/*- * Copyright (c) 2013 Ian Lepore * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * */ #include __FBSDID("$FreeBSD$"); /* * SDHCI driver glue for Freescale i.MX SoC and QorIQ families. * * This supports both eSDHC (earlier SoCs) and uSDHC (more recent SoCs). */ #include "opt_mmccam.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef __arm__ #include #include #endif #ifdef __powerpc__ #include #endif #include #include #include #include #include #include #include "mmcbr_if.h" #include "sdhci_if.h" struct fsl_sdhci_softc { device_t dev; struct resource * mem_res; struct resource * irq_res; void * intr_cookie; struct sdhci_slot slot; struct callout r1bfix_callout; sbintime_t r1bfix_timeout_at; struct sdhci_fdt_gpio * gpio; uint32_t baseclk_hz; uint32_t cmd_and_mode; uint32_t r1bfix_intmask; uint16_t sdclockreg_freq_bits; uint8_t r1bfix_type; uint8_t hwtype; bool slot_init_done; }; #define R1BFIX_NONE 0 /* No fix needed at next interrupt. */ #define R1BFIX_NODATA 1 /* Synthesize DATA_END for R1B w/o data. */ #define R1BFIX_AC12 2 /* Wait for busy after auto command 12. */ #define HWTYPE_NONE 0 /* Hardware not recognized/supported. */ #define HWTYPE_ESDHC 1 /* fsl5x and earlier. */ #define HWTYPE_USDHC 2 /* fsl6. */ /* * Freescale-specific registers, or in some cases the layout of bits within the * sdhci-defined register is different on Freescale. These names all begin with * SDHC_ (not SDHCI_). */ #define SDHC_WTMK_LVL 0x44 /* Watermark Level register. */ #define USDHC_MIX_CONTROL 0x48 /* Mix(ed) Control register. */ #define SDHC_VEND_SPEC 0xC0 /* Vendor-specific register. */ #define SDHC_VEND_FRC_SDCLK_ON (1 << 8) #define SDHC_VEND_IPGEN (1 << 11) #define SDHC_VEND_HCKEN (1 << 12) #define SDHC_VEND_PEREN (1 << 13) #define SDHC_PRES_STATE 0x24 #define SDHC_PRES_CIHB (1 << 0) #define SDHC_PRES_CDIHB (1 << 1) #define SDHC_PRES_DLA (1 << 2) #define SDHC_PRES_SDSTB (1 << 3) #define SDHC_PRES_IPGOFF (1 << 4) #define SDHC_PRES_HCKOFF (1 << 5) #define SDHC_PRES_PEROFF (1 << 6) #define SDHC_PRES_SDOFF (1 << 7) #define SDHC_PRES_WTA (1 << 8) #define SDHC_PRES_RTA (1 << 9) #define SDHC_PRES_BWEN (1 << 10) #define SDHC_PRES_BREN (1 << 11) #define SDHC_PRES_RTR (1 << 12) #define SDHC_PRES_CINST (1 << 16) #define SDHC_PRES_CDPL (1 << 18) #define SDHC_PRES_WPSPL (1 << 19) #define SDHC_PRES_CLSL (1 << 23) #define SDHC_PRES_DLSL_SHIFT 24 #define SDHC_PRES_DLSL_MASK (0xffU << SDHC_PRES_DLSL_SHIFT) #define SDHC_PROT_CTRL 0x28 #define SDHC_PROT_LED (1 << 0) #define SDHC_PROT_WIDTH_1BIT (0 << 1) #define SDHC_PROT_WIDTH_4BIT (1 << 1) #define SDHC_PROT_WIDTH_8BIT (2 << 1) #define SDHC_PROT_WIDTH_MASK (3 << 1) #define SDHC_PROT_D3CD (1 << 3) #define SDHC_PROT_EMODE_BIG (0 << 4) #define SDHC_PROT_EMODE_HALF (1 << 4) #define SDHC_PROT_EMODE_LITTLE (2 << 4) #define SDHC_PROT_EMODE_MASK (3 << 4) #define SDHC_PROT_SDMA (0 << 8) #define SDHC_PROT_ADMA1 (1 << 8) #define SDHC_PROT_ADMA2 (2 << 8) #define SDHC_PROT_ADMA264 (3 << 8) #define SDHC_PROT_DMA_MASK (3 << 8) #define SDHC_PROT_CDTL (1 << 6) #define SDHC_PROT_CDSS (1 << 7) #define SDHC_SYS_CTRL 0x2c /* * The clock enable bits exist in different registers for ESDHC vs USDHC, but * they are the same bits in both cases. The divisor values go into the * standard sdhci clock register, but in different bit positions and meanings than the sdhci spec values. */ #define SDHC_CLK_IPGEN (1 << 0) #define SDHC_CLK_HCKEN (1 << 1) #define SDHC_CLK_PEREN (1 << 2) #define SDHC_CLK_SDCLKEN (1 << 3) #define SDHC_CLK_ENABLE_MASK 0x0000000f #define SDHC_CLK_DIVISOR_MASK 0x000000f0 #define SDHC_CLK_DIVISOR_SHIFT 4 #define SDHC_CLK_PRESCALE_MASK 0x0000ff00 #define SDHC_CLK_PRESCALE_SHIFT 8 static struct ofw_compat_data compat_data[] = { {"fsl,imx6q-usdhc", HWTYPE_USDHC}, {"fsl,imx6sl-usdhc", HWTYPE_USDHC}, {"fsl,imx53-esdhc", HWTYPE_ESDHC}, {"fsl,imx51-esdhc", HWTYPE_ESDHC}, {"fsl,esdhc", HWTYPE_ESDHC}, {NULL, HWTYPE_NONE}, }; static uint16_t fsl_sdhc_get_clock(struct fsl_sdhci_softc *sc); static void fsl_sdhc_set_clock(struct fsl_sdhci_softc *sc, uint16_t val); static void fsl_sdhci_r1bfix_func(void *arg); static inline uint32_t RD4(struct fsl_sdhci_softc *sc, bus_size_t off) { return (bus_read_4(sc->mem_res, off)); } static inline void WR4(struct fsl_sdhci_softc *sc, bus_size_t off, uint32_t val) { bus_write_4(sc->mem_res, off, val); } static uint8_t fsl_sdhci_read_1(device_t dev, struct sdhci_slot *slot, bus_size_t off) { struct fsl_sdhci_softc *sc = device_get_softc(dev); uint32_t val32, wrk32; /* * Most of the things in the standard host control register are in the * hardware's wider protocol control register, but some of the bits are * moved around. */ if (off == SDHCI_HOST_CONTROL) { wrk32 = RD4(sc, SDHC_PROT_CTRL); val32 = wrk32 & (SDHCI_CTRL_LED | SDHCI_CTRL_CARD_DET | SDHCI_CTRL_FORCE_CARD); switch (wrk32 & SDHC_PROT_WIDTH_MASK) { case SDHC_PROT_WIDTH_1BIT: /* Value is already 0. */ break; case SDHC_PROT_WIDTH_4BIT: val32 |= SDHCI_CTRL_4BITBUS; break; case SDHC_PROT_WIDTH_8BIT: val32 |= SDHCI_CTRL_8BITBUS; break; } switch (wrk32 & SDHC_PROT_DMA_MASK) { case SDHC_PROT_SDMA: /* Value is already 0. */ break; case SDHC_PROT_ADMA1: /* This value is deprecated, should never appear. */ break; case SDHC_PROT_ADMA2: val32 |= SDHCI_CTRL_ADMA2; break; case SDHC_PROT_ADMA264: val32 |= SDHCI_CTRL_ADMA264; break; } return val32; } /* * XXX can't find the bus power on/off knob. For now we have to say the * power is always on and always set to the same voltage. */ if (off == SDHCI_POWER_CONTROL) { return (SDHCI_POWER_ON | SDHCI_POWER_300); } return ((RD4(sc, off & ~3) >> (off & 3) * 8) & 0xff); } static uint16_t fsl_sdhci_read_2(device_t dev, struct sdhci_slot *slot, bus_size_t off) { struct fsl_sdhci_softc *sc = device_get_softc(dev); uint32_t val32; if (sc->hwtype == HWTYPE_USDHC) { /* * The USDHC hardware has nothing in the version register, but * it's v3 compatible with all our translation code. */ if (off == SDHCI_HOST_VERSION) { return (SDHCI_SPEC_300 << SDHCI_SPEC_VER_SHIFT); } /* * The USDHC hardware moved the transfer mode bits to the mixed * control register, fetch them from there. */ if (off == SDHCI_TRANSFER_MODE) return (RD4(sc, USDHC_MIX_CONTROL) & 0x37); } else if (sc->hwtype == HWTYPE_ESDHC) { /* * The ESDHC hardware has the typical 32-bit combined "command * and mode" register that we have to cache so that command * isn't written until after mode. On a read, just retrieve the * cached values last written. */ if (off == SDHCI_TRANSFER_MODE) { return (sc->cmd_and_mode & 0x0000ffff); } else if (off == SDHCI_COMMAND_FLAGS) { return (sc->cmd_and_mode >> 16); } } /* * This hardware only manages one slot. Synthesize a slot interrupt * status register... if there are any enabled interrupts active they * must be coming from our one and only slot. */ if (off == SDHCI_SLOT_INT_STATUS) { val32 = RD4(sc, SDHCI_INT_STATUS); val32 &= RD4(sc, SDHCI_SIGNAL_ENABLE); return (val32 ? 1 : 0); } /* * Clock bits are scattered into various registers which differ by * hardware type, complex enough to have their own function. */ if (off == SDHCI_CLOCK_CONTROL) { return (fsl_sdhc_get_clock(sc)); } return ((RD4(sc, off & ~3) >> (off & 3) * 8) & 0xffff); } static uint32_t fsl_sdhci_read_4(device_t dev, struct sdhci_slot *slot, bus_size_t off) { struct fsl_sdhci_softc *sc = device_get_softc(dev); uint32_t val32, wrk32; val32 = RD4(sc, off); /* * The hardware leaves the base clock frequency out of the capabilities * register, but we filled it in by setting slot->max_clk at attach time * rather than here, because we can't represent frequencies above 63MHz * in an sdhci 2.0 capabliities register. The timeout clock is the same * as the active output sdclock; we indicate that with a quirk setting * so don't populate the timeout frequency bits. * * XXX Turn off (for now) features the hardware can do but this driver * doesn't yet handle (1.8v, suspend/resume, etc). */ if (off == SDHCI_CAPABILITIES) { val32 &= ~SDHCI_CAN_VDD_180; val32 &= ~SDHCI_CAN_DO_SUSPEND; val32 |= SDHCI_CAN_DO_8BITBUS; return (val32); } /* * The hardware moves bits around in the present state register to make * room for all 8 data line state bits. To translate, mask out all the * bits which are not in the same position in both registers (this also * masks out some Freescale-specific bits in locations defined as * reserved by sdhci), then shift the data line and retune request bits * down to their standard locations. */ if (off == SDHCI_PRESENT_STATE) { wrk32 = val32; val32 &= 0x000F0F07; val32 |= (wrk32 >> 4) & SDHCI_STATE_DAT_MASK; val32 |= (wrk32 >> 9) & SDHCI_RETUNE_REQUEST; return (val32); } /* * fsl_sdhci_intr() can synthesize a DATA_END interrupt following a * command with an R1B response, mix it into the hardware status. */ if (off == SDHCI_INT_STATUS) { return (val32 | sc->r1bfix_intmask); } return val32; } static void fsl_sdhci_read_multi_4(device_t dev, struct sdhci_slot *slot, bus_size_t off, uint32_t *data, bus_size_t count) { struct fsl_sdhci_softc *sc = device_get_softc(dev); bus_read_multi_4(sc->mem_res, off, data, count); } static void fsl_sdhci_write_1(device_t dev, struct sdhci_slot *slot, bus_size_t off, uint8_t val) { struct fsl_sdhci_softc *sc = device_get_softc(dev); uint32_t val32; /* * Most of the things in the standard host control register are in the * hardware's wider protocol control register, but some of the bits are * moved around. */ if (off == SDHCI_HOST_CONTROL) { val32 = RD4(sc, SDHC_PROT_CTRL); val32 &= ~(SDHC_PROT_LED | SDHC_PROT_DMA_MASK | SDHC_PROT_WIDTH_MASK | SDHC_PROT_CDTL | SDHC_PROT_CDSS); val32 |= (val & SDHCI_CTRL_LED); if (val & SDHCI_CTRL_8BITBUS) val32 |= SDHC_PROT_WIDTH_8BIT; else val32 |= (val & SDHCI_CTRL_4BITBUS); val32 |= (val & (SDHCI_CTRL_SDMA | SDHCI_CTRL_ADMA2)) << 4; val32 |= (val & (SDHCI_CTRL_CARD_DET | SDHCI_CTRL_FORCE_CARD)); WR4(sc, SDHC_PROT_CTRL, val32); return; } /* XXX I can't find the bus power on/off knob; do nothing. */ if (off == SDHCI_POWER_CONTROL) { return; } #ifdef __powerpc__ /* XXX Reset doesn't seem to work as expected. Do nothing for now. */ if (off == SDHCI_SOFTWARE_RESET) return; #endif val32 = RD4(sc, off & ~3); val32 &= ~(0xff << (off & 3) * 8); val32 |= (val << (off & 3) * 8); WR4(sc, off & ~3, val32); } static void fsl_sdhci_write_2(device_t dev, struct sdhci_slot *slot, bus_size_t off, uint16_t val) { struct fsl_sdhci_softc *sc = device_get_softc(dev); uint32_t val32; /* * The clock control stuff is complex enough to have its own function * that can handle the ESDHC versus USDHC differences. */ if (off == SDHCI_CLOCK_CONTROL) { fsl_sdhc_set_clock(sc, val); return; } /* * Figure out whether we need to check the DAT0 line for busy status at * interrupt time. The controller should be doing this, but for some * reason it doesn't. There are two cases: * - R1B response with no data transfer should generate a DATA_END (aka * TRANSFER_COMPLETE) interrupt after waiting for busy, but if * there's no data transfer there's no DATA_END interrupt. This is * documented; they seem to think it's a feature. * - R1B response after Auto-CMD12 appears to not work, even though * there's a control bit for it (bit 3) in the vendor register. * When we're starting a command that needs a manual DAT0 line check at * interrupt time, we leave ourselves a note in r1bfix_type so that we * can do the extra work in fsl_sdhci_intr(). */ if (off == SDHCI_COMMAND_FLAGS) { if (val & SDHCI_CMD_DATA) { const uint32_t MBAUTOCMD = SDHCI_TRNS_ACMD12 | SDHCI_TRNS_MULTI; val32 = RD4(sc, USDHC_MIX_CONTROL); if ((val32 & MBAUTOCMD) == MBAUTOCMD) sc->r1bfix_type = R1BFIX_AC12; } else { if ((val & SDHCI_CMD_RESP_MASK) == SDHCI_CMD_RESP_SHORT_BUSY) { WR4(sc, SDHCI_INT_ENABLE, slot->intmask | SDHCI_INT_RESPONSE); WR4(sc, SDHCI_SIGNAL_ENABLE, slot->intmask | SDHCI_INT_RESPONSE); sc->r1bfix_type = R1BFIX_NODATA; } } } /* * The USDHC hardware moved the transfer mode bits to mixed control; we * just write them there and we're done. The ESDHC hardware has the * typical combined cmd-and-mode register that allows only 32-bit * access, so when writing the mode bits just save them, then later when * writing the command bits, add in the saved mode bits. */ if (sc->hwtype == HWTYPE_USDHC) { if (off == SDHCI_TRANSFER_MODE) { val32 = RD4(sc, USDHC_MIX_CONTROL); val32 &= ~0x3f; val32 |= val & 0x37; // XXX acmd23 not supported here (or by sdhci driver) WR4(sc, USDHC_MIX_CONTROL, val32); return; } } else if (sc->hwtype == HWTYPE_ESDHC) { if (off == SDHCI_TRANSFER_MODE) { sc->cmd_and_mode = (sc->cmd_and_mode & 0xffff0000) | val; return; } else if (off == SDHCI_COMMAND_FLAGS) { sc->cmd_and_mode = (sc->cmd_and_mode & 0xffff) | (val << 16); WR4(sc, SDHCI_TRANSFER_MODE, sc->cmd_and_mode); return; } } val32 = RD4(sc, off & ~3); val32 &= ~(0xffff << (off & 3) * 8); val32 |= ((val & 0xffff) << (off & 3) * 8); WR4(sc, off & ~3, val32); } static void fsl_sdhci_write_4(device_t dev, struct sdhci_slot *slot, bus_size_t off, uint32_t val) { struct fsl_sdhci_softc *sc = device_get_softc(dev); /* Clear synthesized interrupts, then pass the value to the hardware. */ if (off == SDHCI_INT_STATUS) { sc->r1bfix_intmask &= ~val; } WR4(sc, off, val); } static void fsl_sdhci_write_multi_4(device_t dev, struct sdhci_slot *slot, bus_size_t off, uint32_t *data, bus_size_t count) { struct fsl_sdhci_softc *sc = device_get_softc(dev); bus_write_multi_4(sc->mem_res, off, data, count); } static uint16_t fsl_sdhc_get_clock(struct fsl_sdhci_softc *sc) { uint16_t val; /* * Whenever the sdhci driver writes the clock register we save a * snapshot of just the frequency bits, so that we can play them back * here on a register read without recalculating the frequency from the * prescalar and divisor bits in the real register. We'll start with * those bits, and mix in the clock status and enable bits that come * from different places depending on which hardware we've got. */ val = sc->sdclockreg_freq_bits; /* * The internal clock is always enabled (actually, the hardware manages * it). Whether the internal clock is stable yet after a frequency * change comes from the present-state register on both hardware types. */ val |= SDHCI_CLOCK_INT_EN; if (RD4(sc, SDHC_PRES_STATE) & SDHC_PRES_SDSTB) val |= SDHCI_CLOCK_INT_STABLE; /* * On i.MX ESDHC hardware the card bus clock enable is in the usual * sdhci register but it's a different bit, so transcribe it (note the * difference between standard SDHCI_ and Freescale SDHC_ prefixes * here). On USDHC and QorIQ ESDHC hardware there is a force-on bit, but * no force-off for the card bus clock (the hardware runs the clock when * transfers are active no matter what), so we always say the clock is * on. * XXX Maybe we should say it's in whatever state the sdhci driver last * set it to. */ if (sc->hwtype == HWTYPE_ESDHC) { #ifdef __arm__ if (RD4(sc, SDHC_SYS_CTRL) & SDHC_CLK_SDCLKEN) #endif val |= SDHCI_CLOCK_CARD_EN; } else { val |= SDHCI_CLOCK_CARD_EN; } return (val); } static void fsl_sdhc_set_clock(struct fsl_sdhci_softc *sc, uint16_t val) { uint32_t divisor, freq, prescale, val32; val32 = RD4(sc, SDHCI_CLOCK_CONTROL); /* * Save the frequency-setting bits in SDHCI format so that we can play * them back in get_clock without complex decoding of hardware regs, * then deal with the freqency part of the value based on hardware type. */ sc->sdclockreg_freq_bits = val & SDHCI_DIVIDERS_MASK; if (sc->hwtype == HWTYPE_ESDHC) { /* * The i.MX5 ESDHC hardware requires the driver to manually * start and stop the sd bus clock. If the enable bit is not * set, turn off the clock in hardware and we're done, otherwise * decode the requested frequency. ESDHC hardware is sdhci 2.0; * the sdhci driver will use the original 8-bit divisor field * and the "base / 2^N" divisor scheme. */ if ((val & SDHCI_CLOCK_CARD_EN) == 0) { #ifdef __arm__ /* On QorIQ, this is a reserved bit. */ WR4(sc, SDHCI_CLOCK_CONTROL, val32 & ~SDHC_CLK_SDCLKEN); #endif return; } divisor = (val >> SDHCI_DIVIDER_SHIFT) & SDHCI_DIVIDER_MASK; freq = sc->baseclk_hz >> ffs(divisor); } else { /* * The USDHC hardware provides only "force always on" control * over the sd bus clock, but no way to turn it off. (If a cmd * or data transfer is in progress the clock is on, otherwise it * is off.) If the clock is being disabled, we can just return * now, otherwise we decode the requested frequency. USDHC * hardware is sdhci 3.0; the sdhci driver will use a 10-bit * divisor using the "base / 2*N" divisor scheme. */ if ((val & SDHCI_CLOCK_CARD_EN) == 0) return; divisor = ((val >> SDHCI_DIVIDER_SHIFT) & SDHCI_DIVIDER_MASK) | ((val >> SDHCI_DIVIDER_HI_SHIFT) & SDHCI_DIVIDER_HI_MASK) << SDHCI_DIVIDER_MASK_LEN; if (divisor == 0) freq = sc->baseclk_hz; else freq = sc->baseclk_hz / (2 * divisor); } /* * Get a prescaler and final divisor to achieve the desired frequency. */ for (prescale = 2; freq < sc->baseclk_hz / (prescale * 16);) prescale <<= 1; for (divisor = 1; freq < sc->baseclk_hz / (prescale * divisor);) ++divisor; #ifdef DEBUG device_printf(sc->dev, "desired SD freq: %d, actual: %d; base %d prescale %d divisor %d\n", freq, sc->baseclk_hz / (prescale * divisor), sc->baseclk_hz, prescale, divisor); #endif /* * Adjust to zero-based values, and store them to the hardware. */ prescale >>= 1; divisor -= 1; val32 &= ~(SDHC_CLK_DIVISOR_MASK | SDHC_CLK_PRESCALE_MASK); val32 |= divisor << SDHC_CLK_DIVISOR_SHIFT; val32 |= prescale << SDHC_CLK_PRESCALE_SHIFT; val32 |= SDHC_CLK_IPGEN; WR4(sc, SDHCI_CLOCK_CONTROL, val32); } static boolean_t fsl_sdhci_r1bfix_is_wait_done(struct fsl_sdhci_softc *sc) { uint32_t inhibit; mtx_assert(&sc->slot.mtx, MA_OWNED); /* * Check the DAT0 line status using both the DLA (data line active) and * CDIHB (data inhibit) bits in the present state register. In theory * just DLA should do the trick, but in practice it takes both. If the * DAT0 line is still being held and we're not yet beyond the timeout * point, just schedule another callout to check again later. */ inhibit = RD4(sc, SDHC_PRES_STATE) & (SDHC_PRES_DLA | SDHC_PRES_CDIHB); if (inhibit && getsbinuptime() < sc->r1bfix_timeout_at) { callout_reset_sbt(&sc->r1bfix_callout, SBT_1MS, 0, fsl_sdhci_r1bfix_func, sc, 0); return (false); } /* * If we reach this point with the inhibit bits still set, we've got a * timeout, synthesize a DATA_TIMEOUT interrupt. Otherwise the DAT0 * line has been released, and we synthesize a DATA_END, and if the type * of fix needed was on a command-without-data we also now add in the * original INT_RESPONSE that we suppressed earlier. */ if (inhibit) sc->r1bfix_intmask |= SDHCI_INT_DATA_TIMEOUT; else { sc->r1bfix_intmask |= SDHCI_INT_DATA_END; if (sc->r1bfix_type == R1BFIX_NODATA) sc->r1bfix_intmask |= SDHCI_INT_RESPONSE; } sc->r1bfix_type = R1BFIX_NONE; return (true); } static void fsl_sdhci_r1bfix_func(void * arg) { struct fsl_sdhci_softc *sc = arg; boolean_t r1bwait_done; mtx_lock(&sc->slot.mtx); r1bwait_done = fsl_sdhci_r1bfix_is_wait_done(sc); mtx_unlock(&sc->slot.mtx); if (r1bwait_done) sdhci_generic_intr(&sc->slot); } static void fsl_sdhci_intr(void *arg) { struct fsl_sdhci_softc *sc = arg; uint32_t intmask; mtx_lock(&sc->slot.mtx); /* * Manually check the DAT0 line for R1B response types that the * controller fails to handle properly. The controller asserts the done * interrupt while the card is still asserting busy with the DAT0 line. * * We check DAT0 immediately because most of the time, especially on a * read, the card will actually be done by time we get here. If it's * not, then the wait_done routine will schedule a callout to re-check * periodically until it is done. In that case we clear the interrupt * out of the hardware now so that we can present it later when the DAT0 * line is released. * * If we need to wait for the DAT0 line to be released, we set up a * timeout point 250ms in the future. This number comes from the SD * spec, which allows a command to take that long. In the real world, * cards tend to take 10-20ms for a long-running command such as a write * or erase that spans two pages. */ switch (sc->r1bfix_type) { case R1BFIX_NODATA: intmask = RD4(sc, SDHCI_INT_STATUS) & SDHCI_INT_RESPONSE; break; case R1BFIX_AC12: intmask = RD4(sc, SDHCI_INT_STATUS) & SDHCI_INT_DATA_END; break; default: intmask = 0; break; } if (intmask) { sc->r1bfix_timeout_at = getsbinuptime() + 250 * SBT_1MS; if (!fsl_sdhci_r1bfix_is_wait_done(sc)) { WR4(sc, SDHCI_INT_STATUS, intmask); bus_barrier(sc->mem_res, SDHCI_INT_STATUS, 4, BUS_SPACE_BARRIER_WRITE); } } mtx_unlock(&sc->slot.mtx); sdhci_generic_intr(&sc->slot); } static int fsl_sdhci_get_ro(device_t bus, device_t child) { struct fsl_sdhci_softc *sc = device_get_softc(bus); return (sdhci_fdt_gpio_get_readonly(sc->gpio)); } static bool fsl_sdhci_get_card_present(device_t dev, struct sdhci_slot *slot) { struct fsl_sdhci_softc *sc = device_get_softc(dev); return (sdhci_fdt_gpio_get_present(sc->gpio)); } #ifdef __powerpc__ static uint32_t fsl_sdhci_get_platform_clock(device_t dev) { phandle_t node; uint32_t clock; node = ofw_bus_get_node(dev); /* Get sdhci node properties */ if((OF_getprop(node, "clock-frequency", (void *)&clock, sizeof(clock)) <= 0) || (clock == 0)) { clock = mpc85xx_get_system_clock(); if (clock == 0) { device_printf(dev,"Cannot acquire correct sdhci " "frequency from DTS.\n"); return (0); } } if (bootverbose) device_printf(dev, "Acquired clock: %d from DTS\n", clock); return (clock); } #endif static int fsl_sdhci_detach(device_t dev) { struct fsl_sdhci_softc *sc = device_get_softc(dev); if (sc->gpio != NULL) sdhci_fdt_gpio_teardown(sc->gpio); callout_drain(&sc->r1bfix_callout); if (sc->slot_init_done) sdhci_cleanup_slot(&sc->slot); if (sc->intr_cookie != NULL) bus_teardown_intr(dev, sc->irq_res, sc->intr_cookie); if (sc->irq_res != NULL) bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq_res), sc->irq_res); if (sc->mem_res != NULL) { bus_release_resource(dev, SYS_RES_MEMORY, rman_get_rid(sc->mem_res), sc->mem_res); } return (0); } static int fsl_sdhci_attach(device_t dev) { struct fsl_sdhci_softc *sc = device_get_softc(dev); int rid, err; #ifdef __powerpc__ phandle_t node; uint32_t protctl; #endif sc->dev = dev; callout_init(&sc->r1bfix_callout, 1); sc->hwtype = ofw_bus_search_compatible(dev, compat_data)->ocd_data; if (sc->hwtype == HWTYPE_NONE) panic("Impossible: not compatible in fsl_sdhci_attach()"); rid = 0; sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, RF_ACTIVE); if (!sc->mem_res) { device_printf(dev, "cannot allocate memory window\n"); err = ENXIO; goto fail; } rid = 0; sc->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE); if (!sc->irq_res) { device_printf(dev, "cannot allocate interrupt\n"); err = ENXIO; goto fail; } if (bus_setup_intr(dev, sc->irq_res, INTR_TYPE_BIO | INTR_MPSAFE, NULL, fsl_sdhci_intr, sc, &sc->intr_cookie)) { device_printf(dev, "cannot setup interrupt handler\n"); err = ENXIO; goto fail; } sc->slot.quirks |= SDHCI_QUIRK_DATA_TIMEOUT_USES_SDCLK; /* * DMA is not really broken, I just haven't implemented it yet. */ sc->slot.quirks |= SDHCI_QUIRK_BROKEN_DMA; /* * Set the buffer watermark level to 128 words (512 bytes) for both read * and write. The hardware has a restriction that when the read or * write ready status is asserted, that means you can read exactly the * number of words set in the watermark register before you have to * re-check the status and potentially wait for more data. The main * sdhci driver provides no hook for doing status checking on less than * a full block boundary, so we set the watermark level to be a full * block. Reads and writes where the block size is less than the * watermark size will work correctly too, no need to change the * watermark for different size blocks. However, 128 is the maximum * allowed for the watermark, so PIO is limitted to 512 byte blocks * (which works fine for SD cards, may be a problem for SDIO some day). * * XXX need named constants for this stuff. */ /* P1022 has the '*_BRST_LEN' fields as reserved, always reading 0x10 */ if (ofw_bus_is_compatible(dev, "fsl,p1022-esdhc")) WR4(sc, SDHC_WTMK_LVL, 0x10801080); else WR4(sc, SDHC_WTMK_LVL, 0x08800880); /* * We read in native byte order in the main driver, but the register * defaults to little endian. */ #ifdef __powerpc__ sc->baseclk_hz = fsl_sdhci_get_platform_clock(dev); #else sc->baseclk_hz = imx_ccm_sdhci_hz(); #endif sc->slot.max_clk = sc->baseclk_hz; /* * Set up any gpio pin handling described in the FDT data. This cannot * fail; see comments in sdhci_fdt_gpio.h for details. */ sc->gpio = sdhci_fdt_gpio_setup(dev, &sc->slot); #ifdef __powerpc__ node = ofw_bus_get_node(dev); /* Default to big-endian on powerpc */ protctl = RD4(sc, SDHC_PROT_CTRL); protctl &= ~SDHC_PROT_EMODE_MASK; if (OF_hasprop(node, "little-endian")) protctl |= SDHC_PROT_EMODE_LITTLE; else protctl |= SDHC_PROT_EMODE_BIG; WR4(sc, SDHC_PROT_CTRL, protctl); #endif sdhci_init_slot(dev, &sc->slot, 0); sc->slot_init_done = true; bus_generic_probe(dev); bus_generic_attach(dev); sdhci_start_slot(&sc->slot); return (0); fail: fsl_sdhci_detach(dev); return (err); } static int fsl_sdhci_probe(device_t dev) { if (!ofw_bus_status_okay(dev)) return (ENXIO); switch (ofw_bus_search_compatible(dev, compat_data)->ocd_data) { case HWTYPE_ESDHC: device_set_desc(dev, "Freescale eSDHC controller"); return (BUS_PROBE_DEFAULT); case HWTYPE_USDHC: device_set_desc(dev, "Freescale uSDHC controller"); return (BUS_PROBE_DEFAULT); default: break; } return (ENXIO); } static device_method_t fsl_sdhci_methods[] = { /* Device interface */ DEVMETHOD(device_probe, fsl_sdhci_probe), DEVMETHOD(device_attach, fsl_sdhci_attach), DEVMETHOD(device_detach, fsl_sdhci_detach), /* Bus interface */ DEVMETHOD(bus_read_ivar, sdhci_generic_read_ivar), DEVMETHOD(bus_write_ivar, sdhci_generic_write_ivar), /* MMC bridge interface */ DEVMETHOD(mmcbr_update_ios, sdhci_generic_update_ios), DEVMETHOD(mmcbr_request, sdhci_generic_request), DEVMETHOD(mmcbr_get_ro, fsl_sdhci_get_ro), DEVMETHOD(mmcbr_acquire_host, sdhci_generic_acquire_host), DEVMETHOD(mmcbr_release_host, sdhci_generic_release_host), /* SDHCI accessors */ DEVMETHOD(sdhci_read_1, fsl_sdhci_read_1), DEVMETHOD(sdhci_read_2, fsl_sdhci_read_2), DEVMETHOD(sdhci_read_4, fsl_sdhci_read_4), DEVMETHOD(sdhci_read_multi_4, fsl_sdhci_read_multi_4), DEVMETHOD(sdhci_write_1, fsl_sdhci_write_1), DEVMETHOD(sdhci_write_2, fsl_sdhci_write_2), DEVMETHOD(sdhci_write_4, fsl_sdhci_write_4), DEVMETHOD(sdhci_write_multi_4, fsl_sdhci_write_multi_4), DEVMETHOD(sdhci_get_card_present,fsl_sdhci_get_card_present), DEVMETHOD_END }; static driver_t fsl_sdhci_driver = { "sdhci_fsl", fsl_sdhci_methods, sizeof(struct fsl_sdhci_softc), }; DRIVER_MODULE(sdhci_fsl, simplebus, fsl_sdhci_driver, NULL, NULL); SDHCI_DEPEND(sdhci_fsl); #ifndef MMCCAM MMC_DECLARE_BRIDGE(sdhci_fsl); #endif