/*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2011-2013 Qlogic Corporation * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * File: qla_os.c * Author : David C Somayajulu, Qlogic Corporation, Aliso Viejo, CA 92656. */ #include __FBSDID("$FreeBSD$"); #include "qla_os.h" #include "qla_reg.h" #include "qla_hw.h" #include "qla_def.h" #include "qla_inline.h" #include "qla_ver.h" #include "qla_glbl.h" #include "qla_dbg.h" /* * Some PCI Configuration Space Related Defines */ #ifndef PCI_VENDOR_QLOGIC #define PCI_VENDOR_QLOGIC 0x1077 #endif #ifndef PCI_PRODUCT_QLOGIC_ISP8020 #define PCI_PRODUCT_QLOGIC_ISP8020 0x8020 #endif #define PCI_QLOGIC_ISP8020 \ ((PCI_PRODUCT_QLOGIC_ISP8020 << 16) | PCI_VENDOR_QLOGIC) /* * static functions */ static int qla_alloc_parent_dma_tag(qla_host_t *ha); static void qla_free_parent_dma_tag(qla_host_t *ha); static int qla_alloc_xmt_bufs(qla_host_t *ha); static void qla_free_xmt_bufs(qla_host_t *ha); static int qla_alloc_rcv_bufs(qla_host_t *ha); static void qla_free_rcv_bufs(qla_host_t *ha); static void qla_init_ifnet(device_t dev, qla_host_t *ha); static int qla_sysctl_get_stats(SYSCTL_HANDLER_ARGS); static void qla_release(qla_host_t *ha); static void qla_dmamap_callback(void *arg, bus_dma_segment_t *segs, int nsegs, int error); static void qla_stop(qla_host_t *ha); static int qla_send(qla_host_t *ha, struct mbuf **m_headp); static void qla_tx_done(void *context, int pending); /* * Hooks to the Operating Systems */ static int qla_pci_probe (device_t); static int qla_pci_attach (device_t); static int qla_pci_detach (device_t); static void qla_init(void *arg); static int qla_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data); static int qla_media_change(struct ifnet *ifp); static void qla_media_status(struct ifnet *ifp, struct ifmediareq *ifmr); static device_method_t qla_pci_methods[] = { /* Device interface */ DEVMETHOD(device_probe, qla_pci_probe), DEVMETHOD(device_attach, qla_pci_attach), DEVMETHOD(device_detach, qla_pci_detach), { 0, 0 } }; static driver_t qla_pci_driver = { "ql", qla_pci_methods, sizeof (qla_host_t), }; static devclass_t qla80xx_devclass; DRIVER_MODULE(qla80xx, pci, qla_pci_driver, qla80xx_devclass, 0, 0); MODULE_DEPEND(qla80xx, pci, 1, 1, 1); MODULE_DEPEND(qla80xx, ether, 1, 1, 1); MALLOC_DEFINE(M_QLA8XXXBUF, "qla80xxbuf", "Buffers for qla80xx driver"); uint32_t std_replenish = 8; uint32_t jumbo_replenish = 2; uint32_t rcv_pkt_thres = 128; uint32_t rcv_pkt_thres_d = 32; uint32_t snd_pkt_thres = 16; uint32_t free_pkt_thres = (NUM_TX_DESCRIPTORS / 2); static char dev_str[64]; /* * Name: qla_pci_probe * Function: Validate the PCI device to be a QLA80XX device */ static int qla_pci_probe(device_t dev) { switch ((pci_get_device(dev) << 16) | (pci_get_vendor(dev))) { case PCI_QLOGIC_ISP8020: snprintf(dev_str, sizeof(dev_str), "%s v%d.%d.%d", "Qlogic ISP 80xx PCI CNA Adapter-Ethernet Function", QLA_VERSION_MAJOR, QLA_VERSION_MINOR, QLA_VERSION_BUILD); device_set_desc(dev, dev_str); break; default: return (ENXIO); } if (bootverbose) printf("%s: %s\n ", __func__, dev_str); return (BUS_PROBE_DEFAULT); } static void qla_add_sysctls(qla_host_t *ha) { device_t dev = ha->pci_dev; SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "stats", CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, (void *)ha, 0, qla_sysctl_get_stats, "I", "Statistics"); SYSCTL_ADD_STRING(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "fw_version", CTLFLAG_RD, ha->fw_ver_str, 0, "firmware version"); dbg_level = 0; SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "debug", CTLFLAG_RW, &dbg_level, dbg_level, "Debug Level"); SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "std_replenish", CTLFLAG_RW, &std_replenish, std_replenish, "Threshold for Replenishing Standard Frames"); SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "jumbo_replenish", CTLFLAG_RW, &jumbo_replenish, jumbo_replenish, "Threshold for Replenishing Jumbo Frames"); SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "rcv_pkt_thres", CTLFLAG_RW, &rcv_pkt_thres, rcv_pkt_thres, "Threshold for # of rcv pkts to trigger indication isr"); SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "rcv_pkt_thres_d", CTLFLAG_RW, &rcv_pkt_thres_d, rcv_pkt_thres_d, "Threshold for # of rcv pkts to trigger indication defered"); SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "snd_pkt_thres", CTLFLAG_RW, &snd_pkt_thres, snd_pkt_thres, "Threshold for # of snd packets"); SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "free_pkt_thres", CTLFLAG_RW, &free_pkt_thres, free_pkt_thres, "Threshold for # of packets to free at a time"); return; } static void qla_watchdog(void *arg) { qla_host_t *ha = arg; qla_hw_t *hw; struct ifnet *ifp; hw = &ha->hw; ifp = ha->ifp; if (ha->flags.qla_watchdog_exit) return; if (!ha->flags.qla_watchdog_pause) { if (qla_le32_to_host(*(hw->tx_cons)) != hw->txr_comp) { taskqueue_enqueue(ha->tx_tq, &ha->tx_task); } else if ((ifp->if_snd.ifq_head != NULL) && QL_RUNNING(ifp)) { taskqueue_enqueue(ha->tx_tq, &ha->tx_task); } } ha->watchdog_ticks = (ha->watchdog_ticks + 1) % 1000; callout_reset(&ha->tx_callout, QLA_WATCHDOG_CALLOUT_TICKS, qla_watchdog, ha); } /* * Name: qla_pci_attach * Function: attaches the device to the operating system */ static int qla_pci_attach(device_t dev) { qla_host_t *ha = NULL; uint32_t rsrc_len, i; QL_DPRINT2((dev, "%s: enter\n", __func__)); if ((ha = device_get_softc(dev)) == NULL) { device_printf(dev, "cannot get softc\n"); return (ENOMEM); } memset(ha, 0, sizeof (qla_host_t)); if (pci_get_device(dev) != PCI_PRODUCT_QLOGIC_ISP8020) { device_printf(dev, "device is not ISP8020\n"); return (ENXIO); } ha->pci_func = pci_get_function(dev); ha->pci_dev = dev; pci_enable_busmaster(dev); ha->reg_rid = PCIR_BAR(0); ha->pci_reg = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &ha->reg_rid, RF_ACTIVE); if (ha->pci_reg == NULL) { device_printf(dev, "unable to map any ports\n"); goto qla_pci_attach_err; } rsrc_len = (uint32_t) bus_get_resource_count(dev, SYS_RES_MEMORY, ha->reg_rid); mtx_init(&ha->hw_lock, "qla80xx_hw_lock", MTX_NETWORK_LOCK, MTX_DEF); mtx_init(&ha->tx_lock, "qla80xx_tx_lock", MTX_NETWORK_LOCK, MTX_DEF); mtx_init(&ha->rx_lock, "qla80xx_rx_lock", MTX_NETWORK_LOCK, MTX_DEF); mtx_init(&ha->rxj_lock, "qla80xx_rxj_lock", MTX_NETWORK_LOCK, MTX_DEF); ha->flags.lock_init = 1; ha->msix_count = pci_msix_count(dev); if (ha->msix_count < qla_get_msix_count(ha)) { device_printf(dev, "%s: msix_count[%d] not enough\n", __func__, ha->msix_count); goto qla_pci_attach_err; } QL_DPRINT2((dev, "%s: ha %p irq %p pci_func 0x%x rsrc_count 0x%08x" " msix_count 0x%x pci_reg %p\n", __func__, ha, ha->irq, ha->pci_func, rsrc_len, ha->msix_count, ha->pci_reg)); ha->msix_count = qla_get_msix_count(ha); if (pci_alloc_msix(dev, &ha->msix_count)) { device_printf(dev, "%s: pci_alloc_msi[%d] failed\n", __func__, ha->msix_count); ha->msix_count = 0; goto qla_pci_attach_err; } TASK_INIT(&ha->tx_task, 0, qla_tx_done, ha); ha->tx_tq = taskqueue_create_fast("qla_txq", M_NOWAIT, taskqueue_thread_enqueue, &ha->tx_tq); taskqueue_start_threads(&ha->tx_tq, 1, PI_NET, "%s txq", device_get_nameunit(ha->pci_dev)); for (i = 0; i < ha->msix_count; i++) { ha->irq_vec[i].irq_rid = i+1; ha->irq_vec[i].ha = ha; ha->irq_vec[i].irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &ha->irq_vec[i].irq_rid, (RF_ACTIVE | RF_SHAREABLE)); if (ha->irq_vec[i].irq == NULL) { device_printf(dev, "could not allocate interrupt\n"); goto qla_pci_attach_err; } if (bus_setup_intr(dev, ha->irq_vec[i].irq, (INTR_TYPE_NET | INTR_MPSAFE), NULL, qla_isr, &ha->irq_vec[i], &ha->irq_vec[i].handle)) { device_printf(dev, "could not setup interrupt\n"); goto qla_pci_attach_err; } TASK_INIT(&ha->irq_vec[i].rcv_task, 0, qla_rcv,\ &ha->irq_vec[i]); ha->irq_vec[i].rcv_tq = taskqueue_create_fast("qla_rcvq", M_NOWAIT, taskqueue_thread_enqueue, &ha->irq_vec[i].rcv_tq); taskqueue_start_threads(&ha->irq_vec[i].rcv_tq, 1, PI_NET, "%s rcvq", device_get_nameunit(ha->pci_dev)); } qla_add_sysctls(ha); /* add hardware specific sysctls */ qla_hw_add_sysctls(ha); /* initialize hardware */ if (qla_init_hw(ha)) { device_printf(dev, "%s: qla_init_hw failed\n", __func__); goto qla_pci_attach_err; } device_printf(dev, "%s: firmware[%d.%d.%d.%d]\n", __func__, ha->fw_ver_major, ha->fw_ver_minor, ha->fw_ver_sub, ha->fw_ver_build); snprintf(ha->fw_ver_str, sizeof(ha->fw_ver_str), "%d.%d.%d.%d", ha->fw_ver_major, ha->fw_ver_minor, ha->fw_ver_sub, ha->fw_ver_build); //qla_get_hw_caps(ha); qla_read_mac_addr(ha); /* allocate parent dma tag */ if (qla_alloc_parent_dma_tag(ha)) { device_printf(dev, "%s: qla_alloc_parent_dma_tag failed\n", __func__); goto qla_pci_attach_err; } /* alloc all dma buffers */ if (qla_alloc_dma(ha)) { device_printf(dev, "%s: qla_alloc_dma failed\n", __func__); goto qla_pci_attach_err; } /* create the o.s ethernet interface */ qla_init_ifnet(dev, ha); ha->flags.qla_watchdog_active = 1; ha->flags.qla_watchdog_pause = 1; callout_init(&ha->tx_callout, 1); /* create ioctl device interface */ if (qla_make_cdev(ha)) { device_printf(dev, "%s: qla_make_cdev failed\n", __func__); goto qla_pci_attach_err; } callout_reset(&ha->tx_callout, QLA_WATCHDOG_CALLOUT_TICKS, qla_watchdog, ha); QL_DPRINT2((dev, "%s: exit 0\n", __func__)); return (0); qla_pci_attach_err: qla_release(ha); QL_DPRINT2((dev, "%s: exit ENXIO\n", __func__)); return (ENXIO); } /* * Name: qla_pci_detach * Function: Unhooks the device from the operating system */ static int qla_pci_detach(device_t dev) { qla_host_t *ha = NULL; int i; QL_DPRINT2((dev, "%s: enter\n", __func__)); if ((ha = device_get_softc(dev)) == NULL) { device_printf(dev, "cannot get softc\n"); return (ENOMEM); } QLA_LOCK(ha, __func__); qla_stop(ha); QLA_UNLOCK(ha, __func__); if (ha->tx_tq) { taskqueue_drain(ha->tx_tq, &ha->tx_task); taskqueue_free(ha->tx_tq); } for (i = 0; i < ha->msix_count; i++) { taskqueue_drain(ha->irq_vec[i].rcv_tq, &ha->irq_vec[i].rcv_task); taskqueue_free(ha->irq_vec[i].rcv_tq); } qla_release(ha); QL_DPRINT2((dev, "%s: exit\n", __func__)); return (0); } /* * SYSCTL Related Callbacks */ static int qla_sysctl_get_stats(SYSCTL_HANDLER_ARGS) { int err, ret = 0; qla_host_t *ha; err = sysctl_handle_int(oidp, &ret, 0, req); if (err) return (err); ha = (qla_host_t *)arg1; //qla_get_stats(ha); QL_DPRINT2((ha->pci_dev, "%s: called ret %d\n", __func__, ret)); return (err); } /* * Name: qla_release * Function: Releases the resources allocated for the device */ static void qla_release(qla_host_t *ha) { device_t dev; int i; dev = ha->pci_dev; qla_del_cdev(ha); if (ha->flags.qla_watchdog_active) ha->flags.qla_watchdog_exit = 1; callout_stop(&ha->tx_callout); qla_mdelay(__func__, 100); if (ha->ifp != NULL) ether_ifdetach(ha->ifp); qla_free_dma(ha); qla_free_parent_dma_tag(ha); for (i = 0; i < ha->msix_count; i++) { if (ha->irq_vec[i].handle) (void)bus_teardown_intr(dev, ha->irq_vec[i].irq, ha->irq_vec[i].handle); if (ha->irq_vec[i].irq) (void) bus_release_resource(dev, SYS_RES_IRQ, ha->irq_vec[i].irq_rid, ha->irq_vec[i].irq); } if (ha->msix_count) pci_release_msi(dev); if (ha->flags.lock_init) { mtx_destroy(&ha->tx_lock); mtx_destroy(&ha->rx_lock); mtx_destroy(&ha->rxj_lock); mtx_destroy(&ha->hw_lock); } if (ha->pci_reg) (void) bus_release_resource(dev, SYS_RES_MEMORY, ha->reg_rid, ha->pci_reg); } /* * DMA Related Functions */ static void qla_dmamap_callback(void *arg, bus_dma_segment_t *segs, int nsegs, int error) { *((bus_addr_t *)arg) = 0; if (error) { printf("%s: bus_dmamap_load failed (%d)\n", __func__, error); return; } QL_ASSERT((nsegs == 1), ("%s: %d segments returned!", __func__, nsegs)); *((bus_addr_t *)arg) = segs[0].ds_addr; return; } int qla_alloc_dmabuf(qla_host_t *ha, qla_dma_t *dma_buf) { int ret = 0; device_t dev; bus_addr_t b_addr; dev = ha->pci_dev; QL_DPRINT2((dev, "%s: enter\n", __func__)); ret = bus_dma_tag_create( ha->parent_tag,/* parent */ dma_buf->alignment, ((bus_size_t)(1ULL << 32)),/* boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ dma_buf->size, /* maxsize */ 1, /* nsegments */ dma_buf->size, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &dma_buf->dma_tag); if (ret) { device_printf(dev, "%s: could not create dma tag\n", __func__); goto qla_alloc_dmabuf_exit; } ret = bus_dmamem_alloc(dma_buf->dma_tag, (void **)&dma_buf->dma_b, (BUS_DMA_ZERO | BUS_DMA_COHERENT | BUS_DMA_NOWAIT), &dma_buf->dma_map); if (ret) { bus_dma_tag_destroy(dma_buf->dma_tag); device_printf(dev, "%s: bus_dmamem_alloc failed\n", __func__); goto qla_alloc_dmabuf_exit; } ret = bus_dmamap_load(dma_buf->dma_tag, dma_buf->dma_map, dma_buf->dma_b, dma_buf->size, qla_dmamap_callback, &b_addr, BUS_DMA_NOWAIT); if (ret || !b_addr) { bus_dma_tag_destroy(dma_buf->dma_tag); bus_dmamem_free(dma_buf->dma_tag, dma_buf->dma_b, dma_buf->dma_map); ret = -1; goto qla_alloc_dmabuf_exit; } dma_buf->dma_addr = b_addr; qla_alloc_dmabuf_exit: QL_DPRINT2((dev, "%s: exit ret 0x%08x tag %p map %p b %p sz 0x%x\n", __func__, ret, (void *)dma_buf->dma_tag, (void *)dma_buf->dma_map, (void *)dma_buf->dma_b, dma_buf->size)); return ret; } void qla_free_dmabuf(qla_host_t *ha, qla_dma_t *dma_buf) { bus_dmamap_unload(dma_buf->dma_tag, dma_buf->dma_map); bus_dmamem_free(dma_buf->dma_tag, dma_buf->dma_b, dma_buf->dma_map); bus_dma_tag_destroy(dma_buf->dma_tag); } static int qla_alloc_parent_dma_tag(qla_host_t *ha) { int ret; device_t dev; dev = ha->pci_dev; /* * Allocate parent DMA Tag */ ret = bus_dma_tag_create( bus_get_dma_tag(dev), /* parent */ 1,((bus_size_t)(1ULL << 32)),/* alignment, boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ BUS_SPACE_MAXSIZE_32BIT,/* maxsize */ 0, /* nsegments */ BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &ha->parent_tag); if (ret) { device_printf(dev, "%s: could not create parent dma tag\n", __func__); return (-1); } ha->flags.parent_tag = 1; return (0); } static void qla_free_parent_dma_tag(qla_host_t *ha) { if (ha->flags.parent_tag) { bus_dma_tag_destroy(ha->parent_tag); ha->flags.parent_tag = 0; } } /* * Name: qla_init_ifnet * Function: Creates the Network Device Interface and Registers it with the O.S */ static void qla_init_ifnet(device_t dev, qla_host_t *ha) { struct ifnet *ifp; QL_DPRINT2((dev, "%s: enter\n", __func__)); ifp = ha->ifp = if_alloc(IFT_ETHER); if (ifp == NULL) panic("%s: cannot if_alloc()\n", device_get_nameunit(dev)); if_initname(ifp, device_get_name(dev), device_get_unit(dev)); ifp->if_mtu = ETHERMTU; ifp->if_baudrate = IF_Gbps(10); ifp->if_init = qla_init; ifp->if_softc = ha; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = qla_ioctl; ifp->if_start = qla_start; IFQ_SET_MAXLEN(&ifp->if_snd, qla_get_ifq_snd_maxlen(ha)); ifp->if_snd.ifq_drv_maxlen = qla_get_ifq_snd_maxlen(ha); IFQ_SET_READY(&ifp->if_snd); ha->max_frame_size = ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN; ether_ifattach(ifp, qla_get_mac_addr(ha)); ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_TSO4 | IFCAP_JUMBO_MTU; ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU; ifp->if_capabilities |= IFCAP_LINKSTATE; #if defined(__FreeBSD_version) && (__FreeBSD_version < 900002) ifp->if_timer = 0; ifp->if_watchdog = NULL; #endif /* #if defined(__FreeBSD_version) && (__FreeBSD_version < 900002) */ ifp->if_capenable = ifp->if_capabilities; ifp->if_hdrlen = sizeof(struct ether_vlan_header); ifmedia_init(&ha->media, IFM_IMASK, qla_media_change, qla_media_status); ifmedia_add(&ha->media, (IFM_ETHER | qla_get_optics(ha) | IFM_FDX), 0, NULL); ifmedia_add(&ha->media, (IFM_ETHER | IFM_AUTO), 0, NULL); ifmedia_set(&ha->media, (IFM_ETHER | IFM_AUTO)); QL_DPRINT2((dev, "%s: exit\n", __func__)); return; } static void qla_init_locked(qla_host_t *ha) { struct ifnet *ifp = ha->ifp; qla_stop(ha); if (qla_alloc_xmt_bufs(ha) != 0) return; if (qla_alloc_rcv_bufs(ha) != 0) return; if (qla_config_lro(ha)) return; bcopy(IF_LLADDR(ha->ifp), ha->hw.mac_addr, ETHER_ADDR_LEN); ifp->if_hwassist = CSUM_TCP | CSUM_UDP | CSUM_TSO; ha->flags.stop_rcv = 0; if (qla_init_hw_if(ha) == 0) { ifp = ha->ifp; ifp->if_drv_flags |= IFF_DRV_RUNNING; ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; ha->flags.qla_watchdog_pause = 0; } return; } static void qla_init(void *arg) { qla_host_t *ha; ha = (qla_host_t *)arg; QL_DPRINT2((ha->pci_dev, "%s: enter\n", __func__)); QLA_LOCK(ha, __func__); qla_init_locked(ha); QLA_UNLOCK(ha, __func__); QL_DPRINT2((ha->pci_dev, "%s: exit\n", __func__)); } static u_int qla_copy_maddr(void *arg, struct sockaddr_dl *sdl, u_int mcnt) { uint8_t *mta = arg; if (mcnt == Q8_MAX_NUM_MULTICAST_ADDRS) return (0); bcopy(LLADDR(sdl), &mta[mcnt * Q8_MAC_ADDR_LEN], Q8_MAC_ADDR_LEN); return (1); } static void qla_set_multi(qla_host_t *ha, uint32_t add_multi) { uint8_t mta[Q8_MAX_NUM_MULTICAST_ADDRS * Q8_MAC_ADDR_LEN]; struct ifnet *ifp = ha->ifp; int mcnt; mcnt = if_foreach_llmaddr(ifp, qla_copy_maddr, mta); qla_hw_set_multi(ha, mta, mcnt, add_multi); return; } static int qla_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { int ret = 0; struct ifreq *ifr = (struct ifreq *)data; struct ifaddr *ifa = (struct ifaddr *)data; qla_host_t *ha; ha = (qla_host_t *)ifp->if_softc; switch (cmd) { case SIOCSIFADDR: QL_DPRINT4((ha->pci_dev, "%s: SIOCSIFADDR (0x%lx)\n", __func__, cmd)); if (ifa->ifa_addr->sa_family == AF_INET) { ifp->if_flags |= IFF_UP; if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { QLA_LOCK(ha, __func__); qla_init_locked(ha); QLA_UNLOCK(ha, __func__); } QL_DPRINT4((ha->pci_dev, "%s: SIOCSIFADDR (0x%lx) ipv4 [0x%08x]\n", __func__, cmd, ntohl(IA_SIN(ifa)->sin_addr.s_addr))); arp_ifinit(ifp, ifa); if (ntohl(IA_SIN(ifa)->sin_addr.s_addr) != INADDR_ANY) { qla_config_ipv4_addr(ha, (IA_SIN(ifa)->sin_addr.s_addr)); } } else { ether_ioctl(ifp, cmd, data); } break; case SIOCSIFMTU: QL_DPRINT4((ha->pci_dev, "%s: SIOCSIFMTU (0x%lx)\n", __func__, cmd)); if (ifr->ifr_mtu > QLA_MAX_FRAME_SIZE - ETHER_HDR_LEN) { ret = EINVAL; } else { QLA_LOCK(ha, __func__); ifp->if_mtu = ifr->ifr_mtu; ha->max_frame_size = ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN; if ((ifp->if_drv_flags & IFF_DRV_RUNNING)) { ret = qla_set_max_mtu(ha, ha->max_frame_size, (ha->hw.rx_cntxt_rsp)->rx_rsp.cntxt_id); } QLA_UNLOCK(ha, __func__); if (ret) ret = EINVAL; } break; case SIOCSIFFLAGS: QL_DPRINT4((ha->pci_dev, "%s: SIOCSIFFLAGS (0x%lx)\n", __func__, cmd)); if (ifp->if_flags & IFF_UP) { if ((ifp->if_drv_flags & IFF_DRV_RUNNING)) { if ((ifp->if_flags ^ ha->if_flags) & IFF_PROMISC) { qla_set_promisc(ha); } else if ((ifp->if_flags ^ ha->if_flags) & IFF_ALLMULTI) { qla_set_allmulti(ha); } } else { QLA_LOCK(ha, __func__); qla_init_locked(ha); ha->max_frame_size = ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN; ret = qla_set_max_mtu(ha, ha->max_frame_size, (ha->hw.rx_cntxt_rsp)->rx_rsp.cntxt_id); QLA_UNLOCK(ha, __func__); } } else { QLA_LOCK(ha, __func__); if (ifp->if_drv_flags & IFF_DRV_RUNNING) qla_stop(ha); ha->if_flags = ifp->if_flags; QLA_UNLOCK(ha, __func__); } break; case SIOCADDMULTI: QL_DPRINT4((ha->pci_dev, "%s: %s (0x%lx)\n", __func__, "SIOCADDMULTI", cmd)); if (ifp->if_drv_flags & IFF_DRV_RUNNING) { qla_set_multi(ha, 1); } break; case SIOCDELMULTI: QL_DPRINT4((ha->pci_dev, "%s: %s (0x%lx)\n", __func__, "SIOCDELMULTI", cmd)); if (ifp->if_drv_flags & IFF_DRV_RUNNING) { qla_set_multi(ha, 0); } break; case SIOCSIFMEDIA: case SIOCGIFMEDIA: QL_DPRINT4((ha->pci_dev, "%s: SIOCSIFMEDIA/SIOCGIFMEDIA (0x%lx)\n", __func__, cmd)); ret = ifmedia_ioctl(ifp, ifr, &ha->media, cmd); break; case SIOCSIFCAP: { int mask = ifr->ifr_reqcap ^ ifp->if_capenable; QL_DPRINT4((ha->pci_dev, "%s: SIOCSIFCAP (0x%lx)\n", __func__, cmd)); if (mask & IFCAP_HWCSUM) ifp->if_capenable ^= IFCAP_HWCSUM; if (mask & IFCAP_TSO4) ifp->if_capenable ^= IFCAP_TSO4; if (mask & IFCAP_TSO6) ifp->if_capenable ^= IFCAP_TSO6; if (mask & IFCAP_VLAN_HWTAGGING) ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) qla_init(ha); VLAN_CAPABILITIES(ifp); break; } default: QL_DPRINT4((ha->pci_dev, "%s: default (0x%lx)\n", __func__, cmd)); ret = ether_ioctl(ifp, cmd, data); break; } return (ret); } static int qla_media_change(struct ifnet *ifp) { qla_host_t *ha; struct ifmedia *ifm; int ret = 0; ha = (qla_host_t *)ifp->if_softc; QL_DPRINT2((ha->pci_dev, "%s: enter\n", __func__)); ifm = &ha->media; if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) ret = EINVAL; QL_DPRINT2((ha->pci_dev, "%s: exit\n", __func__)); return (ret); } static void qla_media_status(struct ifnet *ifp, struct ifmediareq *ifmr) { qla_host_t *ha; ha = (qla_host_t *)ifp->if_softc; QL_DPRINT2((ha->pci_dev, "%s: enter\n", __func__)); ifmr->ifm_status = IFM_AVALID; ifmr->ifm_active = IFM_ETHER; qla_update_link_state(ha); if (ha->hw.flags.link_up) { ifmr->ifm_status |= IFM_ACTIVE; ifmr->ifm_active |= (IFM_FDX | qla_get_optics(ha)); } QL_DPRINT2((ha->pci_dev, "%s: exit (%s)\n", __func__,\ (ha->hw.flags.link_up ? "link_up" : "link_down"))); return; } void qla_start(struct ifnet *ifp) { struct mbuf *m_head; qla_host_t *ha = (qla_host_t *)ifp->if_softc; QL_DPRINT8((ha->pci_dev, "%s: enter\n", __func__)); if (!mtx_trylock(&ha->tx_lock)) { QL_DPRINT8((ha->pci_dev, "%s: mtx_trylock(&ha->tx_lock) failed\n", __func__)); return; } if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != IFF_DRV_RUNNING) { QL_DPRINT8((ha->pci_dev, "%s: !IFF_DRV_RUNNING\n", __func__)); QLA_TX_UNLOCK(ha); return; } if (!ha->watchdog_ticks) qla_update_link_state(ha); if (!ha->hw.flags.link_up) { QL_DPRINT8((ha->pci_dev, "%s: link down\n", __func__)); QLA_TX_UNLOCK(ha); return; } while (ifp->if_snd.ifq_head != NULL) { IF_DEQUEUE(&ifp->if_snd, m_head); if (m_head == NULL) { QL_DPRINT8((ha->pci_dev, "%s: m_head == NULL\n", __func__)); break; } if (qla_send(ha, &m_head)) { if (m_head == NULL) break; QL_DPRINT8((ha->pci_dev, "%s: PREPEND\n", __func__)); ifp->if_drv_flags |= IFF_DRV_OACTIVE; IF_PREPEND(&ifp->if_snd, m_head); break; } /* Send a copy of the frame to the BPF listener */ ETHER_BPF_MTAP(ifp, m_head); } QLA_TX_UNLOCK(ha); QL_DPRINT8((ha->pci_dev, "%s: exit\n", __func__)); return; } static int qla_send(qla_host_t *ha, struct mbuf **m_headp) { bus_dma_segment_t segs[QLA_MAX_SEGMENTS]; bus_dmamap_t map; int nsegs; int ret = -1; uint32_t tx_idx; struct mbuf *m_head = *m_headp; QL_DPRINT8((ha->pci_dev, "%s: enter\n", __func__)); if ((ret = bus_dmamap_create(ha->tx_tag, BUS_DMA_NOWAIT, &map))) { ha->err_tx_dmamap_create++; device_printf(ha->pci_dev, "%s: bus_dmamap_create failed[%d, %d]\n", __func__, ret, m_head->m_pkthdr.len); return (ret); } ret = bus_dmamap_load_mbuf_sg(ha->tx_tag, map, m_head, segs, &nsegs, BUS_DMA_NOWAIT); if (ret == EFBIG) { struct mbuf *m; QL_DPRINT8((ha->pci_dev, "%s: EFBIG [%d]\n", __func__, m_head->m_pkthdr.len)); m = m_defrag(m_head, M_NOWAIT); if (m == NULL) { ha->err_tx_defrag++; m_freem(m_head); *m_headp = NULL; device_printf(ha->pci_dev, "%s: m_defrag() = NULL [%d]\n", __func__, ret); return (ENOBUFS); } m_head = m; if ((ret = bus_dmamap_load_mbuf_sg(ha->tx_tag, map, m_head, segs, &nsegs, BUS_DMA_NOWAIT))) { ha->err_tx_dmamap_load++; device_printf(ha->pci_dev, "%s: bus_dmamap_load_mbuf_sg failed0[%d, %d]\n", __func__, ret, m_head->m_pkthdr.len); bus_dmamap_destroy(ha->tx_tag, map); if (ret != ENOMEM) { m_freem(m_head); *m_headp = NULL; } return (ret); } } else if (ret) { ha->err_tx_dmamap_load++; device_printf(ha->pci_dev, "%s: bus_dmamap_load_mbuf_sg failed1[%d, %d]\n", __func__, ret, m_head->m_pkthdr.len); bus_dmamap_destroy(ha->tx_tag, map); if (ret != ENOMEM) { m_freem(m_head); *m_headp = NULL; } return (ret); } QL_ASSERT((nsegs != 0), ("qla_send: empty packet")); bus_dmamap_sync(ha->tx_tag, map, BUS_DMASYNC_PREWRITE); if (!(ret = qla_hw_send(ha, segs, nsegs, &tx_idx, m_head))) { ha->tx_buf[tx_idx].m_head = m_head; ha->tx_buf[tx_idx].map = map; } else { if (ret == EINVAL) { m_freem(m_head); *m_headp = NULL; } } QL_DPRINT8((ha->pci_dev, "%s: exit\n", __func__)); return (ret); } static void qla_stop(qla_host_t *ha) { struct ifnet *ifp = ha->ifp; ha->flags.qla_watchdog_pause = 1; qla_mdelay(__func__, 100); ha->flags.stop_rcv = 1; qla_hw_stop_rcv(ha); qla_del_hw_if(ha); qla_free_lro(ha); qla_free_xmt_bufs(ha); qla_free_rcv_bufs(ha); ifp->if_drv_flags &= ~(IFF_DRV_OACTIVE | IFF_DRV_RUNNING); return; } /* * Buffer Management Functions for Transmit and Receive Rings */ static int qla_alloc_xmt_bufs(qla_host_t *ha) { if (bus_dma_tag_create(NULL, /* parent */ 1, 0, /* alignment, bounds */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ QLA_MAX_TSO_FRAME_SIZE, /* maxsize */ QLA_MAX_SEGMENTS, /* nsegments */ PAGE_SIZE, /* maxsegsize */ BUS_DMA_ALLOCNOW, /* flags */ NULL, /* lockfunc */ NULL, /* lockfuncarg */ &ha->tx_tag)) { device_printf(ha->pci_dev, "%s: tx_tag alloc failed\n", __func__); return (ENOMEM); } bzero((void *)ha->tx_buf, (sizeof(qla_tx_buf_t) * NUM_TX_DESCRIPTORS)); return 0; } /* * Release mbuf after it sent on the wire */ static void qla_clear_tx_buf(qla_host_t *ha, qla_tx_buf_t *txb) { QL_DPRINT2((ha->pci_dev, "%s: enter\n", __func__)); if (txb->m_head) { bus_dmamap_unload(ha->tx_tag, txb->map); bus_dmamap_destroy(ha->tx_tag, txb->map); m_freem(txb->m_head); txb->m_head = NULL; } QL_DPRINT2((ha->pci_dev, "%s: exit\n", __func__)); } static void qla_free_xmt_bufs(qla_host_t *ha) { int i; for (i = 0; i < NUM_TX_DESCRIPTORS; i++) qla_clear_tx_buf(ha, &ha->tx_buf[i]); if (ha->tx_tag != NULL) { bus_dma_tag_destroy(ha->tx_tag); ha->tx_tag = NULL; } bzero((void *)ha->tx_buf, (sizeof(qla_tx_buf_t) * NUM_TX_DESCRIPTORS)); return; } static int qla_alloc_rcv_bufs(qla_host_t *ha) { int i, j, ret = 0; qla_rx_buf_t *rxb; if (bus_dma_tag_create(NULL, /* parent */ 1, 0, /* alignment, bounds */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ MJUM9BYTES, /* maxsize */ 1, /* nsegments */ MJUM9BYTES, /* maxsegsize */ BUS_DMA_ALLOCNOW, /* flags */ NULL, /* lockfunc */ NULL, /* lockfuncarg */ &ha->rx_tag)) { device_printf(ha->pci_dev, "%s: rx_tag alloc failed\n", __func__); return (ENOMEM); } bzero((void *)ha->rx_buf, (sizeof(qla_rx_buf_t) * NUM_RX_DESCRIPTORS)); bzero((void *)ha->rx_jbuf, (sizeof(qla_rx_buf_t) * NUM_RX_JUMBO_DESCRIPTORS)); for (i = 0; i < MAX_SDS_RINGS; i++) { ha->hw.sds[i].sdsr_next = 0; ha->hw.sds[i].rxb_free = NULL; ha->hw.sds[i].rx_free = 0; ha->hw.sds[i].rxjb_free = NULL; ha->hw.sds[i].rxj_free = 0; } for (i = 0; i < NUM_RX_DESCRIPTORS; i++) { rxb = &ha->rx_buf[i]; ret = bus_dmamap_create(ha->rx_tag, BUS_DMA_NOWAIT, &rxb->map); if (ret) { device_printf(ha->pci_dev, "%s: dmamap[%d] failed\n", __func__, i); for (j = 0; j < i; j++) { bus_dmamap_destroy(ha->rx_tag, ha->rx_buf[j].map); } goto qla_alloc_rcv_bufs_failed; } } qla_init_hw_rcv_descriptors(ha, RDS_RING_INDEX_NORMAL); for (i = 0; i < NUM_RX_DESCRIPTORS; i++) { rxb = &ha->rx_buf[i]; rxb->handle = i; if (!(ret = qla_get_mbuf(ha, rxb, NULL, 0))) { /* * set the physical address in the corresponding * descriptor entry in the receive ring/queue for the * hba */ qla_set_hw_rcv_desc(ha, RDS_RING_INDEX_NORMAL, i, rxb->handle, rxb->paddr, (rxb->m_head)->m_pkthdr.len); } else { device_printf(ha->pci_dev, "%s: qla_get_mbuf [standard(%d)] failed\n", __func__, i); bus_dmamap_destroy(ha->rx_tag, rxb->map); goto qla_alloc_rcv_bufs_failed; } } for (i = 0; i < NUM_RX_JUMBO_DESCRIPTORS; i++) { rxb = &ha->rx_jbuf[i]; ret = bus_dmamap_create(ha->rx_tag, BUS_DMA_NOWAIT, &rxb->map); if (ret) { device_printf(ha->pci_dev, "%s: dmamap[%d] failed\n", __func__, i); for (j = 0; j < i; j++) { bus_dmamap_destroy(ha->rx_tag, ha->rx_jbuf[j].map); } goto qla_alloc_rcv_bufs_failed; } } qla_init_hw_rcv_descriptors(ha, RDS_RING_INDEX_JUMBO); for (i = 0; i < NUM_RX_JUMBO_DESCRIPTORS; i++) { rxb = &ha->rx_jbuf[i]; rxb->handle = i; if (!(ret = qla_get_mbuf(ha, rxb, NULL, 1))) { /* * set the physical address in the corresponding * descriptor entry in the receive ring/queue for the * hba */ qla_set_hw_rcv_desc(ha, RDS_RING_INDEX_JUMBO, i, rxb->handle, rxb->paddr, (rxb->m_head)->m_pkthdr.len); } else { device_printf(ha->pci_dev, "%s: qla_get_mbuf [jumbo(%d)] failed\n", __func__, i); bus_dmamap_destroy(ha->rx_tag, rxb->map); goto qla_alloc_rcv_bufs_failed; } } return (0); qla_alloc_rcv_bufs_failed: qla_free_rcv_bufs(ha); return (ret); } static void qla_free_rcv_bufs(qla_host_t *ha) { int i; qla_rx_buf_t *rxb; for (i = 0; i < NUM_RX_DESCRIPTORS; i++) { rxb = &ha->rx_buf[i]; if (rxb->m_head != NULL) { bus_dmamap_unload(ha->rx_tag, rxb->map); bus_dmamap_destroy(ha->rx_tag, rxb->map); m_freem(rxb->m_head); rxb->m_head = NULL; } } for (i = 0; i < NUM_RX_JUMBO_DESCRIPTORS; i++) { rxb = &ha->rx_jbuf[i]; if (rxb->m_head != NULL) { bus_dmamap_unload(ha->rx_tag, rxb->map); bus_dmamap_destroy(ha->rx_tag, rxb->map); m_freem(rxb->m_head); rxb->m_head = NULL; } } if (ha->rx_tag != NULL) { bus_dma_tag_destroy(ha->rx_tag); ha->rx_tag = NULL; } bzero((void *)ha->rx_buf, (sizeof(qla_rx_buf_t) * NUM_RX_DESCRIPTORS)); bzero((void *)ha->rx_jbuf, (sizeof(qla_rx_buf_t) * NUM_RX_JUMBO_DESCRIPTORS)); for (i = 0; i < MAX_SDS_RINGS; i++) { ha->hw.sds[i].sdsr_next = 0; ha->hw.sds[i].rxb_free = NULL; ha->hw.sds[i].rx_free = 0; ha->hw.sds[i].rxjb_free = NULL; ha->hw.sds[i].rxj_free = 0; } return; } int qla_get_mbuf(qla_host_t *ha, qla_rx_buf_t *rxb, struct mbuf *nmp, uint32_t jumbo) { struct mbuf *mp = nmp; int ret = 0; uint32_t offset; QL_DPRINT2((ha->pci_dev, "%s: jumbo(0x%x) enter\n", __func__, jumbo)); if (mp == NULL) { if (!jumbo) { mp = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); if (mp == NULL) { ha->err_m_getcl++; ret = ENOBUFS; device_printf(ha->pci_dev, "%s: m_getcl failed\n", __func__); goto exit_qla_get_mbuf; } mp->m_len = mp->m_pkthdr.len = MCLBYTES; } else { mp = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES); if (mp == NULL) { ha->err_m_getjcl++; ret = ENOBUFS; device_printf(ha->pci_dev, "%s: m_getjcl failed\n", __func__); goto exit_qla_get_mbuf; } mp->m_len = mp->m_pkthdr.len = MJUM9BYTES; } } else { if (!jumbo) mp->m_len = mp->m_pkthdr.len = MCLBYTES; else mp->m_len = mp->m_pkthdr.len = MJUM9BYTES; mp->m_data = mp->m_ext.ext_buf; mp->m_next = NULL; } offset = (uint32_t)((unsigned long long)mp->m_data & 0x7ULL); if (offset) { offset = 8 - offset; m_adj(mp, offset); } /* * Using memory from the mbuf cluster pool, invoke the bus_dma * machinery to arrange the memory mapping. */ ret = bus_dmamap_load(ha->rx_tag, rxb->map, mtod(mp, void *), mp->m_len, qla_dmamap_callback, &rxb->paddr, BUS_DMA_NOWAIT); if (ret || !rxb->paddr) { m_free(mp); rxb->m_head = NULL; device_printf(ha->pci_dev, "%s: bus_dmamap_load failed\n", __func__); ret = -1; goto exit_qla_get_mbuf; } rxb->m_head = mp; bus_dmamap_sync(ha->rx_tag, rxb->map, BUS_DMASYNC_PREREAD); exit_qla_get_mbuf: QL_DPRINT2((ha->pci_dev, "%s: exit ret = 0x%08x\n", __func__, ret)); return (ret); } static void qla_tx_done(void *context, int pending) { qla_host_t *ha = context; qla_hw_tx_done(ha); qla_start(ha->ifp); }