/*- * Copyright (c) 2013-2015 Mark R V Murray * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer * in this position and unchanged. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ /* * This implementation of Fortuna is based on the descriptions found in * ISBN 978-0-470-47424-2 "Cryptography Engineering" by Ferguson, Schneier * and Kohno ("FS&K"). */ #include __FBSDID("$FreeBSD$"); #include #ifdef _KERNEL #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #else /* !_KERNEL */ #include #include #include #include #include #include #include "unit_test.h" #include #include #include #include #include #include #endif /* _KERNEL */ /* Defined in FS&K */ #define RANDOM_FORTUNA_NPOOLS 32 /* The number of accumulation pools */ #define RANDOM_FORTUNA_DEFPOOLSIZE 64 /* The default pool size/length for a (re)seed */ #define RANDOM_FORTUNA_MAX_READ (1 << 20) /* Max bytes in a single read */ /* * The allowable range of RANDOM_FORTUNA_DEFPOOLSIZE. The default value is above. * Making RANDOM_FORTUNA_DEFPOOLSIZE too large will mean a long time between reseeds, * and too small may compromise initial security but get faster reseeds. */ #define RANDOM_FORTUNA_MINPOOLSIZE 16 #define RANDOM_FORTUNA_MAXPOOLSIZE UINT_MAX CTASSERT(RANDOM_FORTUNA_MINPOOLSIZE <= RANDOM_FORTUNA_DEFPOOLSIZE); CTASSERT(RANDOM_FORTUNA_DEFPOOLSIZE <= RANDOM_FORTUNA_MAXPOOLSIZE); /* This algorithm (and code) presumes that RANDOM_KEYSIZE is twice as large as RANDOM_BLOCKSIZE */ CTASSERT(RANDOM_BLOCKSIZE == sizeof(uint128_t)); CTASSERT(RANDOM_KEYSIZE == 2*RANDOM_BLOCKSIZE); /* Probes for dtrace(1) */ SDT_PROVIDER_DECLARE(random); SDT_PROVIDER_DEFINE(random); SDT_PROBE_DEFINE2(random, fortuna, event_processor, debug, "u_int", "struct fs_pool *"); /* * This is the beastie that needs protecting. It contains all of the * state that we are excited about. Exactly one is instantiated. */ static struct fortuna_state { struct fs_pool { /* P_i */ u_int fsp_length; /* Only the first one is used by Fortuna */ struct randomdev_hash fsp_hash; } fs_pool[RANDOM_FORTUNA_NPOOLS]; u_int fs_reseedcount; /* ReseedCnt */ uint128_t fs_counter; /* C */ struct randomdev_key fs_key; /* K */ u_int fs_minpoolsize; /* Extras */ /* Extras for the OS */ #ifdef _KERNEL /* For use when 'pacing' the reseeds */ sbintime_t fs_lasttime; #endif /* Reseed lock */ mtx_t fs_mtx; } fortuna_state; #ifdef _KERNEL static struct sysctl_ctx_list random_clist; RANDOM_CHECK_UINT(fs_minpoolsize, RANDOM_FORTUNA_MINPOOLSIZE, RANDOM_FORTUNA_MAXPOOLSIZE); #else static uint8_t zero_region[RANDOM_ZERO_BLOCKSIZE]; #endif static void random_fortuna_pre_read(void); static void random_fortuna_read(uint8_t *, u_int); static bool random_fortuna_seeded(void); static void random_fortuna_process_event(struct harvest_event *); static void random_fortuna_init_alg(void *); static void random_fortuna_deinit_alg(void *); static void random_fortuna_reseed_internal(uint32_t *entropy_data, u_int blockcount); struct random_algorithm random_alg_context = { .ra_ident = "Fortuna", .ra_init_alg = random_fortuna_init_alg, .ra_deinit_alg = random_fortuna_deinit_alg, .ra_pre_read = random_fortuna_pre_read, .ra_read = random_fortuna_read, .ra_seeded = random_fortuna_seeded, .ra_event_processor = random_fortuna_process_event, .ra_poolcount = RANDOM_FORTUNA_NPOOLS, }; /* ARGSUSED */ static void random_fortuna_init_alg(void *unused __unused) { int i; #ifdef _KERNEL struct sysctl_oid *random_fortuna_o; #endif RANDOM_RESEED_INIT_LOCK(); /* * Fortuna parameters. Do not adjust these unless you have * have a very good clue about what they do! */ fortuna_state.fs_minpoolsize = RANDOM_FORTUNA_DEFPOOLSIZE; #ifdef _KERNEL fortuna_state.fs_lasttime = 0; random_fortuna_o = SYSCTL_ADD_NODE(&random_clist, SYSCTL_STATIC_CHILDREN(_kern_random), OID_AUTO, "fortuna", CTLFLAG_RW, 0, "Fortuna Parameters"); SYSCTL_ADD_PROC(&random_clist, SYSCTL_CHILDREN(random_fortuna_o), OID_AUTO, "minpoolsize", CTLTYPE_UINT | CTLFLAG_RWTUN, &fortuna_state.fs_minpoolsize, RANDOM_FORTUNA_DEFPOOLSIZE, random_check_uint_fs_minpoolsize, "IU", "Minimum pool size necessary to cause a reseed"); KASSERT(fortuna_state.fs_minpoolsize > 0, ("random: Fortuna threshold must be > 0 at startup")); #endif /*- * FS&K - InitializePRNG() * - P_i = \epsilon * - ReseedCNT = 0 */ for (i = 0; i < RANDOM_FORTUNA_NPOOLS; i++) { randomdev_hash_init(&fortuna_state.fs_pool[i].fsp_hash); fortuna_state.fs_pool[i].fsp_length = 0; } fortuna_state.fs_reseedcount = 0; /*- * FS&K - InitializeGenerator() * - C = 0 * - K = 0 */ fortuna_state.fs_counter = UINT128_ZERO; explicit_bzero(&fortuna_state.fs_key, sizeof(fortuna_state.fs_key)); } /* ARGSUSED */ static void random_fortuna_deinit_alg(void *unused __unused) { RANDOM_RESEED_DEINIT_LOCK(); explicit_bzero(&fortuna_state, sizeof(fortuna_state)); #ifdef _KERNEL sysctl_ctx_free(&random_clist); #endif } /*- * FS&K - AddRandomEvent() * Process a single stochastic event off the harvest queue */ static void random_fortuna_process_event(struct harvest_event *event) { u_int pl; RANDOM_RESEED_LOCK(); /*- * FS&K - P_i = P_i| * Accumulate the event into the appropriate pool * where each event carries the destination information. * * The hash_init() and hash_finish() calls are done in * random_fortuna_pre_read(). * * We must be locked against pool state modification which can happen * during accumulation/reseeding and reading/regating. */ pl = event->he_destination % RANDOM_FORTUNA_NPOOLS; randomdev_hash_iterate(&fortuna_state.fs_pool[pl].fsp_hash, event, sizeof(*event)); /*- * Don't wrap the length. Doing the the hard way so as not to wrap at MAXUINT. * This is a "saturating" add. * XXX: FIX!!: We don't actually need lengths for anything but fs_pool[0], * but it's been useful debugging to see them all. */ if (RANDOM_FORTUNA_MAXPOOLSIZE - fortuna_state.fs_pool[pl].fsp_length > event->he_size) fortuna_state.fs_pool[pl].fsp_length += event->he_size; else fortuna_state.fs_pool[pl].fsp_length = RANDOM_FORTUNA_MAXPOOLSIZE; explicit_bzero(event, sizeof(*event)); RANDOM_RESEED_UNLOCK(); } /*- * FS&K - Reseed() * This introduces new key material into the output generator. * Additionaly it increments the output generator's counter * variable C. When C > 0, the output generator is seeded and * will deliver output. * The entropy_data buffer passed is a very specific size; the * product of RANDOM_FORTUNA_NPOOLS and RANDOM_KEYSIZE. */ static void random_fortuna_reseed_internal(uint32_t *entropy_data, u_int blockcount) { struct randomdev_hash context; uint8_t hash[RANDOM_KEYSIZE]; RANDOM_RESEED_ASSERT_LOCK_OWNED(); /*- * FS&K - K = Hd(K|s) where Hd(m) is H(H(0^512|m)) * - C = C + 1 */ randomdev_hash_init(&context); randomdev_hash_iterate(&context, zero_region, RANDOM_ZERO_BLOCKSIZE); randomdev_hash_iterate(&context, &fortuna_state.fs_key, sizeof(fortuna_state.fs_key)); randomdev_hash_iterate(&context, entropy_data, RANDOM_KEYSIZE*blockcount); randomdev_hash_finish(&context, hash); randomdev_hash_init(&context); randomdev_hash_iterate(&context, hash, RANDOM_KEYSIZE); randomdev_hash_finish(&context, hash); randomdev_encrypt_init(&fortuna_state.fs_key, hash); explicit_bzero(hash, sizeof(hash)); /* Unblock the device if this is the first time we are reseeding. */ if (uint128_is_zero(fortuna_state.fs_counter)) randomdev_unblock(); uint128_increment(&fortuna_state.fs_counter); } /*- * FS&K - GenerateBlocks() * Generate a number of complete blocks of random output. */ static __inline void random_fortuna_genblocks(uint8_t *buf, u_int blockcount) { u_int i; RANDOM_RESEED_ASSERT_LOCK_OWNED(); for (i = 0; i < blockcount; i++) { /*- * FS&K - r = r|E(K,C) * - C = C + 1 */ randomdev_encrypt(&fortuna_state.fs_key, &fortuna_state.fs_counter, buf, RANDOM_BLOCKSIZE); buf += RANDOM_BLOCKSIZE; uint128_increment(&fortuna_state.fs_counter); } } /*- * FS&K - PseudoRandomData() * This generates no more than 2^20 bytes of data, and cleans up its * internal state when finished. It is assumed that a whole number of * blocks are available for writing; any excess generated will be * ignored. */ static __inline void random_fortuna_genrandom(uint8_t *buf, u_int bytecount) { static uint8_t temp[RANDOM_BLOCKSIZE*(RANDOM_KEYS_PER_BLOCK)]; u_int blockcount; RANDOM_RESEED_ASSERT_LOCK_OWNED(); /*- * FS&K - assert(n < 2^20 (== 1 MB) * - r = first-n-bytes(GenerateBlocks(ceil(n/16))) * - K = GenerateBlocks(2) */ KASSERT((bytecount <= RANDOM_FORTUNA_MAX_READ), ("invalid single read request to Fortuna of %d bytes", bytecount)); blockcount = howmany(bytecount, RANDOM_BLOCKSIZE); random_fortuna_genblocks(buf, blockcount); random_fortuna_genblocks(temp, RANDOM_KEYS_PER_BLOCK); randomdev_encrypt_init(&fortuna_state.fs_key, temp); explicit_bzero(temp, sizeof(temp)); } /*- * FS&K - RandomData() (Part 1) * Used to return processed entropy from the PRNG. There is a pre_read * required to be present (but it can be a stub) in order to allow * specific actions at the begin of the read. */ void random_fortuna_pre_read(void) { #ifdef _KERNEL sbintime_t now; #endif struct randomdev_hash context; uint32_t s[RANDOM_FORTUNA_NPOOLS*RANDOM_KEYSIZE_WORDS]; uint8_t temp[RANDOM_KEYSIZE]; u_int i; KASSERT(fortuna_state.fs_minpoolsize > 0, ("random: Fortuna threshold must be > 0")); #ifdef _KERNEL /* FS&K - Use 'getsbinuptime()' to prevent reseed-spamming. */ now = getsbinuptime(); #endif RANDOM_RESEED_LOCK(); if (fortuna_state.fs_pool[0].fsp_length >= fortuna_state.fs_minpoolsize #ifdef _KERNEL /* FS&K - Use 'getsbinuptime()' to prevent reseed-spamming. */ && (now - fortuna_state.fs_lasttime > hz/10) #endif ) { #ifdef _KERNEL fortuna_state.fs_lasttime = now; #endif /* FS&K - ReseedCNT = ReseedCNT + 1 */ fortuna_state.fs_reseedcount++; /* s = \epsilon at start */ for (i = 0; i < RANDOM_FORTUNA_NPOOLS; i++) { /* FS&K - if Divides(ReseedCnt, 2^i) ... */ if ((fortuna_state.fs_reseedcount % (1 << i)) == 0) { /*- * FS&K - temp = (P_i) * - P_i = \epsilon * - s = s|H(temp) */ randomdev_hash_finish(&fortuna_state.fs_pool[i].fsp_hash, temp); randomdev_hash_init(&fortuna_state.fs_pool[i].fsp_hash); fortuna_state.fs_pool[i].fsp_length = 0; randomdev_hash_init(&context); randomdev_hash_iterate(&context, temp, RANDOM_KEYSIZE); randomdev_hash_finish(&context, s + i*RANDOM_KEYSIZE_WORDS); } else break; } SDT_PROBE2(random, fortuna, event_processor, debug, fortuna_state.fs_reseedcount, fortuna_state.fs_pool); /* FS&K */ random_fortuna_reseed_internal(s, i < RANDOM_FORTUNA_NPOOLS ? i + 1 : RANDOM_FORTUNA_NPOOLS); /* Clean up and secure */ explicit_bzero(s, sizeof(s)); explicit_bzero(temp, sizeof(temp)); explicit_bzero(&context, sizeof(context)); } RANDOM_RESEED_UNLOCK(); } /*- * FS&K - RandomData() (Part 2) * Main read from Fortuna, continued. May be called multiple times after * the random_fortuna_pre_read() above. * The supplied buf MUST be a multiple of RANDOM_BLOCKSIZE in size. * Lots of code presumes this for efficiency, both here and in other * routines. You are NOT allowed to break this! */ void random_fortuna_read(uint8_t *buf, u_int bytecount) { KASSERT((bytecount % RANDOM_BLOCKSIZE) == 0, ("%s(): bytecount (= %d) must be a multiple of %d", __func__, bytecount, RANDOM_BLOCKSIZE )); RANDOM_RESEED_LOCK(); random_fortuna_genrandom(buf, bytecount); RANDOM_RESEED_UNLOCK(); } bool random_fortuna_seeded(void) { return (!uint128_is_zero(fortuna_state.fs_counter)); }