/*- * Copyright (c) 2000-2015 Mark R V Murray * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer * in this position and unchanged. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #include __FBSDID("$FreeBSD$"); #ifdef _KERNEL #include #include #else /* !_KERNEL */ #include #include #include #include #include #include #include #include "unit_test.h" #endif /* _KERNEL */ #include #include #include /* This code presumes that RANDOM_KEYSIZE is twice as large as RANDOM_BLOCKSIZE */ CTASSERT(RANDOM_KEYSIZE == 2*RANDOM_BLOCKSIZE); /* Initialise the hash */ void randomdev_hash_init(struct randomdev_hash *context) { SHA256_Init(&context->sha); } /* Iterate the hash */ void randomdev_hash_iterate(struct randomdev_hash *context, const void *data, size_t size) { SHA256_Update(&context->sha, data, size); } /* Conclude by returning the hash in the supplied <*buf> which must be * RANDOM_KEYSIZE bytes long. */ void randomdev_hash_finish(struct randomdev_hash *context, void *buf) { SHA256_Final(buf, &context->sha); } /* Initialise the encryption routine by setting up the key schedule * from the supplied <*data> which must be RANDOM_KEYSIZE bytes of binary * data. */ void randomdev_encrypt_init(struct randomdev_key *context, const void *data) { rijndael_cipherInit(&context->cipher, MODE_ECB, NULL); rijndael_makeKey(&context->key, DIR_ENCRYPT, RANDOM_KEYSIZE*8, data); } /* * Create a psuedorandom output stream of 'blockcount' blocks using a CTR-mode * cipher or similar. The 128-bit counter is supplied in the in-out parmeter * 'ctr.' The output stream goes to 'd_out.' 'blockcount' RANDOM_BLOCKSIZE * bytes are generated. */ void randomdev_keystream(struct randomdev_key *context, uint128_t *ctr, void *d_out, u_int blockcount) { u_int i; for (i = 0; i < blockcount; i++) { /*- * FS&K - r = r|E(K,C) * - C = C + 1 */ rijndael_blockEncrypt(&context->cipher, &context->key, (void *)ctr, RANDOM_BLOCKSIZE * 8, d_out); d_out = (char *)d_out + RANDOM_BLOCKSIZE; uint128_increment(ctr); } }