/*- * Copyright (c) 2017 Broadcom. All rights reserved. * The term "Broadcom" refers to Broadcom Limited and/or its subsidiaries. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD$ */ /** * @file * Implementation of common BSD OS abstraction functions */ #include "ocs.h" static MALLOC_DEFINE(M_OCS, "OCS", "OneCore Storage data"); #include #include #include timeout_t __ocs_callout; uint32_t ocs_config_read32(ocs_os_handle_t os, uint32_t reg) { return pci_read_config(os->dev, reg, 4); } uint16_t ocs_config_read16(ocs_os_handle_t os, uint32_t reg) { return pci_read_config(os->dev, reg, 2); } uint8_t ocs_config_read8(ocs_os_handle_t os, uint32_t reg) { return pci_read_config(os->dev, reg, 1); } void ocs_config_write8(ocs_os_handle_t os, uint32_t reg, uint8_t val) { return pci_write_config(os->dev, reg, val, 1); } void ocs_config_write16(ocs_os_handle_t os, uint32_t reg, uint16_t val) { return pci_write_config(os->dev, reg, val, 2); } void ocs_config_write32(ocs_os_handle_t os, uint32_t reg, uint32_t val) { return pci_write_config(os->dev, reg, val, 4); } /** * @ingroup os * @brief Read a 32bit PCI register * * The SLI documentation uses the term "register set" to describe one or more * PCI BARs which form a logical address. For example, a 64-bit address uses * two BARs, and thus constitute a register set. * * @param ocs Pointer to the driver's context * @param rset Register Set to use * @param off Offset from the base address of the Register Set * * @return register value */ uint32_t ocs_reg_read32(ocs_t *ocs, uint32_t rset, uint32_t off) { ocs_pci_reg_t *reg = NULL; reg = &ocs->reg[rset]; return bus_space_read_4(reg->btag, reg->bhandle, off); } /** * @ingroup os * @brief Read a 16bit PCI register * * The SLI documentation uses the term "register set" to describe one or more * PCI BARs which form a logical address. For example, a 64-bit address uses * two BARs, and thus constitute a register set. * * @param ocs Pointer to the driver's context * @param rset Register Set to use * @param off Offset from the base address of the Register Set * * @return register value */ uint16_t ocs_reg_read16(ocs_t *ocs, uint32_t rset, uint32_t off) { ocs_pci_reg_t *reg = NULL; reg = &ocs->reg[rset]; return bus_space_read_2(reg->btag, reg->bhandle, off); } /** * @ingroup os * @brief Read a 8bit PCI register * * The SLI documentation uses the term "register set" to describe one or more * PCI BARs which form a logical address. For example, a 64-bit address uses * two BARs, and thus constitute a register set. * * @param ocs Pointer to the driver's context * @param rset Register Set to use * @param off Offset from the base address of the Register Set * * @return register value */ uint8_t ocs_reg_read8(ocs_t *ocs, uint32_t rset, uint32_t off) { ocs_pci_reg_t *reg = NULL; reg = &ocs->reg[rset]; return bus_space_read_1(reg->btag, reg->bhandle, off); } /** * @ingroup os * @brief Write a 32bit PCI register * * The SLI documentation uses the term "register set" to describe one or more * PCI BARs which form a logical address. For example, a 64-bit address uses * two BARs, and thus constitute a register set. * * @param ocs Pointer to the driver's context * @param rset Register Set to use * @param off Offset from the base address of the Register Set * @param val Value to write * * @return none */ void ocs_reg_write32(ocs_t *ocs, uint32_t rset, uint32_t off, uint32_t val) { ocs_pci_reg_t *reg = NULL; reg = &ocs->reg[rset]; return bus_space_write_4(reg->btag, reg->bhandle, off, val); } /** * @ingroup os * @brief Write a 16-bit PCI register * * The SLI documentation uses the term "register set" to describe one or more * PCI BARs which form a logical address. For example, a 64-bit address uses * two BARs, and thus constitute a register set. * * @param ocs Pointer to the driver's context * @param rset Register Set to use * @param off Offset from the base address of the Register Set * @param val Value to write * * @return none */ void ocs_reg_write16(ocs_t *ocs, uint32_t rset, uint32_t off, uint16_t val) { ocs_pci_reg_t *reg = NULL; reg = &ocs->reg[rset]; return bus_space_write_2(reg->btag, reg->bhandle, off, val); } /** * @ingroup os * @brief Write a 8-bit PCI register * * The SLI documentation uses the term "register set" to describe one or more * PCI BARs which form a logical address. For example, a 64-bit address uses * two BARs, and thus constitute a register set. * * @param ocs Pointer to the driver's context * @param rset Register Set to use * @param off Offset from the base address of the Register Set * @param val Value to write * * @return none */ void ocs_reg_write8(ocs_t *ocs, uint32_t rset, uint32_t off, uint8_t val) { ocs_pci_reg_t *reg = NULL; reg = &ocs->reg[rset]; return bus_space_write_1(reg->btag, reg->bhandle, off, val); } /** * @ingroup os * @brief Allocate host memory * * @param os OS handle * @param size number of bytes to allocate * @param flags additional options * * @return pointer to allocated memory, NULL otherwise */ void * ocs_malloc(ocs_os_handle_t os, size_t size, int32_t flags) { if ((flags & OCS_M_NOWAIT) == 0) { flags |= M_WAITOK; } #ifndef OCS_DEBUG_MEMORY return malloc(size, M_OCS, flags); #else char nameb[80]; long offset = 0; void *addr = malloc(size, M_OCS, flags); linker_ddb_search_symbol_name(__builtin_return_address(1), nameb, sizeof(nameb), &offset); printf("A: %p %ld @ %s+%#lx\n", addr, size, nameb, offset); return addr; #endif } /** * @ingroup os * @brief Free host memory * * @param os OS handle * @param addr pointer to memory * @param size bytes to free * * @note size ignored in BSD */ void ocs_free(ocs_os_handle_t os, void *addr, size_t size) { #ifndef OCS_DEBUG_MEMORY free(addr, M_OCS); #else printf("F: %p %ld\n", addr, size); free(addr, M_OCS); #endif } /** * @brief Callback function provided to bus_dmamap_load * * Function loads the physical / bus address into the DMA descriptor. The caller * can detect a mapping failure if a descriptor's phys element is zero. * * @param arg Argument provided to bus_dmamap_load is a ocs_dma_t * @param seg Array of DMA segment(s), each describing segment's address and length * @param nseg Number of elements in array * @param error Indicates success (0) or failure of mapping */ static void ocs_dma_load(void *arg, bus_dma_segment_t *seg, int nseg, int error) { ocs_dma_t *dma = arg; if (error) { printf("%s: error=%d\n", __func__, error); dma->phys = 0; } else { dma->phys = seg->ds_addr; } } /** * @ingroup os * @brief Free a DMA capable block of memory * * @param os Device abstraction * @param dma DMA descriptor for memory to be freed * * @return 0 if memory is de-allocated, -1 otherwise */ int32_t ocs_dma_free(ocs_os_handle_t os, ocs_dma_t *dma) { struct ocs_softc *ocs = os; if (!dma) { device_printf(ocs->dev, "%s: bad parameter(s) dma=%p\n", __func__, dma); return -1; } if (dma->size == 0) { return 0; } if (dma->map) { bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(dma->tag, dma->map); } if (dma->virt) { bus_dmamem_free(dma->tag, dma->virt, dma->map); bus_dmamap_destroy(dma->tag, dma->map); } bus_dma_tag_destroy(dma->tag); bzero(dma, sizeof(ocs_dma_t)); return 0; } /** * @ingroup os * @brief Allocate a DMA capable block of memory * * @param os Device abstraction * @param dma DMA descriptor containing results of memory allocation * @param size Size in bytes of desired allocation * @param align Alignment in bytes * * @return 0 on success, ENOMEM otherwise */ int32_t ocs_dma_alloc(ocs_os_handle_t os, ocs_dma_t *dma, size_t size, size_t align) { struct ocs_softc *ocs = os; if (!dma || !size) { device_printf(ocs->dev, "%s bad parameter(s) dma=%p size=%zd\n", __func__, dma, size); return ENOMEM; } bzero(dma, sizeof(ocs_dma_t)); /* create a "tag" that describes the desired memory allocation */ if (bus_dma_tag_create(ocs->dmat, align, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, size, 1, size, 0, NULL, NULL, &dma->tag)) { device_printf(ocs->dev, "DMA tag allocation failed\n"); return ENOMEM; } dma->size = size; /* allocate the memory */ if (bus_dmamem_alloc(dma->tag, &dma->virt, BUS_DMA_NOWAIT | BUS_DMA_COHERENT, &dma->map)) { device_printf(ocs->dev, "DMA memory allocation failed s=%zd a=%zd\n", size, align); ocs_dma_free(ocs, dma); return ENOMEM; } dma->alloc = dma->virt; /* map virtual address to device visible address */ if (bus_dmamap_load(dma->tag, dma->map, dma->virt, dma->size, ocs_dma_load, dma, 0)) { device_printf(ocs->dev, "DMA memory load failed\n"); ocs_dma_free(ocs, dma); return ENOMEM; } /* if the DMA map load callback fails, it sets the physical address to zero */ if (0 == dma->phys) { device_printf(ocs->dev, "ocs_dma_load failed\n"); ocs_dma_free(ocs, dma); return ENOMEM; } return 0; } /** * @ingroup os * @brief Synchronize the DMA buffer memory * * Ensures memory coherency between the CPU and device * * @param dma DMA descriptor of memory to synchronize * @param flags Describes direction of synchronization * See BUS_DMA(9) for details * - BUS_DMASYNC_PREWRITE * - BUS_DMASYNC_POSTREAD */ void ocs_dma_sync(ocs_dma_t *dma, uint32_t flags) { bus_dmamap_sync(dma->tag, dma->map, flags); } int32_t ocs_dma_copy_in(ocs_dma_t *dma, void *buffer, uint32_t buffer_length) { if (!dma) return -1; if (!buffer) return -1; if (buffer_length == 0) return 0; if (buffer_length > dma->size) buffer_length = dma->size; ocs_memcpy(dma->virt, buffer, buffer_length); dma->len = buffer_length; return buffer_length; } int32_t ocs_dma_copy_out(ocs_dma_t *dma, void *buffer, uint32_t buffer_length) { if (!dma) return -1; if (!buffer) return -1; if (buffer_length == 0) return 0; if (buffer_length > dma->len) buffer_length = dma->len; ocs_memcpy(buffer, dma->virt, buffer_length); return buffer_length; } /** * @ingroup os * @brief Initialize a lock * * @param lock lock to initialize * @param name string identifier for the lock */ void ocs_lock_init(void *os, ocs_lock_t *lock, const char *name, ...) { va_list ap; va_start(ap, name); ocs_vsnprintf(lock->name, MAX_LOCK_DESC_LEN, name, ap); va_end(ap); mtx_init(&lock->lock, lock->name, NULL, MTX_DEF); } /** * @brief Allocate a bit map * * For BSD, this is a simple character string * * @param n_bits number of bits in bit map * * @return pointer to the bit map, NULL on error */ ocs_bitmap_t * ocs_bitmap_alloc(uint32_t n_bits) { return malloc(bitstr_size(n_bits), M_OCS, M_ZERO | M_NOWAIT); } /** * @brief Free a bit map * * @param bitmap pointer to previously allocated bit map */ void ocs_bitmap_free(ocs_bitmap_t *bitmap) { free(bitmap, M_OCS); } /** * @brief find next unset bit and set it * * @param bitmap bit map to search * @param n_bits number of bits in map * * @return bit position or -1 if map is full */ int32_t ocs_bitmap_find(ocs_bitmap_t *bitmap, uint32_t n_bits) { int32_t position = -1; bit_ffc(bitmap, n_bits, &position); if (-1 != position) { bit_set(bitmap, position); } return position; } /** * @brief search for next (un)set bit * * @param bitmap bit map to search * @param set search for a set or unset bit * @param n_bits number of bits in map * * @return bit position or -1 */ int32_t ocs_bitmap_search(ocs_bitmap_t *bitmap, uint8_t set, uint32_t n_bits) { int32_t position; if (!bitmap) { return -1; } if (set) { bit_ffs(bitmap, n_bits, &position); } else { bit_ffc(bitmap, n_bits, &position); } return position; } /** * @brief clear the specified bit * * @param bitmap pointer to bit map * @param bit bit number to clear */ void ocs_bitmap_clear(ocs_bitmap_t *bitmap, uint32_t bit) { bit_clear(bitmap, bit); } void _ocs_log(ocs_t *ocs, const char *func_name, int line, const char *fmt, ...) { va_list ap; char buf[256]; char *p = buf; va_start(ap, fmt); /* TODO: Add Current PID info here. */ p += snprintf(p, sizeof(buf) - (p - buf), "%s: ", DRV_NAME); p += snprintf(p, sizeof(buf) - (p - buf), "%s:", func_name); p += snprintf(p, sizeof(buf) - (p - buf), "%i:", line); p += snprintf(p, sizeof(buf) - (p - buf), "%s:", (ocs != NULL) ? device_get_nameunit(ocs->dev) : ""); p += vsnprintf(p, sizeof(buf) - (p - buf), fmt, ap); va_end(ap); printf("%s", buf); } /** * @brief Common thread call function * * This is the common function called whenever a thread instantiated by ocs_thread_create() is started. * It captures the return value from the actual thread function and stashes it in the thread object, to * be later retrieved by ocs_thread_get_retval(), and calls kthread_exit(), the proscribed method to terminate * a thread. * * @param arg a pointer to the thread object * * @return none */ static void ocs_thread_call_fctn(void *arg) { ocs_thread_t *thread = arg; thread->retval = (*thread->fctn)(thread->arg); ocs_free(NULL, thread->name, ocs_strlen(thread->name+1)); kthread_exit(); } /** * @brief Create a kernel thread * * Creates a kernel thread and optionally starts it. If the thread is not immediately * started, ocs_thread_start() should be called at some later point. * * @param os OS handle * @param thread pointer to thread object * @param fctn function for thread to be begin executing * @param name text name to identify thread * @param arg application specific argument passed to thread function * @param start start option, OCS_THREAD_RUN will start the thread immediately, * OCS_THREAD_CREATE will create but not start the thread * * @return returns 0 for success, a negative error code value for failure. */ int32_t ocs_thread_create(ocs_os_handle_t os, ocs_thread_t *thread, ocs_thread_fctn fctn, const char *name, void *arg, ocs_thread_start_e start) { int32_t rc = 0; ocs_memset(thread, 0, sizeof(thread)); thread->fctn = fctn; thread->name = ocs_strdup(name); if (thread->name == NULL) { thread->name = "unknown"; } thread->arg = arg; ocs_atomic_set(&thread->terminate, 0); rc = kthread_add(ocs_thread_call_fctn, thread, NULL, &thread->tcb, (start == OCS_THREAD_CREATE) ? RFSTOPPED : 0, OCS_THREAD_DEFAULT_STACK_SIZE_PAGES, "%s", name); return rc; } /** * @brief Start a thread * * Starts a thread that was created with OCS_THREAD_CREATE rather than OCS_THREAD_RUN * * @param thread pointer to thread object * * @return returns 0 for success, a negative error code value for failure. */ int32_t ocs_thread_start(ocs_thread_t *thread) { sched_add(thread->tcb, SRQ_BORING); return 0; } /** * @brief return thread argument * * Returns a pointer to the thread's application specific argument * * @param mythread pointer to the thread object * * @return pointer to application specific argument */ void *ocs_thread_get_arg(ocs_thread_t *mythread) { return mythread->arg; } /** * @brief Request thread stop * * A stop request is made to the thread. This is a voluntary call, the thread needs * to periodically query its terminate request using ocs_thread_terminate_requested() * * @param thread pointer to thread object * * @return returns 0 for success, a negative error code value for failure. */ int32_t ocs_thread_terminate(ocs_thread_t *thread) { ocs_atomic_set(&thread->terminate, 1); return 0; } /** * @brief See if a terminate request has been made * * Check to see if a stop request has been made to the current thread. This * function would be used by a thread to see if it should terminate. * * @return returns non-zero if a stop has been requested */ int32_t ocs_thread_terminate_requested(ocs_thread_t *thread) { return ocs_atomic_read(&thread->terminate); } /** * @brief Retrieve threads return value * * After a thread has terminated, it's return value may be retrieved with this function. * * @param thread pointer to thread object * * @return return value from thread function */ int32_t ocs_thread_get_retval(ocs_thread_t *thread) { return thread->retval; } /** * @brief Request that the currently running thread yield * * The currently running thread yields to the scheduler * * @param thread pointer to thread (ignored) * * @return none */ void ocs_thread_yield(ocs_thread_t *thread) { pause("thread yield", 1); } ocs_thread_t * ocs_thread_self(void) { ocs_printf(">>> %s not implemented\n", __func__); ocs_abort(); } int32_t ocs_thread_setcpu(ocs_thread_t *thread, uint32_t cpu) { ocs_printf(">>> %s not implemented\n", __func__); return -1; } int32_t ocs_thread_getcpu(void) { return curcpu; } int ocs_sem_init(ocs_sem_t *sem, int val, const char *name, ...) { va_list ap; va_start(ap, name); ocs_vsnprintf(sem->name, sizeof(sem->name), name, ap); va_end(ap); sema_init(&sem->sem, val, sem->name); return 0; } /** * @ingroup os * @brief Copy user arguments in to kernel space for an ioctl * @par Description * This function is called at the beginning of an ioctl function * to copy the ioctl argument from user space to kernel space. * * BSD handles this for us - arg is already in kernel space, * so we just return it. * * @param os OS handle * @param arg The argument passed to the ioctl function * @param size The size of the structure pointed to by arg * * @return A pointer to a kernel space copy of the argument on * success; NULL on failure */ void *ocs_ioctl_preprocess(ocs_os_handle_t os, void *arg, size_t size) { return arg; } /** * @ingroup os * @brief Copy results of an ioctl back to user space * @par Description * This function is called at the end of ioctl processing to * copy the argument back to user space. * * BSD handles this for us. * * @param os OS handle * @param arg The argument passed to the ioctl function * @param kern_ptr A pointer to the kernel space copy of the * argument * @param size The size of the structure pointed to by arg. * * @return Returns 0. */ int32_t ocs_ioctl_postprocess(ocs_os_handle_t os, void *arg, void *kern_ptr, size_t size) { return 0; } /** * @ingroup os * @brief Free memory allocated by ocs_ioctl_preprocess * @par Description * This function is called in the event of an error in ioctl * processing. For operating environments where ocs_ioctlpreprocess * allocates memory, this call frees the memory without copying * results back to user space. * * For BSD, because no memory was allocated in ocs_ioctl_preprocess, * nothing needs to be done here. * * @param os OS handle * @param kern_ptr A pointer to the kernel space copy of the * argument * @param size The size of the structure pointed to by arg. * * @return Returns nothing. */ void ocs_ioctl_free(ocs_os_handle_t os, void *kern_ptr, size_t size) { return; } void ocs_intr_disable(ocs_os_handle_t os) { } void ocs_intr_enable(ocs_os_handle_t os) { } void ocs_print_stack(void) { #if defined(STACK) struct stack st; stack_zero(&st); stack_save(&st); stack_print(&st); #endif } void ocs_abort(void) { panic(">>> abort/panic\n"); } const char * ocs_pci_model(uint16_t vendor, uint16_t device) { switch (device) { case PCI_PRODUCT_EMULEX_OCE16002: return "OCE16002"; case PCI_PRODUCT_EMULEX_OCE1600_VF: return "OCE1600_VF"; case PCI_PRODUCT_EMULEX_OCE50102: return "OCE50102"; case PCI_PRODUCT_EMULEX_OCE50102_VF: return "OCE50102_VR"; default: break; } return "unknown"; } int32_t ocs_get_bus_dev_func(ocs_t *ocs, uint8_t* bus, uint8_t* dev, uint8_t* func) { *bus = pci_get_bus(ocs->dev); *dev = pci_get_slot(ocs->dev); *func= pci_get_function(ocs->dev); return 0; } /** * @brief return CPU information * * This function populates the ocs_cpuinfo_t buffer with CPU information * * @param cpuinfo pointer to ocs_cpuinfo_t buffer * * @return returns 0 for success, a negative error code value for failure. */ extern int mp_ncpus; int32_t ocs_get_cpuinfo(ocs_cpuinfo_t *cpuinfo) { cpuinfo->num_cpus = mp_ncpus; return 0; } uint32_t ocs_get_num_cpus(void) { static ocs_cpuinfo_t cpuinfo; if (cpuinfo.num_cpus == 0) { ocs_get_cpuinfo(&cpuinfo); } return cpuinfo.num_cpus; } void __ocs_callout(void *t) { ocs_timer_t *timer = t; if (callout_pending(&timer->callout)) { /* Callout was reset */ return; } if (!callout_active(&timer->callout)) { /* Callout was stopped */ return; } callout_deactivate(&timer->callout); if (timer->func) { timer->func(timer->data); } } int32_t ocs_setup_timer(ocs_os_handle_t os, ocs_timer_t *timer, void(*func)(void *arg), void *data, uint32_t timeout_ms) { struct timeval tv; int hz; if (timer == NULL) { ocs_log_err(NULL, "bad parameter\n"); return -1; } if (!mtx_initialized(&timer->lock)) { mtx_init(&timer->lock, "ocs_timer", NULL, MTX_DEF); } callout_init_mtx(&timer->callout, &timer->lock, 0); timer->func = func; timer->data = data; tv.tv_sec = timeout_ms / 1000; tv.tv_usec = (timeout_ms % 1000) * 1000; hz = tvtohz(&tv); if (hz < 0) hz = INT32_MAX; if (hz == 0) hz = 1; mtx_lock(&timer->lock); callout_reset(&timer->callout, hz, __ocs_callout, timer); mtx_unlock(&timer->lock); return 0; } int32_t ocs_mod_timer(ocs_timer_t *timer, uint32_t timeout_ms) { struct timeval tv; int hz; if (timer == NULL) { ocs_log_err(NULL, "bad parameter\n"); return -1; } tv.tv_sec = timeout_ms / 1000; tv.tv_usec = (timeout_ms % 1000) * 1000; hz = tvtohz(&tv); if (hz < 0) hz = INT32_MAX; if (hz == 0) hz = 1; mtx_lock(&timer->lock); callout_reset(&timer->callout, hz, __ocs_callout, timer); mtx_unlock(&timer->lock); return 0; } int32_t ocs_timer_pending(ocs_timer_t *timer) { return callout_active(&timer->callout); } int32_t ocs_del_timer(ocs_timer_t *timer) { mtx_lock(&timer->lock); callout_stop(&timer->callout); mtx_unlock(&timer->lock); return 0; } char * ocs_strdup(const char *s) { uint32_t l = strlen(s); char *d; d = ocs_malloc(NULL, l+1, OCS_M_NOWAIT); if (d != NULL) { ocs_strcpy(d, s); } return d; } void _ocs_assert(const char *cond, const char *filename, int linenum) { const char *fn = strrchr(__FILE__, '/'); ocs_log_err(NULL, "%s(%d) assertion (%s) failed\n", (fn ? fn + 1 : filename), linenum, cond); ocs_print_stack(); ocs_save_ddump_all(OCS_DDUMP_FLAGS_WQES|OCS_DDUMP_FLAGS_CQES|OCS_DDUMP_FLAGS_MQES, -1, TRUE); }