/*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2008 Alexander Motin * Copyright (c) 2017 Marius Strobl * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "mmcbr_if.h" #include "sdhci_if.h" #include "opt_mmccam.h" SYSCTL_NODE(_hw, OID_AUTO, sdhci, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "sdhci driver"); static int sdhci_debug = 0; SYSCTL_INT(_hw_sdhci, OID_AUTO, debug, CTLFLAG_RWTUN, &sdhci_debug, 0, "Debug level"); u_int sdhci_quirk_clear = 0; SYSCTL_INT(_hw_sdhci, OID_AUTO, quirk_clear, CTLFLAG_RWTUN, &sdhci_quirk_clear, 0, "Mask of quirks to clear"); u_int sdhci_quirk_set = 0; SYSCTL_INT(_hw_sdhci, OID_AUTO, quirk_set, CTLFLAG_RWTUN, &sdhci_quirk_set, 0, "Mask of quirks to set"); #define RD1(slot, off) SDHCI_READ_1((slot)->bus, (slot), (off)) #define RD2(slot, off) SDHCI_READ_2((slot)->bus, (slot), (off)) #define RD4(slot, off) SDHCI_READ_4((slot)->bus, (slot), (off)) #define RD_MULTI_4(slot, off, ptr, count) \ SDHCI_READ_MULTI_4((slot)->bus, (slot), (off), (ptr), (count)) #define WR1(slot, off, val) SDHCI_WRITE_1((slot)->bus, (slot), (off), (val)) #define WR2(slot, off, val) SDHCI_WRITE_2((slot)->bus, (slot), (off), (val)) #define WR4(slot, off, val) SDHCI_WRITE_4((slot)->bus, (slot), (off), (val)) #define WR_MULTI_4(slot, off, ptr, count) \ SDHCI_WRITE_MULTI_4((slot)->bus, (slot), (off), (ptr), (count)) static void sdhci_acmd_irq(struct sdhci_slot *slot, uint16_t acmd_err); static void sdhci_card_poll(void *arg); static void sdhci_card_task(void *arg, int pending); static void sdhci_cmd_irq(struct sdhci_slot *slot, uint32_t intmask); static void sdhci_data_irq(struct sdhci_slot *slot, uint32_t intmask); static int sdhci_exec_tuning(struct sdhci_slot *slot, bool reset); static void sdhci_handle_card_present_locked(struct sdhci_slot *slot, bool is_present); static void sdhci_finish_command(struct sdhci_slot *slot); static void sdhci_init(struct sdhci_slot *slot); static void sdhci_read_block_pio(struct sdhci_slot *slot); static void sdhci_req_done(struct sdhci_slot *slot); static void sdhci_req_wakeup(struct mmc_request *req); static void sdhci_retune(void *arg); static void sdhci_set_clock(struct sdhci_slot *slot, uint32_t clock); static void sdhci_set_power(struct sdhci_slot *slot, u_char power); static void sdhci_set_transfer_mode(struct sdhci_slot *slot, const struct mmc_data *data); static void sdhci_start(struct sdhci_slot *slot); static void sdhci_timeout(void *arg); static void sdhci_start_command(struct sdhci_slot *slot, struct mmc_command *cmd); static void sdhci_start_data(struct sdhci_slot *slot, const struct mmc_data *data); static void sdhci_write_block_pio(struct sdhci_slot *slot); static void sdhci_transfer_pio(struct sdhci_slot *slot); #ifdef MMCCAM /* CAM-related */ static void sdhci_cam_action(struct cam_sim *sim, union ccb *ccb); static int sdhci_cam_get_possible_host_clock(const struct sdhci_slot *slot, int proposed_clock); static void sdhci_cam_poll(struct cam_sim *sim); static int sdhci_cam_request(struct sdhci_slot *slot, union ccb *ccb); static int sdhci_cam_settran_settings(struct sdhci_slot *slot, union ccb *ccb); static int sdhci_cam_update_ios(struct sdhci_slot *slot); #endif /* helper routines */ static int sdhci_dma_alloc(struct sdhci_slot *slot, uint32_t caps); static void sdhci_dma_free(struct sdhci_slot *slot); static void sdhci_dumpcaps(struct sdhci_slot *slot); static void sdhci_dumpcaps_buf(struct sdhci_slot *slot, struct sbuf *s); static void sdhci_dumpregs(struct sdhci_slot *slot); static void sdhci_dumpregs_buf(struct sdhci_slot *slot, struct sbuf *s); static int sdhci_syctl_dumpcaps(SYSCTL_HANDLER_ARGS); static int sdhci_syctl_dumpregs(SYSCTL_HANDLER_ARGS); static void sdhci_getaddr(void *arg, bus_dma_segment_t *segs, int nsegs, int error); static int slot_printf(const struct sdhci_slot *slot, const char * fmt, ...) __printflike(2, 3); static int slot_sprintf(const struct sdhci_slot *slot, struct sbuf *s, const char * fmt, ...) __printflike(3, 4); static uint32_t sdhci_tuning_intmask(const struct sdhci_slot *slot); #define SDHCI_LOCK(_slot) mtx_lock(&(_slot)->mtx) #define SDHCI_UNLOCK(_slot) mtx_unlock(&(_slot)->mtx) #define SDHCI_LOCK_INIT(_slot) \ mtx_init(&_slot->mtx, "SD slot mtx", "sdhci", MTX_DEF) #define SDHCI_LOCK_DESTROY(_slot) mtx_destroy(&_slot->mtx); #define SDHCI_ASSERT_LOCKED(_slot) mtx_assert(&_slot->mtx, MA_OWNED); #define SDHCI_ASSERT_UNLOCKED(_slot) mtx_assert(&_slot->mtx, MA_NOTOWNED); #define SDHCI_DEFAULT_MAX_FREQ 50 #define SDHCI_200_MAX_DIVIDER 256 #define SDHCI_300_MAX_DIVIDER 2046 #define SDHCI_CARD_PRESENT_TICKS (hz / 5) #define SDHCI_INSERT_DELAY_TICKS (hz / 2) /* * Broadcom BCM577xx Controller Constants */ /* Maximum divider supported by the default clock source. */ #define BCM577XX_DEFAULT_MAX_DIVIDER 256 /* Alternative clock's base frequency. */ #define BCM577XX_ALT_CLOCK_BASE 63000000 #define BCM577XX_HOST_CONTROL 0x198 #define BCM577XX_CTRL_CLKSEL_MASK 0xFFFFCFFF #define BCM577XX_CTRL_CLKSEL_SHIFT 12 #define BCM577XX_CTRL_CLKSEL_DEFAULT 0x0 #define BCM577XX_CTRL_CLKSEL_64MHZ 0x3 static void sdhci_getaddr(void *arg, bus_dma_segment_t *segs, int nsegs, int error) { if (error != 0) { printf("getaddr: error %d\n", error); return; } *(bus_addr_t *)arg = segs[0].ds_addr; } static int slot_printf(const struct sdhci_slot *slot, const char * fmt, ...) { char buf[128]; va_list ap; int retval; /* * Make sure we print a single line all together rather than in two * halves to avoid console gibberish bingo. */ va_start(ap, fmt); retval = vsnprintf(buf, sizeof(buf), fmt, ap); va_end(ap); retval += printf("%s-slot%d: %s", device_get_nameunit(slot->bus), slot->num, buf); return (retval); } static int slot_sprintf(const struct sdhci_slot *slot, struct sbuf *s, const char * fmt, ...) { va_list ap; int retval; retval = sbuf_printf(s, "%s-slot%d: ", device_get_nameunit(slot->bus), slot->num); va_start(ap, fmt); retval += sbuf_vprintf(s, fmt, ap); va_end(ap); return (retval); } static void sdhci_dumpregs_buf(struct sdhci_slot *slot, struct sbuf *s) { slot_sprintf(slot, s, "============== REGISTER DUMP ==============\n"); slot_sprintf(slot, s, "Sys addr: 0x%08x | Version: 0x%08x\n", RD4(slot, SDHCI_DMA_ADDRESS), RD2(slot, SDHCI_HOST_VERSION)); slot_sprintf(slot, s, "Blk size: 0x%08x | Blk cnt: 0x%08x\n", RD2(slot, SDHCI_BLOCK_SIZE), RD2(slot, SDHCI_BLOCK_COUNT)); slot_sprintf(slot, s, "Argument: 0x%08x | Trn mode: 0x%08x\n", RD4(slot, SDHCI_ARGUMENT), RD2(slot, SDHCI_TRANSFER_MODE)); slot_sprintf(slot, s, "Present: 0x%08x | Host ctl: 0x%08x\n", RD4(slot, SDHCI_PRESENT_STATE), RD1(slot, SDHCI_HOST_CONTROL)); slot_sprintf(slot, s, "Power: 0x%08x | Blk gap: 0x%08x\n", RD1(slot, SDHCI_POWER_CONTROL), RD1(slot, SDHCI_BLOCK_GAP_CONTROL)); slot_sprintf(slot, s, "Wake-up: 0x%08x | Clock: 0x%08x\n", RD1(slot, SDHCI_WAKE_UP_CONTROL), RD2(slot, SDHCI_CLOCK_CONTROL)); slot_sprintf(slot, s, "Timeout: 0x%08x | Int stat: 0x%08x\n", RD1(slot, SDHCI_TIMEOUT_CONTROL), RD4(slot, SDHCI_INT_STATUS)); slot_sprintf(slot, s, "Int enab: 0x%08x | Sig enab: 0x%08x\n", RD4(slot, SDHCI_INT_ENABLE), RD4(slot, SDHCI_SIGNAL_ENABLE)); slot_sprintf(slot, s, "AC12 err: 0x%08x | Host ctl2:0x%08x\n", RD2(slot, SDHCI_ACMD12_ERR), RD2(slot, SDHCI_HOST_CONTROL2)); slot_sprintf(slot, s, "Caps: 0x%08x | Caps2: 0x%08x\n", RD4(slot, SDHCI_CAPABILITIES), RD4(slot, SDHCI_CAPABILITIES2)); slot_sprintf(slot, s, "Max curr: 0x%08x | ADMA err: 0x%08x\n", RD4(slot, SDHCI_MAX_CURRENT), RD1(slot, SDHCI_ADMA_ERR)); slot_sprintf(slot, s, "ADMA addr:0x%08x | Slot int: 0x%08x\n", RD4(slot, SDHCI_ADMA_ADDRESS_LO), RD2(slot, SDHCI_SLOT_INT_STATUS)); slot_sprintf(slot, s, "===========================================\n"); } static void sdhci_dumpregs(struct sdhci_slot *slot) { struct sbuf s; if (sbuf_new(&s, NULL, 1024, SBUF_NOWAIT | SBUF_AUTOEXTEND) == NULL) { slot_printf(slot, "sdhci_dumpregs: Failed to allocate memory for sbuf\n"); return; } sbuf_set_drain(&s, &sbuf_printf_drain, NULL); sdhci_dumpregs_buf(slot, &s); sbuf_finish(&s); sbuf_delete(&s); } static int sdhci_syctl_dumpregs(SYSCTL_HANDLER_ARGS) { struct sdhci_slot *slot = arg1; struct sbuf s; sbuf_new_for_sysctl(&s, NULL, 1024, req); sbuf_putc(&s, '\n'); sdhci_dumpregs_buf(slot, &s); sbuf_finish(&s); sbuf_delete(&s); return (0); } static void sdhci_dumpcaps_buf(struct sdhci_slot *slot, struct sbuf *s) { int host_caps = slot->host.caps; int caps = slot->caps; slot_sprintf(slot, s, "%uMHz%s %s VDD:%s%s%s VCCQ: 3.3V%s%s DRV: B%s%s%s %s %s\n", slot->max_clk / 1000000, (caps & SDHCI_CAN_DO_HISPD) ? " HS" : "", (host_caps & MMC_CAP_8_BIT_DATA) ? "8bits" : ((host_caps & MMC_CAP_4_BIT_DATA) ? "4bits" : "1bit"), (caps & SDHCI_CAN_VDD_330) ? " 3.3V" : "", (caps & SDHCI_CAN_VDD_300) ? " 3.0V" : "", ((caps & SDHCI_CAN_VDD_180) && (slot->opt & SDHCI_SLOT_EMBEDDED)) ? " 1.8V" : "", (host_caps & MMC_CAP_SIGNALING_180) ? " 1.8V" : "", (host_caps & MMC_CAP_SIGNALING_120) ? " 1.2V" : "", (host_caps & MMC_CAP_DRIVER_TYPE_A) ? "A" : "", (host_caps & MMC_CAP_DRIVER_TYPE_C) ? "C" : "", (host_caps & MMC_CAP_DRIVER_TYPE_D) ? "D" : "", (slot->opt & SDHCI_HAVE_DMA) ? "DMA" : "PIO", (slot->opt & SDHCI_SLOT_EMBEDDED) ? "embedded" : (slot->opt & SDHCI_NON_REMOVABLE) ? "non-removable" : "removable"); if (host_caps & (MMC_CAP_MMC_DDR52 | MMC_CAP_MMC_HS200 | MMC_CAP_MMC_HS400 | MMC_CAP_MMC_ENH_STROBE)) slot_sprintf(slot, s, "eMMC:%s%s%s%s\n", (host_caps & MMC_CAP_MMC_DDR52) ? " DDR52" : "", (host_caps & MMC_CAP_MMC_HS200) ? " HS200" : "", (host_caps & MMC_CAP_MMC_HS400) ? " HS400" : "", ((host_caps & (MMC_CAP_MMC_HS400 | MMC_CAP_MMC_ENH_STROBE)) == (MMC_CAP_MMC_HS400 | MMC_CAP_MMC_ENH_STROBE)) ? " HS400ES" : ""); if (host_caps & (MMC_CAP_UHS_SDR12 | MMC_CAP_UHS_SDR25 | MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR104)) slot_sprintf(slot, s, "UHS-I:%s%s%s%s%s\n", (host_caps & MMC_CAP_UHS_SDR12) ? " SDR12" : "", (host_caps & MMC_CAP_UHS_SDR25) ? " SDR25" : "", (host_caps & MMC_CAP_UHS_SDR50) ? " SDR50" : "", (host_caps & MMC_CAP_UHS_SDR104) ? " SDR104" : "", (host_caps & MMC_CAP_UHS_DDR50) ? " DDR50" : ""); if (slot->opt & SDHCI_TUNING_SUPPORTED) slot_sprintf(slot, s, "Re-tuning count %d secs, mode %d\n", slot->retune_count, slot->retune_mode + 1); } static void sdhci_dumpcaps(struct sdhci_slot *slot) { struct sbuf s; if (sbuf_new(&s, NULL, 1024, SBUF_NOWAIT | SBUF_AUTOEXTEND) == NULL) { slot_printf(slot, "sdhci_dumpcaps: Failed to allocate memory for sbuf\n"); return; } sbuf_set_drain(&s, &sbuf_printf_drain, NULL); sdhci_dumpcaps_buf(slot, &s); sbuf_finish(&s); sbuf_delete(&s); } static int sdhci_syctl_dumpcaps(SYSCTL_HANDLER_ARGS) { struct sdhci_slot *slot = arg1; struct sbuf s; sbuf_new_for_sysctl(&s, NULL, 1024, req); sbuf_putc(&s, '\n'); sdhci_dumpcaps_buf(slot, &s); sbuf_finish(&s); sbuf_delete(&s); return (0); } static uint32_t sdhci_tuning_intmask(const struct sdhci_slot *slot) { uint32_t intmask; intmask = 0; if (slot->opt & SDHCI_TUNING_ENABLED) { intmask |= SDHCI_INT_TUNEERR; if (slot->retune_mode == SDHCI_RETUNE_MODE_2 || slot->retune_mode == SDHCI_RETUNE_MODE_3) intmask |= SDHCI_INT_RETUNE; } return (intmask); } static void sdhci_init(struct sdhci_slot *slot) { SDHCI_RESET(slot->bus, slot, SDHCI_RESET_ALL); /* Enable interrupts. */ slot->intmask = SDHCI_INT_BUS_POWER | SDHCI_INT_DATA_END_BIT | SDHCI_INT_DATA_CRC | SDHCI_INT_DATA_TIMEOUT | SDHCI_INT_INDEX | SDHCI_INT_END_BIT | SDHCI_INT_CRC | SDHCI_INT_TIMEOUT | SDHCI_INT_DATA_AVAIL | SDHCI_INT_SPACE_AVAIL | SDHCI_INT_DMA_END | SDHCI_INT_DATA_END | SDHCI_INT_RESPONSE | SDHCI_INT_ACMD12ERR; if (!(slot->quirks & SDHCI_QUIRK_POLL_CARD_PRESENT) && !(slot->opt & SDHCI_NON_REMOVABLE)) { slot->intmask |= SDHCI_INT_CARD_REMOVE | SDHCI_INT_CARD_INSERT; } WR4(slot, SDHCI_INT_ENABLE, slot->intmask); WR4(slot, SDHCI_SIGNAL_ENABLE, slot->intmask); } static void sdhci_set_clock(struct sdhci_slot *slot, uint32_t clock) { uint32_t clk_base; uint32_t clk_sel; uint32_t res; uint16_t clk; uint16_t div; int timeout; if (clock == slot->clock) return; slot->clock = clock; /* Turn off the clock. */ clk = RD2(slot, SDHCI_CLOCK_CONTROL); WR2(slot, SDHCI_CLOCK_CONTROL, clk & ~SDHCI_CLOCK_CARD_EN); /* If no clock requested - leave it so. */ if (clock == 0) return; /* Determine the clock base frequency */ clk_base = slot->max_clk; if (slot->quirks & SDHCI_QUIRK_BCM577XX_400KHZ_CLKSRC) { clk_sel = RD2(slot, BCM577XX_HOST_CONTROL) & BCM577XX_CTRL_CLKSEL_MASK; /* * Select clock source appropriate for the requested frequency. */ if ((clk_base / BCM577XX_DEFAULT_MAX_DIVIDER) > clock) { clk_base = BCM577XX_ALT_CLOCK_BASE; clk_sel |= (BCM577XX_CTRL_CLKSEL_64MHZ << BCM577XX_CTRL_CLKSEL_SHIFT); } else { clk_sel |= (BCM577XX_CTRL_CLKSEL_DEFAULT << BCM577XX_CTRL_CLKSEL_SHIFT); } WR2(slot, BCM577XX_HOST_CONTROL, clk_sel); } /* Recalculate timeout clock frequency based on the new sd clock. */ if (slot->quirks & SDHCI_QUIRK_DATA_TIMEOUT_USES_SDCLK) slot->timeout_clk = slot->clock / 1000; if (slot->version < SDHCI_SPEC_300) { /* Looking for highest freq <= clock. */ res = clk_base; for (div = 1; div < SDHCI_200_MAX_DIVIDER; div <<= 1) { if (res <= clock) break; res >>= 1; } /* Divider 1:1 is 0x00, 2:1 is 0x01, 256:1 is 0x80 ... */ div >>= 1; } else { /* Version 3.0 divisors are multiples of two up to 1023 * 2 */ if (clock >= clk_base) div = 0; else { for (div = 2; div < SDHCI_300_MAX_DIVIDER; div += 2) { if ((clk_base / div) <= clock) break; } } div >>= 1; } if (bootverbose || sdhci_debug) slot_printf(slot, "Divider %d for freq %d (base %d)\n", div, clock, clk_base); /* Now we have got divider, set it. */ clk = (div & SDHCI_DIVIDER_MASK) << SDHCI_DIVIDER_SHIFT; clk |= ((div >> SDHCI_DIVIDER_MASK_LEN) & SDHCI_DIVIDER_HI_MASK) << SDHCI_DIVIDER_HI_SHIFT; WR2(slot, SDHCI_CLOCK_CONTROL, clk); /* Enable clock. */ clk |= SDHCI_CLOCK_INT_EN; WR2(slot, SDHCI_CLOCK_CONTROL, clk); /* Wait up to 10 ms until it stabilize. */ timeout = 10; while (!((clk = RD2(slot, SDHCI_CLOCK_CONTROL)) & SDHCI_CLOCK_INT_STABLE)) { if (timeout == 0) { slot_printf(slot, "Internal clock never stabilised.\n"); sdhci_dumpregs(slot); return; } timeout--; DELAY(1000); } /* Pass clock signal to the bus. */ clk |= SDHCI_CLOCK_CARD_EN; WR2(slot, SDHCI_CLOCK_CONTROL, clk); } static void sdhci_set_power(struct sdhci_slot *slot, u_char power) { int i; uint8_t pwr; if (slot->power == power) return; slot->power = power; /* Turn off the power. */ pwr = 0; WR1(slot, SDHCI_POWER_CONTROL, pwr); /* If power down requested - leave it so. */ if (power == 0) return; /* Set voltage. */ switch (1 << power) { case MMC_OCR_LOW_VOLTAGE: pwr |= SDHCI_POWER_180; break; case MMC_OCR_290_300: case MMC_OCR_300_310: pwr |= SDHCI_POWER_300; break; case MMC_OCR_320_330: case MMC_OCR_330_340: pwr |= SDHCI_POWER_330; break; } WR1(slot, SDHCI_POWER_CONTROL, pwr); /* * Turn on VDD1 power. Note that at least some Intel controllers can * fail to enable bus power on the first try after transiting from D3 * to D0, so we give them up to 2 ms. */ pwr |= SDHCI_POWER_ON; for (i = 0; i < 20; i++) { WR1(slot, SDHCI_POWER_CONTROL, pwr); if (RD1(slot, SDHCI_POWER_CONTROL) & SDHCI_POWER_ON) break; DELAY(100); } if (!(RD1(slot, SDHCI_POWER_CONTROL) & SDHCI_POWER_ON)) slot_printf(slot, "Bus power failed to enable\n"); if (slot->quirks & SDHCI_QUIRK_INTEL_POWER_UP_RESET) { WR1(slot, SDHCI_POWER_CONTROL, pwr | 0x10); DELAY(10); WR1(slot, SDHCI_POWER_CONTROL, pwr); DELAY(300); } } static void sdhci_read_block_pio(struct sdhci_slot *slot) { uint32_t data; char *buffer; size_t left; buffer = slot->curcmd->data->data; buffer += slot->offset; /* Transfer one block at a time. */ #ifdef MMCCAM if (slot->curcmd->data->flags & MMC_DATA_BLOCK_SIZE) left = min(slot->curcmd->data->block_size, slot->curcmd->data->len - slot->offset); else #endif left = min(512, slot->curcmd->data->len - slot->offset); slot->offset += left; /* If we are too fast, broken controllers return zeroes. */ if (slot->quirks & SDHCI_QUIRK_BROKEN_TIMINGS) DELAY(10); /* Handle unaligned and aligned buffer cases. */ if ((intptr_t)buffer & 3) { while (left > 3) { data = RD4(slot, SDHCI_BUFFER); buffer[0] = data; buffer[1] = (data >> 8); buffer[2] = (data >> 16); buffer[3] = (data >> 24); buffer += 4; left -= 4; } } else { RD_MULTI_4(slot, SDHCI_BUFFER, (uint32_t *)buffer, left >> 2); left &= 3; } /* Handle uneven size case. */ if (left > 0) { data = RD4(slot, SDHCI_BUFFER); while (left > 0) { *(buffer++) = data; data >>= 8; left--; } } } static void sdhci_write_block_pio(struct sdhci_slot *slot) { uint32_t data = 0; char *buffer; size_t left; buffer = slot->curcmd->data->data; buffer += slot->offset; /* Transfer one block at a time. */ #ifdef MMCCAM if (slot->curcmd->data->flags & MMC_DATA_BLOCK_SIZE) { left = min(slot->curcmd->data->block_size, slot->curcmd->data->len - slot->offset); } else #endif left = min(512, slot->curcmd->data->len - slot->offset); slot->offset += left; /* Handle unaligned and aligned buffer cases. */ if ((intptr_t)buffer & 3) { while (left > 3) { data = buffer[0] + (buffer[1] << 8) + (buffer[2] << 16) + (buffer[3] << 24); left -= 4; buffer += 4; WR4(slot, SDHCI_BUFFER, data); } } else { WR_MULTI_4(slot, SDHCI_BUFFER, (uint32_t *)buffer, left >> 2); left &= 3; } /* Handle uneven size case. */ if (left > 0) { while (left > 0) { data <<= 8; data += *(buffer++); left--; } WR4(slot, SDHCI_BUFFER, data); } } static void sdhci_transfer_pio(struct sdhci_slot *slot) { /* Read as many blocks as possible. */ if (slot->curcmd->data->flags & MMC_DATA_READ) { while (RD4(slot, SDHCI_PRESENT_STATE) & SDHCI_DATA_AVAILABLE) { sdhci_read_block_pio(slot); if (slot->offset >= slot->curcmd->data->len) break; } } else { while (RD4(slot, SDHCI_PRESENT_STATE) & SDHCI_SPACE_AVAILABLE) { sdhci_write_block_pio(slot); if (slot->offset >= slot->curcmd->data->len) break; } } } static void sdhci_card_task(void *arg, int pending __unused) { struct sdhci_slot *slot = arg; device_t d; SDHCI_LOCK(slot); if (SDHCI_GET_CARD_PRESENT(slot->bus, slot)) { #ifdef MMCCAM if (slot->card_present == 0) { #else if (slot->dev == NULL) { #endif /* If card is present - attach mmc bus. */ if (bootverbose || sdhci_debug) slot_printf(slot, "Card inserted\n"); #ifdef MMCCAM slot->card_present = 1; mmccam_start_discovery(slot->sim); SDHCI_UNLOCK(slot); #else d = slot->dev = device_add_child(slot->bus, "mmc", -1); SDHCI_UNLOCK(slot); if (d) { device_set_ivars(d, slot); (void)device_probe_and_attach(d); } #endif } else SDHCI_UNLOCK(slot); } else { #ifdef MMCCAM if (slot->card_present == 1) { #else if (slot->dev != NULL) { #endif /* If no card present - detach mmc bus. */ if (bootverbose || sdhci_debug) slot_printf(slot, "Card removed\n"); d = slot->dev; slot->dev = NULL; #ifdef MMCCAM slot->card_present = 0; mmccam_start_discovery(slot->sim); SDHCI_UNLOCK(slot); #else slot->intmask &= ~sdhci_tuning_intmask(slot); WR4(slot, SDHCI_INT_ENABLE, slot->intmask); WR4(slot, SDHCI_SIGNAL_ENABLE, slot->intmask); slot->opt &= ~SDHCI_TUNING_ENABLED; SDHCI_UNLOCK(slot); callout_drain(&slot->retune_callout); device_delete_child(slot->bus, d); #endif } else SDHCI_UNLOCK(slot); } } static void sdhci_handle_card_present_locked(struct sdhci_slot *slot, bool is_present) { bool was_present; /* * If there was no card and now there is one, schedule the task to * create the child device after a short delay. The delay is to * debounce the card insert (sometimes the card detect pin stabilizes * before the other pins have made good contact). * * If there was a card present and now it's gone, immediately schedule * the task to delete the child device. No debouncing -- gone is gone, * because once power is removed, a full card re-init is needed, and * that happens by deleting and recreating the child device. */ #ifdef MMCCAM was_present = slot->card_present; #else was_present = slot->dev != NULL; #endif if (!was_present && is_present) { taskqueue_enqueue_timeout(taskqueue_swi_giant, &slot->card_delayed_task, -SDHCI_INSERT_DELAY_TICKS); } else if (was_present && !is_present) { taskqueue_enqueue(taskqueue_swi_giant, &slot->card_task); } } void sdhci_handle_card_present(struct sdhci_slot *slot, bool is_present) { SDHCI_LOCK(slot); sdhci_handle_card_present_locked(slot, is_present); SDHCI_UNLOCK(slot); } static void sdhci_card_poll(void *arg) { struct sdhci_slot *slot = arg; sdhci_handle_card_present(slot, SDHCI_GET_CARD_PRESENT(slot->bus, slot)); callout_reset(&slot->card_poll_callout, SDHCI_CARD_PRESENT_TICKS, sdhci_card_poll, slot); } static int sdhci_dma_alloc(struct sdhci_slot *slot, uint32_t caps) { int err; if (!(slot->quirks & SDHCI_QUIRK_BROKEN_SDMA_BOUNDARY)) { if (maxphys <= 1024 * 4) slot->sdma_boundary = SDHCI_BLKSZ_SDMA_BNDRY_4K; else if (maxphys <= 1024 * 8) slot->sdma_boundary = SDHCI_BLKSZ_SDMA_BNDRY_8K; else if (maxphys <= 1024 * 16) slot->sdma_boundary = SDHCI_BLKSZ_SDMA_BNDRY_16K; else if (maxphys <= 1024 * 32) slot->sdma_boundary = SDHCI_BLKSZ_SDMA_BNDRY_32K; else if (maxphys <= 1024 * 64) slot->sdma_boundary = SDHCI_BLKSZ_SDMA_BNDRY_64K; else if (maxphys <= 1024 * 128) slot->sdma_boundary = SDHCI_BLKSZ_SDMA_BNDRY_128K; else if (maxphys <= 1024 * 256) slot->sdma_boundary = SDHCI_BLKSZ_SDMA_BNDRY_256K; else slot->sdma_boundary = SDHCI_BLKSZ_SDMA_BNDRY_512K; } slot->sdma_bbufsz = SDHCI_SDMA_BNDRY_TO_BBUFSZ(slot->sdma_boundary); /* * Allocate the DMA tag for an SDMA bounce buffer. * Note that the SDHCI specification doesn't state any alignment * constraint for the SDMA system address. However, controllers * typically ignore the SDMA boundary bits in SDHCI_DMA_ADDRESS when * forming the actual address of data, requiring the SDMA buffer to * be aligned to the SDMA boundary. */ err = bus_dma_tag_create(bus_get_dma_tag(slot->bus), slot->sdma_bbufsz, 0, (caps & SDHCI_CAN_DO_64BIT) ? BUS_SPACE_MAXADDR : BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, slot->sdma_bbufsz, 1, slot->sdma_bbufsz, BUS_DMA_ALLOCNOW, NULL, NULL, &slot->dmatag); if (err != 0) { slot_printf(slot, "Can't create DMA tag for SDMA\n"); return (err); } /* Allocate DMA memory for the SDMA bounce buffer. */ err = bus_dmamem_alloc(slot->dmatag, (void **)&slot->dmamem, BUS_DMA_NOWAIT, &slot->dmamap); if (err != 0) { slot_printf(slot, "Can't alloc DMA memory for SDMA\n"); bus_dma_tag_destroy(slot->dmatag); return (err); } /* Map the memory of the SDMA bounce buffer. */ err = bus_dmamap_load(slot->dmatag, slot->dmamap, (void *)slot->dmamem, slot->sdma_bbufsz, sdhci_getaddr, &slot->paddr, 0); if (err != 0 || slot->paddr == 0) { slot_printf(slot, "Can't load DMA memory for SDMA\n"); bus_dmamem_free(slot->dmatag, slot->dmamem, slot->dmamap); bus_dma_tag_destroy(slot->dmatag); if (err) return (err); else return (EFAULT); } return (0); } static void sdhci_dma_free(struct sdhci_slot *slot) { bus_dmamap_unload(slot->dmatag, slot->dmamap); bus_dmamem_free(slot->dmatag, slot->dmamem, slot->dmamap); bus_dma_tag_destroy(slot->dmatag); } int sdhci_init_slot(device_t dev, struct sdhci_slot *slot, int num) { kobjop_desc_t kobj_desc; kobj_method_t *kobj_method; uint32_t caps, caps2, freq, host_caps; int err; char node_name[8]; struct sysctl_oid *node_oid; SDHCI_LOCK_INIT(slot); slot->num = num; slot->bus = dev; slot->version = (RD2(slot, SDHCI_HOST_VERSION) >> SDHCI_SPEC_VER_SHIFT) & SDHCI_SPEC_VER_MASK; if (slot->quirks & SDHCI_QUIRK_MISSING_CAPS) { caps = slot->caps; caps2 = slot->caps2; } else { caps = RD4(slot, SDHCI_CAPABILITIES); if (slot->version >= SDHCI_SPEC_300) caps2 = RD4(slot, SDHCI_CAPABILITIES2); else caps2 = 0; } if (slot->version >= SDHCI_SPEC_300) { if ((caps & SDHCI_SLOTTYPE_MASK) != SDHCI_SLOTTYPE_REMOVABLE && (caps & SDHCI_SLOTTYPE_MASK) != SDHCI_SLOTTYPE_EMBEDDED) { slot_printf(slot, "Driver doesn't support shared bus slots\n"); SDHCI_LOCK_DESTROY(slot); return (ENXIO); } else if ((caps & SDHCI_SLOTTYPE_MASK) == SDHCI_SLOTTYPE_EMBEDDED) { slot->opt |= SDHCI_SLOT_EMBEDDED | SDHCI_NON_REMOVABLE; } } /* Calculate base clock frequency. */ if (slot->version >= SDHCI_SPEC_300) freq = (caps & SDHCI_CLOCK_V3_BASE_MASK) >> SDHCI_CLOCK_BASE_SHIFT; else freq = (caps & SDHCI_CLOCK_BASE_MASK) >> SDHCI_CLOCK_BASE_SHIFT; if (freq != 0) slot->max_clk = freq * 1000000; /* * If the frequency wasn't in the capabilities and the hardware driver * hasn't already set max_clk we're probably not going to work right * with an assumption, so complain about it. */ if (slot->max_clk == 0) { slot->max_clk = SDHCI_DEFAULT_MAX_FREQ * 1000000; slot_printf(slot, "Hardware doesn't specify base clock " "frequency, using %dMHz as default.\n", SDHCI_DEFAULT_MAX_FREQ); } /* Calculate/set timeout clock frequency. */ if (slot->quirks & SDHCI_QUIRK_DATA_TIMEOUT_USES_SDCLK) { slot->timeout_clk = slot->max_clk / 1000; } else if (slot->quirks & SDHCI_QUIRK_DATA_TIMEOUT_1MHZ) { slot->timeout_clk = 1000; } else { slot->timeout_clk = (caps & SDHCI_TIMEOUT_CLK_MASK) >> SDHCI_TIMEOUT_CLK_SHIFT; if (caps & SDHCI_TIMEOUT_CLK_UNIT) slot->timeout_clk *= 1000; } /* * If the frequency wasn't in the capabilities and the hardware driver * hasn't already set timeout_clk we'll probably work okay using the * max timeout, but still mention it. */ if (slot->timeout_clk == 0) { slot_printf(slot, "Hardware doesn't specify timeout clock " "frequency, setting BROKEN_TIMEOUT quirk.\n"); slot->quirks |= SDHCI_QUIRK_BROKEN_TIMEOUT_VAL; } slot->host.f_min = SDHCI_MIN_FREQ(slot->bus, slot); slot->host.f_max = slot->max_clk; slot->host.host_ocr = 0; if (caps & SDHCI_CAN_VDD_330) slot->host.host_ocr |= MMC_OCR_320_330 | MMC_OCR_330_340; if (caps & SDHCI_CAN_VDD_300) slot->host.host_ocr |= MMC_OCR_290_300 | MMC_OCR_300_310; /* * 1.8V VDD is not supposed to be used for removable cards. Hardware * prior to v3.0 had no way to indicate embedded slots, but did * sometimes support 1.8v for non-removable devices. */ if ((caps & SDHCI_CAN_VDD_180) && (slot->version < SDHCI_SPEC_300 || (slot->opt & SDHCI_SLOT_EMBEDDED))) slot->host.host_ocr |= MMC_OCR_LOW_VOLTAGE; if (slot->host.host_ocr == 0) { slot_printf(slot, "Hardware doesn't report any " "support voltages.\n"); } host_caps = slot->host.caps; host_caps |= MMC_CAP_4_BIT_DATA; if (caps & SDHCI_CAN_DO_8BITBUS) host_caps |= MMC_CAP_8_BIT_DATA; if (caps & SDHCI_CAN_DO_HISPD) host_caps |= MMC_CAP_HSPEED; if (slot->quirks & SDHCI_QUIRK_BOOT_NOACC) host_caps |= MMC_CAP_BOOT_NOACC; if (slot->quirks & SDHCI_QUIRK_WAIT_WHILE_BUSY) host_caps |= MMC_CAP_WAIT_WHILE_BUSY; /* Determine supported UHS-I and eMMC modes. */ if (caps2 & (SDHCI_CAN_SDR50 | SDHCI_CAN_SDR104 | SDHCI_CAN_DDR50)) host_caps |= MMC_CAP_UHS_SDR12 | MMC_CAP_UHS_SDR25; if (caps2 & SDHCI_CAN_SDR104) { host_caps |= MMC_CAP_UHS_SDR104 | MMC_CAP_UHS_SDR50; if (!(slot->quirks & SDHCI_QUIRK_BROKEN_MMC_HS200)) host_caps |= MMC_CAP_MMC_HS200; } else if (caps2 & SDHCI_CAN_SDR50) host_caps |= MMC_CAP_UHS_SDR50; if (caps2 & SDHCI_CAN_DDR50 && !(slot->quirks & SDHCI_QUIRK_BROKEN_UHS_DDR50)) host_caps |= MMC_CAP_UHS_DDR50; if (slot->quirks & SDHCI_QUIRK_MMC_DDR52) host_caps |= MMC_CAP_MMC_DDR52; if (slot->quirks & SDHCI_QUIRK_CAPS_BIT63_FOR_MMC_HS400 && caps2 & SDHCI_CAN_MMC_HS400) host_caps |= MMC_CAP_MMC_HS400; if (slot->quirks & SDHCI_QUIRK_MMC_HS400_IF_CAN_SDR104 && caps2 & SDHCI_CAN_SDR104) host_caps |= MMC_CAP_MMC_HS400; /* * Disable UHS-I and eMMC modes if the set_uhs_timing method is the * default NULL implementation. */ kobj_desc = &sdhci_set_uhs_timing_desc; kobj_method = kobj_lookup_method(((kobj_t)dev)->ops->cls, NULL, kobj_desc); if (kobj_method == &kobj_desc->deflt) host_caps &= ~(MMC_CAP_UHS_SDR12 | MMC_CAP_UHS_SDR25 | MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_DDR50 | MMC_CAP_UHS_SDR104 | MMC_CAP_MMC_DDR52 | MMC_CAP_MMC_HS200 | MMC_CAP_MMC_HS400); #define SDHCI_CAP_MODES_TUNING(caps2) \ (((caps2) & SDHCI_TUNE_SDR50 ? MMC_CAP_UHS_SDR50 : 0) | \ MMC_CAP_UHS_DDR50 | MMC_CAP_UHS_SDR104 | MMC_CAP_MMC_HS200 | \ MMC_CAP_MMC_HS400) /* * Disable UHS-I and eMMC modes that require (re-)tuning if either * the tune or re-tune method is the default NULL implementation. */ kobj_desc = &mmcbr_tune_desc; kobj_method = kobj_lookup_method(((kobj_t)dev)->ops->cls, NULL, kobj_desc); if (kobj_method == &kobj_desc->deflt) goto no_tuning; kobj_desc = &mmcbr_retune_desc; kobj_method = kobj_lookup_method(((kobj_t)dev)->ops->cls, NULL, kobj_desc); if (kobj_method == &kobj_desc->deflt) { no_tuning: host_caps &= ~(SDHCI_CAP_MODES_TUNING(caps2)); } /* Allocate tuning structures and determine tuning parameters. */ if (host_caps & SDHCI_CAP_MODES_TUNING(caps2)) { slot->opt |= SDHCI_TUNING_SUPPORTED; slot->tune_req = malloc(sizeof(*slot->tune_req), M_DEVBUF, M_WAITOK); slot->tune_cmd = malloc(sizeof(*slot->tune_cmd), M_DEVBUF, M_WAITOK); slot->tune_data = malloc(sizeof(*slot->tune_data), M_DEVBUF, M_WAITOK); if (caps2 & SDHCI_TUNE_SDR50) slot->opt |= SDHCI_SDR50_NEEDS_TUNING; slot->retune_mode = (caps2 & SDHCI_RETUNE_MODES_MASK) >> SDHCI_RETUNE_MODES_SHIFT; if (slot->retune_mode == SDHCI_RETUNE_MODE_1) { slot->retune_count = (caps2 & SDHCI_RETUNE_CNT_MASK) >> SDHCI_RETUNE_CNT_SHIFT; if (slot->retune_count > 0xb) { slot_printf(slot, "Unknown re-tuning count " "%x, using 1 sec\n", slot->retune_count); slot->retune_count = 1; } else if (slot->retune_count != 0) slot->retune_count = 1 << (slot->retune_count - 1); } } #undef SDHCI_CAP_MODES_TUNING /* Determine supported VCCQ signaling levels. */ host_caps |= MMC_CAP_SIGNALING_330; if (host_caps & (MMC_CAP_UHS_SDR12 | MMC_CAP_UHS_SDR25 | MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_DDR50 | MMC_CAP_UHS_SDR104 | MMC_CAP_MMC_DDR52_180 | MMC_CAP_MMC_HS200_180 | MMC_CAP_MMC_HS400_180)) host_caps |= MMC_CAP_SIGNALING_120 | MMC_CAP_SIGNALING_180; /* * Disable 1.2 V and 1.8 V signaling if the switch_vccq method is the * default NULL implementation. Disable 1.2 V support if it's the * generic SDHCI implementation. */ kobj_desc = &mmcbr_switch_vccq_desc; kobj_method = kobj_lookup_method(((kobj_t)dev)->ops->cls, NULL, kobj_desc); if (kobj_method == &kobj_desc->deflt) host_caps &= ~(MMC_CAP_SIGNALING_120 | MMC_CAP_SIGNALING_180); else if (kobj_method->func == (kobjop_t)sdhci_generic_switch_vccq) host_caps &= ~MMC_CAP_SIGNALING_120; /* Determine supported driver types (type B is always mandatory). */ if (caps2 & SDHCI_CAN_DRIVE_TYPE_A) host_caps |= MMC_CAP_DRIVER_TYPE_A; if (caps2 & SDHCI_CAN_DRIVE_TYPE_C) host_caps |= MMC_CAP_DRIVER_TYPE_C; if (caps2 & SDHCI_CAN_DRIVE_TYPE_D) host_caps |= MMC_CAP_DRIVER_TYPE_D; slot->host.caps = host_caps; /* Decide if we have usable DMA. */ if (caps & SDHCI_CAN_DO_DMA) slot->opt |= SDHCI_HAVE_DMA; if (slot->quirks & SDHCI_QUIRK_BROKEN_DMA) slot->opt &= ~SDHCI_HAVE_DMA; if (slot->quirks & SDHCI_QUIRK_FORCE_DMA) slot->opt |= SDHCI_HAVE_DMA; if (slot->quirks & SDHCI_QUIRK_ALL_SLOTS_NON_REMOVABLE) slot->opt |= SDHCI_NON_REMOVABLE; /* * Use platform-provided transfer backend * with PIO as a fallback mechanism */ if (slot->opt & SDHCI_PLATFORM_TRANSFER) slot->opt &= ~SDHCI_HAVE_DMA; if (slot->opt & SDHCI_HAVE_DMA) { err = sdhci_dma_alloc(slot, caps); if (err != 0) { if (slot->opt & SDHCI_TUNING_SUPPORTED) { free(slot->tune_req, M_DEVBUF); free(slot->tune_cmd, M_DEVBUF); free(slot->tune_data, M_DEVBUF); } SDHCI_LOCK_DESTROY(slot); return (err); } } if (bootverbose || sdhci_debug) { sdhci_dumpcaps(slot); sdhci_dumpregs(slot); } slot->timeout = 10; SYSCTL_ADD_INT(device_get_sysctl_ctx(slot->bus), SYSCTL_CHILDREN(device_get_sysctl_tree(slot->bus)), OID_AUTO, "timeout", CTLFLAG_RWTUN, &slot->timeout, 0, "Maximum timeout for SDHCI transfers (in secs)"); TASK_INIT(&slot->card_task, 0, sdhci_card_task, slot); TIMEOUT_TASK_INIT(taskqueue_swi_giant, &slot->card_delayed_task, 0, sdhci_card_task, slot); callout_init(&slot->card_poll_callout, 1); callout_init_mtx(&slot->timeout_callout, &slot->mtx, 0); callout_init_mtx(&slot->retune_callout, &slot->mtx, 0); if ((slot->quirks & SDHCI_QUIRK_POLL_CARD_PRESENT) && !(slot->opt & SDHCI_NON_REMOVABLE)) { callout_reset(&slot->card_poll_callout, SDHCI_CARD_PRESENT_TICKS, sdhci_card_poll, slot); } sdhci_init(slot); snprintf(node_name, sizeof(node_name), "slot%d", slot->num); node_oid = SYSCTL_ADD_NODE(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, node_name, CTLFLAG_RW, 0, "slot specific node"); node_oid = SYSCTL_ADD_NODE(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(node_oid), OID_AUTO, "debug", CTLFLAG_RW, 0, "Debugging node"); SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(node_oid), OID_AUTO, "dumpregs", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, slot, 0, &sdhci_syctl_dumpregs, "A", "Dump SDHCI registers"); SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(node_oid), OID_AUTO, "dumpcaps", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, slot, 0, &sdhci_syctl_dumpcaps, "A", "Dump SDHCI capabilites"); return (0); } #ifndef MMCCAM void sdhci_start_slot(struct sdhci_slot *slot) { sdhci_card_task(slot, 0); } #endif int sdhci_cleanup_slot(struct sdhci_slot *slot) { device_t d; callout_drain(&slot->timeout_callout); callout_drain(&slot->card_poll_callout); callout_drain(&slot->retune_callout); taskqueue_drain(taskqueue_swi_giant, &slot->card_task); taskqueue_drain_timeout(taskqueue_swi_giant, &slot->card_delayed_task); SDHCI_LOCK(slot); d = slot->dev; slot->dev = NULL; SDHCI_UNLOCK(slot); if (d != NULL) device_delete_child(slot->bus, d); SDHCI_LOCK(slot); SDHCI_RESET(slot->bus, slot, SDHCI_RESET_ALL); SDHCI_UNLOCK(slot); if (slot->opt & SDHCI_HAVE_DMA) sdhci_dma_free(slot); if (slot->opt & SDHCI_TUNING_SUPPORTED) { free(slot->tune_req, M_DEVBUF); free(slot->tune_cmd, M_DEVBUF); free(slot->tune_data, M_DEVBUF); } SDHCI_LOCK_DESTROY(slot); return (0); } int sdhci_generic_suspend(struct sdhci_slot *slot) { /* * We expect the MMC layer to issue initial tuning after resume. * Otherwise, we'd need to indicate re-tuning including circuit reset * being required at least for re-tuning modes 1 and 2 ourselves. */ callout_drain(&slot->retune_callout); SDHCI_LOCK(slot); slot->opt &= ~SDHCI_TUNING_ENABLED; SDHCI_RESET(slot->bus, slot, SDHCI_RESET_ALL); SDHCI_UNLOCK(slot); return (0); } int sdhci_generic_resume(struct sdhci_slot *slot) { SDHCI_LOCK(slot); sdhci_init(slot); SDHCI_UNLOCK(slot); return (0); } void sdhci_generic_reset(device_t brdev __unused, struct sdhci_slot *slot, uint8_t mask) { int timeout; uint32_t clock; if (slot->quirks & SDHCI_QUIRK_NO_CARD_NO_RESET) { if (!SDHCI_GET_CARD_PRESENT(slot->bus, slot)) return; } /* Some controllers need this kick or reset won't work. */ if ((mask & SDHCI_RESET_ALL) == 0 && (slot->quirks & SDHCI_QUIRK_CLOCK_BEFORE_RESET)) { /* This is to force an update */ clock = slot->clock; slot->clock = 0; sdhci_set_clock(slot, clock); } if (mask & SDHCI_RESET_ALL) { slot->clock = 0; slot->power = 0; } WR1(slot, SDHCI_SOFTWARE_RESET, mask); if (slot->quirks & SDHCI_QUIRK_WAITFOR_RESET_ASSERTED) { /* * Resets on TI OMAPs and AM335x are incompatible with SDHCI * specification. The reset bit has internal propagation delay, * so a fast read after write returns 0 even if reset process is * in progress. The workaround is to poll for 1 before polling * for 0. In the worst case, if we miss seeing it asserted the * time we spent waiting is enough to ensure the reset finishes. */ timeout = 10000; while ((RD1(slot, SDHCI_SOFTWARE_RESET) & mask) != mask) { if (timeout <= 0) break; timeout--; DELAY(1); } } /* Wait max 100 ms */ timeout = 10000; /* Controller clears the bits when it's done */ while (RD1(slot, SDHCI_SOFTWARE_RESET) & mask) { if (timeout <= 0) { slot_printf(slot, "Reset 0x%x never completed.\n", mask); sdhci_dumpregs(slot); return; } timeout--; DELAY(10); } } uint32_t sdhci_generic_min_freq(device_t brdev __unused, struct sdhci_slot *slot) { if (slot->version >= SDHCI_SPEC_300) return (slot->max_clk / SDHCI_300_MAX_DIVIDER); else return (slot->max_clk / SDHCI_200_MAX_DIVIDER); } bool sdhci_generic_get_card_present(device_t brdev __unused, struct sdhci_slot *slot) { if (slot->opt & SDHCI_NON_REMOVABLE) return true; return (RD4(slot, SDHCI_PRESENT_STATE) & SDHCI_CARD_PRESENT); } void sdhci_generic_set_uhs_timing(device_t brdev __unused, struct sdhci_slot *slot) { const struct mmc_ios *ios; uint16_t hostctrl2; if (slot->version < SDHCI_SPEC_300) return; SDHCI_ASSERT_LOCKED(slot); ios = &slot->host.ios; sdhci_set_clock(slot, 0); hostctrl2 = RD2(slot, SDHCI_HOST_CONTROL2); hostctrl2 &= ~SDHCI_CTRL2_UHS_MASK; if (ios->clock > SD_SDR50_MAX) { if (ios->timing == bus_timing_mmc_hs400 || ios->timing == bus_timing_mmc_hs400es) hostctrl2 |= SDHCI_CTRL2_MMC_HS400; else hostctrl2 |= SDHCI_CTRL2_UHS_SDR104; } else if (ios->clock > SD_SDR25_MAX) hostctrl2 |= SDHCI_CTRL2_UHS_SDR50; else if (ios->clock > SD_SDR12_MAX) { if (ios->timing == bus_timing_uhs_ddr50 || ios->timing == bus_timing_mmc_ddr52) hostctrl2 |= SDHCI_CTRL2_UHS_DDR50; else hostctrl2 |= SDHCI_CTRL2_UHS_SDR25; } else if (ios->clock > SD_MMC_CARD_ID_FREQUENCY) hostctrl2 |= SDHCI_CTRL2_UHS_SDR12; WR2(slot, SDHCI_HOST_CONTROL2, hostctrl2); sdhci_set_clock(slot, ios->clock); } int sdhci_generic_update_ios(device_t brdev, device_t reqdev) { struct sdhci_slot *slot = device_get_ivars(reqdev); struct mmc_ios *ios = &slot->host.ios; SDHCI_LOCK(slot); /* Do full reset on bus power down to clear from any state. */ if (ios->power_mode == power_off) { WR4(slot, SDHCI_SIGNAL_ENABLE, 0); sdhci_init(slot); } /* Configure the bus. */ sdhci_set_clock(slot, ios->clock); sdhci_set_power(slot, (ios->power_mode == power_off) ? 0 : ios->vdd); if (ios->bus_width == bus_width_8) { slot->hostctrl |= SDHCI_CTRL_8BITBUS; slot->hostctrl &= ~SDHCI_CTRL_4BITBUS; } else if (ios->bus_width == bus_width_4) { slot->hostctrl &= ~SDHCI_CTRL_8BITBUS; slot->hostctrl |= SDHCI_CTRL_4BITBUS; } else if (ios->bus_width == bus_width_1) { slot->hostctrl &= ~SDHCI_CTRL_8BITBUS; slot->hostctrl &= ~SDHCI_CTRL_4BITBUS; } else { panic("Invalid bus width: %d", ios->bus_width); } if (ios->clock > SD_SDR12_MAX && !(slot->quirks & SDHCI_QUIRK_DONT_SET_HISPD_BIT)) slot->hostctrl |= SDHCI_CTRL_HISPD; else slot->hostctrl &= ~SDHCI_CTRL_HISPD; WR1(slot, SDHCI_HOST_CONTROL, slot->hostctrl); SDHCI_SET_UHS_TIMING(brdev, slot); /* Some controllers like reset after bus changes. */ if (slot->quirks & SDHCI_QUIRK_RESET_ON_IOS) SDHCI_RESET(slot->bus, slot, SDHCI_RESET_CMD | SDHCI_RESET_DATA); SDHCI_UNLOCK(slot); return (0); } int sdhci_generic_switch_vccq(device_t brdev __unused, device_t reqdev) { struct sdhci_slot *slot = device_get_ivars(reqdev); enum mmc_vccq vccq; int err; uint16_t hostctrl2; if (slot->version < SDHCI_SPEC_300) return (0); err = 0; vccq = slot->host.ios.vccq; SDHCI_LOCK(slot); sdhci_set_clock(slot, 0); hostctrl2 = RD2(slot, SDHCI_HOST_CONTROL2); switch (vccq) { case vccq_330: if (!(hostctrl2 & SDHCI_CTRL2_S18_ENABLE)) goto done; hostctrl2 &= ~SDHCI_CTRL2_S18_ENABLE; WR2(slot, SDHCI_HOST_CONTROL2, hostctrl2); DELAY(5000); hostctrl2 = RD2(slot, SDHCI_HOST_CONTROL2); if (!(hostctrl2 & SDHCI_CTRL2_S18_ENABLE)) goto done; err = EAGAIN; break; case vccq_180: if (!(slot->host.caps & MMC_CAP_SIGNALING_180)) { err = EINVAL; goto done; } if (hostctrl2 & SDHCI_CTRL2_S18_ENABLE) goto done; hostctrl2 |= SDHCI_CTRL2_S18_ENABLE; WR2(slot, SDHCI_HOST_CONTROL2, hostctrl2); DELAY(5000); hostctrl2 = RD2(slot, SDHCI_HOST_CONTROL2); if (hostctrl2 & SDHCI_CTRL2_S18_ENABLE) goto done; err = EAGAIN; break; default: slot_printf(slot, "Attempt to set unsupported signaling voltage\n"); err = EINVAL; break; } done: sdhci_set_clock(slot, slot->host.ios.clock); SDHCI_UNLOCK(slot); return (err); } int sdhci_generic_tune(device_t brdev __unused, device_t reqdev, bool hs400) { struct sdhci_slot *slot = device_get_ivars(reqdev); const struct mmc_ios *ios = &slot->host.ios; struct mmc_command *tune_cmd; struct mmc_data *tune_data; uint32_t opcode; int err; if (!(slot->opt & SDHCI_TUNING_SUPPORTED)) return (0); slot->retune_ticks = slot->retune_count * hz; opcode = MMC_SEND_TUNING_BLOCK; SDHCI_LOCK(slot); switch (ios->timing) { case bus_timing_mmc_hs400: slot_printf(slot, "HS400 must be tuned in HS200 mode\n"); SDHCI_UNLOCK(slot); return (EINVAL); case bus_timing_mmc_hs200: /* * In HS400 mode, controllers use the data strobe line to * latch data from the devices so periodic re-tuning isn't * expected to be required. */ if (hs400) slot->retune_ticks = 0; opcode = MMC_SEND_TUNING_BLOCK_HS200; break; case bus_timing_uhs_ddr50: case bus_timing_uhs_sdr104: break; case bus_timing_uhs_sdr50: if (slot->opt & SDHCI_SDR50_NEEDS_TUNING) break; /* FALLTHROUGH */ default: SDHCI_UNLOCK(slot); return (0); } tune_cmd = slot->tune_cmd; memset(tune_cmd, 0, sizeof(*tune_cmd)); tune_cmd->opcode = opcode; tune_cmd->flags = MMC_RSP_R1 | MMC_CMD_ADTC; tune_data = tune_cmd->data = slot->tune_data; memset(tune_data, 0, sizeof(*tune_data)); tune_data->len = (opcode == MMC_SEND_TUNING_BLOCK_HS200 && ios->bus_width == bus_width_8) ? MMC_TUNING_LEN_HS200 : MMC_TUNING_LEN; tune_data->flags = MMC_DATA_READ; tune_data->mrq = tune_cmd->mrq = slot->tune_req; slot->opt &= ~SDHCI_TUNING_ENABLED; err = sdhci_exec_tuning(slot, true); if (err == 0) { slot->opt |= SDHCI_TUNING_ENABLED; slot->intmask |= sdhci_tuning_intmask(slot); WR4(slot, SDHCI_INT_ENABLE, slot->intmask); WR4(slot, SDHCI_SIGNAL_ENABLE, slot->intmask); if (slot->retune_ticks) { callout_reset(&slot->retune_callout, slot->retune_ticks, sdhci_retune, slot); } } SDHCI_UNLOCK(slot); return (err); } int sdhci_generic_retune(device_t brdev __unused, device_t reqdev, bool reset) { struct sdhci_slot *slot = device_get_ivars(reqdev); int err; if (!(slot->opt & SDHCI_TUNING_ENABLED)) return (0); /* HS400 must be tuned in HS200 mode. */ if (slot->host.ios.timing == bus_timing_mmc_hs400) return (EINVAL); SDHCI_LOCK(slot); err = sdhci_exec_tuning(slot, reset); /* * There are two ways sdhci_exec_tuning() can fail: * EBUSY should not actually happen when requests are only issued * with the host properly acquired, and * EIO re-tuning failed (but it did work initially). * * In both cases, we should retry at later point if periodic re-tuning * is enabled. Note that due to slot->retune_req not being cleared in * these failure cases, the MMC layer should trigger another attempt at * re-tuning with the next request anyway, though. */ if (slot->retune_ticks) { callout_reset(&slot->retune_callout, slot->retune_ticks, sdhci_retune, slot); } SDHCI_UNLOCK(slot); return (err); } static int sdhci_exec_tuning(struct sdhci_slot *slot, bool reset) { struct mmc_request *tune_req; struct mmc_command *tune_cmd; int i; uint32_t intmask; uint16_t hostctrl2; u_char opt; SDHCI_ASSERT_LOCKED(slot); if (slot->req != NULL) return (EBUSY); /* Tuning doesn't work with DMA enabled. */ opt = slot->opt; slot->opt = opt & ~SDHCI_HAVE_DMA; /* * Ensure that as documented, SDHCI_INT_DATA_AVAIL is the only * kind of interrupt we receive in response to a tuning request. */ intmask = slot->intmask; slot->intmask = SDHCI_INT_DATA_AVAIL; WR4(slot, SDHCI_INT_ENABLE, SDHCI_INT_DATA_AVAIL); WR4(slot, SDHCI_SIGNAL_ENABLE, SDHCI_INT_DATA_AVAIL); hostctrl2 = RD2(slot, SDHCI_HOST_CONTROL2); if (reset) hostctrl2 &= ~SDHCI_CTRL2_SAMPLING_CLOCK; else hostctrl2 |= SDHCI_CTRL2_SAMPLING_CLOCK; WR2(slot, SDHCI_HOST_CONTROL2, hostctrl2 | SDHCI_CTRL2_EXEC_TUNING); tune_req = slot->tune_req; tune_cmd = slot->tune_cmd; for (i = 0; i < MMC_TUNING_MAX; i++) { memset(tune_req, 0, sizeof(*tune_req)); tune_req->cmd = tune_cmd; tune_req->done = sdhci_req_wakeup; tune_req->done_data = slot; slot->req = tune_req; slot->flags = 0; sdhci_start(slot); while (!(tune_req->flags & MMC_REQ_DONE)) msleep(tune_req, &slot->mtx, 0, "sdhciet", 0); if (!(tune_req->flags & MMC_TUNE_DONE)) break; hostctrl2 = RD2(slot, SDHCI_HOST_CONTROL2); if (!(hostctrl2 & SDHCI_CTRL2_EXEC_TUNING)) break; if (tune_cmd->opcode == MMC_SEND_TUNING_BLOCK) DELAY(1000); } /* * Restore DMA usage and interrupts. * Note that the interrupt aggregation code might have cleared * SDHCI_INT_DMA_END and/or SDHCI_INT_RESPONSE in slot->intmask * and SDHCI_SIGNAL_ENABLE respectively so ensure SDHCI_INT_ENABLE * doesn't lose these. */ slot->opt = opt; slot->intmask = intmask; WR4(slot, SDHCI_INT_ENABLE, intmask | SDHCI_INT_DMA_END | SDHCI_INT_RESPONSE); WR4(slot, SDHCI_SIGNAL_ENABLE, intmask); if ((hostctrl2 & (SDHCI_CTRL2_EXEC_TUNING | SDHCI_CTRL2_SAMPLING_CLOCK)) == SDHCI_CTRL2_SAMPLING_CLOCK) { slot->retune_req = 0; return (0); } slot_printf(slot, "Tuning failed, using fixed sampling clock\n"); WR2(slot, SDHCI_HOST_CONTROL2, hostctrl2 & ~(SDHCI_CTRL2_EXEC_TUNING | SDHCI_CTRL2_SAMPLING_CLOCK)); SDHCI_RESET(slot->bus, slot, SDHCI_RESET_CMD | SDHCI_RESET_DATA); return (EIO); } static void sdhci_retune(void *arg) { struct sdhci_slot *slot = arg; slot->retune_req |= SDHCI_RETUNE_REQ_NEEDED; } #ifdef MMCCAM static void sdhci_req_done(struct sdhci_slot *slot) { union ccb *ccb; if (__predict_false(sdhci_debug > 1)) slot_printf(slot, "%s\n", __func__); if (slot->ccb != NULL && slot->curcmd != NULL) { callout_stop(&slot->timeout_callout); ccb = slot->ccb; slot->ccb = NULL; slot->curcmd = NULL; /* Tell CAM the request is finished */ struct ccb_mmcio *mmcio; mmcio = &ccb->mmcio; ccb->ccb_h.status = (mmcio->cmd.error == 0 ? CAM_REQ_CMP : CAM_REQ_CMP_ERR); xpt_done(ccb); } } #else static void sdhci_req_done(struct sdhci_slot *slot) { struct mmc_request *req; if (slot->req != NULL && slot->curcmd != NULL) { callout_stop(&slot->timeout_callout); req = slot->req; slot->req = NULL; slot->curcmd = NULL; req->done(req); } } #endif static void sdhci_req_wakeup(struct mmc_request *req) { req->flags |= MMC_REQ_DONE; wakeup(req); } static void sdhci_timeout(void *arg) { struct sdhci_slot *slot = arg; if (slot->curcmd != NULL) { slot_printf(slot, "Controller timeout\n"); sdhci_dumpregs(slot); SDHCI_RESET(slot->bus, slot, SDHCI_RESET_CMD | SDHCI_RESET_DATA); slot->curcmd->error = MMC_ERR_TIMEOUT; sdhci_req_done(slot); } else { slot_printf(slot, "Spurious timeout - no active command\n"); } } static void sdhci_set_transfer_mode(struct sdhci_slot *slot, const struct mmc_data *data) { uint16_t mode; if (data == NULL) return; mode = SDHCI_TRNS_BLK_CNT_EN; if (data->len > 512 || data->block_count > 1) { mode |= SDHCI_TRNS_MULTI; if (data->block_count == 0 && __predict_true( #ifdef MMCCAM slot->ccb->mmcio.stop.opcode == MMC_STOP_TRANSMISSION && #else slot->req->stop != NULL && #endif !(slot->quirks & SDHCI_QUIRK_BROKEN_AUTO_STOP))) mode |= SDHCI_TRNS_ACMD12; } if (data->flags & MMC_DATA_READ) mode |= SDHCI_TRNS_READ; if (slot->flags & SDHCI_USE_DMA) mode |= SDHCI_TRNS_DMA; WR2(slot, SDHCI_TRANSFER_MODE, mode); } static void sdhci_start_command(struct sdhci_slot *slot, struct mmc_command *cmd) { int flags, timeout; uint32_t mask; slot->curcmd = cmd; slot->cmd_done = 0; cmd->error = MMC_ERR_NONE; /* This flags combination is not supported by controller. */ if ((cmd->flags & MMC_RSP_136) && (cmd->flags & MMC_RSP_BUSY)) { slot_printf(slot, "Unsupported response type!\n"); cmd->error = MMC_ERR_FAILED; sdhci_req_done(slot); return; } /* * Do not issue command if there is no card, clock or power. * Controller will not detect timeout without clock active. */ if (!SDHCI_GET_CARD_PRESENT(slot->bus, slot) || slot->power == 0 || slot->clock == 0) { slot_printf(slot, "Cannot issue a command (power=%d clock=%d)\n", slot->power, slot->clock); cmd->error = MMC_ERR_FAILED; sdhci_req_done(slot); return; } /* Always wait for free CMD bus. */ mask = SDHCI_CMD_INHIBIT; /* Wait for free DAT if we have data or busy signal. */ if (cmd->data != NULL || (cmd->flags & MMC_RSP_BUSY)) mask |= SDHCI_DAT_INHIBIT; /* * We shouldn't wait for DAT for stop commands or CMD19/CMD21. Note * that these latter are also special in that SDHCI_CMD_DATA should * be set below but no actual data is ever read from the controller. */ #ifdef MMCCAM if (cmd == &slot->ccb->mmcio.stop || #else if (cmd == slot->req->stop || #endif __predict_false(cmd->opcode == MMC_SEND_TUNING_BLOCK || cmd->opcode == MMC_SEND_TUNING_BLOCK_HS200)) mask &= ~SDHCI_DAT_INHIBIT; /* * Wait for bus no more then 250 ms. Typically there will be no wait * here at all, but when writing a crash dump we may be bypassing the * host platform's interrupt handler, and in some cases that handler * may be working around hardware quirks such as not respecting r1b * busy indications. In those cases, this wait-loop serves the purpose * of waiting for the prior command and data transfers to be done, and * SD cards are allowed to take up to 250ms for write and erase ops. * (It's usually more like 20-30ms in the real world.) */ timeout = 250; while (mask & RD4(slot, SDHCI_PRESENT_STATE)) { if (timeout == 0) { slot_printf(slot, "Controller never released " "inhibit bit(s).\n"); sdhci_dumpregs(slot); cmd->error = MMC_ERR_FAILED; sdhci_req_done(slot); return; } timeout--; DELAY(1000); } /* Prepare command flags. */ if (!(cmd->flags & MMC_RSP_PRESENT)) flags = SDHCI_CMD_RESP_NONE; else if (cmd->flags & MMC_RSP_136) flags = SDHCI_CMD_RESP_LONG; else if (cmd->flags & MMC_RSP_BUSY) flags = SDHCI_CMD_RESP_SHORT_BUSY; else flags = SDHCI_CMD_RESP_SHORT; if (cmd->flags & MMC_RSP_CRC) flags |= SDHCI_CMD_CRC; if (cmd->flags & MMC_RSP_OPCODE) flags |= SDHCI_CMD_INDEX; if (cmd->data != NULL) flags |= SDHCI_CMD_DATA; if (cmd->opcode == MMC_STOP_TRANSMISSION) flags |= SDHCI_CMD_TYPE_ABORT; /* Prepare data. */ sdhci_start_data(slot, cmd->data); /* * Interrupt aggregation: To reduce total number of interrupts * group response interrupt with data interrupt when possible. * If there going to be data interrupt, mask response one. */ if (slot->data_done == 0) { WR4(slot, SDHCI_SIGNAL_ENABLE, slot->intmask &= ~SDHCI_INT_RESPONSE); } /* Set command argument. */ WR4(slot, SDHCI_ARGUMENT, cmd->arg); /* Set data transfer mode. */ sdhci_set_transfer_mode(slot, cmd->data); if (__predict_false(sdhci_debug > 1)) slot_printf(slot, "Starting command opcode %#04x flags %#04x\n", cmd->opcode, flags); /* Start command. */ WR2(slot, SDHCI_COMMAND_FLAGS, (cmd->opcode << 8) | (flags & 0xff)); /* Start timeout callout. */ callout_reset(&slot->timeout_callout, slot->timeout * hz, sdhci_timeout, slot); } static void sdhci_finish_command(struct sdhci_slot *slot) { int i; uint32_t val; uint8_t extra; if (__predict_false(sdhci_debug > 1)) slot_printf(slot, "%s: called, err %d flags %#04x\n", __func__, slot->curcmd->error, slot->curcmd->flags); slot->cmd_done = 1; /* * Interrupt aggregation: Restore command interrupt. * Main restore point for the case when command interrupt * happened first. */ if (__predict_true(slot->curcmd->opcode != MMC_SEND_TUNING_BLOCK && slot->curcmd->opcode != MMC_SEND_TUNING_BLOCK_HS200)) WR4(slot, SDHCI_SIGNAL_ENABLE, slot->intmask |= SDHCI_INT_RESPONSE); /* In case of error - reset host and return. */ if (slot->curcmd->error) { if (slot->curcmd->error == MMC_ERR_BADCRC) slot->retune_req |= SDHCI_RETUNE_REQ_RESET; SDHCI_RESET(slot->bus, slot, SDHCI_RESET_CMD); SDHCI_RESET(slot->bus, slot, SDHCI_RESET_DATA); sdhci_start(slot); return; } /* If command has response - fetch it. */ if (slot->curcmd->flags & MMC_RSP_PRESENT) { if (slot->curcmd->flags & MMC_RSP_136) { /* CRC is stripped so we need one byte shift. */ extra = 0; for (i = 0; i < 4; i++) { val = RD4(slot, SDHCI_RESPONSE + i * 4); if (slot->quirks & SDHCI_QUIRK_DONT_SHIFT_RESPONSE) slot->curcmd->resp[3 - i] = val; else { slot->curcmd->resp[3 - i] = (val << 8) | extra; extra = val >> 24; } } } else slot->curcmd->resp[0] = RD4(slot, SDHCI_RESPONSE); } if (__predict_false(sdhci_debug > 1)) slot_printf(slot, "Resp: %#04x %#04x %#04x %#04x\n", slot->curcmd->resp[0], slot->curcmd->resp[1], slot->curcmd->resp[2], slot->curcmd->resp[3]); /* If data ready - finish. */ if (slot->data_done) sdhci_start(slot); } static void sdhci_start_data(struct sdhci_slot *slot, const struct mmc_data *data) { uint32_t blkcnt, blksz, current_timeout, sdma_bbufsz, target_timeout; uint8_t div; if (data == NULL && (slot->curcmd->flags & MMC_RSP_BUSY) == 0) { slot->data_done = 1; return; } slot->data_done = 0; /* Calculate and set data timeout.*/ /* XXX: We should have this from mmc layer, now assume 1 sec. */ if (slot->quirks & SDHCI_QUIRK_BROKEN_TIMEOUT_VAL) { div = 0xE; } else { target_timeout = 1000000; div = 0; current_timeout = (1 << 13) * 1000 / slot->timeout_clk; while (current_timeout < target_timeout && div < 0xE) { ++div; current_timeout <<= 1; } /* Compensate for an off-by-one error in the CaFe chip.*/ if (div < 0xE && (slot->quirks & SDHCI_QUIRK_INCR_TIMEOUT_CONTROL)) { ++div; } } WR1(slot, SDHCI_TIMEOUT_CONTROL, div); if (data == NULL) return; /* Use DMA if possible. */ if ((slot->opt & SDHCI_HAVE_DMA)) slot->flags |= SDHCI_USE_DMA; /* If data is small, broken DMA may return zeroes instead of data. */ if ((slot->quirks & SDHCI_QUIRK_BROKEN_TIMINGS) && (data->len <= 512)) slot->flags &= ~SDHCI_USE_DMA; /* Some controllers require even block sizes. */ if ((slot->quirks & SDHCI_QUIRK_32BIT_DMA_SIZE) && ((data->len) & 0x3)) slot->flags &= ~SDHCI_USE_DMA; /* Load DMA buffer. */ if (slot->flags & SDHCI_USE_DMA) { sdma_bbufsz = slot->sdma_bbufsz; if (data->flags & MMC_DATA_READ) bus_dmamap_sync(slot->dmatag, slot->dmamap, BUS_DMASYNC_PREREAD); else { memcpy(slot->dmamem, data->data, ulmin(data->len, sdma_bbufsz)); bus_dmamap_sync(slot->dmatag, slot->dmamap, BUS_DMASYNC_PREWRITE); } WR4(slot, SDHCI_DMA_ADDRESS, slot->paddr); /* * Interrupt aggregation: Mask border interrupt for the last * bounce buffer and unmask otherwise. */ if (data->len == sdma_bbufsz) slot->intmask &= ~SDHCI_INT_DMA_END; else slot->intmask |= SDHCI_INT_DMA_END; WR4(slot, SDHCI_SIGNAL_ENABLE, slot->intmask); } /* Current data offset for both PIO and DMA. */ slot->offset = 0; #ifdef MMCCAM if (data->flags & MMC_DATA_BLOCK_SIZE) { /* Set block size and request border interrupts on the SDMA boundary. */ blksz = SDHCI_MAKE_BLKSZ(slot->sdma_boundary, data->block_size); blkcnt = data->block_count; if (__predict_false(sdhci_debug > 0)) slot_printf(slot, "SDIO Custom block params: blksz: " "%#10x, blk cnt: %#10x\n", blksz, blkcnt); } else #endif { /* Set block size and request border interrupts on the SDMA boundary. */ blksz = SDHCI_MAKE_BLKSZ(slot->sdma_boundary, ulmin(data->len, 512)); blkcnt = howmany(data->len, 512); } WR2(slot, SDHCI_BLOCK_SIZE, blksz); WR2(slot, SDHCI_BLOCK_COUNT, blkcnt); if (__predict_false(sdhci_debug > 1)) slot_printf(slot, "Blk size: 0x%08x | Blk cnt: 0x%08x\n", blksz, blkcnt); } void sdhci_finish_data(struct sdhci_slot *slot) { struct mmc_data *data = slot->curcmd->data; size_t left; /* Interrupt aggregation: Restore command interrupt. * Auxiliary restore point for the case when data interrupt * happened first. */ if (!slot->cmd_done) { WR4(slot, SDHCI_SIGNAL_ENABLE, slot->intmask |= SDHCI_INT_RESPONSE); } /* Unload rest of data from DMA buffer. */ if (!slot->data_done && (slot->flags & SDHCI_USE_DMA) && slot->curcmd->data != NULL) { if (data->flags & MMC_DATA_READ) { left = data->len - slot->offset; bus_dmamap_sync(slot->dmatag, slot->dmamap, BUS_DMASYNC_POSTREAD); memcpy((u_char*)data->data + slot->offset, slot->dmamem, ulmin(left, slot->sdma_bbufsz)); } else bus_dmamap_sync(slot->dmatag, slot->dmamap, BUS_DMASYNC_POSTWRITE); } slot->data_done = 1; /* If there was error - reset the host. */ if (slot->curcmd->error) { if (slot->curcmd->error == MMC_ERR_BADCRC) slot->retune_req |= SDHCI_RETUNE_REQ_RESET; SDHCI_RESET(slot->bus, slot, SDHCI_RESET_CMD); SDHCI_RESET(slot->bus, slot, SDHCI_RESET_DATA); sdhci_start(slot); return; } /* If we already have command response - finish. */ if (slot->cmd_done) sdhci_start(slot); } #ifdef MMCCAM static void sdhci_start(struct sdhci_slot *slot) { union ccb *ccb; struct ccb_mmcio *mmcio; ccb = slot->ccb; if (ccb == NULL) return; mmcio = &ccb->mmcio; if (!(slot->flags & CMD_STARTED)) { slot->flags |= CMD_STARTED; sdhci_start_command(slot, &mmcio->cmd); return; } /* * Old stack doesn't use this! * Enabling this code causes significant performance degradation * and IRQ storms on BBB, Wandboard behaves fine. * Not using this code does no harm... if (!(slot->flags & STOP_STARTED) && mmcio->stop.opcode != 0) { slot->flags |= STOP_STARTED; sdhci_start_command(slot, &mmcio->stop); return; } */ if (__predict_false(sdhci_debug > 1)) slot_printf(slot, "result: %d\n", mmcio->cmd.error); if (mmcio->cmd.error == 0 && (slot->quirks & SDHCI_QUIRK_RESET_AFTER_REQUEST)) { SDHCI_RESET(slot->bus, slot, SDHCI_RESET_CMD); SDHCI_RESET(slot->bus, slot, SDHCI_RESET_DATA); } sdhci_req_done(slot); } #else static void sdhci_start(struct sdhci_slot *slot) { const struct mmc_request *req; req = slot->req; if (req == NULL) return; if (!(slot->flags & CMD_STARTED)) { slot->flags |= CMD_STARTED; sdhci_start_command(slot, req->cmd); return; } if ((slot->quirks & SDHCI_QUIRK_BROKEN_AUTO_STOP) && !(slot->flags & STOP_STARTED) && req->stop) { slot->flags |= STOP_STARTED; sdhci_start_command(slot, req->stop); return; } if (__predict_false(sdhci_debug > 1)) slot_printf(slot, "result: %d\n", req->cmd->error); if (!req->cmd->error && ((slot->curcmd == req->stop && (slot->quirks & SDHCI_QUIRK_BROKEN_AUTO_STOP)) || (slot->quirks & SDHCI_QUIRK_RESET_AFTER_REQUEST))) { SDHCI_RESET(slot->bus, slot, SDHCI_RESET_CMD); SDHCI_RESET(slot->bus, slot, SDHCI_RESET_DATA); } sdhci_req_done(slot); } #endif int sdhci_generic_request(device_t brdev __unused, device_t reqdev, struct mmc_request *req) { struct sdhci_slot *slot = device_get_ivars(reqdev); SDHCI_LOCK(slot); if (slot->req != NULL) { SDHCI_UNLOCK(slot); return (EBUSY); } if (__predict_false(sdhci_debug > 1)) { slot_printf(slot, "CMD%u arg %#x flags %#x dlen %u dflags %#x\n", req->cmd->opcode, req->cmd->arg, req->cmd->flags, (req->cmd->data)?(u_int)req->cmd->data->len:0, (req->cmd->data)?req->cmd->data->flags:0); } slot->req = req; slot->flags = 0; sdhci_start(slot); SDHCI_UNLOCK(slot); if (dumping) { while (slot->req != NULL) { sdhci_generic_intr(slot); DELAY(10); } } return (0); } int sdhci_generic_get_ro(device_t brdev __unused, device_t reqdev) { struct sdhci_slot *slot = device_get_ivars(reqdev); uint32_t val; SDHCI_LOCK(slot); val = RD4(slot, SDHCI_PRESENT_STATE); SDHCI_UNLOCK(slot); return (!(val & SDHCI_WRITE_PROTECT)); } int sdhci_generic_acquire_host(device_t brdev __unused, device_t reqdev) { struct sdhci_slot *slot = device_get_ivars(reqdev); int err = 0; SDHCI_LOCK(slot); while (slot->bus_busy) msleep(slot, &slot->mtx, 0, "sdhciah", 0); slot->bus_busy++; /* Activate led. */ WR1(slot, SDHCI_HOST_CONTROL, slot->hostctrl |= SDHCI_CTRL_LED); SDHCI_UNLOCK(slot); return (err); } int sdhci_generic_release_host(device_t brdev __unused, device_t reqdev) { struct sdhci_slot *slot = device_get_ivars(reqdev); SDHCI_LOCK(slot); /* Deactivate led. */ WR1(slot, SDHCI_HOST_CONTROL, slot->hostctrl &= ~SDHCI_CTRL_LED); slot->bus_busy--; wakeup(slot); SDHCI_UNLOCK(slot); return (0); } static void sdhci_cmd_irq(struct sdhci_slot *slot, uint32_t intmask) { if (!slot->curcmd) { slot_printf(slot, "Got command interrupt 0x%08x, but " "there is no active command.\n", intmask); sdhci_dumpregs(slot); return; } if (intmask & SDHCI_INT_TIMEOUT) slot->curcmd->error = MMC_ERR_TIMEOUT; else if (intmask & SDHCI_INT_CRC) slot->curcmd->error = MMC_ERR_BADCRC; else if (intmask & (SDHCI_INT_END_BIT | SDHCI_INT_INDEX)) slot->curcmd->error = MMC_ERR_FIFO; sdhci_finish_command(slot); } static void sdhci_data_irq(struct sdhci_slot *slot, uint32_t intmask) { struct mmc_data *data; size_t left; uint32_t sdma_bbufsz; if (!slot->curcmd) { slot_printf(slot, "Got data interrupt 0x%08x, but " "there is no active command.\n", intmask); sdhci_dumpregs(slot); return; } if (slot->curcmd->data == NULL && (slot->curcmd->flags & MMC_RSP_BUSY) == 0) { slot_printf(slot, "Got data interrupt 0x%08x, but " "there is no active data operation.\n", intmask); sdhci_dumpregs(slot); return; } if (intmask & SDHCI_INT_DATA_TIMEOUT) slot->curcmd->error = MMC_ERR_TIMEOUT; else if (intmask & (SDHCI_INT_DATA_CRC | SDHCI_INT_DATA_END_BIT)) slot->curcmd->error = MMC_ERR_BADCRC; if (slot->curcmd->data == NULL && (intmask & (SDHCI_INT_DATA_AVAIL | SDHCI_INT_SPACE_AVAIL | SDHCI_INT_DMA_END))) { slot_printf(slot, "Got data interrupt 0x%08x, but " "there is busy-only command.\n", intmask); sdhci_dumpregs(slot); slot->curcmd->error = MMC_ERR_INVALID; } if (slot->curcmd->error) { /* No need to continue after any error. */ goto done; } /* Handle tuning completion interrupt. */ if (__predict_false((intmask & SDHCI_INT_DATA_AVAIL) && (slot->curcmd->opcode == MMC_SEND_TUNING_BLOCK || slot->curcmd->opcode == MMC_SEND_TUNING_BLOCK_HS200))) { slot->req->flags |= MMC_TUNE_DONE; sdhci_finish_command(slot); sdhci_finish_data(slot); return; } /* Handle PIO interrupt. */ if (intmask & (SDHCI_INT_DATA_AVAIL | SDHCI_INT_SPACE_AVAIL)) { if ((slot->opt & SDHCI_PLATFORM_TRANSFER) && SDHCI_PLATFORM_WILL_HANDLE(slot->bus, slot)) { SDHCI_PLATFORM_START_TRANSFER(slot->bus, slot, &intmask); slot->flags |= PLATFORM_DATA_STARTED; } else sdhci_transfer_pio(slot); } /* Handle DMA border. */ if (intmask & SDHCI_INT_DMA_END) { data = slot->curcmd->data; sdma_bbufsz = slot->sdma_bbufsz; /* Unload DMA buffer ... */ left = data->len - slot->offset; if (data->flags & MMC_DATA_READ) { bus_dmamap_sync(slot->dmatag, slot->dmamap, BUS_DMASYNC_POSTREAD); memcpy((u_char*)data->data + slot->offset, slot->dmamem, ulmin(left, sdma_bbufsz)); } else { bus_dmamap_sync(slot->dmatag, slot->dmamap, BUS_DMASYNC_POSTWRITE); } /* ... and reload it again. */ slot->offset += sdma_bbufsz; left = data->len - slot->offset; if (data->flags & MMC_DATA_READ) { bus_dmamap_sync(slot->dmatag, slot->dmamap, BUS_DMASYNC_PREREAD); } else { memcpy(slot->dmamem, (u_char*)data->data + slot->offset, ulmin(left, sdma_bbufsz)); bus_dmamap_sync(slot->dmatag, slot->dmamap, BUS_DMASYNC_PREWRITE); } /* * Interrupt aggregation: Mask border interrupt for the last * bounce buffer. */ if (left == sdma_bbufsz) { slot->intmask &= ~SDHCI_INT_DMA_END; WR4(slot, SDHCI_SIGNAL_ENABLE, slot->intmask); } /* Restart DMA. */ WR4(slot, SDHCI_DMA_ADDRESS, slot->paddr); } /* We have got all data. */ if (intmask & SDHCI_INT_DATA_END) { if (slot->flags & PLATFORM_DATA_STARTED) { slot->flags &= ~PLATFORM_DATA_STARTED; SDHCI_PLATFORM_FINISH_TRANSFER(slot->bus, slot); } else sdhci_finish_data(slot); } done: if (slot->curcmd != NULL && slot->curcmd->error != 0) { if (slot->flags & PLATFORM_DATA_STARTED) { slot->flags &= ~PLATFORM_DATA_STARTED; SDHCI_PLATFORM_FINISH_TRANSFER(slot->bus, slot); } else sdhci_finish_data(slot); } } static void sdhci_acmd_irq(struct sdhci_slot *slot, uint16_t acmd_err) { if (!slot->curcmd) { slot_printf(slot, "Got AutoCMD12 error 0x%04x, but " "there is no active command.\n", acmd_err); sdhci_dumpregs(slot); return; } slot_printf(slot, "Got AutoCMD12 error 0x%04x\n", acmd_err); SDHCI_RESET(slot->bus, slot, SDHCI_RESET_CMD); } void sdhci_generic_intr(struct sdhci_slot *slot) { uint32_t intmask, present; uint16_t val16; SDHCI_LOCK(slot); /* Read slot interrupt status. */ intmask = RD4(slot, SDHCI_INT_STATUS); if (intmask == 0 || intmask == 0xffffffff) { SDHCI_UNLOCK(slot); return; } if (__predict_false(sdhci_debug > 2)) slot_printf(slot, "Interrupt %#x\n", intmask); /* Handle tuning error interrupt. */ if (__predict_false(intmask & SDHCI_INT_TUNEERR)) { WR4(slot, SDHCI_INT_STATUS, SDHCI_INT_TUNEERR); slot_printf(slot, "Tuning error indicated\n"); slot->retune_req |= SDHCI_RETUNE_REQ_RESET; if (slot->curcmd) { slot->curcmd->error = MMC_ERR_BADCRC; sdhci_finish_command(slot); } } /* Handle re-tuning interrupt. */ if (__predict_false(intmask & SDHCI_INT_RETUNE)) slot->retune_req |= SDHCI_RETUNE_REQ_NEEDED; /* Handle card presence interrupts. */ if (intmask & (SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE)) { present = (intmask & SDHCI_INT_CARD_INSERT) != 0; slot->intmask &= ~(SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE); slot->intmask |= present ? SDHCI_INT_CARD_REMOVE : SDHCI_INT_CARD_INSERT; WR4(slot, SDHCI_INT_ENABLE, slot->intmask); WR4(slot, SDHCI_SIGNAL_ENABLE, slot->intmask); WR4(slot, SDHCI_INT_STATUS, intmask & (SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE)); sdhci_handle_card_present_locked(slot, present); } /* Handle command interrupts. */ if (intmask & SDHCI_INT_CMD_MASK) { WR4(slot, SDHCI_INT_STATUS, intmask & SDHCI_INT_CMD_MASK); sdhci_cmd_irq(slot, intmask & SDHCI_INT_CMD_MASK); } /* Handle data interrupts. */ if (intmask & SDHCI_INT_DATA_MASK) { WR4(slot, SDHCI_INT_STATUS, intmask & SDHCI_INT_DATA_MASK); /* Don't call data_irq in case of errored command. */ if ((intmask & SDHCI_INT_CMD_ERROR_MASK) == 0) sdhci_data_irq(slot, intmask & SDHCI_INT_DATA_MASK); } /* Handle AutoCMD12 error interrupt. */ if (intmask & SDHCI_INT_ACMD12ERR) { /* Clearing SDHCI_INT_ACMD12ERR may clear SDHCI_ACMD12_ERR. */ val16 = RD2(slot, SDHCI_ACMD12_ERR); WR4(slot, SDHCI_INT_STATUS, SDHCI_INT_ACMD12ERR); sdhci_acmd_irq(slot, val16); } /* Handle bus power interrupt. */ if (intmask & SDHCI_INT_BUS_POWER) { WR4(slot, SDHCI_INT_STATUS, SDHCI_INT_BUS_POWER); slot_printf(slot, "Card is consuming too much power!\n"); } intmask &= ~(SDHCI_INT_ERROR | SDHCI_INT_TUNEERR | SDHCI_INT_RETUNE | SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE | SDHCI_INT_CMD_MASK | SDHCI_INT_DATA_MASK | SDHCI_INT_ACMD12ERR | SDHCI_INT_BUS_POWER); /* The rest is unknown. */ if (intmask) { WR4(slot, SDHCI_INT_STATUS, intmask); slot_printf(slot, "Unexpected interrupt 0x%08x.\n", intmask); sdhci_dumpregs(slot); } SDHCI_UNLOCK(slot); } int sdhci_generic_read_ivar(device_t bus, device_t child, int which, uintptr_t *result) { const struct sdhci_slot *slot = device_get_ivars(child); switch (which) { default: return (EINVAL); case MMCBR_IVAR_BUS_MODE: *result = slot->host.ios.bus_mode; break; case MMCBR_IVAR_BUS_WIDTH: *result = slot->host.ios.bus_width; break; case MMCBR_IVAR_CHIP_SELECT: *result = slot->host.ios.chip_select; break; case MMCBR_IVAR_CLOCK: *result = slot->host.ios.clock; break; case MMCBR_IVAR_F_MIN: *result = slot->host.f_min; break; case MMCBR_IVAR_F_MAX: *result = slot->host.f_max; break; case MMCBR_IVAR_HOST_OCR: *result = slot->host.host_ocr; break; case MMCBR_IVAR_MODE: *result = slot->host.mode; break; case MMCBR_IVAR_OCR: *result = slot->host.ocr; break; case MMCBR_IVAR_POWER_MODE: *result = slot->host.ios.power_mode; break; case MMCBR_IVAR_VDD: *result = slot->host.ios.vdd; break; case MMCBR_IVAR_RETUNE_REQ: if (slot->opt & SDHCI_TUNING_ENABLED) { if (slot->retune_req & SDHCI_RETUNE_REQ_RESET) { *result = retune_req_reset; break; } if (slot->retune_req & SDHCI_RETUNE_REQ_NEEDED) { *result = retune_req_normal; break; } } *result = retune_req_none; break; case MMCBR_IVAR_VCCQ: *result = slot->host.ios.vccq; break; case MMCBR_IVAR_CAPS: *result = slot->host.caps; break; case MMCBR_IVAR_TIMING: *result = slot->host.ios.timing; break; case MMCBR_IVAR_MAX_DATA: /* * Re-tuning modes 1 and 2 restrict the maximum data length * per read/write command to 4 MiB. */ if (slot->opt & SDHCI_TUNING_ENABLED && (slot->retune_mode == SDHCI_RETUNE_MODE_1 || slot->retune_mode == SDHCI_RETUNE_MODE_2)) { *result = 4 * 1024 * 1024 / MMC_SECTOR_SIZE; break; } *result = 65535; break; case MMCBR_IVAR_MAX_BUSY_TIMEOUT: /* * Currently, sdhci_start_data() hardcodes 1 s for all CMDs. */ *result = 1000000; break; } return (0); } int sdhci_generic_write_ivar(device_t bus, device_t child, int which, uintptr_t value) { struct sdhci_slot *slot = device_get_ivars(child); uint32_t clock, max_clock; int i; if (sdhci_debug > 1) slot_printf(slot, "%s: var=%d\n", __func__, which); switch (which) { default: return (EINVAL); case MMCBR_IVAR_BUS_MODE: slot->host.ios.bus_mode = value; break; case MMCBR_IVAR_BUS_WIDTH: slot->host.ios.bus_width = value; break; case MMCBR_IVAR_CHIP_SELECT: slot->host.ios.chip_select = value; break; case MMCBR_IVAR_CLOCK: if (value > 0) { max_clock = slot->max_clk; clock = max_clock; if (slot->version < SDHCI_SPEC_300) { for (i = 0; i < SDHCI_200_MAX_DIVIDER; i <<= 1) { if (clock <= value) break; clock >>= 1; } } else { for (i = 0; i < SDHCI_300_MAX_DIVIDER; i += 2) { if (clock <= value) break; clock = max_clock / (i + 2); } } slot->host.ios.clock = clock; } else slot->host.ios.clock = 0; break; case MMCBR_IVAR_MODE: slot->host.mode = value; break; case MMCBR_IVAR_OCR: slot->host.ocr = value; break; case MMCBR_IVAR_POWER_MODE: slot->host.ios.power_mode = value; break; case MMCBR_IVAR_VDD: slot->host.ios.vdd = value; break; case MMCBR_IVAR_VCCQ: slot->host.ios.vccq = value; break; case MMCBR_IVAR_TIMING: slot->host.ios.timing = value; break; case MMCBR_IVAR_CAPS: case MMCBR_IVAR_HOST_OCR: case MMCBR_IVAR_F_MIN: case MMCBR_IVAR_F_MAX: case MMCBR_IVAR_MAX_DATA: case MMCBR_IVAR_RETUNE_REQ: return (EINVAL); } return (0); } #ifdef MMCCAM void sdhci_start_slot(struct sdhci_slot *slot) { if ((slot->devq = cam_simq_alloc(1)) == NULL) goto fail; mtx_init(&slot->sim_mtx, "sdhcisim", NULL, MTX_DEF); slot->sim = cam_sim_alloc(sdhci_cam_action, sdhci_cam_poll, "sdhci_slot", slot, device_get_unit(slot->bus), &slot->sim_mtx, 1, 1, slot->devq); if (slot->sim == NULL) { cam_simq_free(slot->devq); slot_printf(slot, "cannot allocate CAM SIM\n"); goto fail; } mtx_lock(&slot->sim_mtx); if (xpt_bus_register(slot->sim, slot->bus, 0) != 0) { slot_printf(slot, "cannot register SCSI pass-through bus\n"); cam_sim_free(slot->sim, FALSE); cam_simq_free(slot->devq); mtx_unlock(&slot->sim_mtx); goto fail; } mtx_unlock(&slot->sim_mtx); /* End CAM-specific init */ slot->card_present = 0; sdhci_card_task(slot, 0); return; fail: if (slot->sim != NULL) { mtx_lock(&slot->sim_mtx); xpt_bus_deregister(cam_sim_path(slot->sim)); cam_sim_free(slot->sim, FALSE); mtx_unlock(&slot->sim_mtx); } if (slot->devq != NULL) cam_simq_free(slot->devq); } void sdhci_cam_action(struct cam_sim *sim, union ccb *ccb) { struct sdhci_slot *slot; slot = cam_sim_softc(sim); if (slot == NULL) { ccb->ccb_h.status = CAM_SEL_TIMEOUT; xpt_done(ccb); return; } mtx_assert(&slot->sim_mtx, MA_OWNED); switch (ccb->ccb_h.func_code) { case XPT_PATH_INQ: mmc_path_inq(&ccb->cpi, "Deglitch Networks", sim, maxphys); break; case XPT_MMC_GET_TRAN_SETTINGS: case XPT_GET_TRAN_SETTINGS: { struct ccb_trans_settings *cts = &ccb->cts; uint32_t max_data; if (sdhci_debug > 1) slot_printf(slot, "Got XPT_GET_TRAN_SETTINGS\n"); cts->protocol = PROTO_MMCSD; cts->protocol_version = 1; cts->transport = XPORT_MMCSD; cts->transport_version = 1; cts->xport_specific.valid = 0; cts->proto_specific.mmc.host_ocr = slot->host.host_ocr; cts->proto_specific.mmc.host_f_min = slot->host.f_min; cts->proto_specific.mmc.host_f_max = slot->host.f_max; cts->proto_specific.mmc.host_caps = slot->host.caps; /* * Re-tuning modes 1 and 2 restrict the maximum data length * per read/write command to 4 MiB. */ if (slot->opt & SDHCI_TUNING_ENABLED && (slot->retune_mode == SDHCI_RETUNE_MODE_1 || slot->retune_mode == SDHCI_RETUNE_MODE_2)) { max_data = 4 * 1024 * 1024 / MMC_SECTOR_SIZE; } else { max_data = 65535; } cts->proto_specific.mmc.host_max_data = max_data; memcpy(&cts->proto_specific.mmc.ios, &slot->host.ios, sizeof(struct mmc_ios)); ccb->ccb_h.status = CAM_REQ_CMP; break; } case XPT_MMC_SET_TRAN_SETTINGS: case XPT_SET_TRAN_SETTINGS: if (sdhci_debug > 1) slot_printf(slot, "Got XPT_SET_TRAN_SETTINGS\n"); sdhci_cam_settran_settings(slot, ccb); ccb->ccb_h.status = CAM_REQ_CMP; break; case XPT_RESET_BUS: if (sdhci_debug > 1) slot_printf(slot, "Got XPT_RESET_BUS, ACK it...\n"); ccb->ccb_h.status = CAM_REQ_CMP; break; case XPT_MMC_IO: /* * Here is the HW-dependent part of * sending the command to the underlying h/w * At some point in the future an interrupt comes. * Then the request will be marked as completed. */ if (__predict_false(sdhci_debug > 1)) slot_printf(slot, "Got XPT_MMC_IO\n"); ccb->ccb_h.status = CAM_REQ_INPROG; sdhci_cam_request(cam_sim_softc(sim), ccb); return; default: ccb->ccb_h.status = CAM_REQ_INVALID; break; } xpt_done(ccb); return; } void sdhci_cam_poll(struct cam_sim *sim) { return; } static int sdhci_cam_get_possible_host_clock(const struct sdhci_slot *slot, int proposed_clock) { int max_clock, clock, i; if (proposed_clock == 0) return 0; max_clock = slot->max_clk; clock = max_clock; if (slot->version < SDHCI_SPEC_300) { for (i = 0; i < SDHCI_200_MAX_DIVIDER; i <<= 1) { if (clock <= proposed_clock) break; clock >>= 1; } } else { for (i = 0; i < SDHCI_300_MAX_DIVIDER; i += 2) { if (clock <= proposed_clock) break; clock = max_clock / (i + 2); } } return clock; } static int sdhci_cam_settran_settings(struct sdhci_slot *slot, union ccb *ccb) { struct mmc_ios *ios; const struct mmc_ios *new_ios; const struct ccb_trans_settings_mmc *cts; ios = &slot->host.ios; cts = &ccb->cts.proto_specific.mmc; new_ios = &cts->ios; /* Update only requested fields */ if (cts->ios_valid & MMC_CLK) { ios->clock = sdhci_cam_get_possible_host_clock(slot, new_ios->clock); if (sdhci_debug > 1) slot_printf(slot, "Clock => %d\n", ios->clock); } if (cts->ios_valid & MMC_VDD) { ios->vdd = new_ios->vdd; if (sdhci_debug > 1) slot_printf(slot, "VDD => %d\n", ios->vdd); } if (cts->ios_valid & MMC_CS) { ios->chip_select = new_ios->chip_select; if (sdhci_debug > 1) slot_printf(slot, "CS => %d\n", ios->chip_select); } if (cts->ios_valid & MMC_BW) { ios->bus_width = new_ios->bus_width; if (sdhci_debug > 1) slot_printf(slot, "Bus width => %d\n", ios->bus_width); } if (cts->ios_valid & MMC_PM) { ios->power_mode = new_ios->power_mode; if (sdhci_debug > 1) slot_printf(slot, "Power mode => %d\n", ios->power_mode); } if (cts->ios_valid & MMC_BT) { ios->timing = new_ios->timing; if (sdhci_debug > 1) slot_printf(slot, "Timing => %d\n", ios->timing); } if (cts->ios_valid & MMC_BM) { ios->bus_mode = new_ios->bus_mode; if (sdhci_debug > 1) slot_printf(slot, "Bus mode => %d\n", ios->bus_mode); } if (cts->ios_valid & MMC_VCCQ) { ios->vccq = new_ios->vccq; if (sdhci_debug > 1) slot_printf(slot, "VCCQ => %d\n", ios->vccq); } /* XXX Provide a way to call a chip-specific IOS update, required for TI */ return (sdhci_cam_update_ios(slot)); } static int sdhci_cam_update_ios(struct sdhci_slot *slot) { struct mmc_ios *ios = &slot->host.ios; if (sdhci_debug > 1) slot_printf(slot, "%s: power_mode=%d, clk=%d, bus_width=%d, timing=%d\n", __func__, ios->power_mode, ios->clock, ios->bus_width, ios->timing); SDHCI_LOCK(slot); /* Do full reset on bus power down to clear from any state. */ if (ios->power_mode == power_off) { WR4(slot, SDHCI_SIGNAL_ENABLE, 0); sdhci_init(slot); } /* Configure the bus. */ sdhci_set_clock(slot, ios->clock); sdhci_set_power(slot, (ios->power_mode == power_off) ? 0 : ios->vdd); if (ios->bus_width == bus_width_8) { slot->hostctrl |= SDHCI_CTRL_8BITBUS; slot->hostctrl &= ~SDHCI_CTRL_4BITBUS; } else if (ios->bus_width == bus_width_4) { slot->hostctrl &= ~SDHCI_CTRL_8BITBUS; slot->hostctrl |= SDHCI_CTRL_4BITBUS; } else if (ios->bus_width == bus_width_1) { slot->hostctrl &= ~SDHCI_CTRL_8BITBUS; slot->hostctrl &= ~SDHCI_CTRL_4BITBUS; } else { panic("Invalid bus width: %d", ios->bus_width); } if (ios->timing == bus_timing_hs && !(slot->quirks & SDHCI_QUIRK_DONT_SET_HISPD_BIT)) slot->hostctrl |= SDHCI_CTRL_HISPD; else slot->hostctrl &= ~SDHCI_CTRL_HISPD; WR1(slot, SDHCI_HOST_CONTROL, slot->hostctrl); /* Some controllers like reset after bus changes. */ if(slot->quirks & SDHCI_QUIRK_RESET_ON_IOS) SDHCI_RESET(slot->bus, slot, SDHCI_RESET_CMD | SDHCI_RESET_DATA); SDHCI_UNLOCK(slot); return (0); } static int sdhci_cam_request(struct sdhci_slot *slot, union ccb *ccb) { const struct ccb_mmcio *mmcio; mmcio = &ccb->mmcio; SDHCI_LOCK(slot); /* if (slot->req != NULL) { SDHCI_UNLOCK(slot); return (EBUSY); } */ if (__predict_false(sdhci_debug > 1)) { slot_printf(slot, "CMD%u arg %#x flags %#x dlen %u dflags %#x " "blksz=%zu blkcnt=%zu\n", mmcio->cmd.opcode, mmcio->cmd.arg, mmcio->cmd.flags, mmcio->cmd.data != NULL ? (unsigned int) mmcio->cmd.data->len : 0, mmcio->cmd.data != NULL ? mmcio->cmd.data->flags : 0, mmcio->cmd.data != NULL ? mmcio->cmd.data->block_size : 0, mmcio->cmd.data != NULL ? mmcio->cmd.data->block_count : 0); } if (mmcio->cmd.data != NULL) { if (mmcio->cmd.data->len == 0 || mmcio->cmd.data->flags == 0) panic("data->len = %d, data->flags = %d -- something is b0rked", (int)mmcio->cmd.data->len, mmcio->cmd.data->flags); } slot->ccb = ccb; slot->flags = 0; sdhci_start(slot); SDHCI_UNLOCK(slot); if (dumping) { while (slot->ccb != NULL) { sdhci_generic_intr(slot); DELAY(10); } } return (0); } #endif /* MMCCAM */ MODULE_VERSION(sdhci, SDHCI_VERSION);