/* SPDX-License-Identifier: BSD-3-Clause */ /* Copyright(c) 2007-2022 Intel Corporation */ /* $FreeBSD$ */ #include "qat_freebsd.h" #include "adf_cfg.h" #include "adf_common_drv.h" #include "adf_accel_devices.h" #include "icp_qat_uclo.h" #include "icp_qat_fw.h" #include "icp_qat_fw_init_admin.h" #include "adf_cfg_strings.h" #include "adf_transport_access_macros.h" #include "adf_transport_internal.h" #include #include "adf_accel_devices.h" #include "adf_transport_internal.h" #include "adf_transport_access_macros.h" #include "adf_cfg.h" #include "adf_common_drv.h" #define QAT_RING_ALIGNMENT 64 static inline u32 adf_modulo(u32 data, u32 shift) { u32 div = data >> shift; u32 mult = div << shift; return data - mult; } static inline int adf_check_ring_alignment(u64 addr, u64 size) { if (((size - 1) & addr) != 0) return EFAULT; return 0; } static int adf_verify_ring_size(u32 msg_size, u32 msg_num) { int i = ADF_MIN_RING_SIZE; for (; i <= ADF_MAX_RING_SIZE; i++) if ((msg_size * msg_num) == ADF_SIZE_TO_RING_SIZE_IN_BYTES(i)) return i; return ADF_DEFAULT_RING_SIZE; } static int adf_reserve_ring(struct adf_etr_bank_data *bank, u32 ring) { mtx_lock(&bank->lock); if (bank->ring_mask & (1 << ring)) { mtx_unlock(&bank->lock); return EFAULT; } bank->ring_mask |= (1 << ring); mtx_unlock(&bank->lock); return 0; } static void adf_unreserve_ring(struct adf_etr_bank_data *bank, u32 ring) { mtx_lock(&bank->lock); bank->ring_mask &= ~(1 << ring); mtx_unlock(&bank->lock); } static void adf_enable_ring_irq(struct adf_etr_bank_data *bank, u32 ring) { mtx_lock(&bank->lock); bank->irq_mask |= (1 << ring); mtx_unlock(&bank->lock); WRITE_CSR_INT_COL_EN(bank->csr_addr, bank->bank_number, bank->irq_mask); WRITE_CSR_INT_COL_CTL(bank->csr_addr, bank->bank_number, bank->irq_coalesc_timer); } static void adf_disable_ring_irq(struct adf_etr_bank_data *bank, u32 ring) { mtx_lock(&bank->lock); bank->irq_mask &= ~(1 << ring); mtx_unlock(&bank->lock); WRITE_CSR_INT_COL_EN(bank->csr_addr, bank->bank_number, bank->irq_mask); } int adf_send_message(struct adf_etr_ring_data *ring, u32 *msg) { u32 msg_size = 0; if (atomic_add_return(1, ring->inflights) > ring->max_inflights) { atomic_dec(ring->inflights); return EAGAIN; } msg_size = ADF_MSG_SIZE_TO_BYTES(ring->msg_size); mtx_lock(&ring->lock); memcpy((void *)((uintptr_t)ring->base_addr + ring->tail), msg, msg_size); ring->tail = adf_modulo(ring->tail + msg_size, ADF_RING_SIZE_MODULO(ring->ring_size)); WRITE_CSR_RING_TAIL(ring->bank->csr_addr, ring->bank->bank_number, ring->ring_number, ring->tail); ring->csr_tail_offset = ring->tail; mtx_unlock(&ring->lock); return 0; } int adf_handle_response(struct adf_etr_ring_data *ring, u32 quota) { u32 msg_counter = 0; u32 *msg = (u32 *)((uintptr_t)ring->base_addr + ring->head); if (!quota) quota = ADF_NO_RESPONSE_QUOTA; while ((*msg != ADF_RING_EMPTY_SIG) && (msg_counter < quota)) { ring->callback((u32 *)msg); atomic_dec(ring->inflights); *msg = ADF_RING_EMPTY_SIG; ring->head = adf_modulo(ring->head + ADF_MSG_SIZE_TO_BYTES( ring->msg_size), ADF_RING_SIZE_MODULO(ring->ring_size)); msg_counter++; msg = (u32 *)((uintptr_t)ring->base_addr + ring->head); } if (msg_counter > 0) WRITE_CSR_RING_HEAD(ring->bank->csr_addr, ring->bank->bank_number, ring->ring_number, ring->head); return msg_counter; } int adf_poll_bank(u32 accel_id, u32 bank_num, u32 quota) { int num_resp; struct adf_accel_dev *accel_dev; struct adf_etr_data *trans_data; struct adf_etr_bank_data *bank; struct adf_etr_ring_data *ring; u32 rings_not_empty; u32 ring_num; u32 resp_total = 0; u32 num_rings_per_bank; /* Find the accel device associated with the accelId * passed in. */ accel_dev = adf_devmgr_get_dev_by_id(accel_id); if (!accel_dev) { pr_err("There is no device with id: %d\n", accel_id); return EINVAL; } trans_data = accel_dev->transport; bank = &trans_data->banks[bank_num]; mtx_lock(&bank->lock); /* Read the ring status CSR to determine which rings are empty. */ rings_not_empty = READ_CSR_E_STAT(bank->csr_addr, bank->bank_number); /* Complement to find which rings have data to be processed. */ rings_not_empty = (~rings_not_empty) & bank->ring_mask; /* Return RETRY if the bank polling rings * are all empty. */ if (!(rings_not_empty & bank->ring_mask)) { mtx_unlock(&bank->lock); return EAGAIN; } /* * Loop over all rings within this bank. * The ring structure is global to all * rings hence while we loop over all rings in the * bank we use ring_number to get the global ring. */ num_rings_per_bank = accel_dev->hw_device->num_rings_per_bank; for (ring_num = 0; ring_num < num_rings_per_bank; ring_num++) { ring = &bank->rings[ring_num]; /* And with polling ring mask. * If the there is no data on this ring * move to the next one. */ if (!(rings_not_empty & (1 << ring->ring_number))) continue; /* Poll the ring. */ num_resp = adf_handle_response(ring, quota); resp_total += num_resp; } mtx_unlock(&bank->lock); /* Return SUCCESS if there's any response message * returned. */ if (resp_total) return 0; return EAGAIN; } int adf_poll_all_banks(u32 accel_id, u32 quota) { int status = EAGAIN; struct adf_accel_dev *accel_dev; struct adf_etr_data *trans_data; struct adf_etr_bank_data *bank; u32 bank_num; u32 stat_total = 0; /* Find the accel device associated with the accelId * passed in. */ accel_dev = adf_devmgr_get_dev_by_id(accel_id); if (!accel_dev) { pr_err("There is no device with id: %d\n", accel_id); return EINVAL; } /* Loop over banks and call adf_poll_bank */ trans_data = accel_dev->transport; for (bank_num = 0; bank_num < GET_MAX_BANKS(accel_dev); bank_num++) { bank = &trans_data->banks[bank_num]; /* if there are no polling rings on this bank * continue to the next bank number. */ if (bank->ring_mask == 0) continue; status = adf_poll_bank(accel_id, bank_num, quota); /* The successful status should be AGAIN or 0 */ if (status == 0) stat_total++; else if (status != EAGAIN) return status; } /* Return SUCCESS if adf_poll_bank returned SUCCESS * at any stage. adf_poll_bank cannot * return fail in the above case. */ if (stat_total) return 0; return EAGAIN; } static void adf_configure_tx_ring(struct adf_etr_ring_data *ring) { u32 ring_config = BUILD_RING_CONFIG(ring->ring_size); WRITE_CSR_RING_CONFIG(ring->bank->csr_addr, ring->bank->bank_number, ring->ring_number, ring_config); } static void adf_configure_rx_ring(struct adf_etr_ring_data *ring) { u32 ring_config = BUILD_RESP_RING_CONFIG(ring->ring_size, ADF_RING_NEAR_WATERMARK_512, ADF_RING_NEAR_WATERMARK_0); WRITE_CSR_RING_CONFIG(ring->bank->csr_addr, ring->bank->bank_number, ring->ring_number, ring_config); } static int adf_init_ring(struct adf_etr_ring_data *ring) { struct adf_etr_bank_data *bank = ring->bank; struct adf_accel_dev *accel_dev = bank->accel_dev; struct adf_hw_device_data *hw_data = accel_dev->hw_device; u64 ring_base; u32 ring_size_bytes = ADF_SIZE_TO_RING_SIZE_IN_BYTES(ring->ring_size); ring_size_bytes = ADF_RING_SIZE_BYTES_MIN(ring_size_bytes); int ret; ret = bus_dma_mem_create(&ring->dma_mem, accel_dev->dma_tag, ring_size_bytes, BUS_SPACE_MAXADDR, ring_size_bytes, M_WAITOK | M_ZERO); if (ret) return ret; ring->base_addr = ring->dma_mem.dma_vaddr; ring->dma_addr = ring->dma_mem.dma_baddr; memset(ring->base_addr, 0x7F, ring_size_bytes); /* The base_addr has to be aligned to the size of the buffer */ if (adf_check_ring_alignment(ring->dma_addr, ring_size_bytes)) { device_printf(GET_DEV(accel_dev), "Ring address not aligned\n"); bus_dma_mem_free(&ring->dma_mem); ring->base_addr = NULL; return EFAULT; } if (hw_data->tx_rings_mask & (1 << ring->ring_number)) adf_configure_tx_ring(ring); else adf_configure_rx_ring(ring); ring_base = BUILD_RING_BASE_ADDR(ring->dma_addr, ring->ring_size); WRITE_CSR_RING_BASE(ring->bank->csr_addr, ring->bank->bank_number, ring->ring_number, ring_base); mtx_init(&ring->lock, "adf bank", NULL, MTX_DEF); return 0; } static void adf_cleanup_ring(struct adf_etr_ring_data *ring) { u32 ring_size_bytes = ADF_SIZE_TO_RING_SIZE_IN_BYTES(ring->ring_size); ring_size_bytes = ADF_RING_SIZE_BYTES_MIN(ring_size_bytes); if (ring->base_addr) { explicit_bzero(ring->base_addr, ring_size_bytes); bus_dma_mem_free(&ring->dma_mem); } mtx_destroy(&ring->lock); } int adf_create_ring(struct adf_accel_dev *accel_dev, const char *section, u32 bank_num, u32 num_msgs, u32 msg_size, const char *ring_name, adf_callback_fn callback, int poll_mode, struct adf_etr_ring_data **ring_ptr) { struct adf_etr_data *transport_data = accel_dev->transport; struct adf_etr_bank_data *bank; struct adf_etr_ring_data *ring; char val[ADF_CFG_MAX_VAL_LEN_IN_BYTES]; u32 ring_num; int ret; u8 num_rings_per_bank = accel_dev->hw_device->num_rings_per_bank; if (bank_num >= GET_MAX_BANKS(accel_dev)) { device_printf(GET_DEV(accel_dev), "Invalid bank number\n"); return EFAULT; } if (msg_size > ADF_MSG_SIZE_TO_BYTES(ADF_MAX_MSG_SIZE)) { device_printf(GET_DEV(accel_dev), "Invalid msg size\n"); return EFAULT; } if (ADF_MAX_INFLIGHTS(adf_verify_ring_size(msg_size, num_msgs), ADF_BYTES_TO_MSG_SIZE(msg_size)) < 2) { device_printf(GET_DEV(accel_dev), "Invalid ring size for given msg size\n"); return EFAULT; } if (adf_cfg_get_param_value(accel_dev, section, ring_name, val)) { device_printf(GET_DEV(accel_dev), "Section %s, no such entry : %s\n", section, ring_name); return EFAULT; } if (compat_strtouint(val, 10, &ring_num)) { device_printf(GET_DEV(accel_dev), "Can't get ring number\n"); return EFAULT; } if (ring_num >= num_rings_per_bank) { device_printf(GET_DEV(accel_dev), "Invalid ring number\n"); return EFAULT; } bank = &transport_data->banks[bank_num]; if (adf_reserve_ring(bank, ring_num)) { device_printf(GET_DEV(accel_dev), "Ring %d, %s already exists.\n", ring_num, ring_name); return EFAULT; } ring = &bank->rings[ring_num]; ring->ring_number = ring_num; ring->bank = bank; ring->callback = callback; ring->msg_size = ADF_BYTES_TO_MSG_SIZE(msg_size); ring->ring_size = adf_verify_ring_size(msg_size, num_msgs); ring->max_inflights = ADF_MAX_INFLIGHTS(ring->ring_size, ring->msg_size); ring->head = 0; ring->tail = 0; ring->csr_tail_offset = 0; ret = adf_init_ring(ring); if (ret) goto err; /* Enable HW arbitration for the given ring */ adf_update_ring_arb(ring); if (adf_ring_debugfs_add(ring, ring_name)) { device_printf(GET_DEV(accel_dev), "Couldn't add ring debugfs entry\n"); ret = EFAULT; goto err; } /* Enable interrupts if needed */ if (callback && !poll_mode) adf_enable_ring_irq(bank, ring->ring_number); *ring_ptr = ring; return 0; err: adf_cleanup_ring(ring); adf_unreserve_ring(bank, ring_num); adf_update_ring_arb(ring); return ret; } void adf_remove_ring(struct adf_etr_ring_data *ring) { struct adf_etr_bank_data *bank = ring->bank; /* Disable interrupts for the given ring */ adf_disable_ring_irq(bank, ring->ring_number); /* Clear PCI config space */ WRITE_CSR_RING_CONFIG(bank->csr_addr, bank->bank_number, ring->ring_number, 0); WRITE_CSR_RING_BASE(bank->csr_addr, bank->bank_number, ring->ring_number, 0); adf_ring_debugfs_rm(ring); adf_unreserve_ring(bank, ring->ring_number); /* Disable HW arbitration for the given ring */ adf_update_ring_arb(ring); adf_cleanup_ring(ring); } static void adf_ring_response_handler(struct adf_etr_bank_data *bank) { struct adf_accel_dev *accel_dev = bank->accel_dev; struct adf_hw_device_data *hw_data = accel_dev->hw_device; u8 num_rings_per_bank = hw_data->num_rings_per_bank; u32 empty_rings, i; empty_rings = READ_CSR_E_STAT(bank->csr_addr, bank->bank_number); empty_rings = ~empty_rings & bank->irq_mask; for (i = 0; i < num_rings_per_bank; ++i) { if (empty_rings & (1 << i)) adf_handle_response(&bank->rings[i], 0); } } void adf_response_handler(uintptr_t bank_addr) { struct adf_etr_bank_data *bank = (void *)bank_addr; /* Handle all the responses and re-enable IRQs */ adf_ring_response_handler(bank); WRITE_CSR_INT_FLAG_AND_COL(bank->csr_addr, bank->bank_number, bank->irq_mask); } static inline int adf_get_cfg_int(struct adf_accel_dev *accel_dev, const char *section, const char *format, u32 key, u32 *value) { char key_buf[ADF_CFG_MAX_KEY_LEN_IN_BYTES]; char val_buf[ADF_CFG_MAX_VAL_LEN_IN_BYTES]; snprintf(key_buf, ADF_CFG_MAX_KEY_LEN_IN_BYTES, format, key); if (adf_cfg_get_param_value(accel_dev, section, key_buf, val_buf)) return EFAULT; if (compat_strtouint(val_buf, 10, value)) return EFAULT; return 0; } static void adf_get_coalesc_timer(struct adf_etr_bank_data *bank, const char *section, u32 bank_num_in_accel) { struct adf_accel_dev *accel_dev = bank->accel_dev; struct adf_hw_device_data *hw_data = accel_dev->hw_device; u32 coalesc_timer = ADF_COALESCING_DEF_TIME; adf_get_cfg_int(accel_dev, section, ADF_ETRMGR_COALESCE_TIMER_FORMAT, bank_num_in_accel, &coalesc_timer); if (hw_data->get_clock_speed) bank->irq_coalesc_timer = (coalesc_timer * (hw_data->get_clock_speed(hw_data) / USEC_PER_SEC)) / NSEC_PER_USEC; else bank->irq_coalesc_timer = coalesc_timer; if (bank->irq_coalesc_timer > ADF_COALESCING_MAX_TIME) bank->irq_coalesc_timer = ADF_COALESCING_MAX_TIME; else if (bank->irq_coalesc_timer < ADF_COALESCING_MIN_TIME) bank->irq_coalesc_timer = ADF_COALESCING_MIN_TIME; } static int adf_init_bank(struct adf_accel_dev *accel_dev, struct adf_etr_bank_data *bank, u32 bank_num, struct resource *csr_addr) { struct adf_hw_device_data *hw_data = accel_dev->hw_device; struct adf_etr_ring_data *ring; struct adf_etr_ring_data *tx_ring; u32 i, coalesc_enabled = 0; u8 num_rings_per_bank = hw_data->num_rings_per_bank; u32 size = 0; explicit_bzero(bank, sizeof(*bank)); bank->bank_number = bank_num; bank->csr_addr = csr_addr; bank->accel_dev = accel_dev; mtx_init(&bank->lock, "adf bank", NULL, MTX_DEF); /* Allocate the rings in the bank */ size = num_rings_per_bank * sizeof(struct adf_etr_ring_data); bank->rings = kzalloc_node(size, M_WAITOK | M_ZERO, dev_to_node(GET_DEV(accel_dev))); /* Enable IRQ coalescing always. This will allow to use * the optimised flag and coalesc register. * If it is disabled in the config file just use min time value */ if ((adf_get_cfg_int(accel_dev, "Accelerator0", ADF_ETRMGR_COALESCING_ENABLED_FORMAT, bank_num, &coalesc_enabled) == 0) && coalesc_enabled) adf_get_coalesc_timer(bank, "Accelerator0", bank_num); else bank->irq_coalesc_timer = ADF_COALESCING_MIN_TIME; for (i = 0; i < num_rings_per_bank; i++) { WRITE_CSR_RING_CONFIG(csr_addr, bank_num, i, 0); WRITE_CSR_RING_BASE(csr_addr, bank_num, i, 0); ring = &bank->rings[i]; if (hw_data->tx_rings_mask & (1 << i)) { ring->inflights = kzalloc_node(sizeof(atomic_t), M_WAITOK | M_ZERO, dev_to_node(GET_DEV(accel_dev))); } else { if (i < hw_data->tx_rx_gap) { device_printf(GET_DEV(accel_dev), "Invalid tx rings mask config\n"); goto err; } tx_ring = &bank->rings[i - hw_data->tx_rx_gap]; ring->inflights = tx_ring->inflights; } } if (adf_bank_debugfs_add(bank)) { device_printf(GET_DEV(accel_dev), "Failed to add bank debugfs entry\n"); goto err; } WRITE_CSR_INT_FLAG(csr_addr, bank_num, ADF_BANK_INT_FLAG_CLEAR_MASK); WRITE_CSR_INT_SRCSEL(csr_addr, bank_num); return 0; err: for (i = 0; i < num_rings_per_bank; i++) { ring = &bank->rings[i]; if (hw_data->tx_rings_mask & (1 << i)) { kfree(ring->inflights); ring->inflights = NULL; } } kfree(bank->rings); return ENOMEM; } /** * adf_init_etr_data() - Initialize transport rings for acceleration device * @accel_dev: Pointer to acceleration device. * * Function initializes the communications channels (rings) to the * acceleration device accel_dev. * To be used by QAT device specific drivers. * * Return: 0 on success, error code otherwise. */ int adf_init_etr_data(struct adf_accel_dev *accel_dev) { struct adf_etr_data *etr_data; struct adf_hw_device_data *hw_data = accel_dev->hw_device; struct resource *csr_addr; u32 size; u32 num_banks = 0; int i, ret; etr_data = kzalloc_node(sizeof(*etr_data), M_WAITOK | M_ZERO, dev_to_node(GET_DEV(accel_dev))); num_banks = GET_MAX_BANKS(accel_dev); size = num_banks * sizeof(struct adf_etr_bank_data); etr_data->banks = kzalloc_node(size, M_WAITOK | M_ZERO, dev_to_node(GET_DEV(accel_dev))); accel_dev->transport = etr_data; i = hw_data->get_etr_bar_id(hw_data); csr_addr = accel_dev->accel_pci_dev.pci_bars[i].virt_addr; etr_data->debug = SYSCTL_ADD_NODE(&accel_dev->sysctl_ctx, SYSCTL_CHILDREN( device_get_sysctl_tree(GET_DEV(accel_dev))), OID_AUTO, "transport", CTLFLAG_RD, NULL, "Transport parameters"); if (!etr_data->debug) { device_printf(GET_DEV(accel_dev), "Unable to create transport debugfs entry\n"); ret = ENOENT; goto err_bank_all; } for (i = 0; i < num_banks; i++) { ret = adf_init_bank(accel_dev, &etr_data->banks[i], i, csr_addr); if (ret) goto err_bank_all; } return 0; err_bank_all: kfree(etr_data->banks); kfree(etr_data); accel_dev->transport = NULL; return ret; } static void cleanup_bank(struct adf_etr_bank_data *bank) { u32 i; struct adf_accel_dev *accel_dev = bank->accel_dev; struct adf_hw_device_data *hw_data = accel_dev->hw_device; u8 num_rings_per_bank = hw_data->num_rings_per_bank; for (i = 0; i < num_rings_per_bank; i++) { struct adf_accel_dev *accel_dev = bank->accel_dev; struct adf_hw_device_data *hw_data = accel_dev->hw_device; struct adf_etr_ring_data *ring = &bank->rings[i]; if (bank->ring_mask & (1 << i)) adf_cleanup_ring(ring); if (hw_data->tx_rings_mask & (1 << i)) { kfree(ring->inflights); ring->inflights = NULL; } } kfree(bank->rings); adf_bank_debugfs_rm(bank); mtx_destroy(&bank->lock); explicit_bzero(bank, sizeof(*bank)); } static void adf_cleanup_etr_handles(struct adf_accel_dev *accel_dev) { struct adf_etr_data *etr_data = accel_dev->transport; u32 i, num_banks = GET_MAX_BANKS(accel_dev); for (i = 0; i < num_banks; i++) cleanup_bank(&etr_data->banks[i]); } /** * adf_cleanup_etr_data() - Clear transport rings for acceleration device * @accel_dev: Pointer to acceleration device. * * Function is the clears the communications channels (rings) of the * acceleration device accel_dev. * To be used by QAT device specific drivers. * * Return: void */ void adf_cleanup_etr_data(struct adf_accel_dev *accel_dev) { struct adf_etr_data *etr_data = accel_dev->transport; if (etr_data) { adf_cleanup_etr_handles(accel_dev); kfree(etr_data->banks); kfree(etr_data); accel_dev->transport = NULL; } }