/*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2013-2014 Qlogic Corporation * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * File: qls_hw.c * Author : David C Somayajulu, Qlogic Corporation, Aliso Viejo, CA 92656. * Content: Contains Hardware dependent functions */ #include __FBSDID("$FreeBSD$"); #include "qls_os.h" #include "qls_hw.h" #include "qls_def.h" #include "qls_inline.h" #include "qls_ver.h" #include "qls_glbl.h" #include "qls_dbg.h" /* * Static Functions */ static int qls_wait_for_mac_proto_idx_ready(qla_host_t *ha, uint32_t op); static int qls_config_unicast_mac_addr(qla_host_t *ha, uint32_t add_mac); static int qls_config_mcast_mac_addr(qla_host_t *ha, uint8_t *mac_addr, uint32_t add_mac, uint32_t index); static int qls_init_rss(qla_host_t *ha); static int qls_init_comp_queue(qla_host_t *ha, int cid); static int qls_init_work_queue(qla_host_t *ha, int wid); static int qls_init_fw_routing_table(qla_host_t *ha); static int qls_hw_add_all_mcast(qla_host_t *ha); static int qls_hw_add_mcast(qla_host_t *ha, uint8_t *mta); static int qls_hw_del_mcast(qla_host_t *ha, uint8_t *mta); static int qls_wait_for_flash_ready(qla_host_t *ha); static int qls_sem_lock(qla_host_t *ha, uint32_t mask, uint32_t value); static void qls_sem_unlock(qla_host_t *ha, uint32_t mask); static void qls_free_tx_dma(qla_host_t *ha); static int qls_alloc_tx_dma(qla_host_t *ha); static void qls_free_rx_dma(qla_host_t *ha); static int qls_alloc_rx_dma(qla_host_t *ha); static void qls_free_mpi_dma(qla_host_t *ha); static int qls_alloc_mpi_dma(qla_host_t *ha); static void qls_free_rss_dma(qla_host_t *ha); static int qls_alloc_rss_dma(qla_host_t *ha); static int qls_flash_validate(qla_host_t *ha, const char *signature); static int qls_wait_for_proc_addr_ready(qla_host_t *ha); static int qls_proc_addr_rd_reg(qla_host_t *ha, uint32_t addr_module, uint32_t reg, uint32_t *data); static int qls_proc_addr_wr_reg(qla_host_t *ha, uint32_t addr_module, uint32_t reg, uint32_t data); static int qls_hw_reset(qla_host_t *ha); /* * MPI Related Functions */ static int qls_mbx_cmd(qla_host_t *ha, uint32_t *in_mbx, uint32_t i_count, uint32_t *out_mbx, uint32_t o_count); static int qls_mbx_set_mgmt_ctrl(qla_host_t *ha, uint32_t t_ctrl); static int qls_mbx_get_mgmt_ctrl(qla_host_t *ha, uint32_t *t_status); static void qls_mbx_get_link_status(qla_host_t *ha); static void qls_mbx_about_fw(qla_host_t *ha); int qls_get_msix_count(qla_host_t *ha) { return (ha->num_rx_rings); } static int qls_syctl_mpi_dump(SYSCTL_HANDLER_ARGS) { int err = 0, ret; qla_host_t *ha; err = sysctl_handle_int(oidp, &ret, 0, req); if (err || !req->newptr) return (err); if (ret == 1) { ha = (qla_host_t *)arg1; qls_mpi_core_dump(ha); } return (err); } static int qls_syctl_link_status(SYSCTL_HANDLER_ARGS) { int err = 0, ret; qla_host_t *ha; err = sysctl_handle_int(oidp, &ret, 0, req); if (err || !req->newptr) return (err); if (ret == 1) { ha = (qla_host_t *)arg1; qls_mbx_get_link_status(ha); qls_mbx_about_fw(ha); } return (err); } void qls_hw_add_sysctls(qla_host_t *ha) { device_t dev; dev = ha->pci_dev; ha->num_rx_rings = MAX_RX_RINGS; ha->num_tx_rings = MAX_TX_RINGS; SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "num_rx_rings", CTLFLAG_RD, &ha->num_rx_rings, ha->num_rx_rings, "Number of Completion Queues"); SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "num_tx_rings", CTLFLAG_RD, &ha->num_tx_rings, ha->num_tx_rings, "Number of Transmit Rings"); SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "mpi_dump", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, (void *)ha, 0, qls_syctl_mpi_dump, "I", "MPI Dump"); SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "link_status", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, (void *)ha, 0, qls_syctl_link_status, "I", "Link Status"); } /* * Name: qls_free_dma * Function: Frees the DMA'able memory allocated in qls_alloc_dma() */ void qls_free_dma(qla_host_t *ha) { qls_free_rss_dma(ha); qls_free_mpi_dma(ha); qls_free_tx_dma(ha); qls_free_rx_dma(ha); return; } /* * Name: qls_alloc_dma * Function: Allocates DMA'able memory for Tx/Rx Rings, Tx/Rx Contexts. */ int qls_alloc_dma(qla_host_t *ha) { if (qls_alloc_rx_dma(ha)) return (-1); if (qls_alloc_tx_dma(ha)) { qls_free_rx_dma(ha); return (-1); } if (qls_alloc_mpi_dma(ha)) { qls_free_tx_dma(ha); qls_free_rx_dma(ha); return (-1); } if (qls_alloc_rss_dma(ha)) { qls_free_mpi_dma(ha); qls_free_tx_dma(ha); qls_free_rx_dma(ha); return (-1); } return (0); } static int qls_wait_for_mac_proto_idx_ready(qla_host_t *ha, uint32_t op) { uint32_t data32; uint32_t count = 3; while (count--) { data32 = READ_REG32(ha, Q81_CTL_MAC_PROTO_ADDR_INDEX); if (data32 & op) return (0); QLA_USEC_DELAY(100); } ha->qla_initiate_recovery = 1; return (-1); } /* * Name: qls_config_unicast_mac_addr * Function: binds/unbinds a unicast MAC address to the interface. */ static int qls_config_unicast_mac_addr(qla_host_t *ha, uint32_t add_mac) { int ret = 0; uint32_t mac_upper = 0; uint32_t mac_lower = 0; uint32_t value = 0, index; if (qls_sem_lock(ha, Q81_CTL_SEM_MASK_MAC_SERDES, Q81_CTL_SEM_SET_MAC_SERDES)) { QL_DPRINT1((ha->pci_dev, "%s: semlock failed\n", __func__)); return(-1); } if (add_mac) { mac_upper = (ha->mac_addr[0] << 8) | ha->mac_addr[1]; mac_lower = (ha->mac_addr[2] << 24) | (ha->mac_addr[3] << 16) | (ha->mac_addr[4] << 8) | ha->mac_addr[5]; } ret = qls_wait_for_mac_proto_idx_ready(ha, Q81_CTL_MAC_PROTO_AI_MW); if (ret) goto qls_config_unicast_mac_addr_exit; index = 128 * (ha->pci_func & 0x1); /* index */ value = (index << Q81_CTL_MAC_PROTO_AI_IDX_SHIFT) | Q81_CTL_MAC_PROTO_AI_TYPE_CAM_MAC; WRITE_REG32(ha, Q81_CTL_MAC_PROTO_ADDR_INDEX, value); WRITE_REG32(ha, Q81_CTL_MAC_PROTO_ADDR_DATA, mac_lower); ret = qls_wait_for_mac_proto_idx_ready(ha, Q81_CTL_MAC_PROTO_AI_MW); if (ret) goto qls_config_unicast_mac_addr_exit; value = (index << Q81_CTL_MAC_PROTO_AI_IDX_SHIFT) | Q81_CTL_MAC_PROTO_AI_TYPE_CAM_MAC | 0x1; WRITE_REG32(ha, Q81_CTL_MAC_PROTO_ADDR_INDEX, value); WRITE_REG32(ha, Q81_CTL_MAC_PROTO_ADDR_DATA, mac_upper); ret = qls_wait_for_mac_proto_idx_ready(ha, Q81_CTL_MAC_PROTO_AI_MW); if (ret) goto qls_config_unicast_mac_addr_exit; value = (index << Q81_CTL_MAC_PROTO_AI_IDX_SHIFT) | Q81_CTL_MAC_PROTO_AI_TYPE_CAM_MAC | 0x2; WRITE_REG32(ha, Q81_CTL_MAC_PROTO_ADDR_INDEX, value); value = Q81_CAM_MAC_OFF2_ROUTE_NIC | ((ha->pci_func & 0x1) << Q81_CAM_MAC_OFF2_FUNC_SHIFT) | (0 << Q81_CAM_MAC_OFF2_CQID_SHIFT); WRITE_REG32(ha, Q81_CTL_MAC_PROTO_ADDR_DATA, value); qls_config_unicast_mac_addr_exit: qls_sem_unlock(ha, Q81_CTL_SEM_MASK_MAC_SERDES); return (ret); } /* * Name: qls_config_mcast_mac_addr * Function: binds/unbinds a multicast MAC address to the interface. */ static int qls_config_mcast_mac_addr(qla_host_t *ha, uint8_t *mac_addr, uint32_t add_mac, uint32_t index) { int ret = 0; uint32_t mac_upper = 0; uint32_t mac_lower = 0; uint32_t value = 0; if (qls_sem_lock(ha, Q81_CTL_SEM_MASK_MAC_SERDES, Q81_CTL_SEM_SET_MAC_SERDES)) { QL_DPRINT1((ha->pci_dev, "%s: semlock failed\n", __func__)); return(-1); } if (add_mac) { mac_upper = (mac_addr[0] << 8) | mac_addr[1]; mac_lower = (mac_addr[2] << 24) | (mac_addr[3] << 16) | (mac_addr[4] << 8) | mac_addr[5]; } ret = qls_wait_for_mac_proto_idx_ready(ha, Q81_CTL_MAC_PROTO_AI_MW); if (ret) goto qls_config_mcast_mac_addr_exit; value = Q81_CTL_MAC_PROTO_AI_E | (index << Q81_CTL_MAC_PROTO_AI_IDX_SHIFT) | Q81_CTL_MAC_PROTO_AI_TYPE_MCAST ; WRITE_REG32(ha, Q81_CTL_MAC_PROTO_ADDR_INDEX, value); WRITE_REG32(ha, Q81_CTL_MAC_PROTO_ADDR_DATA, mac_lower); ret = qls_wait_for_mac_proto_idx_ready(ha, Q81_CTL_MAC_PROTO_AI_MW); if (ret) goto qls_config_mcast_mac_addr_exit; value = Q81_CTL_MAC_PROTO_AI_E | (index << Q81_CTL_MAC_PROTO_AI_IDX_SHIFT) | Q81_CTL_MAC_PROTO_AI_TYPE_MCAST | 0x1; WRITE_REG32(ha, Q81_CTL_MAC_PROTO_ADDR_INDEX, value); WRITE_REG32(ha, Q81_CTL_MAC_PROTO_ADDR_DATA, mac_upper); qls_config_mcast_mac_addr_exit: qls_sem_unlock(ha, Q81_CTL_SEM_MASK_MAC_SERDES); return (ret); } /* * Name: qls_set_mac_rcv_mode * Function: Enable/Disable AllMulticast and Promiscuous Modes. */ static int qls_wait_for_route_idx_ready(qla_host_t *ha, uint32_t op) { uint32_t data32; uint32_t count = 3; while (count--) { data32 = READ_REG32(ha, Q81_CTL_ROUTING_INDEX); if (data32 & op) return (0); QLA_USEC_DELAY(100); } ha->qla_initiate_recovery = 1; return (-1); } static int qls_load_route_idx_reg(qla_host_t *ha, uint32_t index, uint32_t data) { int ret = 0; ret = qls_wait_for_route_idx_ready(ha, Q81_CTL_RI_MW); if (ret) { device_printf(ha->pci_dev, "%s: [0x%08x, 0x%08x] failed\n", __func__, index, data); goto qls_load_route_idx_reg_exit; } WRITE_REG32(ha, Q81_CTL_ROUTING_INDEX, index); WRITE_REG32(ha, Q81_CTL_ROUTING_DATA, data); qls_load_route_idx_reg_exit: return (ret); } static int qls_load_route_idx_reg_locked(qla_host_t *ha, uint32_t index, uint32_t data) { int ret = 0; if (qls_sem_lock(ha, Q81_CTL_SEM_MASK_RIDX_DATAREG, Q81_CTL_SEM_SET_RIDX_DATAREG)) { QL_DPRINT1((ha->pci_dev, "%s: semlock failed\n", __func__)); return(-1); } ret = qls_load_route_idx_reg(ha, index, data); qls_sem_unlock(ha, Q81_CTL_SEM_MASK_RIDX_DATAREG); return (ret); } static int qls_clear_routing_table(qla_host_t *ha) { int i, ret = 0; if (qls_sem_lock(ha, Q81_CTL_SEM_MASK_RIDX_DATAREG, Q81_CTL_SEM_SET_RIDX_DATAREG)) { QL_DPRINT1((ha->pci_dev, "%s: semlock failed\n", __func__)); return(-1); } for (i = 0; i < 16; i++) { ret = qls_load_route_idx_reg(ha, (Q81_CTL_RI_TYPE_NICQMASK| (i << 8) | Q81_CTL_RI_DST_DFLTQ), 0); if (ret) break; } qls_sem_unlock(ha, Q81_CTL_SEM_MASK_RIDX_DATAREG); return (ret); } int qls_set_promisc(qla_host_t *ha) { int ret; ret = qls_load_route_idx_reg_locked(ha, (Q81_CTL_RI_E | Q81_CTL_RI_TYPE_NICQMASK | Q81_CTL_RI_IDX_PROMISCUOUS | Q81_CTL_RI_DST_DFLTQ), Q81_CTL_RD_VALID_PKT); return (ret); } void qls_reset_promisc(qla_host_t *ha) { qls_load_route_idx_reg_locked(ha, (Q81_CTL_RI_TYPE_NICQMASK | Q81_CTL_RI_IDX_PROMISCUOUS | Q81_CTL_RI_DST_DFLTQ), 0); return; } int qls_set_allmulti(qla_host_t *ha) { int ret; ret = qls_load_route_idx_reg_locked(ha, (Q81_CTL_RI_E | Q81_CTL_RI_TYPE_NICQMASK | Q81_CTL_RI_IDX_ALLMULTI | Q81_CTL_RI_DST_DFLTQ), Q81_CTL_RD_MCAST); return (ret); } void qls_reset_allmulti(qla_host_t *ha) { qls_load_route_idx_reg_locked(ha, (Q81_CTL_RI_TYPE_NICQMASK | Q81_CTL_RI_IDX_ALLMULTI | Q81_CTL_RI_DST_DFLTQ), 0); return; } static int qls_init_fw_routing_table(qla_host_t *ha) { int ret = 0; ret = qls_clear_routing_table(ha); if (ret) return (-1); if (qls_sem_lock(ha, Q81_CTL_SEM_MASK_RIDX_DATAREG, Q81_CTL_SEM_SET_RIDX_DATAREG)) { QL_DPRINT1((ha->pci_dev, "%s: semlock failed\n", __func__)); return(-1); } ret = qls_load_route_idx_reg(ha, (Q81_CTL_RI_E | Q81_CTL_RI_DST_DROP | Q81_CTL_RI_TYPE_NICQMASK | Q81_CTL_RI_IDX_ALL_ERROR), Q81_CTL_RD_ERROR_PKT); if (ret) goto qls_init_fw_routing_table_exit; ret = qls_load_route_idx_reg(ha, (Q81_CTL_RI_E | Q81_CTL_RI_DST_DFLTQ | Q81_CTL_RI_TYPE_NICQMASK | Q81_CTL_RI_IDX_BCAST), Q81_CTL_RD_BCAST); if (ret) goto qls_init_fw_routing_table_exit; if (ha->num_rx_rings > 1 ) { ret = qls_load_route_idx_reg(ha, (Q81_CTL_RI_E | Q81_CTL_RI_DST_RSS | Q81_CTL_RI_TYPE_NICQMASK | Q81_CTL_RI_IDX_RSS_MATCH), Q81_CTL_RD_RSS_MATCH); if (ret) goto qls_init_fw_routing_table_exit; } ret = qls_load_route_idx_reg(ha, (Q81_CTL_RI_E | Q81_CTL_RI_DST_DFLTQ | Q81_CTL_RI_TYPE_NICQMASK | Q81_CTL_RI_IDX_MCAST_MATCH), Q81_CTL_RD_MCAST_REG_MATCH); if (ret) goto qls_init_fw_routing_table_exit; ret = qls_load_route_idx_reg(ha, (Q81_CTL_RI_E | Q81_CTL_RI_DST_DFLTQ | Q81_CTL_RI_TYPE_NICQMASK | Q81_CTL_RI_IDX_CAM_HIT), Q81_CTL_RD_CAM_HIT); if (ret) goto qls_init_fw_routing_table_exit; qls_init_fw_routing_table_exit: qls_sem_unlock(ha, Q81_CTL_SEM_MASK_RIDX_DATAREG); return (ret); } static int qls_tx_tso_chksum(qla_host_t *ha, struct mbuf *mp, q81_tx_tso_t *tx_mac) { #if defined(INET) || defined(INET6) struct ether_vlan_header *eh; struct ip *ip; #if defined(INET6) struct ip6_hdr *ip6; #endif struct tcphdr *th; uint32_t ehdrlen, ip_hlen; int ret = 0; uint16_t etype; uint8_t buf[sizeof(struct ip6_hdr)]; eh = mtod(mp, struct ether_vlan_header *); if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN; etype = ntohs(eh->evl_proto); } else { ehdrlen = ETHER_HDR_LEN; etype = ntohs(eh->evl_encap_proto); } switch (etype) { #ifdef INET case ETHERTYPE_IP: ip = (struct ip *)(mp->m_data + ehdrlen); ip_hlen = sizeof (struct ip); if (mp->m_len < (ehdrlen + ip_hlen)) { m_copydata(mp, ehdrlen, sizeof(struct ip), buf); ip = (struct ip *)buf; } tx_mac->opcode = Q81_IOCB_TX_TSO; tx_mac->flags |= Q81_TX_TSO_FLAGS_IPV4 ; tx_mac->phdr_offsets = ehdrlen; tx_mac->phdr_offsets |= ((ehdrlen + ip_hlen) << Q81_TX_TSO_PHDR_SHIFT); ip->ip_sum = 0; if (mp->m_pkthdr.csum_flags & CSUM_TSO) { tx_mac->flags |= Q81_TX_TSO_FLAGS_LSO; th = (struct tcphdr *)(ip + 1); th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr, htons(IPPROTO_TCP)); tx_mac->mss = mp->m_pkthdr.tso_segsz; tx_mac->phdr_length = ip_hlen + ehdrlen + (th->th_off << 2); break; } tx_mac->vlan_off |= Q81_TX_TSO_VLAN_OFF_IC ; if (ip->ip_p == IPPROTO_TCP) { tx_mac->flags |= Q81_TX_TSO_FLAGS_TC; } else if (ip->ip_p == IPPROTO_UDP) { tx_mac->flags |= Q81_TX_TSO_FLAGS_UC; } break; #endif #ifdef INET6 case ETHERTYPE_IPV6: ip6 = (struct ip6_hdr *)(mp->m_data + ehdrlen); ip_hlen = sizeof(struct ip6_hdr); if (mp->m_len < (ehdrlen + ip_hlen)) { m_copydata(mp, ehdrlen, sizeof (struct ip6_hdr), buf); ip6 = (struct ip6_hdr *)buf; } tx_mac->opcode = Q81_IOCB_TX_TSO; tx_mac->flags |= Q81_TX_TSO_FLAGS_IPV6 ; tx_mac->vlan_off |= Q81_TX_TSO_VLAN_OFF_IC ; tx_mac->phdr_offsets = ehdrlen; tx_mac->phdr_offsets |= ((ehdrlen + ip_hlen) << Q81_TX_TSO_PHDR_SHIFT); if (ip6->ip6_nxt == IPPROTO_TCP) { tx_mac->flags |= Q81_TX_TSO_FLAGS_TC; } else if (ip6->ip6_nxt == IPPROTO_UDP) { tx_mac->flags |= Q81_TX_TSO_FLAGS_UC; } break; #endif default: ret = -1; break; } return (ret); #else return (-1); #endif } #define QLA_TX_MIN_FREE 2 int qls_hw_tx_done(qla_host_t *ha, uint32_t txr_idx) { uint32_t txr_done, txr_next; txr_done = ha->tx_ring[txr_idx].txr_done; txr_next = ha->tx_ring[txr_idx].txr_next; if (txr_done == txr_next) { ha->tx_ring[txr_idx].txr_free = NUM_TX_DESCRIPTORS; } else if (txr_done > txr_next) { ha->tx_ring[txr_idx].txr_free = txr_done - txr_next; } else { ha->tx_ring[txr_idx].txr_free = NUM_TX_DESCRIPTORS + txr_done - txr_next; } if (ha->tx_ring[txr_idx].txr_free <= QLA_TX_MIN_FREE) return (-1); return (0); } /* * Name: qls_hw_send * Function: Transmits a packet. It first checks if the packet is a * candidate for Large TCP Segment Offload and then for UDP/TCP checksum * offload. If either of these creteria are not met, it is transmitted * as a regular ethernet frame. */ int qls_hw_send(qla_host_t *ha, bus_dma_segment_t *segs, int nsegs, uint32_t txr_next, struct mbuf *mp, uint32_t txr_idx) { q81_tx_mac_t *tx_mac; q81_txb_desc_t *tx_desc; uint32_t total_length = 0; uint32_t i; device_t dev; int ret = 0; dev = ha->pci_dev; total_length = mp->m_pkthdr.len; if (total_length > QLA_MAX_TSO_FRAME_SIZE) { device_printf(dev, "%s: total length exceeds maxlen(%d)\n", __func__, total_length); return (-1); } if (ha->tx_ring[txr_idx].txr_free <= (NUM_TX_DESCRIPTORS >> 2)) { if (qls_hw_tx_done(ha, txr_idx)) { device_printf(dev, "%s: tx_free[%d] = %d\n", __func__, txr_idx, ha->tx_ring[txr_idx].txr_free); return (-1); } } tx_mac = (q81_tx_mac_t *)&ha->tx_ring[txr_idx].wq_vaddr[txr_next]; bzero(tx_mac, sizeof(q81_tx_mac_t)); if ((mp->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_IP | CSUM_TSO)) != 0) { ret = qls_tx_tso_chksum(ha, mp, (q81_tx_tso_t *)tx_mac); if (ret) return (EINVAL); if (mp->m_pkthdr.csum_flags & CSUM_TSO) ha->tx_ring[txr_idx].tx_tso_frames++; else ha->tx_ring[txr_idx].tx_frames++; } else { tx_mac->opcode = Q81_IOCB_TX_MAC; } if (mp->m_flags & M_VLANTAG) { tx_mac->vlan_tci = mp->m_pkthdr.ether_vtag; tx_mac->vlan_off |= Q81_TX_MAC_VLAN_OFF_V; ha->tx_ring[txr_idx].tx_vlan_frames++; } tx_mac->frame_length = total_length; tx_mac->tid_lo = txr_next; if (nsegs <= MAX_TX_MAC_DESC) { QL_DPRINT2((dev, "%s: 1 [%d, %d]\n", __func__, total_length, tx_mac->tid_lo)); for (i = 0; i < nsegs; i++) { tx_mac->txd[i].baddr = segs->ds_addr; tx_mac->txd[i].length = segs->ds_len; segs++; } tx_mac->txd[(nsegs - 1)].flags = Q81_RXB_DESC_FLAGS_E; } else { QL_DPRINT2((dev, "%s: 2 [%d, %d]\n", __func__, total_length, tx_mac->tid_lo)); tx_mac->txd[0].baddr = ha->tx_ring[txr_idx].tx_buf[txr_next].oal_paddr; tx_mac->txd[0].length = nsegs * (sizeof(q81_txb_desc_t)); tx_mac->txd[0].flags = Q81_RXB_DESC_FLAGS_C; tx_desc = ha->tx_ring[txr_idx].tx_buf[txr_next].oal_vaddr; for (i = 0; i < nsegs; i++) { tx_desc->baddr = segs->ds_addr; tx_desc->length = segs->ds_len; if (i == (nsegs -1)) tx_desc->flags = Q81_RXB_DESC_FLAGS_E; else tx_desc->flags = 0; segs++; tx_desc++; } } txr_next = (txr_next + 1) & (NUM_TX_DESCRIPTORS - 1); ha->tx_ring[txr_idx].txr_next = txr_next; ha->tx_ring[txr_idx].txr_free--; Q81_WR_WQ_PROD_IDX(txr_idx, txr_next); return (0); } /* * Name: qls_del_hw_if * Function: Destroys the hardware specific entities corresponding to an * Ethernet Interface */ void qls_del_hw_if(qla_host_t *ha) { uint32_t value; int i; //int count; if (ha->hw_init == 0) { qls_hw_reset(ha); return; } for (i = 0; i < ha->num_tx_rings; i++) { Q81_SET_WQ_INVALID(i); } for (i = 0; i < ha->num_rx_rings; i++) { Q81_SET_CQ_INVALID(i); } for (i = 0; i < ha->num_rx_rings; i++) { Q81_DISABLE_INTR(ha, i); /* MSI-x i */ } value = (Q81_CTL_INTRE_IHD << Q81_CTL_INTRE_MASK_SHIFT); WRITE_REG32(ha, Q81_CTL_INTR_ENABLE, value); value = (Q81_CTL_INTRE_EI << Q81_CTL_INTRE_MASK_SHIFT); WRITE_REG32(ha, Q81_CTL_INTR_ENABLE, value); ha->flags.intr_enable = 0; qls_hw_reset(ha); return; } /* * Name: qls_init_hw_if * Function: Creates the hardware specific entities corresponding to an * Ethernet Interface - Transmit and Receive Contexts. Sets the MAC Address * corresponding to the interface. Enables LRO if allowed. */ int qls_init_hw_if(qla_host_t *ha) { uint32_t value; int ret = 0; int i; QL_DPRINT2((ha->pci_dev, "%s:enter\n", __func__)); ret = qls_hw_reset(ha); if (ret) goto qls_init_hw_if_exit; ha->vm_pgsize = 4096; /* Enable FAE and EFE bits in System Register */ value = Q81_CTL_SYSTEM_ENABLE_FAE | Q81_CTL_SYSTEM_ENABLE_EFE; value = (value << Q81_CTL_SYSTEM_MASK_SHIFT) | value; WRITE_REG32(ha, Q81_CTL_SYSTEM, value); /* Set Default Completion Queue_ID in NIC Rcv Configuration Register */ value = (Q81_CTL_NIC_RCVC_DCQ_MASK << Q81_CTL_NIC_RCVC_MASK_SHIFT); WRITE_REG32(ha, Q81_CTL_NIC_RCV_CONFIG, value); /* Function Specific Control Register - Set Page Size and Enable NIC */ value = Q81_CTL_FUNC_SPECIFIC_FE | Q81_CTL_FUNC_SPECIFIC_VM_PGSIZE_MASK | Q81_CTL_FUNC_SPECIFIC_EPC_O | Q81_CTL_FUNC_SPECIFIC_EPC_I | Q81_CTL_FUNC_SPECIFIC_EC; value = (value << Q81_CTL_FUNC_SPECIFIC_MASK_SHIFT) | Q81_CTL_FUNC_SPECIFIC_FE | Q81_CTL_FUNC_SPECIFIC_VM_PGSIZE_4K | Q81_CTL_FUNC_SPECIFIC_EPC_O | Q81_CTL_FUNC_SPECIFIC_EPC_I | Q81_CTL_FUNC_SPECIFIC_EC; WRITE_REG32(ha, Q81_CTL_FUNC_SPECIFIC, value); /* Interrupt Mask Register */ value = Q81_CTL_INTRM_PI; value = (value << Q81_CTL_INTRM_MASK_SHIFT) | value; WRITE_REG32(ha, Q81_CTL_INTR_MASK, value); /* Initialiatize Completion Queue */ for (i = 0; i < ha->num_rx_rings; i++) { ret = qls_init_comp_queue(ha, i); if (ret) goto qls_init_hw_if_exit; } if (ha->num_rx_rings > 1 ) { ret = qls_init_rss(ha); if (ret) goto qls_init_hw_if_exit; } /* Initialize Work Queue */ for (i = 0; i < ha->num_tx_rings; i++) { ret = qls_init_work_queue(ha, i); if (ret) goto qls_init_hw_if_exit; } if (ret) goto qls_init_hw_if_exit; /* Set up CAM RAM with MAC Address */ ret = qls_config_unicast_mac_addr(ha, 1); if (ret) goto qls_init_hw_if_exit; ret = qls_hw_add_all_mcast(ha); if (ret) goto qls_init_hw_if_exit; /* Initialize Firmware Routing Table */ ret = qls_init_fw_routing_table(ha); if (ret) goto qls_init_hw_if_exit; /* Get Chip Revision ID */ ha->rev_id = READ_REG32(ha, Q81_CTL_REV_ID); /* Enable Global Interrupt */ value = Q81_CTL_INTRE_EI; value = (value << Q81_CTL_INTRE_MASK_SHIFT) | value; WRITE_REG32(ha, Q81_CTL_INTR_ENABLE, value); /* Enable Interrupt Handshake Disable */ value = Q81_CTL_INTRE_IHD; value = (value << Q81_CTL_INTRE_MASK_SHIFT) | value; WRITE_REG32(ha, Q81_CTL_INTR_ENABLE, value); /* Enable Completion Interrupt */ ha->flags.intr_enable = 1; for (i = 0; i < ha->num_rx_rings; i++) { Q81_ENABLE_INTR(ha, i); /* MSI-x i */ } ha->hw_init = 1; qls_mbx_get_link_status(ha); QL_DPRINT2((ha->pci_dev, "%s:rxr [0x%08x]\n", __func__, ha->rx_ring[0].cq_db_offset)); QL_DPRINT2((ha->pci_dev, "%s:txr [0x%08x]\n", __func__, ha->tx_ring[0].wq_db_offset)); for (i = 0; i < ha->num_rx_rings; i++) { Q81_WR_CQ_CONS_IDX(i, 0); Q81_WR_LBQ_PROD_IDX(i, ha->rx_ring[i].lbq_in); Q81_WR_SBQ_PROD_IDX(i, ha->rx_ring[i].sbq_in); QL_DPRINT2((ha->pci_dev, "%s: [wq_idx, cq_idx, lbq_idx, sbq_idx]" "[0x%08x, 0x%08x, 0x%08x, 0x%08x]\n", __func__, Q81_RD_WQ_IDX(i), Q81_RD_CQ_IDX(i), Q81_RD_LBQ_IDX(i), Q81_RD_SBQ_IDX(i))); } for (i = 0; i < ha->num_rx_rings; i++) { Q81_SET_CQ_VALID(i); } qls_init_hw_if_exit: QL_DPRINT2((ha->pci_dev, "%s:exit\n", __func__)); return (ret); } static int qls_wait_for_config_reg_bits(qla_host_t *ha, uint32_t bits, uint32_t value) { uint32_t data32; uint32_t count = 3; while (count--) { data32 = READ_REG32(ha, Q81_CTL_CONFIG); if ((data32 & bits) == value) return (0); QLA_USEC_DELAY(100); } ha->qla_initiate_recovery = 1; device_printf(ha->pci_dev, "%s: failed\n", __func__); return (-1); } static uint8_t q81_hash_key[] = { 0xda, 0x56, 0x5a, 0x6d, 0xc2, 0x0e, 0x5b, 0x25, 0x3d, 0x25, 0x67, 0x41, 0xb0, 0x8f, 0xa3, 0x43, 0xcb, 0x2b, 0xca, 0xd0, 0xb4, 0x30, 0x7b, 0xae, 0xa3, 0x2d, 0xcb, 0x77, 0x0c, 0xf2, 0x30, 0x80, 0x3b, 0xb7, 0x42, 0x6a, 0xfa, 0x01, 0xac, 0xbe }; static int qls_init_rss(qla_host_t *ha) { q81_rss_icb_t *rss_icb; int ret = 0; int i; uint32_t value; rss_icb = ha->rss_dma.dma_b; bzero(rss_icb, sizeof (q81_rss_icb_t)); rss_icb->flags_base_cq_num = Q81_RSS_ICB_FLAGS_L4K | Q81_RSS_ICB_FLAGS_L6K | Q81_RSS_ICB_FLAGS_LI | Q81_RSS_ICB_FLAGS_LB | Q81_RSS_ICB_FLAGS_LM | Q81_RSS_ICB_FLAGS_RT4 | Q81_RSS_ICB_FLAGS_RT6; rss_icb->mask = 0x3FF; for (i = 0; i < Q81_RSS_ICB_NUM_INDTBL_ENTRIES; i++) { rss_icb->cq_id[i] = (i & (ha->num_rx_rings - 1)); } memcpy(rss_icb->ipv6_rss_hash_key, q81_hash_key, 40); memcpy(rss_icb->ipv4_rss_hash_key, q81_hash_key, 16); ret = qls_wait_for_config_reg_bits(ha, Q81_CTL_CONFIG_LR, 0); if (ret) goto qls_init_rss_exit; ret = qls_sem_lock(ha, Q81_CTL_SEM_MASK_ICB, Q81_CTL_SEM_SET_ICB); if (ret) { QL_DPRINT1((ha->pci_dev, "%s: semlock failed\n", __func__)); goto qls_init_rss_exit; } value = (uint32_t)ha->rss_dma.dma_addr; WRITE_REG32(ha, Q81_CTL_ICB_ACCESS_ADDR_LO, value); value = (uint32_t)(ha->rss_dma.dma_addr >> 32); WRITE_REG32(ha, Q81_CTL_ICB_ACCESS_ADDR_HI, value); qls_sem_unlock(ha, Q81_CTL_SEM_MASK_ICB); value = (Q81_CTL_CONFIG_LR << Q81_CTL_CONFIG_MASK_SHIFT) | Q81_CTL_CONFIG_LR; WRITE_REG32(ha, Q81_CTL_CONFIG, value); ret = qls_wait_for_config_reg_bits(ha, Q81_CTL_CONFIG_LR, 0); qls_init_rss_exit: return (ret); } static int qls_init_comp_queue(qla_host_t *ha, int cid) { q81_cq_icb_t *cq_icb; qla_rx_ring_t *rxr; int ret = 0; uint32_t value; rxr = &ha->rx_ring[cid]; rxr->cq_db_offset = ha->vm_pgsize * (128 + cid); cq_icb = rxr->cq_icb_vaddr; bzero(cq_icb, sizeof (q81_cq_icb_t)); cq_icb->msix_vector = cid; cq_icb->flags = Q81_CQ_ICB_FLAGS_LC | Q81_CQ_ICB_FLAGS_LI | Q81_CQ_ICB_FLAGS_LL | Q81_CQ_ICB_FLAGS_LS | Q81_CQ_ICB_FLAGS_LV; cq_icb->length_v = NUM_CQ_ENTRIES; cq_icb->cq_baddr_lo = (rxr->cq_base_paddr & 0xFFFFFFFF); cq_icb->cq_baddr_hi = (rxr->cq_base_paddr >> 32) & 0xFFFFFFFF; cq_icb->cqi_addr_lo = (rxr->cqi_paddr & 0xFFFFFFFF); cq_icb->cqi_addr_hi = (rxr->cqi_paddr >> 32) & 0xFFFFFFFF; cq_icb->pkt_idelay = 10; cq_icb->idelay = 100; cq_icb->lbq_baddr_lo = (rxr->lbq_addr_tbl_paddr & 0xFFFFFFFF); cq_icb->lbq_baddr_hi = (rxr->lbq_addr_tbl_paddr >> 32) & 0xFFFFFFFF; cq_icb->lbq_bsize = QLA_LGB_SIZE; cq_icb->lbq_length = QLA_NUM_LGB_ENTRIES; cq_icb->sbq_baddr_lo = (rxr->sbq_addr_tbl_paddr & 0xFFFFFFFF); cq_icb->sbq_baddr_hi = (rxr->sbq_addr_tbl_paddr >> 32) & 0xFFFFFFFF; cq_icb->sbq_bsize = (uint16_t)ha->msize; cq_icb->sbq_length = QLA_NUM_SMB_ENTRIES; QL_DUMP_CQ(ha); ret = qls_wait_for_config_reg_bits(ha, Q81_CTL_CONFIG_LCQ, 0); if (ret) goto qls_init_comp_queue_exit; ret = qls_sem_lock(ha, Q81_CTL_SEM_MASK_ICB, Q81_CTL_SEM_SET_ICB); if (ret) { QL_DPRINT1((ha->pci_dev, "%s: semlock failed\n", __func__)); goto qls_init_comp_queue_exit; } value = (uint32_t)rxr->cq_icb_paddr; WRITE_REG32(ha, Q81_CTL_ICB_ACCESS_ADDR_LO, value); value = (uint32_t)(rxr->cq_icb_paddr >> 32); WRITE_REG32(ha, Q81_CTL_ICB_ACCESS_ADDR_HI, value); qls_sem_unlock(ha, Q81_CTL_SEM_MASK_ICB); value = Q81_CTL_CONFIG_LCQ | Q81_CTL_CONFIG_Q_NUM_MASK; value = (value << Q81_CTL_CONFIG_MASK_SHIFT) | Q81_CTL_CONFIG_LCQ; value |= (cid << Q81_CTL_CONFIG_Q_NUM_SHIFT); WRITE_REG32(ha, Q81_CTL_CONFIG, value); ret = qls_wait_for_config_reg_bits(ha, Q81_CTL_CONFIG_LCQ, 0); rxr->cq_next = 0; rxr->lbq_next = rxr->lbq_free = 0; rxr->sbq_next = rxr->sbq_free = 0; rxr->rx_free = rxr->rx_next = 0; rxr->lbq_in = (QLA_NUM_LGB_ENTRIES - 1) & ~0xF; rxr->sbq_in = (QLA_NUM_SMB_ENTRIES - 1) & ~0xF; qls_init_comp_queue_exit: return (ret); } static int qls_init_work_queue(qla_host_t *ha, int wid) { q81_wq_icb_t *wq_icb; qla_tx_ring_t *txr; int ret = 0; uint32_t value; txr = &ha->tx_ring[wid]; txr->wq_db_addr = (struct resource *)((uint8_t *)ha->pci_reg1 + (ha->vm_pgsize * wid)); txr->wq_db_offset = (ha->vm_pgsize * wid); wq_icb = txr->wq_icb_vaddr; bzero(wq_icb, sizeof (q81_wq_icb_t)); wq_icb->length_v = NUM_TX_DESCRIPTORS | Q81_WQ_ICB_VALID; wq_icb->flags = Q81_WQ_ICB_FLAGS_LO | Q81_WQ_ICB_FLAGS_LI | Q81_WQ_ICB_FLAGS_LB | Q81_WQ_ICB_FLAGS_LC; wq_icb->wqcqid_rss = wid; wq_icb->baddr_lo = txr->wq_paddr & 0xFFFFFFFF; wq_icb->baddr_hi = (txr->wq_paddr >> 32)& 0xFFFFFFFF; wq_icb->ci_addr_lo = txr->txr_cons_paddr & 0xFFFFFFFF; wq_icb->ci_addr_hi = (txr->txr_cons_paddr >> 32)& 0xFFFFFFFF; ret = qls_wait_for_config_reg_bits(ha, Q81_CTL_CONFIG_LRQ, 0); if (ret) goto qls_init_wq_exit; ret = qls_sem_lock(ha, Q81_CTL_SEM_MASK_ICB, Q81_CTL_SEM_SET_ICB); if (ret) { QL_DPRINT1((ha->pci_dev, "%s: semlock failed\n", __func__)); goto qls_init_wq_exit; } value = (uint32_t)txr->wq_icb_paddr; WRITE_REG32(ha, Q81_CTL_ICB_ACCESS_ADDR_LO, value); value = (uint32_t)(txr->wq_icb_paddr >> 32); WRITE_REG32(ha, Q81_CTL_ICB_ACCESS_ADDR_HI, value); qls_sem_unlock(ha, Q81_CTL_SEM_MASK_ICB); value = Q81_CTL_CONFIG_LRQ | Q81_CTL_CONFIG_Q_NUM_MASK; value = (value << Q81_CTL_CONFIG_MASK_SHIFT) | Q81_CTL_CONFIG_LRQ; value |= (wid << Q81_CTL_CONFIG_Q_NUM_SHIFT); WRITE_REG32(ha, Q81_CTL_CONFIG, value); ret = qls_wait_for_config_reg_bits(ha, Q81_CTL_CONFIG_LRQ, 0); txr->txr_free = NUM_TX_DESCRIPTORS; txr->txr_next = 0; txr->txr_done = 0; qls_init_wq_exit: return (ret); } static int qls_hw_add_all_mcast(qla_host_t *ha) { int i, nmcast; nmcast = ha->nmcast; for (i = 0 ; ((i < Q8_MAX_NUM_MULTICAST_ADDRS) && nmcast); i++) { if ((ha->mcast[i].addr[0] != 0) || (ha->mcast[i].addr[1] != 0) || (ha->mcast[i].addr[2] != 0) || (ha->mcast[i].addr[3] != 0) || (ha->mcast[i].addr[4] != 0) || (ha->mcast[i].addr[5] != 0)) { if (qls_config_mcast_mac_addr(ha, ha->mcast[i].addr, 1, i)) { device_printf(ha->pci_dev, "%s: failed\n", __func__); return (-1); } nmcast--; } } return 0; } static int qls_hw_add_mcast(qla_host_t *ha, uint8_t *mta) { int i; for (i = 0; i < Q8_MAX_NUM_MULTICAST_ADDRS; i++) { if (QL_MAC_CMP(ha->mcast[i].addr, mta) == 0) return 0; /* its been already added */ } for (i = 0; i < Q8_MAX_NUM_MULTICAST_ADDRS; i++) { if ((ha->mcast[i].addr[0] == 0) && (ha->mcast[i].addr[1] == 0) && (ha->mcast[i].addr[2] == 0) && (ha->mcast[i].addr[3] == 0) && (ha->mcast[i].addr[4] == 0) && (ha->mcast[i].addr[5] == 0)) { if (qls_config_mcast_mac_addr(ha, mta, 1, i)) return (-1); bcopy(mta, ha->mcast[i].addr, Q8_MAC_ADDR_LEN); ha->nmcast++; return 0; } } return 0; } static int qls_hw_del_mcast(qla_host_t *ha, uint8_t *mta) { int i; for (i = 0; i < Q8_MAX_NUM_MULTICAST_ADDRS; i++) { if (QL_MAC_CMP(ha->mcast[i].addr, mta) == 0) { if (qls_config_mcast_mac_addr(ha, mta, 0, i)) return (-1); ha->mcast[i].addr[0] = 0; ha->mcast[i].addr[1] = 0; ha->mcast[i].addr[2] = 0; ha->mcast[i].addr[3] = 0; ha->mcast[i].addr[4] = 0; ha->mcast[i].addr[5] = 0; ha->nmcast--; return 0; } } return 0; } /* * Name: qls_hw_set_multi * Function: Sets the Multicast Addresses provided the host O.S into the * hardware (for the given interface) */ void qls_hw_set_multi(qla_host_t *ha, uint8_t *mta, uint32_t mcnt, uint32_t add_mac) { int i; for (i = 0; i < mcnt; i++) { if (add_mac) { if (qls_hw_add_mcast(ha, mta)) break; } else { if (qls_hw_del_mcast(ha, mta)) break; } mta += Q8_MAC_ADDR_LEN; } return; } void qls_update_link_state(qla_host_t *ha) { uint32_t link_state; uint32_t prev_link_state; if (!(if_getdrvflags(ha->ifp) & IFF_DRV_RUNNING)) { ha->link_up = 0; return; } link_state = READ_REG32(ha, Q81_CTL_STATUS); prev_link_state = ha->link_up; if ((ha->pci_func & 0x1) == 0) ha->link_up = ((link_state & Q81_CTL_STATUS_PL0)? 1 : 0); else ha->link_up = ((link_state & Q81_CTL_STATUS_PL1)? 1 : 0); if (prev_link_state != ha->link_up) { if (ha->link_up) { if_link_state_change(ha->ifp, LINK_STATE_UP); } else { if_link_state_change(ha->ifp, LINK_STATE_DOWN); } } return; } static void qls_free_tx_ring_dma(qla_host_t *ha, int r_idx) { if (ha->tx_ring[r_idx].flags.wq_dma) { qls_free_dmabuf(ha, &ha->tx_ring[r_idx].wq_dma); ha->tx_ring[r_idx].flags.wq_dma = 0; } if (ha->tx_ring[r_idx].flags.privb_dma) { qls_free_dmabuf(ha, &ha->tx_ring[r_idx].privb_dma); ha->tx_ring[r_idx].flags.privb_dma = 0; } return; } static void qls_free_tx_dma(qla_host_t *ha) { int i, j; qla_tx_buf_t *txb; for (i = 0; i < ha->num_tx_rings; i++) { qls_free_tx_ring_dma(ha, i); for (j = 0; j < NUM_TX_DESCRIPTORS; j++) { txb = &ha->tx_ring[i].tx_buf[j]; if (txb->map) { bus_dmamap_destroy(ha->tx_tag, txb->map); } } } if (ha->tx_tag != NULL) { bus_dma_tag_destroy(ha->tx_tag); ha->tx_tag = NULL; } return; } static int qls_alloc_tx_ring_dma(qla_host_t *ha, int ridx) { int ret = 0, i; uint8_t *v_addr; bus_addr_t p_addr; qla_tx_buf_t *txb; device_t dev = ha->pci_dev; ha->tx_ring[ridx].wq_dma.alignment = 8; ha->tx_ring[ridx].wq_dma.size = NUM_TX_DESCRIPTORS * (sizeof (q81_tx_cmd_t)); ret = qls_alloc_dmabuf(ha, &ha->tx_ring[ridx].wq_dma); if (ret) { device_printf(dev, "%s: [%d] txr failed\n", __func__, ridx); goto qls_alloc_tx_ring_dma_exit; } ha->tx_ring[ridx].flags.wq_dma = 1; ha->tx_ring[ridx].privb_dma.alignment = 8; ha->tx_ring[ridx].privb_dma.size = QLA_TX_PRIVATE_BSIZE; ret = qls_alloc_dmabuf(ha, &ha->tx_ring[ridx].privb_dma); if (ret) { device_printf(dev, "%s: [%d] oalb failed\n", __func__, ridx); goto qls_alloc_tx_ring_dma_exit; } ha->tx_ring[ridx].flags.privb_dma = 1; ha->tx_ring[ridx].wq_vaddr = ha->tx_ring[ridx].wq_dma.dma_b; ha->tx_ring[ridx].wq_paddr = ha->tx_ring[ridx].wq_dma.dma_addr; v_addr = ha->tx_ring[ridx].privb_dma.dma_b; p_addr = ha->tx_ring[ridx].privb_dma.dma_addr; ha->tx_ring[ridx].wq_icb_vaddr = v_addr; ha->tx_ring[ridx].wq_icb_paddr = p_addr; ha->tx_ring[ridx].txr_cons_vaddr = (uint32_t *)(v_addr + (PAGE_SIZE >> 1)); ha->tx_ring[ridx].txr_cons_paddr = p_addr + (PAGE_SIZE >> 1); v_addr = v_addr + (PAGE_SIZE >> 1); p_addr = p_addr + (PAGE_SIZE >> 1); txb = ha->tx_ring[ridx].tx_buf; for (i = 0; i < NUM_TX_DESCRIPTORS; i++) { txb[i].oal_vaddr = v_addr; txb[i].oal_paddr = p_addr; v_addr = v_addr + QLA_OAL_BLK_SIZE; p_addr = p_addr + QLA_OAL_BLK_SIZE; } qls_alloc_tx_ring_dma_exit: return (ret); } static int qls_alloc_tx_dma(qla_host_t *ha) { int i, j; int ret = 0; qla_tx_buf_t *txb; if (bus_dma_tag_create(NULL, /* parent */ 1, 0, /* alignment, bounds */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ QLA_MAX_TSO_FRAME_SIZE, /* maxsize */ QLA_MAX_SEGMENTS, /* nsegments */ PAGE_SIZE, /* maxsegsize */ BUS_DMA_ALLOCNOW, /* flags */ NULL, /* lockfunc */ NULL, /* lockfuncarg */ &ha->tx_tag)) { device_printf(ha->pci_dev, "%s: tx_tag alloc failed\n", __func__); return (ENOMEM); } for (i = 0; i < ha->num_tx_rings; i++) { ret = qls_alloc_tx_ring_dma(ha, i); if (ret) { qls_free_tx_dma(ha); break; } for (j = 0; j < NUM_TX_DESCRIPTORS; j++) { txb = &ha->tx_ring[i].tx_buf[j]; ret = bus_dmamap_create(ha->tx_tag, BUS_DMA_NOWAIT, &txb->map); if (ret) { ha->err_tx_dmamap_create++; device_printf(ha->pci_dev, "%s: bus_dmamap_create failed[%d, %d, %d]\n", __func__, ret, i, j); qls_free_tx_dma(ha); return (ret); } } } return (ret); } static void qls_free_rss_dma(qla_host_t *ha) { qls_free_dmabuf(ha, &ha->rss_dma); ha->flags.rss_dma = 0; } static int qls_alloc_rss_dma(qla_host_t *ha) { int ret = 0; ha->rss_dma.alignment = 4; ha->rss_dma.size = PAGE_SIZE; ret = qls_alloc_dmabuf(ha, &ha->rss_dma); if (ret) device_printf(ha->pci_dev, "%s: failed\n", __func__); else ha->flags.rss_dma = 1; return (ret); } static void qls_free_mpi_dma(qla_host_t *ha) { qls_free_dmabuf(ha, &ha->mpi_dma); ha->flags.mpi_dma = 0; } static int qls_alloc_mpi_dma(qla_host_t *ha) { int ret = 0; ha->mpi_dma.alignment = 4; ha->mpi_dma.size = (0x4000 * 4); ret = qls_alloc_dmabuf(ha, &ha->mpi_dma); if (ret) device_printf(ha->pci_dev, "%s: failed\n", __func__); else ha->flags.mpi_dma = 1; return (ret); } static void qls_free_rx_ring_dma(qla_host_t *ha, int ridx) { if (ha->rx_ring[ridx].flags.cq_dma) { qls_free_dmabuf(ha, &ha->rx_ring[ridx].cq_dma); ha->rx_ring[ridx].flags.cq_dma = 0; } if (ha->rx_ring[ridx].flags.lbq_dma) { qls_free_dmabuf(ha, &ha->rx_ring[ridx].lbq_dma); ha->rx_ring[ridx].flags.lbq_dma = 0; } if (ha->rx_ring[ridx].flags.sbq_dma) { qls_free_dmabuf(ha, &ha->rx_ring[ridx].sbq_dma); ha->rx_ring[ridx].flags.sbq_dma = 0; } if (ha->rx_ring[ridx].flags.lb_dma) { qls_free_dmabuf(ha, &ha->rx_ring[ridx].lb_dma); ha->rx_ring[ridx].flags.lb_dma = 0; } return; } static void qls_free_rx_dma(qla_host_t *ha) { int i; for (i = 0; i < ha->num_rx_rings; i++) { qls_free_rx_ring_dma(ha, i); } if (ha->rx_tag != NULL) { bus_dma_tag_destroy(ha->rx_tag); ha->rx_tag = NULL; } return; } static int qls_alloc_rx_ring_dma(qla_host_t *ha, int ridx) { int i, ret = 0; uint8_t *v_addr; bus_addr_t p_addr; volatile q81_bq_addr_e_t *bq_e; device_t dev = ha->pci_dev; ha->rx_ring[ridx].cq_dma.alignment = 128; ha->rx_ring[ridx].cq_dma.size = (NUM_CQ_ENTRIES * (sizeof (q81_cq_e_t))) + PAGE_SIZE; ret = qls_alloc_dmabuf(ha, &ha->rx_ring[ridx].cq_dma); if (ret) { device_printf(dev, "%s: [%d] cq failed\n", __func__, ridx); goto qls_alloc_rx_ring_dma_exit; } ha->rx_ring[ridx].flags.cq_dma = 1; ha->rx_ring[ridx].lbq_dma.alignment = 8; ha->rx_ring[ridx].lbq_dma.size = QLA_LGBQ_AND_TABLE_SIZE; ret = qls_alloc_dmabuf(ha, &ha->rx_ring[ridx].lbq_dma); if (ret) { device_printf(dev, "%s: [%d] lbq failed\n", __func__, ridx); goto qls_alloc_rx_ring_dma_exit; } ha->rx_ring[ridx].flags.lbq_dma = 1; ha->rx_ring[ridx].sbq_dma.alignment = 8; ha->rx_ring[ridx].sbq_dma.size = QLA_SMBQ_AND_TABLE_SIZE; ret = qls_alloc_dmabuf(ha, &ha->rx_ring[ridx].sbq_dma); if (ret) { device_printf(dev, "%s: [%d] sbq failed\n", __func__, ridx); goto qls_alloc_rx_ring_dma_exit; } ha->rx_ring[ridx].flags.sbq_dma = 1; ha->rx_ring[ridx].lb_dma.alignment = 8; ha->rx_ring[ridx].lb_dma.size = (QLA_LGB_SIZE * QLA_NUM_LGB_ENTRIES); ret = qls_alloc_dmabuf(ha, &ha->rx_ring[ridx].lb_dma); if (ret) { device_printf(dev, "%s: [%d] lb failed\n", __func__, ridx); goto qls_alloc_rx_ring_dma_exit; } ha->rx_ring[ridx].flags.lb_dma = 1; bzero(ha->rx_ring[ridx].cq_dma.dma_b, ha->rx_ring[ridx].cq_dma.size); bzero(ha->rx_ring[ridx].lbq_dma.dma_b, ha->rx_ring[ridx].lbq_dma.size); bzero(ha->rx_ring[ridx].sbq_dma.dma_b, ha->rx_ring[ridx].sbq_dma.size); bzero(ha->rx_ring[ridx].lb_dma.dma_b, ha->rx_ring[ridx].lb_dma.size); /* completion queue */ ha->rx_ring[ridx].cq_base_vaddr = ha->rx_ring[ridx].cq_dma.dma_b; ha->rx_ring[ridx].cq_base_paddr = ha->rx_ring[ridx].cq_dma.dma_addr; v_addr = ha->rx_ring[ridx].cq_dma.dma_b; p_addr = ha->rx_ring[ridx].cq_dma.dma_addr; v_addr = v_addr + (NUM_CQ_ENTRIES * (sizeof (q81_cq_e_t))); p_addr = p_addr + (NUM_CQ_ENTRIES * (sizeof (q81_cq_e_t))); /* completion queue icb */ ha->rx_ring[ridx].cq_icb_vaddr = v_addr; ha->rx_ring[ridx].cq_icb_paddr = p_addr; v_addr = v_addr + (PAGE_SIZE >> 2); p_addr = p_addr + (PAGE_SIZE >> 2); /* completion queue index register */ ha->rx_ring[ridx].cqi_vaddr = (uint32_t *)v_addr; ha->rx_ring[ridx].cqi_paddr = p_addr; v_addr = ha->rx_ring[ridx].lbq_dma.dma_b; p_addr = ha->rx_ring[ridx].lbq_dma.dma_addr; /* large buffer queue address table */ ha->rx_ring[ridx].lbq_addr_tbl_vaddr = v_addr; ha->rx_ring[ridx].lbq_addr_tbl_paddr = p_addr; /* large buffer queue */ ha->rx_ring[ridx].lbq_vaddr = v_addr + PAGE_SIZE; ha->rx_ring[ridx].lbq_paddr = p_addr + PAGE_SIZE; v_addr = ha->rx_ring[ridx].sbq_dma.dma_b; p_addr = ha->rx_ring[ridx].sbq_dma.dma_addr; /* small buffer queue address table */ ha->rx_ring[ridx].sbq_addr_tbl_vaddr = v_addr; ha->rx_ring[ridx].sbq_addr_tbl_paddr = p_addr; /* small buffer queue */ ha->rx_ring[ridx].sbq_vaddr = v_addr + PAGE_SIZE; ha->rx_ring[ridx].sbq_paddr = p_addr + PAGE_SIZE; ha->rx_ring[ridx].lb_vaddr = ha->rx_ring[ridx].lb_dma.dma_b; ha->rx_ring[ridx].lb_paddr = ha->rx_ring[ridx].lb_dma.dma_addr; /* Initialize Large Buffer Queue Table */ p_addr = ha->rx_ring[ridx].lbq_paddr; bq_e = ha->rx_ring[ridx].lbq_addr_tbl_vaddr; bq_e->addr_lo = p_addr & 0xFFFFFFFF; bq_e->addr_hi = (p_addr >> 32) & 0xFFFFFFFF; p_addr = ha->rx_ring[ridx].lb_paddr; bq_e = ha->rx_ring[ridx].lbq_vaddr; for (i = 0; i < QLA_NUM_LGB_ENTRIES; i++) { bq_e->addr_lo = p_addr & 0xFFFFFFFF; bq_e->addr_hi = (p_addr >> 32) & 0xFFFFFFFF; p_addr = p_addr + QLA_LGB_SIZE; bq_e++; } /* Initialize Small Buffer Queue Table */ p_addr = ha->rx_ring[ridx].sbq_paddr; bq_e = ha->rx_ring[ridx].sbq_addr_tbl_vaddr; for (i =0; i < (QLA_SBQ_SIZE/QLA_PAGE_SIZE); i++) { bq_e->addr_lo = p_addr & 0xFFFFFFFF; bq_e->addr_hi = (p_addr >> 32) & 0xFFFFFFFF; p_addr = p_addr + QLA_PAGE_SIZE; bq_e++; } qls_alloc_rx_ring_dma_exit: return (ret); } static int qls_alloc_rx_dma(qla_host_t *ha) { int i; int ret = 0; if (bus_dma_tag_create(NULL, /* parent */ 1, 0, /* alignment, bounds */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ MJUM9BYTES, /* maxsize */ 1, /* nsegments */ MJUM9BYTES, /* maxsegsize */ BUS_DMA_ALLOCNOW, /* flags */ NULL, /* lockfunc */ NULL, /* lockfuncarg */ &ha->rx_tag)) { device_printf(ha->pci_dev, "%s: rx_tag alloc failed\n", __func__); return (ENOMEM); } for (i = 0; i < ha->num_rx_rings; i++) { ret = qls_alloc_rx_ring_dma(ha, i); if (ret) { qls_free_rx_dma(ha); break; } } return (ret); } static int qls_wait_for_flash_ready(qla_host_t *ha) { uint32_t data32; uint32_t count = 3; while (count--) { data32 = READ_REG32(ha, Q81_CTL_FLASH_ADDR); if (data32 & Q81_CTL_FLASH_ADDR_ERR) goto qls_wait_for_flash_ready_exit; if (data32 & Q81_CTL_FLASH_ADDR_RDY) return (0); QLA_USEC_DELAY(100); } qls_wait_for_flash_ready_exit: QL_DPRINT1((ha->pci_dev, "%s: failed\n", __func__)); return (-1); } /* * Name: qls_rd_flash32 * Function: Read Flash Memory */ int qls_rd_flash32(qla_host_t *ha, uint32_t addr, uint32_t *data) { int ret; ret = qls_wait_for_flash_ready(ha); if (ret) return (ret); WRITE_REG32(ha, Q81_CTL_FLASH_ADDR, (addr | Q81_CTL_FLASH_ADDR_R)); ret = qls_wait_for_flash_ready(ha); if (ret) return (ret); *data = READ_REG32(ha, Q81_CTL_FLASH_DATA); return 0; } static int qls_flash_validate(qla_host_t *ha, const char *signature) { uint16_t csum16 = 0; uint16_t *data16; int i; if (bcmp(ha->flash.id, signature, 4)) { QL_DPRINT1((ha->pci_dev, "%s: invalid signature " "%x:%x:%x:%x %s\n", __func__, ha->flash.id[0], ha->flash.id[1], ha->flash.id[2], ha->flash.id[3], signature)); return(-1); } data16 = (uint16_t *)&ha->flash; for (i = 0; i < (sizeof (q81_flash_t) >> 1); i++) { csum16 += *data16++; } if (csum16) { QL_DPRINT1((ha->pci_dev, "%s: invalid checksum\n", __func__)); return(-1); } return(0); } int qls_rd_nic_params(qla_host_t *ha) { int i, ret = 0; uint32_t faddr; uint32_t *qflash; if (qls_sem_lock(ha, Q81_CTL_SEM_MASK_FLASH, Q81_CTL_SEM_SET_FLASH)) { QL_DPRINT1((ha->pci_dev, "%s: semlock failed\n", __func__)); return(-1); } if ((ha->pci_func & 0x1) == 0) faddr = Q81_F0_FLASH_OFFSET >> 2; else faddr = Q81_F1_FLASH_OFFSET >> 2; qflash = (uint32_t *)&ha->flash; for (i = 0; i < (sizeof(q81_flash_t) >> 2) ; i++) { ret = qls_rd_flash32(ha, faddr, qflash); if (ret) goto qls_rd_flash_data_exit; faddr++; qflash++; } QL_DUMP_BUFFER8(ha, __func__, (&ha->flash), (sizeof (q81_flash_t))); ret = qls_flash_validate(ha, Q81_FLASH_ID); if (ret) goto qls_rd_flash_data_exit; bcopy(ha->flash.mac_addr0, ha->mac_addr, ETHER_ADDR_LEN); QL_DPRINT1((ha->pci_dev, "%s: mac %02x:%02x:%02x:%02x:%02x:%02x\n", __func__, ha->mac_addr[0], ha->mac_addr[1], ha->mac_addr[2], ha->mac_addr[3], ha->mac_addr[4], ha->mac_addr[5])); qls_rd_flash_data_exit: qls_sem_unlock(ha, Q81_CTL_SEM_MASK_FLASH); return(ret); } static int qls_sem_lock(qla_host_t *ha, uint32_t mask, uint32_t value) { uint32_t count = 30; uint32_t data; while (count--) { WRITE_REG32(ha, Q81_CTL_SEMAPHORE, (mask|value)); data = READ_REG32(ha, Q81_CTL_SEMAPHORE); if (data & value) { return (0); } else { QLA_USEC_DELAY(100); } } ha->qla_initiate_recovery = 1; return (-1); } static void qls_sem_unlock(qla_host_t *ha, uint32_t mask) { WRITE_REG32(ha, Q81_CTL_SEMAPHORE, mask); } static int qls_wait_for_proc_addr_ready(qla_host_t *ha) { uint32_t data32; uint32_t count = 3; while (count--) { data32 = READ_REG32(ha, Q81_CTL_PROC_ADDR); if (data32 & Q81_CTL_PROC_ADDR_ERR) goto qls_wait_for_proc_addr_ready_exit; if (data32 & Q81_CTL_PROC_ADDR_RDY) return (0); QLA_USEC_DELAY(100); } qls_wait_for_proc_addr_ready_exit: QL_DPRINT1((ha->pci_dev, "%s: failed\n", __func__)); ha->qla_initiate_recovery = 1; return (-1); } static int qls_proc_addr_rd_reg(qla_host_t *ha, uint32_t addr_module, uint32_t reg, uint32_t *data) { int ret; uint32_t value; ret = qls_wait_for_proc_addr_ready(ha); if (ret) goto qls_proc_addr_rd_reg_exit; value = addr_module | reg | Q81_CTL_PROC_ADDR_READ; WRITE_REG32(ha, Q81_CTL_PROC_ADDR, value); ret = qls_wait_for_proc_addr_ready(ha); if (ret) goto qls_proc_addr_rd_reg_exit; *data = READ_REG32(ha, Q81_CTL_PROC_DATA); qls_proc_addr_rd_reg_exit: return (ret); } static int qls_proc_addr_wr_reg(qla_host_t *ha, uint32_t addr_module, uint32_t reg, uint32_t data) { int ret; uint32_t value; ret = qls_wait_for_proc_addr_ready(ha); if (ret) goto qls_proc_addr_wr_reg_exit; WRITE_REG32(ha, Q81_CTL_PROC_DATA, data); value = addr_module | reg; WRITE_REG32(ha, Q81_CTL_PROC_ADDR, value); ret = qls_wait_for_proc_addr_ready(ha); qls_proc_addr_wr_reg_exit: return (ret); } static int qls_hw_nic_reset(qla_host_t *ha) { int count; uint32_t data; device_t dev = ha->pci_dev; ha->hw_init = 0; data = (Q81_CTL_RESET_FUNC << Q81_CTL_RESET_MASK_SHIFT) | Q81_CTL_RESET_FUNC; WRITE_REG32(ha, Q81_CTL_RESET, data); count = 10; while (count--) { data = READ_REG32(ha, Q81_CTL_RESET); if ((data & Q81_CTL_RESET_FUNC) == 0) break; QLA_USEC_DELAY(10); } if (count == 0) { device_printf(dev, "%s: Bit 15 not cleared after Reset\n", __func__); return (-1); } return (0); } static int qls_hw_reset(qla_host_t *ha) { device_t dev = ha->pci_dev; int ret; int count; uint32_t data; QL_DPRINT2((ha->pci_dev, "%s:enter[%d]\n", __func__, ha->hw_init)); if (ha->hw_init == 0) { ret = qls_hw_nic_reset(ha); goto qls_hw_reset_exit; } ret = qls_clear_routing_table(ha); if (ret) goto qls_hw_reset_exit; ret = qls_mbx_set_mgmt_ctrl(ha, Q81_MBX_SET_MGMT_CTL_STOP); if (ret) goto qls_hw_reset_exit; /* * Wait for FIFO to empty */ count = 5; while (count--) { data = READ_REG32(ha, Q81_CTL_STATUS); if (data & Q81_CTL_STATUS_NFE) break; qls_mdelay(__func__, 100); } if (count == 0) { device_printf(dev, "%s: NFE bit not set\n", __func__); goto qls_hw_reset_exit; } count = 5; while (count--) { (void)qls_mbx_get_mgmt_ctrl(ha, &data); if ((data & Q81_MBX_GET_MGMT_CTL_FIFO_EMPTY) && (data & Q81_MBX_GET_MGMT_CTL_SET_MGMT)) break; qls_mdelay(__func__, 100); } if (count == 0) goto qls_hw_reset_exit; /* * Reset the NIC function */ ret = qls_hw_nic_reset(ha); if (ret) goto qls_hw_reset_exit; ret = qls_mbx_set_mgmt_ctrl(ha, Q81_MBX_SET_MGMT_CTL_RESUME); qls_hw_reset_exit: if (ret) device_printf(dev, "%s: failed\n", __func__); return (ret); } /* * MPI Related Functions */ int qls_mpi_risc_rd_reg(qla_host_t *ha, uint32_t reg, uint32_t *data) { int ret; ret = qls_proc_addr_rd_reg(ha, Q81_CTL_PROC_ADDR_MPI_RISC, reg, data); return (ret); } int qls_mpi_risc_wr_reg(qla_host_t *ha, uint32_t reg, uint32_t data) { int ret; ret = qls_proc_addr_wr_reg(ha, Q81_CTL_PROC_ADDR_MPI_RISC, reg, data); return (ret); } int qls_mbx_rd_reg(qla_host_t *ha, uint32_t reg, uint32_t *data) { int ret; if ((ha->pci_func & 0x1) == 0) reg += Q81_FUNC0_MBX_OUT_REG0; else reg += Q81_FUNC1_MBX_OUT_REG0; ret = qls_mpi_risc_rd_reg(ha, reg, data); return (ret); } int qls_mbx_wr_reg(qla_host_t *ha, uint32_t reg, uint32_t data) { int ret; if ((ha->pci_func & 0x1) == 0) reg += Q81_FUNC0_MBX_IN_REG0; else reg += Q81_FUNC1_MBX_IN_REG0; ret = qls_mpi_risc_wr_reg(ha, reg, data); return (ret); } static int qls_mbx_cmd(qla_host_t *ha, uint32_t *in_mbx, uint32_t i_count, uint32_t *out_mbx, uint32_t o_count) { int i, ret = -1; uint32_t data32; uint32_t count = 50; QL_DPRINT2((ha->pci_dev, "%s: enter[0x%08x 0x%08x 0x%08x]\n", __func__, *in_mbx, *(in_mbx + 1), *(in_mbx + 2))); data32 = READ_REG32(ha, Q81_CTL_HOST_CMD_STATUS); if (data32 & Q81_CTL_HCS_HTR_INTR) { device_printf(ha->pci_dev, "%s: cmd_status[0x%08x]\n", __func__, data32); goto qls_mbx_cmd_exit; } if (qls_sem_lock(ha, Q81_CTL_SEM_MASK_PROC_ADDR_NIC_RCV, Q81_CTL_SEM_SET_PROC_ADDR_NIC_RCV)) { device_printf(ha->pci_dev, "%s: semlock failed\n", __func__); goto qls_mbx_cmd_exit; } ha->mbx_done = 0; for (i = 0; i < i_count; i++) { ret = qls_mbx_wr_reg(ha, i, *in_mbx); if (ret) { device_printf(ha->pci_dev, "%s: mbx_wr[%d, 0x%08x] failed\n", __func__, i, *in_mbx); qls_sem_unlock(ha, Q81_CTL_SEM_MASK_PROC_ADDR_NIC_RCV); goto qls_mbx_cmd_exit; } in_mbx++; } WRITE_REG32(ha, Q81_CTL_HOST_CMD_STATUS, Q81_CTL_HCS_CMD_SET_HTR_INTR); qls_sem_unlock(ha, Q81_CTL_SEM_MASK_PROC_ADDR_NIC_RCV); ret = -1; ha->mbx_done = 0; while (count--) { if (ha->flags.intr_enable == 0) { data32 = READ_REG32(ha, Q81_CTL_STATUS); if (!(data32 & Q81_CTL_STATUS_PI)) { qls_mdelay(__func__, 100); continue; } ret = qls_mbx_rd_reg(ha, 0, &data32); if (ret == 0 ) { if ((data32 & 0xF000) == 0x4000) { out_mbx[0] = data32; for (i = 1; i < o_count; i++) { ret = qls_mbx_rd_reg(ha, i, &data32); if (ret) { device_printf( ha->pci_dev, "%s: mbx_rd[%d]" " failed\n", __func__, i); break; } out_mbx[i] = data32; } break; } else if ((data32 & 0xF000) == 0x8000) { count = 50; WRITE_REG32(ha,\ Q81_CTL_HOST_CMD_STATUS,\ Q81_CTL_HCS_CMD_CLR_RTH_INTR); } } } else { if (ha->mbx_done) { for (i = 1; i < o_count; i++) { out_mbx[i] = ha->mbox[i]; } ret = 0; break; } } qls_mdelay(__func__, 1000); } qls_mbx_cmd_exit: if (ha->flags.intr_enable == 0) { WRITE_REG32(ha, Q81_CTL_HOST_CMD_STATUS,\ Q81_CTL_HCS_CMD_CLR_RTH_INTR); } if (ret) { ha->qla_initiate_recovery = 1; } QL_DPRINT2((ha->pci_dev, "%s: exit[%d]\n", __func__, ret)); return (ret); } static int qls_mbx_set_mgmt_ctrl(qla_host_t *ha, uint32_t t_ctrl) { uint32_t *mbox; device_t dev = ha->pci_dev; mbox = ha->mbox; bzero(mbox, (sizeof (uint32_t) * Q81_NUM_MBX_REGISTERS)); mbox[0] = Q81_MBX_SET_MGMT_CTL; mbox[1] = t_ctrl; if (qls_mbx_cmd(ha, mbox, 2, mbox, 1)) { device_printf(dev, "%s failed\n", __func__); return (-1); } if ((mbox[0] == Q81_MBX_CMD_COMPLETE) || ((t_ctrl == Q81_MBX_SET_MGMT_CTL_STOP) && (mbox[0] == Q81_MBX_CMD_ERROR))){ return (0); } device_printf(dev, "%s failed [0x%08x]\n", __func__, mbox[0]); return (-1); } static int qls_mbx_get_mgmt_ctrl(qla_host_t *ha, uint32_t *t_status) { uint32_t *mbox; device_t dev = ha->pci_dev; *t_status = 0; mbox = ha->mbox; bzero(mbox, (sizeof (uint32_t) * Q81_NUM_MBX_REGISTERS)); mbox[0] = Q81_MBX_GET_MGMT_CTL; if (qls_mbx_cmd(ha, mbox, 1, mbox, 2)) { device_printf(dev, "%s failed\n", __func__); return (-1); } *t_status = mbox[1]; return (0); } static void qls_mbx_get_link_status(qla_host_t *ha) { uint32_t *mbox; device_t dev = ha->pci_dev; mbox = ha->mbox; bzero(mbox, (sizeof (uint32_t) * Q81_NUM_MBX_REGISTERS)); mbox[0] = Q81_MBX_GET_LNK_STATUS; if (qls_mbx_cmd(ha, mbox, 1, mbox, 6)) { device_printf(dev, "%s failed\n", __func__); return; } ha->link_status = mbox[1]; ha->link_down_info = mbox[2]; ha->link_hw_info = mbox[3]; ha->link_dcbx_counters = mbox[4]; ha->link_change_counters = mbox[5]; device_printf(dev, "%s 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", __func__, mbox[0],mbox[1],mbox[2],mbox[3],mbox[4],mbox[5]); return; } static void qls_mbx_about_fw(qla_host_t *ha) { uint32_t *mbox; device_t dev = ha->pci_dev; mbox = ha->mbox; bzero(mbox, (sizeof (uint32_t) * Q81_NUM_MBX_REGISTERS)); mbox[0] = Q81_MBX_ABOUT_FW; if (qls_mbx_cmd(ha, mbox, 1, mbox, 6)) { device_printf(dev, "%s failed\n", __func__); return; } device_printf(dev, "%s 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", __func__, mbox[0],mbox[1],mbox[2],mbox[3],mbox[4],mbox[5]); } int qls_mbx_dump_risc_ram(qla_host_t *ha, void *buf, uint32_t r_addr, uint32_t r_size) { bus_addr_t b_paddr; uint32_t *mbox; device_t dev = ha->pci_dev; mbox = ha->mbox; bzero(mbox, (sizeof (uint32_t) * Q81_NUM_MBX_REGISTERS)); bzero(ha->mpi_dma.dma_b,(r_size << 2)); b_paddr = ha->mpi_dma.dma_addr; mbox[0] = Q81_MBX_DUMP_RISC_RAM; mbox[1] = r_addr & 0xFFFF; mbox[2] = ((uint32_t)(b_paddr >> 16)) & 0xFFFF; mbox[3] = ((uint32_t)b_paddr) & 0xFFFF; mbox[4] = (r_size >> 16) & 0xFFFF; mbox[5] = r_size & 0xFFFF; mbox[6] = ((uint32_t)(b_paddr >> 48)) & 0xFFFF; mbox[7] = ((uint32_t)(b_paddr >> 32)) & 0xFFFF; mbox[8] = (r_addr >> 16) & 0xFFFF; bus_dmamap_sync(ha->mpi_dma.dma_tag, ha->mpi_dma.dma_map, BUS_DMASYNC_PREREAD); if (qls_mbx_cmd(ha, mbox, 9, mbox, 1)) { device_printf(dev, "%s failed\n", __func__); return (-1); } if (mbox[0] != 0x4000) { device_printf(ha->pci_dev, "%s: failed!\n", __func__); return (-1); } else { bus_dmamap_sync(ha->mpi_dma.dma_tag, ha->mpi_dma.dma_map, BUS_DMASYNC_POSTREAD); bcopy(ha->mpi_dma.dma_b, buf, (r_size << 2)); } return (0); } int qls_mpi_reset(qla_host_t *ha) { int count; uint32_t data; device_t dev = ha->pci_dev; WRITE_REG32(ha, Q81_CTL_HOST_CMD_STATUS,\ Q81_CTL_HCS_CMD_SET_RISC_RESET); count = 10; while (count--) { data = READ_REG32(ha, Q81_CTL_HOST_CMD_STATUS); if (data & Q81_CTL_HCS_RISC_RESET) { WRITE_REG32(ha, Q81_CTL_HOST_CMD_STATUS,\ Q81_CTL_HCS_CMD_CLR_RISC_RESET); break; } qls_mdelay(__func__, 10); } if (count == 0) { device_printf(dev, "%s: failed\n", __func__); return (-1); } return (0); }