/*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (C) 2008-2009 Semihalf, Piotr Ziecik * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * Freescale integrated Security Engine (SEC) driver. Currently SEC 2.0 and * 3.0 are supported. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "cryptodev_if.h" #include #include static int sec_probe(device_t dev); static int sec_attach(device_t dev); static int sec_detach(device_t dev); static int sec_suspend(device_t dev); static int sec_resume(device_t dev); static int sec_shutdown(device_t dev); static void sec_primary_intr(void *arg); static void sec_secondary_intr(void *arg); static int sec_setup_intr(struct sec_softc *sc, struct resource **ires, void **ihand, int *irid, driver_intr_t handler, const char *iname); static void sec_release_intr(struct sec_softc *sc, struct resource *ires, void *ihand, int irid, const char *iname); static int sec_controller_reset(struct sec_softc *sc); static int sec_channel_reset(struct sec_softc *sc, int channel, int full); static int sec_init(struct sec_softc *sc); static int sec_alloc_dma_mem(struct sec_softc *sc, struct sec_dma_mem *dma_mem, bus_size_t size); static int sec_desc_map_dma(struct sec_softc *sc, struct sec_dma_mem *dma_mem, struct cryptop *crp, bus_size_t size, struct sec_desc_map_info *sdmi); static void sec_free_dma_mem(struct sec_dma_mem *dma_mem); static void sec_enqueue(struct sec_softc *sc); static int sec_enqueue_desc(struct sec_softc *sc, struct sec_desc *desc, int channel); static int sec_eu_channel(struct sec_softc *sc, int eu); static int sec_make_pointer(struct sec_softc *sc, struct sec_desc *desc, u_int n, struct cryptop *crp, bus_size_t doffset, bus_size_t dsize); static int sec_make_pointer_direct(struct sec_softc *sc, struct sec_desc *desc, u_int n, bus_addr_t data, bus_size_t dsize); static int sec_probesession(device_t dev, const struct crypto_session_params *csp); static int sec_newsession(device_t dev, crypto_session_t cses, const struct crypto_session_params *csp); static int sec_process(device_t dev, struct cryptop *crp, int hint); static int sec_build_common_ns_desc(struct sec_softc *sc, struct sec_desc *desc, const struct crypto_session_params *csp, struct cryptop *crp); static int sec_build_common_s_desc(struct sec_softc *sc, struct sec_desc *desc, const struct crypto_session_params *csp, struct cryptop *crp); static struct sec_desc *sec_find_desc(struct sec_softc *sc, bus_addr_t paddr); /* AESU */ static bool sec_aesu_newsession(const struct crypto_session_params *csp); static int sec_aesu_make_desc(struct sec_softc *sc, const struct crypto_session_params *csp, struct sec_desc *desc, struct cryptop *crp); /* MDEU */ static bool sec_mdeu_can_handle(u_int alg); static int sec_mdeu_config(const struct crypto_session_params *csp, u_int *eu, u_int *mode, u_int *hashlen); static bool sec_mdeu_newsession(const struct crypto_session_params *csp); static int sec_mdeu_make_desc(struct sec_softc *sc, const struct crypto_session_params *csp, struct sec_desc *desc, struct cryptop *crp); static device_method_t sec_methods[] = { /* Device interface */ DEVMETHOD(device_probe, sec_probe), DEVMETHOD(device_attach, sec_attach), DEVMETHOD(device_detach, sec_detach), DEVMETHOD(device_suspend, sec_suspend), DEVMETHOD(device_resume, sec_resume), DEVMETHOD(device_shutdown, sec_shutdown), /* Crypto methods */ DEVMETHOD(cryptodev_probesession, sec_probesession), DEVMETHOD(cryptodev_newsession, sec_newsession), DEVMETHOD(cryptodev_process, sec_process), DEVMETHOD_END }; static driver_t sec_driver = { "sec", sec_methods, sizeof(struct sec_softc), }; DRIVER_MODULE(sec, simplebus, sec_driver, 0, 0); MODULE_DEPEND(sec, crypto, 1, 1, 1); static struct sec_eu_methods sec_eus[] = { { sec_aesu_newsession, sec_aesu_make_desc, }, { sec_mdeu_newsession, sec_mdeu_make_desc, }, { NULL, NULL } }; static inline void sec_sync_dma_mem(struct sec_dma_mem *dma_mem, bus_dmasync_op_t op) { /* Sync only if dma memory is valid */ if (dma_mem->dma_vaddr != NULL) bus_dmamap_sync(dma_mem->dma_tag, dma_mem->dma_map, op); } static inline void * sec_get_pointer_data(struct sec_desc *desc, u_int n) { return (desc->sd_ptr_dmem[n].dma_vaddr); } static int sec_probe(device_t dev) { struct sec_softc *sc; uint64_t id; if (!ofw_bus_status_okay(dev)) return (ENXIO); if (!ofw_bus_is_compatible(dev, "fsl,sec2.0")) return (ENXIO); sc = device_get_softc(dev); sc->sc_rrid = 0; sc->sc_rres = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->sc_rrid, RF_ACTIVE); if (sc->sc_rres == NULL) return (ENXIO); sc->sc_bas.bsh = rman_get_bushandle(sc->sc_rres); sc->sc_bas.bst = rman_get_bustag(sc->sc_rres); id = SEC_READ(sc, SEC_ID); bus_release_resource(dev, SYS_RES_MEMORY, sc->sc_rrid, sc->sc_rres); switch (id) { case SEC_20_ID: device_set_desc(dev, "Freescale Security Engine 2.0"); sc->sc_version = 2; break; case SEC_30_ID: device_set_desc(dev, "Freescale Security Engine 3.0"); sc->sc_version = 3; break; case SEC_31_ID: device_set_desc(dev, "Freescale Security Engine 3.1"); sc->sc_version = 3; break; default: device_printf(dev, "unknown SEC ID 0x%016"PRIx64"!\n", id); return (ENXIO); } return (0); } static int sec_attach(device_t dev) { struct sec_softc *sc; struct sec_hw_lt *lt; int error = 0; int i; sc = device_get_softc(dev); sc->sc_dev = dev; sc->sc_blocked = 0; sc->sc_shutdown = 0; sc->sc_cid = crypto_get_driverid(dev, sizeof(struct sec_session), CRYPTOCAP_F_HARDWARE); if (sc->sc_cid < 0) { device_printf(dev, "could not get crypto driver ID!\n"); return (ENXIO); } /* Init locks */ mtx_init(&sc->sc_controller_lock, device_get_nameunit(dev), "SEC Controller lock", MTX_DEF); mtx_init(&sc->sc_descriptors_lock, device_get_nameunit(dev), "SEC Descriptors lock", MTX_DEF); /* Allocate I/O memory for SEC registers */ sc->sc_rrid = 0; sc->sc_rres = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->sc_rrid, RF_ACTIVE); if (sc->sc_rres == NULL) { device_printf(dev, "could not allocate I/O memory!\n"); goto fail1; } sc->sc_bas.bsh = rman_get_bushandle(sc->sc_rres); sc->sc_bas.bst = rman_get_bustag(sc->sc_rres); /* Setup interrupts */ sc->sc_pri_irid = 0; error = sec_setup_intr(sc, &sc->sc_pri_ires, &sc->sc_pri_ihand, &sc->sc_pri_irid, sec_primary_intr, "primary"); if (error) goto fail2; if (sc->sc_version == 3) { sc->sc_sec_irid = 1; error = sec_setup_intr(sc, &sc->sc_sec_ires, &sc->sc_sec_ihand, &sc->sc_sec_irid, sec_secondary_intr, "secondary"); if (error) goto fail3; } /* Alloc DMA memory for descriptors and link tables */ error = sec_alloc_dma_mem(sc, &(sc->sc_desc_dmem), SEC_DESCRIPTORS * sizeof(struct sec_hw_desc)); if (error) goto fail4; error = sec_alloc_dma_mem(sc, &(sc->sc_lt_dmem), (SEC_LT_ENTRIES + 1) * sizeof(struct sec_hw_lt)); if (error) goto fail5; /* Fill in descriptors and link tables */ for (i = 0; i < SEC_DESCRIPTORS; i++) { sc->sc_desc[i].sd_desc = (struct sec_hw_desc*)(sc->sc_desc_dmem.dma_vaddr) + i; sc->sc_desc[i].sd_desc_paddr = sc->sc_desc_dmem.dma_paddr + (i * sizeof(struct sec_hw_desc)); } for (i = 0; i < SEC_LT_ENTRIES + 1; i++) { sc->sc_lt[i].sl_lt = (struct sec_hw_lt*)(sc->sc_lt_dmem.dma_vaddr) + i; sc->sc_lt[i].sl_lt_paddr = sc->sc_lt_dmem.dma_paddr + (i * sizeof(struct sec_hw_lt)); } /* Last entry in link table is used to create a circle */ lt = sc->sc_lt[SEC_LT_ENTRIES].sl_lt; lt->shl_length = 0; lt->shl_r = 0; lt->shl_n = 1; lt->shl_ptr = sc->sc_lt[0].sl_lt_paddr; /* Init descriptor and link table queues pointers */ SEC_CNT_INIT(sc, sc_free_desc_get_cnt, SEC_DESCRIPTORS); SEC_CNT_INIT(sc, sc_free_desc_put_cnt, SEC_DESCRIPTORS); SEC_CNT_INIT(sc, sc_ready_desc_get_cnt, SEC_DESCRIPTORS); SEC_CNT_INIT(sc, sc_ready_desc_put_cnt, SEC_DESCRIPTORS); SEC_CNT_INIT(sc, sc_queued_desc_get_cnt, SEC_DESCRIPTORS); SEC_CNT_INIT(sc, sc_queued_desc_put_cnt, SEC_DESCRIPTORS); SEC_CNT_INIT(sc, sc_lt_alloc_cnt, SEC_LT_ENTRIES); SEC_CNT_INIT(sc, sc_lt_free_cnt, SEC_LT_ENTRIES); /* Create masks for fast checks */ sc->sc_int_error_mask = 0; for (i = 0; i < SEC_CHANNELS; i++) sc->sc_int_error_mask |= (~0ULL & SEC_INT_CH_ERR(i)); switch (sc->sc_version) { case 2: sc->sc_channel_idle_mask = (SEC_CHAN_CSR2_FFLVL_M << SEC_CHAN_CSR2_FFLVL_S) | (SEC_CHAN_CSR2_MSTATE_M << SEC_CHAN_CSR2_MSTATE_S) | (SEC_CHAN_CSR2_PSTATE_M << SEC_CHAN_CSR2_PSTATE_S) | (SEC_CHAN_CSR2_GSTATE_M << SEC_CHAN_CSR2_GSTATE_S); break; case 3: sc->sc_channel_idle_mask = (SEC_CHAN_CSR3_FFLVL_M << SEC_CHAN_CSR3_FFLVL_S) | (SEC_CHAN_CSR3_MSTATE_M << SEC_CHAN_CSR3_MSTATE_S) | (SEC_CHAN_CSR3_PSTATE_M << SEC_CHAN_CSR3_PSTATE_S) | (SEC_CHAN_CSR3_GSTATE_M << SEC_CHAN_CSR3_GSTATE_S); break; } /* Init hardware */ error = sec_init(sc); if (error) goto fail6; return (0); fail6: sec_free_dma_mem(&(sc->sc_lt_dmem)); fail5: sec_free_dma_mem(&(sc->sc_desc_dmem)); fail4: sec_release_intr(sc, sc->sc_sec_ires, sc->sc_sec_ihand, sc->sc_sec_irid, "secondary"); fail3: sec_release_intr(sc, sc->sc_pri_ires, sc->sc_pri_ihand, sc->sc_pri_irid, "primary"); fail2: bus_release_resource(dev, SYS_RES_MEMORY, sc->sc_rrid, sc->sc_rres); fail1: mtx_destroy(&sc->sc_controller_lock); mtx_destroy(&sc->sc_descriptors_lock); return (ENXIO); } static int sec_detach(device_t dev) { struct sec_softc *sc = device_get_softc(dev); int i, error, timeout = SEC_TIMEOUT; /* Prepare driver to shutdown */ SEC_LOCK(sc, descriptors); sc->sc_shutdown = 1; SEC_UNLOCK(sc, descriptors); /* Wait until all queued processing finishes */ while (1) { SEC_LOCK(sc, descriptors); i = SEC_READY_DESC_CNT(sc) + SEC_QUEUED_DESC_CNT(sc); SEC_UNLOCK(sc, descriptors); if (i == 0) break; if (timeout < 0) { device_printf(dev, "queue flush timeout!\n"); /* DMA can be still active - stop it */ for (i = 0; i < SEC_CHANNELS; i++) sec_channel_reset(sc, i, 1); break; } timeout -= 1000; DELAY(1000); } /* Disable interrupts */ SEC_WRITE(sc, SEC_IER, 0); /* Unregister from OCF */ crypto_unregister_all(sc->sc_cid); /* Free DMA memory */ for (i = 0; i < SEC_DESCRIPTORS; i++) SEC_DESC_FREE_POINTERS(&(sc->sc_desc[i])); sec_free_dma_mem(&(sc->sc_lt_dmem)); sec_free_dma_mem(&(sc->sc_desc_dmem)); /* Release interrupts */ sec_release_intr(sc, sc->sc_pri_ires, sc->sc_pri_ihand, sc->sc_pri_irid, "primary"); sec_release_intr(sc, sc->sc_sec_ires, sc->sc_sec_ihand, sc->sc_sec_irid, "secondary"); /* Release memory */ if (sc->sc_rres) { error = bus_release_resource(dev, SYS_RES_MEMORY, sc->sc_rrid, sc->sc_rres); if (error) device_printf(dev, "bus_release_resource() failed for" " I/O memory, error %d\n", error); sc->sc_rres = NULL; } mtx_destroy(&sc->sc_controller_lock); mtx_destroy(&sc->sc_descriptors_lock); return (0); } static int sec_suspend(device_t dev) { return (0); } static int sec_resume(device_t dev) { return (0); } static int sec_shutdown(device_t dev) { return (0); } static int sec_setup_intr(struct sec_softc *sc, struct resource **ires, void **ihand, int *irid, driver_intr_t handler, const char *iname) { int error; (*ires) = bus_alloc_resource_any(sc->sc_dev, SYS_RES_IRQ, irid, RF_ACTIVE); if ((*ires) == NULL) { device_printf(sc->sc_dev, "could not allocate %s IRQ\n", iname); return (ENXIO); } error = bus_setup_intr(sc->sc_dev, *ires, INTR_MPSAFE | INTR_TYPE_NET, NULL, handler, sc, ihand); if (error) { device_printf(sc->sc_dev, "failed to set up %s IRQ\n", iname); if (bus_release_resource(sc->sc_dev, SYS_RES_IRQ, *irid, *ires)) device_printf(sc->sc_dev, "could not release %s IRQ\n", iname); (*ires) = NULL; return (error); } return (0); } static void sec_release_intr(struct sec_softc *sc, struct resource *ires, void *ihand, int irid, const char *iname) { int error; if (ires == NULL) return; error = bus_teardown_intr(sc->sc_dev, ires, ihand); if (error) device_printf(sc->sc_dev, "bus_teardown_intr() failed for %s" " IRQ, error %d\n", iname, error); error = bus_release_resource(sc->sc_dev, SYS_RES_IRQ, irid, ires); if (error) device_printf(sc->sc_dev, "bus_release_resource() failed for %s" " IRQ, error %d\n", iname, error); } static void sec_primary_intr(void *arg) { struct sec_session *ses; struct sec_softc *sc = arg; struct sec_desc *desc; struct cryptop *crp; uint64_t isr; uint8_t hash[HASH_MAX_LEN]; int i, wakeup = 0; SEC_LOCK(sc, controller); /* Check for errors */ isr = SEC_READ(sc, SEC_ISR); if (isr & sc->sc_int_error_mask) { /* Check each channel for error */ for (i = 0; i < SEC_CHANNELS; i++) { if ((isr & SEC_INT_CH_ERR(i)) == 0) continue; device_printf(sc->sc_dev, "I/O error on channel %i!\n", i); /* Find and mark problematic descriptor */ desc = sec_find_desc(sc, SEC_READ(sc, SEC_CHAN_CDPR(i))); if (desc != NULL) desc->sd_error = EIO; /* Do partial channel reset */ sec_channel_reset(sc, i, 0); } } /* ACK interrupt */ SEC_WRITE(sc, SEC_ICR, 0xFFFFFFFFFFFFFFFFULL); SEC_UNLOCK(sc, controller); SEC_LOCK(sc, descriptors); /* Handle processed descriptors */ SEC_DESC_SYNC(sc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); while (SEC_QUEUED_DESC_CNT(sc) > 0) { desc = SEC_GET_QUEUED_DESC(sc); if (desc->sd_desc->shd_done != 0xFF && desc->sd_error == 0) { SEC_PUT_BACK_QUEUED_DESC(sc); break; } SEC_DESC_SYNC_POINTERS(desc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); crp = desc->sd_crp; crp->crp_etype = desc->sd_error; if (crp->crp_etype == 0) { ses = crypto_get_driver_session(crp->crp_session); if (ses->ss_mlen != 0) { if (crp->crp_op & CRYPTO_OP_VERIFY_DIGEST) { crypto_copydata(crp, crp->crp_digest_start, ses->ss_mlen, hash); if (timingsafe_bcmp( desc->sd_desc->shd_digest, hash, ses->ss_mlen) != 0) crp->crp_etype = EBADMSG; } else crypto_copyback(crp, crp->crp_digest_start, ses->ss_mlen, desc->sd_desc->shd_digest); } } crypto_done(desc->sd_crp); SEC_DESC_FREE_POINTERS(desc); SEC_DESC_FREE_LT(sc, desc); SEC_DESC_QUEUED2FREE(sc); } SEC_DESC_SYNC(sc, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); if (!sc->sc_shutdown) { wakeup = sc->sc_blocked; sc->sc_blocked = 0; } SEC_UNLOCK(sc, descriptors); /* Enqueue ready descriptors in hardware */ sec_enqueue(sc); if (wakeup) crypto_unblock(sc->sc_cid, wakeup); } static void sec_secondary_intr(void *arg) { struct sec_softc *sc = arg; device_printf(sc->sc_dev, "spurious secondary interrupt!\n"); sec_primary_intr(arg); } static int sec_controller_reset(struct sec_softc *sc) { int timeout = SEC_TIMEOUT; /* Reset Controller */ SEC_WRITE(sc, SEC_MCR, SEC_MCR_SWR); while (SEC_READ(sc, SEC_MCR) & SEC_MCR_SWR) { DELAY(1000); timeout -= 1000; if (timeout < 0) { device_printf(sc->sc_dev, "timeout while waiting for " "device reset!\n"); return (ETIMEDOUT); } } return (0); } static int sec_channel_reset(struct sec_softc *sc, int channel, int full) { int timeout = SEC_TIMEOUT; uint64_t bit = (full) ? SEC_CHAN_CCR_R : SEC_CHAN_CCR_CON; uint64_t reg; /* Reset Channel */ reg = SEC_READ(sc, SEC_CHAN_CCR(channel)); SEC_WRITE(sc, SEC_CHAN_CCR(channel), reg | bit); while (SEC_READ(sc, SEC_CHAN_CCR(channel)) & bit) { DELAY(1000); timeout -= 1000; if (timeout < 0) { device_printf(sc->sc_dev, "timeout while waiting for " "channel reset!\n"); return (ETIMEDOUT); } } if (full) { reg = SEC_CHAN_CCR_CDIE | SEC_CHAN_CCR_NT | SEC_CHAN_CCR_BS; switch(sc->sc_version) { case 2: reg |= SEC_CHAN_CCR_CDWE; break; case 3: reg |= SEC_CHAN_CCR_AWSE | SEC_CHAN_CCR_WGN; break; } SEC_WRITE(sc, SEC_CHAN_CCR(channel), reg); } return (0); } static int sec_init(struct sec_softc *sc) { uint64_t reg; int error, i; /* Reset controller twice to clear all pending interrupts */ error = sec_controller_reset(sc); if (error) return (error); error = sec_controller_reset(sc); if (error) return (error); /* Reset channels */ for (i = 0; i < SEC_CHANNELS; i++) { error = sec_channel_reset(sc, i, 1); if (error) return (error); } /* Enable Interrupts */ reg = SEC_INT_ITO; for (i = 0; i < SEC_CHANNELS; i++) reg |= SEC_INT_CH_DN(i) | SEC_INT_CH_ERR(i); SEC_WRITE(sc, SEC_IER, reg); return (error); } static void sec_alloc_dma_mem_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error) { struct sec_dma_mem *dma_mem = arg; if (error) return; KASSERT(nseg == 1, ("Wrong number of segments, should be 1")); dma_mem->dma_paddr = segs->ds_addr; } static void sec_dma_map_desc_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error) { struct sec_desc_map_info *sdmi = arg; struct sec_softc *sc = sdmi->sdmi_sc; struct sec_lt *lt = NULL; bus_addr_t addr; bus_size_t size; int i; SEC_LOCK_ASSERT(sc, descriptors); if (error) return; for (i = 0; i < nseg; i++) { addr = segs[i].ds_addr; size = segs[i].ds_len; /* Skip requested offset */ if (sdmi->sdmi_offset >= size) { sdmi->sdmi_offset -= size; continue; } addr += sdmi->sdmi_offset; size -= sdmi->sdmi_offset; sdmi->sdmi_offset = 0; /* Do not link more than requested */ if (sdmi->sdmi_size < size) size = sdmi->sdmi_size; lt = SEC_ALLOC_LT_ENTRY(sc); lt->sl_lt->shl_length = size; lt->sl_lt->shl_r = 0; lt->sl_lt->shl_n = 0; lt->sl_lt->shl_ptr = addr; if (sdmi->sdmi_lt_first == NULL) sdmi->sdmi_lt_first = lt; sdmi->sdmi_lt_used += 1; if ((sdmi->sdmi_size -= size) == 0) break; } sdmi->sdmi_lt_last = lt; } static int sec_alloc_dma_mem(struct sec_softc *sc, struct sec_dma_mem *dma_mem, bus_size_t size) { int error; if (dma_mem->dma_vaddr != NULL) return (EBUSY); error = bus_dma_tag_create(NULL, /* parent */ SEC_DMA_ALIGNMENT, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filtfunc, filtfuncarg */ size, 1, /* maxsize, nsegments */ size, 0, /* maxsegsz, flags */ NULL, NULL, /* lockfunc, lockfuncarg */ &(dma_mem->dma_tag)); /* dmat */ if (error) { device_printf(sc->sc_dev, "failed to allocate busdma tag, error" " %i!\n", error); goto err1; } error = bus_dmamem_alloc(dma_mem->dma_tag, &(dma_mem->dma_vaddr), BUS_DMA_NOWAIT | BUS_DMA_ZERO, &(dma_mem->dma_map)); if (error) { device_printf(sc->sc_dev, "failed to allocate DMA safe" " memory, error %i!\n", error); goto err2; } error = bus_dmamap_load(dma_mem->dma_tag, dma_mem->dma_map, dma_mem->dma_vaddr, size, sec_alloc_dma_mem_cb, dma_mem, BUS_DMA_NOWAIT); if (error) { device_printf(sc->sc_dev, "cannot get address of the DMA" " memory, error %i\n", error); goto err3; } dma_mem->dma_is_map = 0; return (0); err3: bus_dmamem_free(dma_mem->dma_tag, dma_mem->dma_vaddr, dma_mem->dma_map); err2: bus_dma_tag_destroy(dma_mem->dma_tag); err1: dma_mem->dma_vaddr = NULL; return(error); } static int sec_desc_map_dma(struct sec_softc *sc, struct sec_dma_mem *dma_mem, struct cryptop *crp, bus_size_t size, struct sec_desc_map_info *sdmi) { int error; if (dma_mem->dma_vaddr != NULL) return (EBUSY); switch (crp->crp_buf.cb_type) { case CRYPTO_BUF_CONTIG: break; case CRYPTO_BUF_UIO: size = SEC_FREE_LT_CNT(sc) * SEC_MAX_DMA_BLOCK_SIZE; break; case CRYPTO_BUF_MBUF: size = m_length(crp->crp_buf.cb_mbuf, NULL); break; case CRYPTO_BUF_SINGLE_MBUF: size = crp->crp_buf.cb_mbuf->m_len; break; case CRYPTO_BUF_VMPAGE: size = PAGE_SIZE - crp->crp_buf.cb_vm_page_offset; break; default: return (EINVAL); } error = bus_dma_tag_create(NULL, /* parent */ SEC_DMA_ALIGNMENT, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filtfunc, filtfuncarg */ size, /* maxsize */ SEC_FREE_LT_CNT(sc), /* nsegments */ SEC_MAX_DMA_BLOCK_SIZE, 0, /* maxsegsz, flags */ NULL, NULL, /* lockfunc, lockfuncarg */ &(dma_mem->dma_tag)); /* dmat */ if (error) { device_printf(sc->sc_dev, "failed to allocate busdma tag, error" " %i!\n", error); dma_mem->dma_vaddr = NULL; return (error); } error = bus_dmamap_create(dma_mem->dma_tag, 0, &(dma_mem->dma_map)); if (error) { device_printf(sc->sc_dev, "failed to create DMA map, error %i!" "\n", error); bus_dma_tag_destroy(dma_mem->dma_tag); return (error); } error = bus_dmamap_load_crp(dma_mem->dma_tag, dma_mem->dma_map, crp, sec_dma_map_desc_cb, sdmi, BUS_DMA_NOWAIT); if (error) { device_printf(sc->sc_dev, "cannot get address of the DMA" " memory, error %i!\n", error); bus_dmamap_destroy(dma_mem->dma_tag, dma_mem->dma_map); bus_dma_tag_destroy(dma_mem->dma_tag); return (error); } dma_mem->dma_is_map = 1; dma_mem->dma_vaddr = crp; return (0); } static void sec_free_dma_mem(struct sec_dma_mem *dma_mem) { /* Check for double free */ if (dma_mem->dma_vaddr == NULL) return; bus_dmamap_unload(dma_mem->dma_tag, dma_mem->dma_map); if (dma_mem->dma_is_map) bus_dmamap_destroy(dma_mem->dma_tag, dma_mem->dma_map); else bus_dmamem_free(dma_mem->dma_tag, dma_mem->dma_vaddr, dma_mem->dma_map); bus_dma_tag_destroy(dma_mem->dma_tag); dma_mem->dma_vaddr = NULL; } static int sec_eu_channel(struct sec_softc *sc, int eu) { uint64_t reg; int channel = 0; SEC_LOCK_ASSERT(sc, controller); reg = SEC_READ(sc, SEC_EUASR); switch (eu) { case SEC_EU_AFEU: channel = SEC_EUASR_AFEU(reg); break; case SEC_EU_DEU: channel = SEC_EUASR_DEU(reg); break; case SEC_EU_MDEU_A: case SEC_EU_MDEU_B: channel = SEC_EUASR_MDEU(reg); break; case SEC_EU_RNGU: channel = SEC_EUASR_RNGU(reg); break; case SEC_EU_PKEU: channel = SEC_EUASR_PKEU(reg); break; case SEC_EU_AESU: channel = SEC_EUASR_AESU(reg); break; case SEC_EU_KEU: channel = SEC_EUASR_KEU(reg); break; case SEC_EU_CRCU: channel = SEC_EUASR_CRCU(reg); break; } return (channel - 1); } static int sec_enqueue_desc(struct sec_softc *sc, struct sec_desc *desc, int channel) { u_int fflvl = SEC_MAX_FIFO_LEVEL; uint64_t reg; int i; SEC_LOCK_ASSERT(sc, controller); /* Find free channel if have not got one */ if (channel < 0) { for (i = 0; i < SEC_CHANNELS; i++) { reg = SEC_READ(sc, SEC_CHAN_CSR(channel)); if ((reg & sc->sc_channel_idle_mask) == 0) { channel = i; break; } } } /* There is no free channel */ if (channel < 0) return (-1); /* Check FIFO level on selected channel */ reg = SEC_READ(sc, SEC_CHAN_CSR(channel)); switch(sc->sc_version) { case 2: fflvl = (reg >> SEC_CHAN_CSR2_FFLVL_S) & SEC_CHAN_CSR2_FFLVL_M; break; case 3: fflvl = (reg >> SEC_CHAN_CSR3_FFLVL_S) & SEC_CHAN_CSR3_FFLVL_M; break; } if (fflvl >= SEC_MAX_FIFO_LEVEL) return (-1); /* Enqueue descriptor in channel */ SEC_WRITE(sc, SEC_CHAN_FF(channel), desc->sd_desc_paddr); return (channel); } static void sec_enqueue(struct sec_softc *sc) { struct sec_desc *desc; int ch0, ch1; SEC_LOCK(sc, descriptors); SEC_LOCK(sc, controller); while (SEC_READY_DESC_CNT(sc) > 0) { desc = SEC_GET_READY_DESC(sc); ch0 = sec_eu_channel(sc, desc->sd_desc->shd_eu_sel0); ch1 = sec_eu_channel(sc, desc->sd_desc->shd_eu_sel1); /* * Both EU are used by the same channel. * Enqueue descriptor in channel used by busy EUs. */ if (ch0 >= 0 && ch0 == ch1) { if (sec_enqueue_desc(sc, desc, ch0) >= 0) { SEC_DESC_READY2QUEUED(sc); continue; } } /* * Only one EU is free. * Enqueue descriptor in channel used by busy EU. */ if ((ch0 >= 0 && ch1 < 0) || (ch1 >= 0 && ch0 < 0)) { if (sec_enqueue_desc(sc, desc, (ch0 >= 0) ? ch0 : ch1) >= 0) { SEC_DESC_READY2QUEUED(sc); continue; } } /* * Both EU are free. * Enqueue descriptor in first free channel. */ if (ch0 < 0 && ch1 < 0) { if (sec_enqueue_desc(sc, desc, -1) >= 0) { SEC_DESC_READY2QUEUED(sc); continue; } } /* Current descriptor can not be queued at the moment */ SEC_PUT_BACK_READY_DESC(sc); break; } SEC_UNLOCK(sc, controller); SEC_UNLOCK(sc, descriptors); } static struct sec_desc * sec_find_desc(struct sec_softc *sc, bus_addr_t paddr) { struct sec_desc *desc = NULL; int i; SEC_LOCK_ASSERT(sc, descriptors); for (i = 0; i < SEC_CHANNELS; i++) { if (sc->sc_desc[i].sd_desc_paddr == paddr) { desc = &(sc->sc_desc[i]); break; } } return (desc); } static int sec_make_pointer_direct(struct sec_softc *sc, struct sec_desc *desc, u_int n, bus_addr_t data, bus_size_t dsize) { struct sec_hw_desc_ptr *ptr; SEC_LOCK_ASSERT(sc, descriptors); ptr = &(desc->sd_desc->shd_pointer[n]); ptr->shdp_length = dsize; ptr->shdp_extent = 0; ptr->shdp_j = 0; ptr->shdp_ptr = data; return (0); } static int sec_make_pointer(struct sec_softc *sc, struct sec_desc *desc, u_int n, struct cryptop *crp, bus_size_t doffset, bus_size_t dsize) { struct sec_desc_map_info sdmi = { sc, dsize, doffset, NULL, NULL, 0 }; struct sec_hw_desc_ptr *ptr; int error; SEC_LOCK_ASSERT(sc, descriptors); error = sec_desc_map_dma(sc, &(desc->sd_ptr_dmem[n]), crp, dsize, &sdmi); if (error) return (error); sdmi.sdmi_lt_last->sl_lt->shl_r = 1; desc->sd_lt_used += sdmi.sdmi_lt_used; ptr = &(desc->sd_desc->shd_pointer[n]); ptr->shdp_length = dsize; ptr->shdp_extent = 0; ptr->shdp_j = 1; ptr->shdp_ptr = sdmi.sdmi_lt_first->sl_lt_paddr; return (0); } static bool sec_cipher_supported(const struct crypto_session_params *csp) { switch (csp->csp_cipher_alg) { case CRYPTO_AES_CBC: /* AESU */ if (csp->csp_ivlen != AES_BLOCK_LEN) return (false); break; default: return (false); } if (csp->csp_cipher_klen == 0 || csp->csp_cipher_klen > SEC_MAX_KEY_LEN) return (false); return (true); } static bool sec_auth_supported(struct sec_softc *sc, const struct crypto_session_params *csp) { switch (csp->csp_auth_alg) { case CRYPTO_SHA2_384_HMAC: case CRYPTO_SHA2_512_HMAC: if (sc->sc_version < 3) return (false); /* FALLTHROUGH */ case CRYPTO_SHA1_HMAC: case CRYPTO_SHA2_256_HMAC: if (csp->csp_auth_klen > SEC_MAX_KEY_LEN) return (false); break; case CRYPTO_SHA1: break; default: return (false); } return (true); } static int sec_probesession(device_t dev, const struct crypto_session_params *csp) { struct sec_softc *sc = device_get_softc(dev); if (csp->csp_flags != 0) return (EINVAL); switch (csp->csp_mode) { case CSP_MODE_DIGEST: if (!sec_auth_supported(sc, csp)) return (EINVAL); break; case CSP_MODE_CIPHER: if (!sec_cipher_supported(csp)) return (EINVAL); break; case CSP_MODE_ETA: if (!sec_auth_supported(sc, csp) || !sec_cipher_supported(csp)) return (EINVAL); break; default: return (EINVAL); } return (CRYPTODEV_PROBE_HARDWARE); } static int sec_newsession(device_t dev, crypto_session_t cses, const struct crypto_session_params *csp) { struct sec_eu_methods *eu = sec_eus; struct sec_session *ses; ses = crypto_get_driver_session(cses); /* Find EU for this session */ while (eu->sem_make_desc != NULL) { if (eu->sem_newsession(csp)) break; eu++; } KASSERT(eu->sem_make_desc != NULL, ("failed to find eu for session")); /* Save cipher key */ if (csp->csp_cipher_key != NULL) memcpy(ses->ss_key, csp->csp_cipher_key, csp->csp_cipher_klen); /* Save digest key */ if (csp->csp_auth_key != NULL) memcpy(ses->ss_mkey, csp->csp_auth_key, csp->csp_auth_klen); if (csp->csp_auth_alg != 0) { if (csp->csp_auth_mlen == 0) ses->ss_mlen = crypto_auth_hash(csp)->hashsize; else ses->ss_mlen = csp->csp_auth_mlen; } return (0); } static int sec_process(device_t dev, struct cryptop *crp, int hint) { struct sec_softc *sc = device_get_softc(dev); struct sec_desc *desc = NULL; const struct crypto_session_params *csp; struct sec_session *ses; int error = 0; ses = crypto_get_driver_session(crp->crp_session); csp = crypto_get_params(crp->crp_session); /* Check for input length */ if (crypto_buffer_len(&crp->crp_buf) > SEC_MAX_DMA_BLOCK_SIZE) { crp->crp_etype = E2BIG; crypto_done(crp); return (0); } SEC_LOCK(sc, descriptors); SEC_DESC_SYNC(sc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); /* Block driver if there is no free descriptors or we are going down */ if (SEC_FREE_DESC_CNT(sc) == 0 || sc->sc_shutdown) { sc->sc_blocked |= CRYPTO_SYMQ; SEC_UNLOCK(sc, descriptors); return (ERESTART); } /* Prepare descriptor */ desc = SEC_GET_FREE_DESC(sc); desc->sd_lt_used = 0; desc->sd_error = 0; desc->sd_crp = crp; if (csp->csp_cipher_alg != 0) crypto_read_iv(crp, desc->sd_desc->shd_iv); if (crp->crp_cipher_key != NULL) memcpy(ses->ss_key, crp->crp_cipher_key, csp->csp_cipher_klen); if (crp->crp_auth_key != NULL) memcpy(ses->ss_mkey, crp->crp_auth_key, csp->csp_auth_klen); memcpy(desc->sd_desc->shd_key, ses->ss_key, csp->csp_cipher_klen); memcpy(desc->sd_desc->shd_mkey, ses->ss_mkey, csp->csp_auth_klen); error = ses->ss_eu->sem_make_desc(sc, csp, desc, crp); if (error) { SEC_DESC_FREE_POINTERS(desc); SEC_DESC_PUT_BACK_LT(sc, desc); SEC_PUT_BACK_FREE_DESC(sc); SEC_UNLOCK(sc, descriptors); crp->crp_etype = error; crypto_done(crp); return (0); } /* * Skip DONE interrupt if this is not last request in burst, but only * if we are running on SEC 3.X. On SEC 2.X we have to enable DONE * signaling on each descriptor. */ if ((hint & CRYPTO_HINT_MORE) && sc->sc_version == 3) desc->sd_desc->shd_dn = 0; else desc->sd_desc->shd_dn = 1; SEC_DESC_SYNC(sc, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); SEC_DESC_SYNC_POINTERS(desc, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); SEC_DESC_FREE2READY(sc); SEC_UNLOCK(sc, descriptors); /* Enqueue ready descriptors in hardware */ sec_enqueue(sc); return (0); } static int sec_build_common_ns_desc(struct sec_softc *sc, struct sec_desc *desc, const struct crypto_session_params *csp, struct cryptop *crp) { struct sec_hw_desc *hd = desc->sd_desc; int error; hd->shd_desc_type = SEC_DT_COMMON_NONSNOOP; hd->shd_eu_sel1 = SEC_EU_NONE; hd->shd_mode1 = 0; /* Pointer 0: NULL */ error = sec_make_pointer_direct(sc, desc, 0, 0, 0); if (error) return (error); /* Pointer 1: IV IN */ error = sec_make_pointer_direct(sc, desc, 1, desc->sd_desc_paddr + offsetof(struct sec_hw_desc, shd_iv), csp->csp_ivlen); if (error) return (error); /* Pointer 2: Cipher Key */ error = sec_make_pointer_direct(sc, desc, 2, desc->sd_desc_paddr + offsetof(struct sec_hw_desc, shd_key), csp->csp_cipher_klen); if (error) return (error); /* Pointer 3: Data IN */ error = sec_make_pointer(sc, desc, 3, crp, crp->crp_payload_start, crp->crp_payload_length); if (error) return (error); /* Pointer 4: Data OUT */ error = sec_make_pointer(sc, desc, 4, crp, crp->crp_payload_start, crp->crp_payload_length); if (error) return (error); /* Pointer 5: IV OUT (Not used: NULL) */ error = sec_make_pointer_direct(sc, desc, 5, 0, 0); if (error) return (error); /* Pointer 6: NULL */ error = sec_make_pointer_direct(sc, desc, 6, 0, 0); return (error); } static int sec_build_common_s_desc(struct sec_softc *sc, struct sec_desc *desc, const struct crypto_session_params *csp, struct cryptop *crp) { struct sec_hw_desc *hd = desc->sd_desc; u_int eu, mode, hashlen; int error; error = sec_mdeu_config(csp, &eu, &mode, &hashlen); if (error) return (error); hd->shd_desc_type = SEC_DT_HMAC_SNOOP; hd->shd_eu_sel1 = eu; hd->shd_mode1 = mode; /* Pointer 0: HMAC Key */ error = sec_make_pointer_direct(sc, desc, 0, desc->sd_desc_paddr + offsetof(struct sec_hw_desc, shd_mkey), csp->csp_auth_klen); if (error) return (error); /* Pointer 1: HMAC-Only Data IN */ error = sec_make_pointer(sc, desc, 1, crp, crp->crp_aad_start, crp->crp_aad_length); if (error) return (error); /* Pointer 2: Cipher Key */ error = sec_make_pointer_direct(sc, desc, 2, desc->sd_desc_paddr + offsetof(struct sec_hw_desc, shd_key), csp->csp_cipher_klen); if (error) return (error); /* Pointer 3: IV IN */ error = sec_make_pointer_direct(sc, desc, 3, desc->sd_desc_paddr + offsetof(struct sec_hw_desc, shd_iv), csp->csp_ivlen); if (error) return (error); /* Pointer 4: Data IN */ error = sec_make_pointer(sc, desc, 4, crp, crp->crp_payload_start, crp->crp_payload_length); if (error) return (error); /* Pointer 5: Data OUT */ error = sec_make_pointer(sc, desc, 5, crp, crp->crp_payload_start, crp->crp_payload_length); if (error) return (error); /* Pointer 6: HMAC OUT */ error = sec_make_pointer_direct(sc, desc, 6, desc->sd_desc_paddr + offsetof(struct sec_hw_desc, shd_digest), hashlen); return (error); } /* AESU */ static bool sec_aesu_newsession(const struct crypto_session_params *csp) { return (csp->csp_cipher_alg == CRYPTO_AES_CBC); } static int sec_aesu_make_desc(struct sec_softc *sc, const struct crypto_session_params *csp, struct sec_desc *desc, struct cryptop *crp) { struct sec_hw_desc *hd = desc->sd_desc; int error; hd->shd_eu_sel0 = SEC_EU_AESU; hd->shd_mode0 = SEC_AESU_MODE_CBC; if (CRYPTO_OP_IS_ENCRYPT(crp->crp_op)) { hd->shd_mode0 |= SEC_AESU_MODE_ED; hd->shd_dir = 0; } else hd->shd_dir = 1; if (csp->csp_mode == CSP_MODE_ETA) error = sec_build_common_s_desc(sc, desc, csp, crp); else error = sec_build_common_ns_desc(sc, desc, csp, crp); return (error); } /* MDEU */ static bool sec_mdeu_can_handle(u_int alg) { switch (alg) { case CRYPTO_SHA1: case CRYPTO_SHA1_HMAC: case CRYPTO_SHA2_256_HMAC: case CRYPTO_SHA2_384_HMAC: case CRYPTO_SHA2_512_HMAC: return (true); default: return (false); } } static int sec_mdeu_config(const struct crypto_session_params *csp, u_int *eu, u_int *mode, u_int *hashlen) { *mode = SEC_MDEU_MODE_PD | SEC_MDEU_MODE_INIT; *eu = SEC_EU_NONE; switch (csp->csp_auth_alg) { case CRYPTO_SHA1_HMAC: *mode |= SEC_MDEU_MODE_HMAC; /* FALLTHROUGH */ case CRYPTO_SHA1: *eu = SEC_EU_MDEU_A; *mode |= SEC_MDEU_MODE_SHA1; *hashlen = SHA1_HASH_LEN; break; case CRYPTO_SHA2_256_HMAC: *mode |= SEC_MDEU_MODE_HMAC | SEC_MDEU_MODE_SHA256; *eu = SEC_EU_MDEU_A; break; case CRYPTO_SHA2_384_HMAC: *mode |= SEC_MDEU_MODE_HMAC | SEC_MDEU_MODE_SHA384; *eu = SEC_EU_MDEU_B; break; case CRYPTO_SHA2_512_HMAC: *mode |= SEC_MDEU_MODE_HMAC | SEC_MDEU_MODE_SHA512; *eu = SEC_EU_MDEU_B; break; default: return (EINVAL); } if (*mode & SEC_MDEU_MODE_HMAC) *hashlen = SEC_HMAC_HASH_LEN; return (0); } static bool sec_mdeu_newsession(const struct crypto_session_params *csp) { return (sec_mdeu_can_handle(csp->csp_auth_alg)); } static int sec_mdeu_make_desc(struct sec_softc *sc, const struct crypto_session_params *csp, struct sec_desc *desc, struct cryptop *crp) { struct sec_hw_desc *hd = desc->sd_desc; u_int eu, mode, hashlen; int error; error = sec_mdeu_config(csp, &eu, &mode, &hashlen); if (error) return (error); hd->shd_desc_type = SEC_DT_COMMON_NONSNOOP; hd->shd_eu_sel0 = eu; hd->shd_mode0 = mode; hd->shd_eu_sel1 = SEC_EU_NONE; hd->shd_mode1 = 0; /* Pointer 0: NULL */ error = sec_make_pointer_direct(sc, desc, 0, 0, 0); if (error) return (error); /* Pointer 1: Context In (Not used: NULL) */ error = sec_make_pointer_direct(sc, desc, 1, 0, 0); if (error) return (error); /* Pointer 2: HMAC Key (or NULL, depending on digest type) */ if (hd->shd_mode0 & SEC_MDEU_MODE_HMAC) error = sec_make_pointer_direct(sc, desc, 2, desc->sd_desc_paddr + offsetof(struct sec_hw_desc, shd_mkey), csp->csp_auth_klen); else error = sec_make_pointer_direct(sc, desc, 2, 0, 0); if (error) return (error); /* Pointer 3: Input Data */ error = sec_make_pointer(sc, desc, 3, crp, crp->crp_payload_start, crp->crp_payload_length); if (error) return (error); /* Pointer 4: NULL */ error = sec_make_pointer_direct(sc, desc, 4, 0, 0); if (error) return (error); /* Pointer 5: Hash out */ error = sec_make_pointer_direct(sc, desc, 5, desc->sd_desc_paddr + offsetof(struct sec_hw_desc, shd_digest), hashlen); if (error) return (error); /* Pointer 6: NULL */ error = sec_make_pointer_direct(sc, desc, 6, 0, 0); return (0); }