 2, 0); } if (channels == 4 || /* Any 4-channel */ pinset == 0x0007 || /* 5.1 */ pinset == 0x0013 || /* 5.1 */ pinset == 0x0017) { /* 7.1 */ ch->fmtlist[i++] = SND_FORMAT(AFMT_S16_LE, 4, 0); if (ch->bit32) ch->fmtlist[i++] = SND_FORMAT(AFMT_S32_LE, 4, 0); } if (channels == 6 || /* Any 6-channel */ pinset == 0x0017) { /* 7.1 */ ch->fmtlist[i++] = SND_FORMAT(AFMT_S16_LE, 6, 1); if (ch->bit32) ch->fmtlist[i++] = SND_FORMAT(AFMT_S32_LE, 6, 1); } if (channels == 8) { /* Any 8-channel */ ch->fmtlist[i++] = SND_FORMAT(AFMT_S16_LE, 8, 1); if (ch->bit32) ch->fmtlist[i++] = SND_FORMAT(AFMT_S32_LE, 8, 1); } } if (HDA_PARAM_SUPP_STREAM_FORMATS_AC3(fmtcap)) { ch->fmtlist[i++] = SND_FORMAT(AFMT_AC3, 2, 0); } ch->fmtlist[i] = 0; i = 0; if (HDA_PARAM_SUPP_PCM_SIZE_RATE_8KHZ(pcmcap)) ch->pcmrates[i++] = 8000; if (HDA_PARAM_SUPP_PCM_SIZE_RATE_11KHZ(pcmcap)) ch->pcmrates[i++] = 11025; if (HDA_PARAM_SUPP_PCM_SIZE_RATE_16KHZ(pcmcap)) ch->pcmrates[i++] = 16000; if (HDA_PARAM_SUPP_PCM_SIZE_RATE_22KHZ(pcmcap)) ch->pcmrates[i++] = 22050; if (HDA_PARAM_SUPP_PCM_SIZE_RATE_32KHZ(pcmcap)) ch->pcmrates[i++] = 32000; if (HDA_PARAM_SUPP_PCM_SIZE_RATE_44KHZ(pcmcap)) ch->pcmrates[i++] = 44100; /* if (HDA_PARAM_SUPP_PCM_SIZE_RATE_48KHZ(pcmcap)) */ ch->pcmrates[i++] = 48000; if (HDA_PARAM_SUPP_PCM_SIZE_RATE_88KHZ(pcmcap)) ch->pcmrates[i++] = 88200; if (HDA_PARAM_SUPP_PCM_SIZE_RATE_96KHZ(pcmcap)) ch->pcmrates[i++] = 96000; if (HDA_PARAM_SUPP_PCM_SIZE_RATE_176KHZ(pcmcap)) ch->pcmrates[i++] = 176400; if (HDA_PARAM_SUPP_PCM_SIZE_RATE_192KHZ(pcmcap)) ch->pcmrates[i++] = 192000; /* if (HDA_PARAM_SUPP_PCM_SIZE_RATE_384KHZ(pcmcap)) */ ch->pcmrates[i] = 0; if (i > 0) { ch->caps.minspeed = ch->pcmrates[0]; ch->caps.maxspeed = ch->pcmrates[i - 1]; } } return (ret); } static void hdac_create_pcms(struct hdac_devinfo *devinfo) { struct hdac_softc *sc = devinfo->codec->sc; struct hdac_audio_as *as = devinfo->function.audio.as; int i, j, apdev = 0, ardev = 0, dpdev = 0, drdev = 0; for (i = 0; i < devinfo->function.audio.ascnt; i++) { if (as[i].enable == 0) continue; if (as[i].dir == HDA_CTL_IN) { if (as[i].digital) drdev++; else ardev++; } else { if (as[i].digital) dpdev++; else apdev++; } } devinfo->function.audio.num_devs = max(ardev, apdev) + max(drdev, dpdev); devinfo->function.audio.devs = (struct hdac_pcm_devinfo *)malloc( devinfo->function.audio.num_devs * sizeof(struct hdac_pcm_devinfo), M_HDAC, M_ZERO | M_NOWAIT); if (devinfo->function.audio.devs == NULL) { device_printf(sc->dev, "Unable to allocate memory for devices\n"); return; } for (i = 0; i < devinfo->function.audio.num_devs; i++) { devinfo->function.audio.devs[i].index = i; devinfo->function.audio.devs[i].devinfo = devinfo; devinfo->function.audio.devs[i].play = -1; devinfo->function.audio.devs[i].rec = -1; devinfo->function.audio.devs[i].digital = 255; } for (i = 0; i < devinfo->function.audio.ascnt; i++) { if (as[i].enable == 0) continue; for (j = 0; j < devinfo->function.audio.num_devs; j++) { if (devinfo->function.audio.devs[j].digital != 255 && (!devinfo->function.audio.devs[j].digital) != (!as[i].digital)) continue; if (as[i].dir == HDA_CTL_IN) { if (devinfo->function.audio.devs[j].rec >= 0) continue; devinfo->function.audio.devs[j].rec = as[i].chan; } else { if (devinfo->function.audio.devs[j].play >= 0) continue; devinfo->function.audio.devs[j].play = as[i].chan; } sc->chans[as[i].chan].pdevinfo = &devinfo->function.audio.devs[j]; devinfo->function.audio.devs[j].digital = as[i].digital; break; } } for (i = 0; i < devinfo->function.audio.num_devs; i++) { struct hdac_pcm_devinfo *pdevinfo = &devinfo->function.audio.devs[i]; pdevinfo->dev = device_add_child(sc->dev, "pcm", -1); device_set_ivars(pdevinfo->dev, (void *)pdevinfo); } } static void hdac_dump_ctls(struct hdac_pcm_devinfo *pdevinfo, const char *banner, uint32_t flag) { struct hdac_devinfo *devinfo = pdevinfo->devinfo; struct hdac_audio_ctl *ctl; struct hdac_softc *sc = devinfo->codec->sc; char buf[64]; int i, j, printed; if (flag == 0) { flag = ~(SOUND_MASK_VOLUME | SOUND_MASK_PCM | SOUND_MASK_CD | SOUND_MASK_LINE | SOUND_MASK_RECLEV | SOUND_MASK_MIC | SOUND_MASK_SPEAKER | SOUND_MASK_IGAIN | SOUND_MASK_OGAIN | SOUND_MASK_IMIX | SOUND_MASK_MONITOR); } for (j = 0; j < SOUND_MIXER_NRDEVICES; j++) { if ((flag & (1 << j)) == 0) continue; i = 0; printed = 0; while ((ctl = hdac_audio_ctl_each(devinfo, &i)) != NULL) { if (ctl->enable == 0 || ctl->widget->enable == 0) continue; if (!((pdevinfo->play >= 0 && ctl->widget->bindas == sc->chans[pdevinfo->play].as) || (pdevinfo->rec >= 0 && ctl->widget->bindas == sc->chans[pdevinfo->rec].as) || (ctl->widget->bindas == -2 && pdevinfo->index == 0))) continue; if ((ctl->ossmask & (1 << j)) == 0) continue; if (printed == 0) { device_printf(pdevinfo->dev, "\n"); if (banner != NULL) { device_printf(pdevinfo->dev, "%s", banner); } else { device_printf(pdevinfo->dev, "Unknown Ctl"); } printf(" (OSS: %s)\n", hdac_audio_ctl_ossmixer_mask2allname(1 << j, buf, sizeof(buf))); device_printf(pdevinfo->dev, " |\n"); printed = 1; } device_printf(pdevinfo->dev, " +- ctl %2d (nid %3d %s", i, ctl->widget->nid, (ctl->ndir == HDA_CTL_IN)?"in ":"out"); if (ctl->ndir == HDA_CTL_IN && ctl->ndir == ctl->dir) printf(" %2d): ", ctl->index); else printf("): "); if (ctl->step > 0) { printf("%+d/%+ddB (%d steps)%s\n", (0 - ctl->offset) * (ctl->size + 1) / 4, (ctl->step - ctl->offset) * (ctl->size + 1) / 4, ctl->step + 1, ctl->mute?" + mute":""); } else printf("%s\n", ctl->mute?"mute":""); } } } static void hdac_dump_audio_formats(device_t dev, uint32_t fcap, uint32_t pcmcap) { uint32_t cap; cap = fcap; if (cap != 0) { device_printf(dev, " Stream cap: 0x%08x\n", cap); device_printf(dev, " "); if (HDA_PARAM_SUPP_STREAM_FORMATS_AC3(cap)) printf(" AC3"); if (HDA_PARAM_SUPP_STREAM_FORMATS_FLOAT32(cap)) printf(" FLOAT32"); if (HDA_PARAM_SUPP_STREAM_FORMATS_PCM(cap)) printf(" PCM"); printf("\n"); } cap = pcmcap; if (cap != 0) { device_printf(dev, " PCM cap: 0x%08x\n", cap); device_printf(dev, " "); if (HDA_PARAM_SUPP_PCM_SIZE_RATE_8BIT(cap)) printf(" 8"); if (HDA_PARAM_SUPP_PCM_SIZE_RATE_16BIT(cap)) printf(" 16"); if (HDA_PARAM_SUPP_PCM_SIZE_RATE_20BIT(cap)) printf(" 20"); if (HDA_PARAM_SUPP_PCM_SIZE_RATE_24BIT(cap)) printf(" 24"); if (HDA_PARAM_SUPP_PCM_SIZE_RATE_32BIT(cap)) printf(" 32"); printf(" bits,"); if (HDA_PARAM_SUPP_PCM_SIZE_RATE_8KHZ(cap)) printf(" 8"); if (HDA_PARAM_SUPP_PCM_SIZE_RATE_11KHZ(cap)) printf(" 11"); if (HDA_PARAM_SUPP_PCM_SIZE_RATE_16KHZ(cap)) printf(" 16"); if (HDA_PARAM_SUPP_PCM_SIZE_RATE_22KHZ(cap)) printf(" 22"); if (HDA_PARAM_SUPP_PCM_SIZE_RATE_32KHZ(cap)) printf(" 32"); if (HDA_PARAM_SUPP_PCM_SIZE_RATE_44KHZ(cap)) printf(" 44"); printf(" 48"); if (HDA_PARAM_SUPP_PCM_SIZE_RATE_88KHZ(cap)) printf(" 88"); if (HDA_PARAM_SUPP_PCM_SIZE_RATE_96KHZ(cap)) printf(" 96"); if (HDA_PARAM_SUPP_PCM_SIZE_RATE_176KHZ(cap)) printf(" 176"); if (HDA_PARAM_SUPP_PCM_SIZE_RATE_192KHZ(cap)) printf(" 192"); printf(" KHz\n"); } } static void hdac_dump_pin(struct hdac_softc *sc, struct hdac_widget *w) { uint32_t pincap; pincap = w->wclass.pin.cap; device_printf(sc->dev, " Pin cap: 0x%08x\n", pincap); device_printf(sc->dev, " "); if (HDA_PARAM_PIN_CAP_IMP_SENSE_CAP(pincap)) printf(" ISC"); if (HDA_PARAM_PIN_CAP_TRIGGER_REQD(pincap)) printf(" TRQD"); if (HDA_PARAM_PIN_CAP_PRESENCE_DETECT_CAP(pincap)) printf(" PDC"); if (HDA_PARAM_PIN_CAP_HEADPHONE_CAP(pincap)) printf(" HP"); if (HDA_PARAM_PIN_CAP_OUTPUT_CAP(pincap)) printf(" OUT"); if (HDA_PARAM_PIN_CAP_INPUT_CAP(pincap)) printf(" IN"); if (HDA_PARAM_PIN_CAP_BALANCED_IO_PINS(pincap)) printf(" BAL"); if (HDA_PARAM_PIN_CAP_HDMI(pincap)) printf(" HDMI"); if (HDA_PARAM_PIN_CAP_VREF_CTRL(pincap)) { printf(" VREF["); if (HDA_PARAM_PIN_CAP_VREF_CTRL_50(pincap)) printf(" 50"); if (HDA_PARAM_PIN_CAP_VREF_CTRL_80(pincap)) printf(" 80"); if (HDA_PARAM_PIN_CAP_VREF_CTRL_100(pincap)) printf(" 100"); if (HDA_PARAM_PIN_CAP_VREF_CTRL_GROUND(pincap)) printf(" GROUND"); if (HDA_PARAM_PIN_CAP_VREF_CTRL_HIZ(pincap)) printf(" HIZ"); printf(" ]"); } if (HDA_PARAM_PIN_CAP_EAPD_CAP(pincap)) printf(" EAPD"); if (HDA_PARAM_PIN_CAP_DP(pincap)) printf(" DP"); if (HDA_PARAM_PIN_CAP_HBR(pincap)) printf(" HBR"); printf("\n"); device_printf(sc->dev, " Pin config: 0x%08x\n", w->wclass.pin.config); device_printf(sc->dev, " Pin control: 0x%08x", w->wclass.pin.ctrl); if (w->wclass.pin.ctrl & HDA_CMD_SET_PIN_WIDGET_CTRL_HPHN_ENABLE) printf(" HP"); if (w->wclass.pin.ctrl & HDA_CMD_SET_PIN_WIDGET_CTRL_IN_ENABLE) printf(" IN"); if (w->wclass.pin.ctrl & HDA_CMD_SET_PIN_WIDGET_CTRL_OUT_ENABLE) printf(" OUT"); if (w->wclass.pin.ctrl & HDA_CMD_SET_PIN_WIDGET_CTRL_VREF_ENABLE_MASK) printf(" VREFs"); printf("\n"); } static void hdac_dump_pin_config(struct hdac_widget *w, uint32_t conf) { struct hdac_softc *sc = w->devinfo->codec->sc; device_printf(sc->dev, " nid %d 0x%08x as %2d seq %2d %13s %5s " "jack %2d loc %2d color %7s misc %d%s\n", w->nid, conf, HDA_CONFIG_DEFAULTCONF_ASSOCIATION(conf), HDA_CONFIG_DEFAULTCONF_SEQUENCE(conf), HDA_DEVS[HDA_CONFIG_DEFAULTCONF_DEVICE(conf)], HDA_CONNS[HDA_CONFIG_DEFAULTCONF_CONNECTIVITY(conf)], HDA_CONFIG_DEFAULTCONF_CONNECTION_TYPE(conf), HDA_CONFIG_DEFAULTCONF_LOCATION(conf), HDA_COLORS[HDA_CONFIG_DEFAULTCONF_COLOR(conf)], HDA_CONFIG_DEFAULTCONF_MISC(conf), (w->enable == 0)?" [DISABLED]":""); } static void hdac_dump_pin_configs(struct hdac_devinfo *devinfo) { struct hdac_widget *w; int i; for (i = devinfo->startnode; i < devinfo->endnode; i++) { w = hdac_widget_get(devinfo, i); if (w == NULL) continue; if (w->type != HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_PIN_COMPLEX) continue; hdac_dump_pin_config(w, w->wclass.pin.config); } } static void hdac_dump_amp(struct hdac_softc *sc, uint32_t cap, char *banner) { device_printf(sc->dev, " %s amp: 0x%08x\n", banner, cap); device_printf(sc->dev, " " "mute=%d step=%d size=%d offset=%d\n", HDA_PARAM_OUTPUT_AMP_CAP_MUTE_CAP(cap), HDA_PARAM_OUTPUT_AMP_CAP_NUMSTEPS(cap), HDA_PARAM_OUTPUT_AMP_CAP_STEPSIZE(cap), HDA_PARAM_OUTPUT_AMP_CAP_OFFSET(cap)); } static void hdac_dump_nodes(struct hdac_devinfo *devinfo) { struct hdac_softc *sc = devinfo->codec->sc; static char *ossname[] = SOUND_DEVICE_NAMES; struct hdac_widget *w, *cw; char buf[64]; int i, j; device_printf(sc->dev, "\n"); device_printf(sc->dev, "Default Parameter\n"); device_printf(sc->dev, "-----------------\n"); hdac_dump_audio_formats(sc->dev, devinfo->function.audio.supp_stream_formats, devinfo->function.audio.supp_pcm_size_rate); device_printf(sc->dev, " IN amp: 0x%08x\n", devinfo->function.audio.inamp_cap); device_printf(sc->dev, " OUT amp: 0x%08x\n", devinfo->function.audio.outamp_cap); for (i = devinfo->startnode; i < devinfo->endnode; i++) { w = hdac_widget_get(devinfo, i); if (w == NULL) { device_printf(sc->dev, "Ghost widget nid=%d\n", i); continue; } device_printf(sc->dev, "\n"); device_printf(sc->dev, " nid: %d%s\n", w->nid, (w->enable == 0) ? " [DISABLED]" : ""); device_printf(sc->dev, " Name: %s\n", w->name); device_printf(sc->dev, " Widget cap: 0x%08x\n", w->param.widget_cap); if (w->param.widget_cap & 0x0ee1) { device_printf(sc->dev, " "); if (HDA_PARAM_AUDIO_WIDGET_CAP_LR_SWAP(w->param.widget_cap)) printf(" LRSWAP"); if (HDA_PARAM_AUDIO_WIDGET_CAP_POWER_CTRL(w->param.widget_cap)) printf(" PWR"); if (HDA_PARAM_AUDIO_WIDGET_CAP_DIGITAL(w->param.widget_cap)) printf(" DIGITAL"); if (HDA_PARAM_AUDIO_WIDGET_CAP_UNSOL_CAP(w->param.widget_cap)) printf(" UNSOL"); if (HDA_PARAM_AUDIO_WIDGET_CAP_PROC_WIDGET(w->param.widget_cap)) printf(" PROC"); if (HDA_PARAM_AUDIO_WIDGET_CAP_STRIPE(w->param.widget_cap)) printf(" STRIPE"); j = HDA_PARAM_AUDIO_WIDGET_CAP_CC(w->param.widget_cap); if (j == 1) printf(" STEREO"); else if (j > 1) printf(" %dCH", j + 1); printf("\n"); } if (w->bindas != -1) { device_printf(sc->dev, " Association: %d (0x%08x)\n", w->bindas, w->bindseqmask); } if (w->ossmask != 0 || w->ossdev >= 0) { device_printf(sc->dev, " OSS: %s", hdac_audio_ctl_ossmixer_mask2allname(w->ossmask, buf, sizeof(buf))); if (w->ossdev >= 0) printf(" (%s)", ossname[w->ossdev]); printf("\n"); } if (w->type == HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_AUDIO_OUTPUT || w->type == HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_AUDIO_INPUT) { hdac_dump_audio_formats(sc->dev, w->param.supp_stream_formats, w->param.supp_pcm_size_rate); } else if (w->type == HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_PIN_COMPLEX) hdac_dump_pin(sc, w); if (w->param.eapdbtl != HDAC_INVALID) device_printf(sc->dev, " EAPD: 0x%08x\n", w->param.eapdbtl); if (HDA_PARAM_AUDIO_WIDGET_CAP_OUT_AMP(w->param.widget_cap) && w->param.outamp_cap != 0) hdac_dump_amp(sc, w->param.outamp_cap, "Output"); if (HDA_PARAM_AUDIO_WIDGET_CAP_IN_AMP(w->param.widget_cap) && w->param.inamp_cap != 0) hdac_dump_amp(sc, w->param.inamp_cap, " Input"); if (w->nconns > 0) { device_printf(sc->dev, " connections: %d\n", w->nconns); device_printf(sc->dev, " |\n"); } for (j = 0; j < w->nconns; j++) { cw = hdac_widget_get(devinfo, w->conns[j]); device_printf(sc->dev, " + %s<- nid=%d [%s]", (w->connsenable[j] == 0)?"[DISABLED] ":"", w->conns[j], (cw == NULL) ? "GHOST!" : cw->name); if (cw == NULL) printf(" [UNKNOWN]"); else if (cw->enable == 0) printf(" [DISABLED]"); if (w->nconns > 1 && w->selconn == j && w->type != HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_AUDIO_MIXER) printf(" (selected)"); printf("\n"); } } } static void hdac_dump_dst_nid(struct hdac_pcm_devinfo *pdevinfo, nid_t nid, int depth) { struct hdac_devinfo *devinfo = pdevinfo->devinfo; struct hdac_widget *w, *cw; char buf[64]; int i, printed = 0; if (depth > HDA_PARSE_MAXDEPTH) return; w = hdac_widget_get(devinfo, nid); if (w == NULL || w->enable == 0) return; if (depth == 0) device_printf(pdevinfo->dev, "%*s", 4, ""); else device_printf(pdevinfo->dev, "%*s + <- ", 4 + (depth - 1) * 7, ""); printf("nid=%d [%s]", w->nid, w->name); if (depth > 0) { if (w->ossmask == 0) { printf("\n"); return; } printf(" [src: %s]", hdac_audio_ctl_ossmixer_mask2allname( w->ossmask, buf, sizeof(buf))); if (w->ossdev >= 0) { printf("\n"); return; } } printf("\n"); for (i = 0; i < w->nconns; i++) { if (w->connsenable[i] == 0) continue; cw = hdac_widget_get(devinfo, w->conns[i]); if (cw == NULL || cw->enable == 0 || cw->bindas == -1) continue; if (printed == 0) { device_printf(pdevinfo->dev, "%*s |\n", 4 + (depth) * 7, ""); printed = 1; } hdac_dump_dst_nid(pdevinfo, w->conns[i], depth + 1); } } static void hdac_dump_dac(struct hdac_pcm_devinfo *pdevinfo) { struct hdac_devinfo *devinfo = pdevinfo->devinfo; struct hdac_softc *sc = devinfo->codec->sc; struct hdac_audio_as *as; struct hdac_widget *w; int i, printed = 0; if (pdevinfo->play < 0) return; as = &devinfo->function.audio.as[sc->chans[pdevinfo->play].as]; for (i = 0; i < 16; i++) { if (as->pins[i] <= 0) continue; w = hdac_widget_get(devinfo, as->pins[i]); if (w == NULL || w->enable == 0) continue; if (printed == 0) { printed = 1; device_printf(pdevinfo->dev, "\n"); device_printf(pdevinfo->dev, "Playback:\n"); } device_printf(pdevinfo->dev, "\n"); hdac_dump_dst_nid(pdevinfo, as->pins[i], 0); } } static void hdac_dump_adc(struct hdac_pcm_devinfo *pdevinfo) { struct hdac_devinfo *devinfo = pdevinfo->devinfo; struct hdac_softc *sc = devinfo->codec->sc; struct hdac_widget *w; int i; int printed = 0; if (pdevinfo->rec < 0) return; for (i = devinfo->startnode; i < devinfo->endnode; i++) { w = hdac_widget_get(devinfo, i); if (w == NULL || w->enable == 0) continue; if (w->type != HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_AUDIO_INPUT) continue; if (w->bindas != sc->chans[pdevinfo->rec].as) continue; if (printed == 0) { printed = 1; device_printf(pdevinfo->dev, "\n"); device_printf(pdevinfo->dev, "Record:\n"); } device_printf(pdevinfo->dev, "\n"); hdac_dump_dst_nid(pdevinfo, i, 0); } } static void hdac_dump_mix(struct hdac_pcm_devinfo *pdevinfo) { struct hdac_devinfo *devinfo = pdevinfo->devinfo; struct hdac_widget *w; int i; int printed = 0; if (pdevinfo->index != 0) return; for (i = devinfo->startnode; i < devinfo->endnode; i++) { w = hdac_widget_get(devinfo, i); if (w == NULL || w->enable == 0) continue; if (w->ossdev != SOUND_MIXER_IMIX) continue; if (printed == 0) { printed = 1; device_printf(pdevinfo->dev, "\n"); device_printf(pdevinfo->dev, "Input Mix:\n"); } device_printf(pdevinfo->dev, "\n"); hdac_dump_dst_nid(pdevinfo, i, 0); } } static void hdac_dump_pcmchannels(struct hdac_pcm_devinfo *pdevinfo) { struct hdac_softc *sc = pdevinfo->devinfo->codec->sc; nid_t *nids; int i; if (pdevinfo->play >= 0) { i = pdevinfo->play; device_printf(pdevinfo->dev, "\n"); device_printf(pdevinfo->dev, "Playback:\n"); device_printf(pdevinfo->dev, "\n"); hdac_dump_audio_formats(pdevinfo->dev, sc->chans[i].supp_stream_formats, sc->chans[i].supp_pcm_size_rate); device_printf(pdevinfo->dev, " DAC:"); for (nids = sc->chans[i].io; *nids != -1; nids++) printf(" %d", *nids); printf("\n"); } if (pdevinfo->rec >= 0) { i = pdevinfo->rec; device_printf(pdevinfo->dev, "\n"); device_printf(pdevinfo->dev, "Record:\n"); device_printf(pdevinfo->dev, "\n"); hdac_dump_audio_formats(pdevinfo->dev, sc->chans[i].supp_stream_formats, sc->chans[i].supp_pcm_size_rate); device_printf(pdevinfo->dev, " ADC:"); for (nids = sc->chans[i].io; *nids != -1; nids++) printf(" %d", *nids); printf("\n"); } } static void hdac_release_resources(struct hdac_softc *sc) { int i, j; if (sc == NULL) return; hdac_lock(sc); sc->polling = 0; sc->poll_ival = 0; callout_stop(&sc->poll_hda); callout_stop(&sc->poll_hdac); callout_stop(&sc->poll_jack); hdac_reset(sc, 0); hdac_unlock(sc); taskqueue_drain(taskqueue_thread, &sc->unsolq_task); callout_drain(&sc->poll_hda); callout_drain(&sc->poll_hdac); callout_drain(&sc->poll_jack); hdac_irq_free(sc); for (i = 0; i < HDAC_CODEC_MAX; i++) { if (sc->codecs[i] == NULL) continue; for (j = 0; j < sc->codecs[i]->num_fgs; j++) { free(sc->codecs[i]->fgs[j].widget, M_HDAC); if (sc->codecs[i]->fgs[j].node_type == HDA_PARAM_FCT_GRP_TYPE_NODE_TYPE_AUDIO) { free(sc->codecs[i]->fgs[j].function.audio.ctl, M_HDAC); free(sc->codecs[i]->fgs[j].function.audio.as, M_HDAC); free(sc->codecs[i]->fgs[j].function.audio.devs, M_HDAC); } } free(sc->codecs[i]->fgs, M_HDAC); free(sc->codecs[i], M_HDAC); sc->codecs[i] = NULL; } hdac_dma_free(sc, &sc->pos_dma); hdac_dma_free(sc, &sc->rirb_dma); hdac_dma_free(sc, &sc->corb_dma); for (i = 0; i < sc->num_chans; i++) { if (sc->chans[i].blkcnt > 0) hdac_dma_free(sc, &sc->chans[i].bdl_dma); } free(sc->chans, M_HDAC); if (sc->chan_dmat != NULL) { bus_dma_tag_destroy(sc->chan_dmat); sc->chan_dmat = NULL; } hdac_mem_free(sc); snd_mtxfree(sc->lock); } /* This function surely going to make its way into upper level someday. */ static void hdac_config_fetch(struct hdac_softc *sc, uint32_t *on, uint32_t *off) { const char *res = NULL; int i = 0, j, k, len, inv; if (on != NULL) *on = 0; if (off != NULL) *off = 0; if (sc == NULL) return; if (resource_string_value(device_get_name(sc->dev), device_get_unit(sc->dev), "config", &res) != 0) return; if (!(res != NULL && strlen(res) > 0)) return; HDA_BOOTVERBOSE( device_printf(sc->dev, "HDA Config:"); ); for (;;) { while (res[i] != '\0' && (res[i] == ',' || isspace(res[i]) != 0)) i++; if (res[i] == '\0') { HDA_BOOTVERBOSE( printf("\n"); ); return; } j = i; while (res[j] != '\0' && !(res[j] == ',' || isspace(res[j]) != 0)) j++; len = j - i; if (len > 2 && strncmp(res + i, "no", 2) == 0) inv = 2; else inv = 0; for (k = 0; len > inv && k < HDAC_QUIRKS_TAB_LEN; k++) { if (strncmp(res + i + inv, hdac_quirks_tab[k].key, len - inv) != 0) continue; if (len - inv != strlen(hdac_quirks_tab[k].key)) continue; HDA_BOOTVERBOSE( printf(" %s%s", (inv != 0) ? "no" : "", hdac_quirks_tab[k].key); ); if (inv == 0 && on != NULL) *on |= hdac_quirks_tab[k].value; else if (inv != 0 && off != NULL) *off |= hdac_quirks_tab[k].value; break; } i = j; } } static int sysctl_hdac_polling(SYSCTL_HANDLER_ARGS) { struct hdac_softc *sc; device_t dev; uint32_t ctl; int err, val; dev = oidp->oid_arg1; sc = device_get_softc(dev); if (sc == NULL) return (EINVAL); hdac_lock(sc); val = sc->polling; hdac_unlock(sc); err = sysctl_handle_int(oidp, &val, 0, req); if (err != 0 || req->newptr == NULL) return (err); if (val < 0 || val > 1) return (EINVAL); hdac_lock(sc); if (val != sc->polling) { if (val == 0) { callout_stop(&sc->poll_hda); callout_stop(&sc->poll_hdac); hdac_unlock(sc); callout_drain(&sc->poll_hda); callout_drain(&sc->poll_hdac); hdac_lock(sc); sc->polling = 0; ctl = HDAC_READ_4(&sc->mem, HDAC_INTCTL); ctl |= HDAC_INTCTL_GIE; HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, ctl); } else { ctl = HDAC_READ_4(&sc->mem, HDAC_INTCTL); ctl &= ~HDAC_INTCTL_GIE; HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, ctl); hdac_unlock(sc); taskqueue_drain(taskqueue_thread, &sc->unsolq_task); hdac_lock(sc); sc->polling = 1; hdac_poll_reinit(sc); callout_reset(&sc->poll_hdac, 1, hdac_poll_callback, sc); } } hdac_unlock(sc); return (err); } static int sysctl_hdac_polling_interval(SYSCTL_HANDLER_ARGS) { struct hdac_softc *sc; device_t dev; int err, val; dev = oidp->oid_arg1; sc = device_get_softc(dev); if (sc == NULL) return (EINVAL); hdac_lock(sc); val = ((uint64_t)sc->poll_ival * 1000) / hz; hdac_unlock(sc); err = sysctl_handle_int(oidp, &val, 0, req); if (err != 0 || req->newptr == NULL) return (err); if (val < 1) val = 1; if (val > 5000) val = 5000; val = ((uint64_t)val * hz) / 1000; if (val < 1) val = 1; if (val > (hz * 5)) val = hz * 5; hdac_lock(sc); sc->poll_ival = val; hdac_unlock(sc); return (err); } static int sysctl_hdac_pindump(SYSCTL_HANDLER_ARGS) { struct hdac_softc *sc; struct hdac_codec *codec; struct hdac_devinfo *devinfo; struct hdac_widget *w; device_t dev; uint32_t res, pincap, delay; int codec_index, fg_index; int i, err, val; nid_t cad; dev = oidp->oid_arg1; sc = device_get_softc(dev); if (sc == NULL) return (EINVAL); val = 0; err = sysctl_handle_int(oidp, &val, 0, req); if (err != 0 || req->newptr == NULL || val == 0) return (err); /* XXX: Temporary. For debugging. */ if (val == 100) { hdac_suspend(dev); return (0); } else if (val == 101) { hdac_resume(dev); return (0); } hdac_lock(sc); for (codec_index = 0; codec_index < HDAC_CODEC_MAX; codec_index++) { codec = sc->codecs[codec_index]; if (codec == NULL) continue; cad = codec->cad; for (fg_index = 0; fg_index < codec->num_fgs; fg_index++) { devinfo = &codec->fgs[fg_index]; if (devinfo->node_type != HDA_PARAM_FCT_GRP_TYPE_NODE_TYPE_AUDIO) continue; device_printf(dev, "Dumping AFG cad=%d nid=%d pins:\n", codec_index, devinfo->nid); for (i = devinfo->startnode; i < devinfo->endnode; i++) { w = hdac_widget_get(devinfo, i); if (w == NULL || w->type != HDA_PARAM_AUDIO_WIDGET_CAP_TYPE_PIN_COMPLEX) continue; hdac_dump_pin_config(w, w->wclass.pin.config); pincap = w->wclass.pin.cap; device_printf(dev, " Caps: %2s %3s %2s %4s %4s", HDA_PARAM_PIN_CAP_INPUT_CAP(pincap)?"IN":"", HDA_PARAM_PIN_CAP_OUTPUT_CAP(pincap)?"OUT":"", HDA_PARAM_PIN_CAP_HEADPHONE_CAP(pincap)?"HP":"", HDA_PARAM_PIN_CAP_EAPD_CAP(pincap)?"EAPD":"", HDA_PARAM_PIN_CAP_VREF_CTRL(pincap)?"VREF":""); if (HDA_PARAM_PIN_CAP_IMP_SENSE_CAP(pincap) || HDA_PARAM_PIN_CAP_PRESENCE_DETECT_CAP(pincap)) { if (HDA_PARAM_PIN_CAP_TRIGGER_REQD(pincap)) { delay = 0; hdac_command(sc, HDA_CMD_SET_PIN_SENSE(cad, w->nid, 0), cad); do { res = hdac_command(sc, HDA_CMD_GET_PIN_SENSE(cad, w->nid), cad); if (res != 0x7fffffff && res != 0xffffffff) break; DELAY(10); } while (++delay < 10000); } else { delay = 0; res = hdac_command(sc, HDA_CMD_GET_PIN_SENSE(cad, w->nid), cad); } printf(" Sense: 0x%08x", res); if (delay > 0) printf(" delay %dus", delay * 10); } printf("\n"); } device_printf(dev, "NumGPIO=%d NumGPO=%d NumGPI=%d GPIWake=%d GPIUnsol=%d\n", HDA_PARAM_GPIO_COUNT_NUM_GPIO(devinfo->function.audio.gpio), HDA_PARAM_GPIO_COUNT_NUM_GPO(devinfo->function.audio.gpio), HDA_PARAM_GPIO_COUNT_NUM_GPI(devinfo->function.audio.gpio), HDA_PARAM_GPIO_COUNT_GPI_WAKE(devinfo->function.audio.gpio), HDA_PARAM_GPIO_COUNT_GPI_UNSOL(devinfo->function.audio.gpio)); if (HDA_PARAM_GPIO_COUNT_NUM_GPI(devinfo->function.audio.gpio) > 0) { device_printf(dev, " GPI:"); res = hdac_command(sc, HDA_CMD_GET_GPI_DATA(cad, devinfo->nid), cad); printf(" data=0x%08x", res); res = hdac_command(sc, HDA_CMD_GET_GPI_WAKE_ENABLE_MASK(cad, devinfo->nid), cad); printf(" wake=0x%08x", res); res = hdac_command(sc, HDA_CMD_GET_GPI_UNSOLICITED_ENABLE_MASK(cad, devinfo->nid), cad); printf(" unsol=0x%08x", res); res = hdac_command(sc, HDA_CMD_GET_GPI_STICKY_MASK(cad, devinfo->nid), cad); printf(" sticky=0x%08x\n", res); } if (HDA_PARAM_GPIO_COUNT_NUM_GPO(devinfo->function.audio.gpio) > 0) { device_printf(dev, " GPO:"); res = hdac_command(sc, HDA_CMD_GET_GPO_DATA(cad, devinfo->nid), cad); printf(" data=0x%08x\n", res); } if (HDA_PARAM_GPIO_COUNT_NUM_GPIO(devinfo->function.audio.gpio) > 0) { device_printf(dev, "GPIO:"); res = hdac_command(sc, HDA_CMD_GET_GPIO_DATA(cad, devinfo->nid), cad); printf(" data=0x%08x", res); res = hdac_command(sc, HDA_CMD_GET_GPIO_ENABLE_MASK(cad, devinfo->nid), cad); printf(" enable=0x%08x", res); res = hdac_command(sc, HDA_CMD_GET_GPIO_DIRECTION(cad, devinfo->nid), cad); printf(" direction=0x%08x\n", res); res = hdac_command(sc, HDA_CMD_GET_GPIO_WAKE_ENABLE_MASK(cad, devinfo->nid), cad); device_printf(dev, " wake=0x%08x", res); res = hdac_command(sc, HDA_CMD_GET_GPIO_UNSOLICITED_ENABLE_MASK(cad, devinfo->nid), cad); printf(" unsol=0x%08x", res); res = hdac_command(sc, HDA_CMD_GET_GPIO_STICKY_MASK(cad, devinfo->nid), cad); printf(" sticky=0x%08x\n", res); } } } hdac_unlock(sc); return (0); } static void hdac_attach2(void *arg) { struct hdac_codec *codec; struct hdac_softc *sc; struct hdac_audio_ctl *ctl; uint32_t quirks_on, quirks_off; int codec_index, fg_index; int i, dmaalloc = 0; struct hdac_devinfo *devinfo; sc = (struct hdac_softc *)arg; hdac_config_fetch(sc, &quirks_on, &quirks_off); HDA_BOOTHVERBOSE( device_printf(sc->dev, "HDA Config: on=0x%08x off=0x%08x\n", quirks_on, quirks_off); ); hdac_lock(sc); /* Remove ourselves from the config hooks */ if (sc->intrhook.ich_func != NULL) { config_intrhook_disestablish(&sc->intrhook); sc->intrhook.ich_func = NULL; } /* Start the corb and rirb engines */ HDA_BOOTHVERBOSE( device_printf(sc->dev, "Starting CORB Engine...\n"); ); hdac_corb_start(sc); HDA_BOOTHVERBOSE( device_printf(sc->dev, "Starting RIRB Engine...\n"); ); hdac_rirb_start(sc); HDA_BOOTHVERBOSE( device_printf(sc->dev, "Enabling controller interrupt...\n"); ); HDAC_WRITE_4(&sc->mem, HDAC_GCTL, HDAC_READ_4(&sc->mem, HDAC_GCTL) | HDAC_GCTL_UNSOL); if (sc->polling == 0) { HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, HDAC_INTCTL_CIE | HDAC_INTCTL_GIE); } else { callout_reset(&sc->poll_hdac, 1, hdac_poll_callback, sc); } DELAY(1000); HDA_BOOTHVERBOSE( device_printf(sc->dev, "Scanning HDA codecs ...\n"); ); hdac_scan_codecs(sc); for (codec_index = 0; codec_index < HDAC_CODEC_MAX; codec_index++) { codec = sc->codecs[codec_index]; if (codec == NULL) continue; for (fg_index = 0; fg_index < codec->num_fgs; fg_index++) { devinfo = &codec->fgs[fg_index]; HDA_BOOTVERBOSE( device_printf(sc->dev, "\n"); device_printf(sc->dev, "Processing %s FG cad=%d nid=%d...\n", (devinfo->node_type == HDA_PARAM_FCT_GRP_TYPE_NODE_TYPE_AUDIO) ? "audio": (devinfo->node_type == HDA_PARAM_FCT_GRP_TYPE_NODE_TYPE_MODEM) ? "modem": "unknown", devinfo->codec->cad, devinfo->nid); ); if (devinfo->node_type != HDA_PARAM_FCT_GRP_TYPE_NODE_TYPE_AUDIO) { HDA_BOOTHVERBOSE( device_printf(sc->dev, "Powering down...\n"); ); hdac_command(sc, HDA_CMD_SET_POWER_STATE(codec->cad, devinfo->nid, HDA_CMD_POWER_STATE_D3), codec->cad); continue; } HDA_BOOTHVERBOSE( device_printf(sc->dev, "Powering up...\n"); ); hdac_powerup(devinfo); HDA_BOOTHVERBOSE( device_printf(sc->dev, "Parsing audio FG...\n"); ); hdac_audio_parse(devinfo); HDA_BOOTHVERBOSE( device_printf(sc->dev, "Parsing Ctls...\n"); ); hdac_audio_ctl_parse(devinfo); HDA_BOOTHVERBOSE( device_printf(sc->dev, "Parsing vendor patch...\n"); ); hdac_vendor_patch_parse(devinfo); devinfo->function.audio.quirks |= quirks_on; devinfo->function.audio.quirks &= ~quirks_off; HDA_BOOTHVERBOSE( device_printf(sc->dev, "Disabling nonaudio...\n"); ); hdac_audio_disable_nonaudio(devinfo); HDA_BOOTHVERBOSE( device_printf(sc->dev, "Disabling useless...\n"); ); hdac_audio_disable_useless(devinfo); HDA_BOOTVERBOSE( device_printf(sc->dev, "Patched pins configuration:\n"); hdac_dump_pin_configs(devinfo); ); HDA_BOOTHVERBOSE( device_printf(sc->dev, "Parsing pin associations...\n"); ); hdac_audio_as_parse(devinfo); HDA_BOOTHVERBOSE( device_printf(sc->dev, "Building AFG tree...\n"); ); hdac_audio_build_tree(devinfo); HDA_BOOTHVERBOSE( device_printf(sc->dev, "Disabling unassociated " "widgets...\n"); ); hdac_audio_disable_unas(devinfo); HDA_BOOTHVERBOSE( device_printf(sc->dev, "Disabling nonselected " "inputs...\n"); ); hdac_audio_disable_notselected(devinfo); HDA_BOOTHVERBOSE( device_printf(sc->dev, "Disabling useless...\n"); ); hdac_audio_disable_useless(devinfo); HDA_BOOTHVERBOSE( device_printf(sc->dev, "Disabling " "crossassociatement connections...\n"); ); hdac_audio_disable_crossas(devinfo); HDA_BOOTHVERBOSE( device_printf(sc->dev, "Disabling useless...\n"); ); hdac_audio_disable_useless(devinfo); HDA_BOOTHVERBOSE( device_printf(sc->dev, "Binding associations to channels...\n"); ); hdac_audio_bind_as(devinfo); HDA_BOOTHVERBOSE( device_printf(sc->dev, "Assigning names to signal sources...\n"); ); hdac_audio_assign_names(devinfo); HDA_BOOTHVERBOSE( device_printf(sc->dev, "Assigning mixers to the tree...\n"); ); hdac_audio_assign_mixers(devinfo); HDA_BOOTHVERBOSE( device_printf(sc->dev, "Preparing pin controls...\n"); ); hdac_audio_prepare_pin_ctrl(devinfo); HDA_BOOTHVERBOSE( device_printf(sc->dev, "AFG commit...\n"); ); hdac_audio_commit(devinfo); HDA_BOOTHVERBOSE( device_printf(sc->dev, "HP switch init...\n"); ); hdac_hp_switch_init(devinfo); if ((devinfo->function.audio.quirks & HDA_QUIRK_DMAPOS) && dmaalloc == 0) { if (hdac_dma_alloc(sc, &sc->pos_dma, (sc->num_iss + sc->num_oss + sc->num_bss) * 8) != 0) { HDA_BOOTVERBOSE( device_printf(sc->dev, "Failed to " "allocate DMA pos buffer " "(non-fatal)\n"); ); } else dmaalloc = 1; } HDA_BOOTHVERBOSE( device_printf(sc->dev, "Creating PCM devices...\n"); ); hdac_create_pcms(devinfo); HDA_BOOTVERBOSE( if (devinfo->function.audio.quirks != 0) { device_printf(sc->dev, "FG config/quirks:"); for (i = 0; i < HDAC_QUIRKS_TAB_LEN; i++) { if ((devinfo->function.audio.quirks & hdac_quirks_tab[i].value) == hdac_quirks_tab[i].value) printf(" %s", hdac_quirks_tab[i].key); } printf("\n"); } device_printf(sc->dev, "\n"); device_printf(sc->dev, "+-------------------+\n"); device_printf(sc->dev, "| DUMPING HDA NODES |\n"); device_printf(sc->dev, "+-------------------+\n"); hdac_dump_nodes(devinfo); ); HDA_BOOTHVERBOSE( device_printf(sc->dev, "\n"); device_printf(sc->dev, "+------------------------+\n"); device_printf(sc->dev, "| DUMPING HDA AMPLIFIERS |\n"); device_printf(sc->dev, "+------------------------+\n"); device_printf(sc->dev, "\n"); i = 0; while ((ctl = hdac_audio_ctl_each(devinfo, &i)) != NULL) { device_printf(sc->dev, "%3d: nid %3d %s (%s) index %d", i, (ctl->widget != NULL) ? ctl->widget->nid : -1, (ctl->ndir == HDA_CTL_IN)?"in ":"out", (ctl->dir == HDA_CTL_IN)?"in ":"out", ctl->index); if (ctl->childwidget != NULL) printf(" cnid %3d", ctl->childwidget->nid); else printf(" "); printf(" ossmask=0x%08x\n", ctl->ossmask); device_printf(sc->dev, " mute: %d step: %3d size: %3d off: %3d%s\n", ctl->mute, ctl->step, ctl->size, ctl->offset, (ctl->enable == 0) ? " [DISABLED]" : ((ctl->ossmask == 0) ? " [UNUSED]" : "")); } ); } } hdac_unlock(sc); HDA_BOOTVERBOSE( device_printf(sc->dev, "\n"); ); bus_generic_attach(sc->dev); SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->dev), SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "polling", CTLTYPE_INT | CTLFLAG_RW, sc->dev, sizeof(sc->dev), sysctl_hdac_polling, "I", "Enable polling mode"); SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->dev), SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "polling_interval", CTLTYPE_INT | CTLFLAG_RW, sc->dev, sizeof(sc->dev), sysctl_hdac_polling_interval, "I", "Controller/Jack Sense polling interval (1-1000 ms)"); SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->dev), SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "pindump", CTLTYPE_INT | CTLFLAG_RW, sc->dev, sizeof(sc->dev), sysctl_hdac_pindump, "I", "Dump pin states/data"); } /**************************************************************************** * int hdac_suspend(device_t) * * Suspend and power down HDA bus and codecs. ****************************************************************************/ static int hdac_suspend(device_t dev) { struct hdac_softc *sc; struct hdac_codec *codec; struct hdac_devinfo *devinfo; int codec_index, fg_index, i; HDA_BOOTHVERBOSE( device_printf(dev, "Suspend...\n"); ); sc = device_get_softc(dev); hdac_lock(sc); HDA_BOOTHVERBOSE( device_printf(dev, "Stop streams...\n"); ); for (i = 0; i < sc->num_chans; i++) { if (sc->chans[i].flags & HDAC_CHN_RUNNING) { sc->chans[i].flags |= HDAC_CHN_SUSPEND; hdac_channel_stop(sc, &sc->chans[i]); } } for (codec_index = 0; codec_index < HDAC_CODEC_MAX; codec_index++) { codec = sc->codecs[codec_index]; if (codec == NULL) continue; for (fg_index = 0; fg_index < codec->num_fgs; fg_index++) { devinfo = &codec->fgs[fg_index]; HDA_BOOTHVERBOSE( device_printf(dev, "Power down FG" " cad=%d nid=%d to the D3 state...\n", codec->cad, devinfo->nid); ); hdac_command(sc, HDA_CMD_SET_POWER_STATE(codec->cad, devinfo->nid, HDA_CMD_POWER_STATE_D3), codec->cad); } } HDA_BOOTHVERBOSE( device_printf(dev, "Reset controller...\n"); ); callout_stop(&sc->poll_hda); callout_stop(&sc->poll_hdac); callout_stop(&sc->poll_jack); hdac_reset(sc, 0); hdac_unlock(sc); taskqueue_drain(taskqueue_thread, &sc->unsolq_task); callout_drain(&sc->poll_hda); callout_drain(&sc->poll_hdac); callout_drain(&sc->poll_jack); HDA_BOOTHVERBOSE( device_printf(dev, "Suspend done\n"); ); return (0); } /**************************************************************************** * int hdac_resume(device_t) * * Powerup and restore HDA bus and codecs state. ****************************************************************************/ static int hdac_resume(device_t dev) { struct hdac_softc *sc; struct hdac_codec *codec; struct hdac_devinfo *devinfo; int codec_index, fg_index, i; HDA_BOOTHVERBOSE( device_printf(dev, "Resume...\n"); ); sc = device_get_softc(dev); hdac_lock(sc); /* Quiesce everything */ HDA_BOOTHVERBOSE( device_printf(dev, "Reset controller...\n"); ); hdac_reset(sc, 1); /* Initialize the CORB and RIRB */ hdac_corb_init(sc); hdac_rirb_init(sc); /* Start the corb and rirb engines */ HDA_BOOTHVERBOSE( device_printf(dev, "Starting CORB Engine...\n"); ); hdac_corb_start(sc); HDA_BOOTHVERBOSE( device_printf(dev, "Starting RIRB Engine...\n"); ); hdac_rirb_start(sc); HDA_BOOTHVERBOSE( device_printf(dev, "Enabling controller interrupt...\n"); ); HDAC_WRITE_4(&sc->mem, HDAC_GCTL, HDAC_READ_4(&sc->mem, HDAC_GCTL) | HDAC_GCTL_UNSOL); if (sc->polling == 0) { HDAC_WRITE_4(&sc->mem, HDAC_INTCTL, HDAC_INTCTL_CIE | HDAC_INTCTL_GIE); } else { callout_reset(&sc->poll_hdac, 1, hdac_poll_callback, sc); } DELAY(1000); for (codec_index = 0; codec_index < HDAC_CODEC_MAX; codec_index++) { codec = sc->codecs[codec_index]; if (codec == NULL) continue; for (fg_index = 0; fg_index < codec->num_fgs; fg_index++) { devinfo = &codec->fgs[fg_index]; if (devinfo->node_type != HDA_PARAM_FCT_GRP_TYPE_NODE_TYPE_AUDIO) { HDA_BOOTHVERBOSE( device_printf(dev, "Power down unsupported non-audio FG" " cad=%d nid=%d to the D3 state...\n", codec->cad, devinfo->nid); ); hdac_command(sc, HDA_CMD_SET_POWER_STATE(codec->cad, devinfo->nid, HDA_CMD_POWER_STATE_D3), codec->cad); continue; } HDA_BOOTHVERBOSE( device_printf(dev, "Power up audio FG cad=%d nid=%d...\n", devinfo->codec->cad, devinfo->nid); ); hdac_powerup(devinfo); HDA_BOOTHVERBOSE( device_printf(dev, "AFG commit...\n"); ); hdac_audio_commit(devinfo); HDA_BOOTHVERBOSE( device_printf(dev, "HP switch init...\n"); ); hdac_hp_switch_init(devinfo); hdac_unlock(sc); for (i = 0; i < devinfo->function.audio.num_devs; i++) { struct hdac_pcm_devinfo *pdevinfo = &devinfo->function.audio.devs[i]; HDA_BOOTHVERBOSE( device_printf(pdevinfo->dev, "OSS mixer reinitialization...\n"); ); if (mixer_reinit(pdevinfo->dev) == -1) device_printf(pdevinfo->dev, "unable to reinitialize the mixer\n"); } hdac_lock(sc); } } HDA_BOOTHVERBOSE( device_printf(dev, "Start streams...\n"); ); for (i = 0; i < sc->num_chans; i++) { if (sc->chans[i].flags & HDAC_CHN_SUSPEND) { sc->chans[i].flags &= ~HDAC_CHN_SUSPEND; hdac_channel_start(sc, &sc->chans[i]); } } hdac_unlock(sc); HDA_BOOTHVERBOSE( device_printf(dev, "Resume done\n"); ); return (0); } /**************************************************************************** * int hdac_detach(device_t) * * Detach and free up resources utilized by the hdac device. ****************************************************************************/ static int hdac_detach(device_t dev) { struct hdac_softc *sc; device_t *devlist; int i, devcount, error; if ((error = device_get_children(dev, &devlist, &devcount)) != 0) return (error); for (i = 0; i < devcount; i++) { if ((error = device_delete_child(dev, devlist[i])) != 0) { free(devlist, M_TEMP); return (error); } } free(devlist, M_TEMP); sc = device_get_softc(dev); hdac_release_resources(sc); return (0); } static int hdac_print_child(device_t dev, device_t child) { struct hdac_pcm_devinfo *pdevinfo = (struct hdac_pcm_devinfo *)device_get_ivars(child); int retval; retval = bus_print_child_header(dev, child); retval += printf(" at cad %d nid %d", pdevinfo->devinfo->codec->cad, pdevinfo->devinfo->nid); retval += bus_print_child_footer(dev, child); return (retval); } static device_method_t hdac_methods[] = { /* device interface */ DEVMETHOD(device_probe, hdac_probe), DEVMETHOD(device_attach, hdac_attach), DEVMETHOD(device_detach, hdac_detach), DEVMETHOD(device_suspend, hdac_suspend), DEVMETHOD(device_resume, hdac_resume), /* Bus interface */ DEVMETHOD(bus_print_child, hdac_print_child), { 0, 0 } }; static driver_t hdac_driver = { "hdac", hdac_methods, sizeof(struct hdac_softc), }; static devclass_t hdac_devclass; DRIVER_MODULE(snd_hda, pci, hdac_driver, hdac_devclass, 0, 0); MODULE_DEPEND(snd_hda, sound, SOUND_MINVER, SOUND_PREFVER, SOUND_MAXVER); MODULE_VERSION(snd_hda, 1); static int hdac_pcm_probe(device_t dev) { struct hdac_pcm_devinfo *pdevinfo = (struct hdac_pcm_devinfo *)device_get_ivars(dev); char buf[128]; snprintf(buf, sizeof(buf), "HDA %s PCM #%d %s", hdac_codec_name(pdevinfo->devinfo->codec), pdevinfo->index, (pdevinfo->digital == 3)?"DisplayPort": ((pdevinfo->digital == 2)?"HDMI": ((pdevinfo->digital)?"Digital":"Analog"))); device_set_desc_copy(dev, buf); return (0); } static int hdac_pcm_attach(device_t dev) { struct hdac_pcm_devinfo *pdevinfo = (struct hdac_pcm_devinfo *)device_get_ivars(dev); struct hdac_softc *sc = pdevinfo->devinfo->codec->sc; char status[SND_STATUSLEN]; int i; pdevinfo->chan_size = pcm_getbuffersize(dev, HDA_BUFSZ_MIN, HDA_BUFSZ_DEFAULT, HDA_BUFSZ_MAX); HDA_BOOTVERBOSE( device_printf(dev, "+--------------------------------------+\n"); device_printf(dev, "| DUMPING PCM Playback/Record Channels |\n"); device_printf(dev, "+--------------------------------------+\n"); hdac_dump_pcmchannels(pdevinfo); device_printf(dev, "\n"); device_printf(dev, "+-------------------------------+\n"); device_printf(dev, "| DUMPING Playback/Record Paths |\n"); device_printf(dev, "+-------------------------------+\n"); hdac_dump_dac(pdevinfo); hdac_dump_adc(pdevinfo); hdac_dump_mix(pdevinfo); device_printf(dev, "\n"); device_printf(dev, "+-------------------------+\n"); device_printf(dev, "| DUMPING Volume Controls |\n"); device_printf(dev, "+-------------------------+\n"); hdac_dump_ctls(pdevinfo, "Master Volume", SOUND_MASK_VOLUME); hdac_dump_ctls(pdevinfo, "PCM Volume", SOUND_MASK_PCM); hdac_dump_ctls(pdevinfo, "CD Volume", SOUND_MASK_CD); hdac_dump_ctls(pdevinfo, "Microphone Volume", SOUND_MASK_MIC); hdac_dump_ctls(pdevinfo, "Microphone2 Volume", SOUND_MASK_MONITOR); hdac_dump_ctls(pdevinfo, "Line-in Volume", SOUND_MASK_LINE); hdac_dump_ctls(pdevinfo, "Speaker/Beep Volume", SOUND_MASK_SPEAKER); hdac_dump_ctls(pdevinfo, "Recording Level", SOUND_MASK_RECLEV); hdac_dump_ctls(pdevinfo, "Input Mix Level", SOUND_MASK_IMIX); hdac_dump_ctls(pdevinfo, "Input Monitoring Level", SOUND_MASK_IGAIN); hdac_dump_ctls(pdevinfo, NULL, 0); device_printf(dev, "\n"); ); if (resource_int_value(device_get_name(dev), device_get_unit(dev), "blocksize", &i) == 0 && i > 0) { i &= HDA_BLK_ALIGN; if (i < HDA_BLK_MIN) i = HDA_BLK_MIN; pdevinfo->chan_blkcnt = pdevinfo->chan_size / i; i = 0; while (pdevinfo->chan_blkcnt >> i) i++; pdevinfo->chan_blkcnt = 1 << (i - 1); if (pdevinfo->chan_blkcnt < HDA_BDL_MIN) pdevinfo->chan_blkcnt = HDA_BDL_MIN; else if (pdevinfo->chan_blkcnt > HDA_BDL_MAX) pdevinfo->chan_blkcnt = HDA_BDL_MAX; } else pdevinfo->chan_blkcnt = HDA_BDL_DEFAULT; /* * We don't register interrupt handler with snd_setup_intr * in pcm device. Mark pcm device as MPSAFE manually. */ pcm_setflags(dev, pcm_getflags(dev) | SD_F_MPSAFE); HDA_BOOTHVERBOSE( device_printf(dev, "OSS mixer initialization...\n"); ); if (mixer_init(dev, &hdac_audio_ctl_ossmixer_class, pdevinfo) != 0) device_printf(dev, "Can't register mixer\n"); HDA_BOOTHVERBOSE( device_printf(dev, "Registering PCM channels...\n"); ); if (pcm_register(dev, pdevinfo, (pdevinfo->play >= 0)?1:0, (pdevinfo->rec >= 0)?1:0) != 0) device_printf(dev, "Can't register PCM\n"); pdevinfo->registered++; if (pdevinfo->play >= 0) pcm_addchan(dev, PCMDIR_PLAY, &hdac_channel_class, pdevinfo); if (pdevinfo->rec >= 0) pcm_addchan(dev, PCMDIR_REC, &hdac_channel_class, pdevinfo); snprintf(status, SND_STATUSLEN, "at cad %d nid %d on %s %s", pdevinfo->devinfo->codec->cad, pdevinfo->devinfo->nid, device_get_nameunit(sc->dev), PCM_KLDSTRING(snd_hda)); pcm_setstatus(dev, status); return (0); } static int hdac_pcm_detach(device_t dev) { struct hdac_pcm_devinfo *pdevinfo = (struct hdac_pcm_devinfo *)device_get_ivars(dev); int err; if (pdevinfo->registered > 0) { err = pcm_unregister(dev); if (err != 0) return (err); } return (0); } static device_method_t hdac_pcm_methods[] = { /* device interface */ DEVMETHOD(device_probe, hdac_pcm_probe), DEVMETHOD(device_attach, hdac_pcm_attach), DEVMETHOD(device_detach, hdac_pcm_detach), { 0, 0 } }; static driver_t hdac_pcm_driver = { "pcm", hdac_pcm_methods, PCM_SOFTC_SIZE, }; DRIVER_MODULE(snd_hda_pcm, hdac, hdac_pcm_driver, pcm_devclass, 0, 0);