/*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (C) 2012-2014 Intel Corporation * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include #include #include #include #include #include "nvme_private.h" typedef enum error_print { ERROR_PRINT_NONE, ERROR_PRINT_NO_RETRY, ERROR_PRINT_ALL } error_print_t; #define DO_NOT_RETRY 1 static void _nvme_qpair_submit_request(struct nvme_qpair *qpair, struct nvme_request *req); static void nvme_qpair_destroy(struct nvme_qpair *qpair); #define DEFAULT_INDEX 256 #define DEFAULT_ENTRY(x) [DEFAULT_INDEX] = x #define OPC_ENTRY(x) [NVME_OPC_ ## x] = #x static const char *admin_opcode[DEFAULT_INDEX + 1] = { OPC_ENTRY(DELETE_IO_SQ), OPC_ENTRY(CREATE_IO_SQ), OPC_ENTRY(GET_LOG_PAGE), OPC_ENTRY(DELETE_IO_CQ), OPC_ENTRY(CREATE_IO_CQ), OPC_ENTRY(IDENTIFY), OPC_ENTRY(ABORT), OPC_ENTRY(SET_FEATURES), OPC_ENTRY(GET_FEATURES), OPC_ENTRY(ASYNC_EVENT_REQUEST), OPC_ENTRY(NAMESPACE_MANAGEMENT), OPC_ENTRY(FIRMWARE_ACTIVATE), OPC_ENTRY(FIRMWARE_IMAGE_DOWNLOAD), OPC_ENTRY(DEVICE_SELF_TEST), OPC_ENTRY(NAMESPACE_ATTACHMENT), OPC_ENTRY(KEEP_ALIVE), OPC_ENTRY(DIRECTIVE_SEND), OPC_ENTRY(DIRECTIVE_RECEIVE), OPC_ENTRY(VIRTUALIZATION_MANAGEMENT), OPC_ENTRY(NVME_MI_SEND), OPC_ENTRY(NVME_MI_RECEIVE), OPC_ENTRY(CAPACITY_MANAGEMENT), OPC_ENTRY(LOCKDOWN), OPC_ENTRY(DOORBELL_BUFFER_CONFIG), OPC_ENTRY(FABRICS_COMMANDS), OPC_ENTRY(FORMAT_NVM), OPC_ENTRY(SECURITY_SEND), OPC_ENTRY(SECURITY_RECEIVE), OPC_ENTRY(SANITIZE), OPC_ENTRY(GET_LBA_STATUS), DEFAULT_ENTRY("ADMIN COMMAND"), }; static const char *io_opcode[DEFAULT_INDEX + 1] = { OPC_ENTRY(FLUSH), OPC_ENTRY(WRITE), OPC_ENTRY(READ), OPC_ENTRY(WRITE_UNCORRECTABLE), OPC_ENTRY(COMPARE), OPC_ENTRY(WRITE_ZEROES), OPC_ENTRY(DATASET_MANAGEMENT), OPC_ENTRY(VERIFY), OPC_ENTRY(RESERVATION_REGISTER), OPC_ENTRY(RESERVATION_REPORT), OPC_ENTRY(RESERVATION_ACQUIRE), OPC_ENTRY(RESERVATION_RELEASE), OPC_ENTRY(COPY), DEFAULT_ENTRY("IO COMMAND"), }; static const char * get_opcode_string(const char *op[DEFAULT_INDEX + 1], uint16_t opc) { const char *nm = opc < DEFAULT_INDEX ? op[opc] : op[DEFAULT_INDEX]; return (nm != NULL ? nm : op[DEFAULT_INDEX]); } static const char * get_admin_opcode_string(uint16_t opc) { return (get_opcode_string(admin_opcode, opc)); } static const char * get_io_opcode_string(uint16_t opc) { return (get_opcode_string(io_opcode, opc)); } static void nvme_admin_qpair_print_command(struct nvme_qpair *qpair, struct nvme_command *cmd) { nvme_printf(qpair->ctrlr, "%s (%02x) sqid:%d cid:%d nsid:%x " "cdw10:%08x cdw11:%08x\n", get_admin_opcode_string(cmd->opc), cmd->opc, qpair->id, cmd->cid, le32toh(cmd->nsid), le32toh(cmd->cdw10), le32toh(cmd->cdw11)); } static void nvme_io_qpair_print_command(struct nvme_qpair *qpair, struct nvme_command *cmd) { switch (cmd->opc) { case NVME_OPC_WRITE: case NVME_OPC_READ: case NVME_OPC_WRITE_UNCORRECTABLE: case NVME_OPC_COMPARE: case NVME_OPC_WRITE_ZEROES: case NVME_OPC_VERIFY: nvme_printf(qpair->ctrlr, "%s sqid:%d cid:%d nsid:%d " "lba:%llu len:%d\n", get_io_opcode_string(cmd->opc), qpair->id, cmd->cid, le32toh(cmd->nsid), ((unsigned long long)le32toh(cmd->cdw11) << 32) + le32toh(cmd->cdw10), (le32toh(cmd->cdw12) & 0xFFFF) + 1); break; case NVME_OPC_FLUSH: case NVME_OPC_DATASET_MANAGEMENT: case NVME_OPC_RESERVATION_REGISTER: case NVME_OPC_RESERVATION_REPORT: case NVME_OPC_RESERVATION_ACQUIRE: case NVME_OPC_RESERVATION_RELEASE: nvme_printf(qpair->ctrlr, "%s sqid:%d cid:%d nsid:%d\n", get_io_opcode_string(cmd->opc), qpair->id, cmd->cid, le32toh(cmd->nsid)); break; default: nvme_printf(qpair->ctrlr, "%s (%02x) sqid:%d cid:%d nsid:%d\n", get_io_opcode_string(cmd->opc), cmd->opc, qpair->id, cmd->cid, le32toh(cmd->nsid)); break; } } void nvme_qpair_print_command(struct nvme_qpair *qpair, struct nvme_command *cmd) { if (qpair->id == 0) nvme_admin_qpair_print_command(qpair, cmd); else nvme_io_qpair_print_command(qpair, cmd); if (nvme_verbose_cmd_dump) { nvme_printf(qpair->ctrlr, "nsid:%#x rsvd2:%#x rsvd3:%#x mptr:%#jx prp1:%#jx prp2:%#jx\n", cmd->nsid, cmd->rsvd2, cmd->rsvd3, (uintmax_t)cmd->mptr, (uintmax_t)cmd->prp1, (uintmax_t)cmd->prp2); nvme_printf(qpair->ctrlr, "cdw10: %#x cdw11:%#x cdw12:%#x cdw13:%#x cdw14:%#x cdw15:%#x\n", cmd->cdw10, cmd->cdw11, cmd->cdw12, cmd->cdw13, cmd->cdw14, cmd->cdw15); } } struct nvme_status_string { uint16_t sc; const char * str; }; static struct nvme_status_string generic_status[] = { { NVME_SC_SUCCESS, "SUCCESS" }, { NVME_SC_INVALID_OPCODE, "INVALID OPCODE" }, { NVME_SC_INVALID_FIELD, "INVALID_FIELD" }, { NVME_SC_COMMAND_ID_CONFLICT, "COMMAND ID CONFLICT" }, { NVME_SC_DATA_TRANSFER_ERROR, "DATA TRANSFER ERROR" }, { NVME_SC_ABORTED_POWER_LOSS, "ABORTED - POWER LOSS" }, { NVME_SC_INTERNAL_DEVICE_ERROR, "INTERNAL DEVICE ERROR" }, { NVME_SC_ABORTED_BY_REQUEST, "ABORTED - BY REQUEST" }, { NVME_SC_ABORTED_SQ_DELETION, "ABORTED - SQ DELETION" }, { NVME_SC_ABORTED_FAILED_FUSED, "ABORTED - FAILED FUSED" }, { NVME_SC_ABORTED_MISSING_FUSED, "ABORTED - MISSING FUSED" }, { NVME_SC_INVALID_NAMESPACE_OR_FORMAT, "INVALID NAMESPACE OR FORMAT" }, { NVME_SC_COMMAND_SEQUENCE_ERROR, "COMMAND SEQUENCE ERROR" }, { NVME_SC_INVALID_SGL_SEGMENT_DESCR, "INVALID SGL SEGMENT DESCRIPTOR" }, { NVME_SC_INVALID_NUMBER_OF_SGL_DESCR, "INVALID NUMBER OF SGL DESCRIPTORS" }, { NVME_SC_DATA_SGL_LENGTH_INVALID, "DATA SGL LENGTH INVALID" }, { NVME_SC_METADATA_SGL_LENGTH_INVALID, "METADATA SGL LENGTH INVALID" }, { NVME_SC_SGL_DESCRIPTOR_TYPE_INVALID, "SGL DESCRIPTOR TYPE INVALID" }, { NVME_SC_INVALID_USE_OF_CMB, "INVALID USE OF CONTROLLER MEMORY BUFFER" }, { NVME_SC_PRP_OFFET_INVALID, "PRP OFFET INVALID" }, { NVME_SC_ATOMIC_WRITE_UNIT_EXCEEDED, "ATOMIC WRITE UNIT EXCEEDED" }, { NVME_SC_OPERATION_DENIED, "OPERATION DENIED" }, { NVME_SC_SGL_OFFSET_INVALID, "SGL OFFSET INVALID" }, { NVME_SC_HOST_ID_INCONSISTENT_FORMAT, "HOST IDENTIFIER INCONSISTENT FORMAT" }, { NVME_SC_KEEP_ALIVE_TIMEOUT_EXPIRED, "KEEP ALIVE TIMEOUT EXPIRED" }, { NVME_SC_KEEP_ALIVE_TIMEOUT_INVALID, "KEEP ALIVE TIMEOUT INVALID" }, { NVME_SC_ABORTED_DUE_TO_PREEMPT, "COMMAND ABORTED DUE TO PREEMPT AND ABORT" }, { NVME_SC_SANITIZE_FAILED, "SANITIZE FAILED" }, { NVME_SC_SANITIZE_IN_PROGRESS, "SANITIZE IN PROGRESS" }, { NVME_SC_SGL_DATA_BLOCK_GRAN_INVALID, "SGL_DATA_BLOCK_GRANULARITY_INVALID" }, { NVME_SC_NOT_SUPPORTED_IN_CMB, "COMMAND NOT SUPPORTED FOR QUEUE IN CMB" }, { NVME_SC_NAMESPACE_IS_WRITE_PROTECTED, "NAMESPACE IS WRITE PROTECTED" }, { NVME_SC_COMMAND_INTERRUPTED, "COMMAND INTERRUPTED" }, { NVME_SC_TRANSIENT_TRANSPORT_ERROR, "TRANSIENT TRANSPORT ERROR" }, { NVME_SC_LBA_OUT_OF_RANGE, "LBA OUT OF RANGE" }, { NVME_SC_CAPACITY_EXCEEDED, "CAPACITY EXCEEDED" }, { NVME_SC_NAMESPACE_NOT_READY, "NAMESPACE NOT READY" }, { NVME_SC_RESERVATION_CONFLICT, "RESERVATION CONFLICT" }, { NVME_SC_FORMAT_IN_PROGRESS, "FORMAT IN PROGRESS" }, { 0xFFFF, "GENERIC" } }; static struct nvme_status_string command_specific_status[] = { { NVME_SC_COMPLETION_QUEUE_INVALID, "INVALID COMPLETION QUEUE" }, { NVME_SC_INVALID_QUEUE_IDENTIFIER, "INVALID QUEUE IDENTIFIER" }, { NVME_SC_MAXIMUM_QUEUE_SIZE_EXCEEDED, "MAX QUEUE SIZE EXCEEDED" }, { NVME_SC_ABORT_COMMAND_LIMIT_EXCEEDED, "ABORT CMD LIMIT EXCEEDED" }, { NVME_SC_ASYNC_EVENT_REQUEST_LIMIT_EXCEEDED, "ASYNC LIMIT EXCEEDED" }, { NVME_SC_INVALID_FIRMWARE_SLOT, "INVALID FIRMWARE SLOT" }, { NVME_SC_INVALID_FIRMWARE_IMAGE, "INVALID FIRMWARE IMAGE" }, { NVME_SC_INVALID_INTERRUPT_VECTOR, "INVALID INTERRUPT VECTOR" }, { NVME_SC_INVALID_LOG_PAGE, "INVALID LOG PAGE" }, { NVME_SC_INVALID_FORMAT, "INVALID FORMAT" }, { NVME_SC_FIRMWARE_REQUIRES_RESET, "FIRMWARE REQUIRES RESET" }, { NVME_SC_INVALID_QUEUE_DELETION, "INVALID QUEUE DELETION" }, { NVME_SC_FEATURE_NOT_SAVEABLE, "FEATURE IDENTIFIER NOT SAVEABLE" }, { NVME_SC_FEATURE_NOT_CHANGEABLE, "FEATURE NOT CHANGEABLE" }, { NVME_SC_FEATURE_NOT_NS_SPECIFIC, "FEATURE NOT NAMESPACE SPECIFIC" }, { NVME_SC_FW_ACT_REQUIRES_NVMS_RESET, "FIRMWARE ACTIVATION REQUIRES NVM SUBSYSTEM RESET" }, { NVME_SC_FW_ACT_REQUIRES_RESET, "FIRMWARE ACTIVATION REQUIRES RESET" }, { NVME_SC_FW_ACT_REQUIRES_TIME, "FIRMWARE ACTIVATION REQUIRES MAXIMUM TIME VIOLATION" }, { NVME_SC_FW_ACT_PROHIBITED, "FIRMWARE ACTIVATION PROHIBITED" }, { NVME_SC_OVERLAPPING_RANGE, "OVERLAPPING RANGE" }, { NVME_SC_NS_INSUFFICIENT_CAPACITY, "NAMESPACE INSUFFICIENT CAPACITY" }, { NVME_SC_NS_ID_UNAVAILABLE, "NAMESPACE IDENTIFIER UNAVAILABLE" }, { NVME_SC_NS_ALREADY_ATTACHED, "NAMESPACE ALREADY ATTACHED" }, { NVME_SC_NS_IS_PRIVATE, "NAMESPACE IS PRIVATE" }, { NVME_SC_NS_NOT_ATTACHED, "NS NOT ATTACHED" }, { NVME_SC_THIN_PROV_NOT_SUPPORTED, "THIN PROVISIONING NOT SUPPORTED" }, { NVME_SC_CTRLR_LIST_INVALID, "CONTROLLER LIST INVALID" }, { NVME_SC_SELF_TEST_IN_PROGRESS, "DEVICE SELF-TEST IN PROGRESS" }, { NVME_SC_BOOT_PART_WRITE_PROHIB, "BOOT PARTITION WRITE PROHIBITED" }, { NVME_SC_INVALID_CTRLR_ID, "INVALID CONTROLLER IDENTIFIER" }, { NVME_SC_INVALID_SEC_CTRLR_STATE, "INVALID SECONDARY CONTROLLER STATE" }, { NVME_SC_INVALID_NUM_OF_CTRLR_RESRC, "INVALID NUMBER OF CONTROLLER RESOURCES" }, { NVME_SC_INVALID_RESOURCE_ID, "INVALID RESOURCE IDENTIFIER" }, { NVME_SC_SANITIZE_PROHIBITED_WPMRE, "SANITIZE PROHIBITED WRITE PERSISTENT MEMORY REGION ENABLED" }, { NVME_SC_ANA_GROUP_ID_INVALID, "ANA GROUP IDENTIFIED INVALID" }, { NVME_SC_ANA_ATTACH_FAILED, "ANA ATTACH FAILED" }, { NVME_SC_CONFLICTING_ATTRIBUTES, "CONFLICTING ATTRIBUTES" }, { NVME_SC_INVALID_PROTECTION_INFO, "INVALID PROTECTION INFO" }, { NVME_SC_ATTEMPTED_WRITE_TO_RO_PAGE, "WRITE TO RO PAGE" }, { 0xFFFF, "COMMAND SPECIFIC" } }; static struct nvme_status_string media_error_status[] = { { NVME_SC_WRITE_FAULTS, "WRITE FAULTS" }, { NVME_SC_UNRECOVERED_READ_ERROR, "UNRECOVERED READ ERROR" }, { NVME_SC_GUARD_CHECK_ERROR, "GUARD CHECK ERROR" }, { NVME_SC_APPLICATION_TAG_CHECK_ERROR, "APPLICATION TAG CHECK ERROR" }, { NVME_SC_REFERENCE_TAG_CHECK_ERROR, "REFERENCE TAG CHECK ERROR" }, { NVME_SC_COMPARE_FAILURE, "COMPARE FAILURE" }, { NVME_SC_ACCESS_DENIED, "ACCESS DENIED" }, { NVME_SC_DEALLOCATED_OR_UNWRITTEN, "DEALLOCATED OR UNWRITTEN LOGICAL BLOCK" }, { 0xFFFF, "MEDIA ERROR" } }; static struct nvme_status_string path_related_status[] = { { NVME_SC_INTERNAL_PATH_ERROR, "INTERNAL PATH ERROR" }, { NVME_SC_ASYMMETRIC_ACCESS_PERSISTENT_LOSS, "ASYMMETRIC ACCESS PERSISTENT LOSS" }, { NVME_SC_ASYMMETRIC_ACCESS_INACCESSIBLE, "ASYMMETRIC ACCESS INACCESSIBLE" }, { NVME_SC_ASYMMETRIC_ACCESS_TRANSITION, "ASYMMETRIC ACCESS TRANSITION" }, { NVME_SC_CONTROLLER_PATHING_ERROR, "CONTROLLER PATHING ERROR" }, { NVME_SC_HOST_PATHING_ERROR, "HOST PATHING ERROR" }, { NVME_SC_COMMAND_ABORTED_BY_HOST, "COMMAND ABORTED BY HOST" }, { 0xFFFF, "PATH RELATED" }, }; static const char * get_status_string(uint16_t sct, uint16_t sc) { struct nvme_status_string *entry; switch (sct) { case NVME_SCT_GENERIC: entry = generic_status; break; case NVME_SCT_COMMAND_SPECIFIC: entry = command_specific_status; break; case NVME_SCT_MEDIA_ERROR: entry = media_error_status; break; case NVME_SCT_PATH_RELATED: entry = path_related_status; break; case NVME_SCT_VENDOR_SPECIFIC: return ("VENDOR SPECIFIC"); default: return ("RESERVED"); } while (entry->sc != 0xFFFF) { if (entry->sc == sc) return (entry->str); entry++; } return (entry->str); } void nvme_qpair_print_completion(struct nvme_qpair *qpair, struct nvme_completion *cpl) { uint8_t sct, sc, crd, m, dnr, p; sct = NVME_STATUS_GET_SCT(cpl->status); sc = NVME_STATUS_GET_SC(cpl->status); crd = NVME_STATUS_GET_CRD(cpl->status); m = NVME_STATUS_GET_M(cpl->status); dnr = NVME_STATUS_GET_DNR(cpl->status); p = NVME_STATUS_GET_P(cpl->status); nvme_printf(qpair->ctrlr, "%s (%02x/%02x) crd:%x m:%x dnr:%x p:%d " "sqid:%d cid:%d cdw0:%x\n", get_status_string(sct, sc), sct, sc, crd, m, dnr, p, cpl->sqid, cpl->cid, cpl->cdw0); } static bool nvme_completion_is_retry(const struct nvme_completion *cpl) { uint8_t sct, sc, dnr; sct = NVME_STATUS_GET_SCT(cpl->status); sc = NVME_STATUS_GET_SC(cpl->status); dnr = NVME_STATUS_GET_DNR(cpl->status); /* Do Not Retry Bit */ /* * TODO: spec is not clear how commands that are aborted due * to TLER will be marked. So for now, it seems * NAMESPACE_NOT_READY is the only case where we should * look at the DNR bit. Requests failed with ABORTED_BY_REQUEST * set the DNR bit correctly since the driver controls that. */ switch (sct) { case NVME_SCT_GENERIC: switch (sc) { case NVME_SC_ABORTED_BY_REQUEST: case NVME_SC_NAMESPACE_NOT_READY: if (dnr) return (0); else return (1); case NVME_SC_INVALID_OPCODE: case NVME_SC_INVALID_FIELD: case NVME_SC_COMMAND_ID_CONFLICT: case NVME_SC_DATA_TRANSFER_ERROR: case NVME_SC_ABORTED_POWER_LOSS: case NVME_SC_INTERNAL_DEVICE_ERROR: case NVME_SC_ABORTED_SQ_DELETION: case NVME_SC_ABORTED_FAILED_FUSED: case NVME_SC_ABORTED_MISSING_FUSED: case NVME_SC_INVALID_NAMESPACE_OR_FORMAT: case NVME_SC_COMMAND_SEQUENCE_ERROR: case NVME_SC_LBA_OUT_OF_RANGE: case NVME_SC_CAPACITY_EXCEEDED: default: return (0); } case NVME_SCT_COMMAND_SPECIFIC: case NVME_SCT_MEDIA_ERROR: return (0); case NVME_SCT_PATH_RELATED: switch (sc) { case NVME_SC_INTERNAL_PATH_ERROR: if (dnr) return (0); else return (1); default: return (0); } case NVME_SCT_VENDOR_SPECIFIC: default: return (0); } } static void nvme_qpair_complete_tracker(struct nvme_tracker *tr, struct nvme_completion *cpl, error_print_t print_on_error) { struct nvme_qpair * qpair = tr->qpair; struct nvme_request *req; bool retry, error, retriable; req = tr->req; error = nvme_completion_is_error(cpl); retriable = nvme_completion_is_retry(cpl); retry = error && retriable && req->retries < nvme_retry_count; if (retry) qpair->num_retries++; if (error && req->retries >= nvme_retry_count && retriable) qpair->num_failures++; if (error && (print_on_error == ERROR_PRINT_ALL || (!retry && print_on_error == ERROR_PRINT_NO_RETRY))) { nvme_qpair_print_command(qpair, &req->cmd); nvme_qpair_print_completion(qpair, cpl); } qpair->act_tr[cpl->cid] = NULL; KASSERT(cpl->cid == req->cmd.cid, ("cpl cid does not match cmd cid\n")); if (!retry) { if (req->payload_valid) { bus_dmamap_sync(qpair->dma_tag_payload, tr->payload_dma_map, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); } if (req->cb_fn) req->cb_fn(req->cb_arg, cpl); } mtx_lock(&qpair->lock); if (retry) { req->retries++; nvme_qpair_submit_tracker(qpair, tr); } else { if (req->payload_valid) { bus_dmamap_unload(qpair->dma_tag_payload, tr->payload_dma_map); } nvme_free_request(req); tr->req = NULL; TAILQ_REMOVE(&qpair->outstanding_tr, tr, tailq); TAILQ_INSERT_HEAD(&qpair->free_tr, tr, tailq); /* * If the controller is in the middle of resetting, don't * try to submit queued requests here - let the reset logic * handle that instead. */ if (!STAILQ_EMPTY(&qpair->queued_req) && !qpair->ctrlr->is_resetting) { req = STAILQ_FIRST(&qpair->queued_req); STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq); _nvme_qpair_submit_request(qpair, req); } } mtx_unlock(&qpair->lock); } static void nvme_qpair_manual_complete_tracker( struct nvme_tracker *tr, uint32_t sct, uint32_t sc, uint32_t dnr, error_print_t print_on_error) { struct nvme_completion cpl; memset(&cpl, 0, sizeof(cpl)); struct nvme_qpair * qpair = tr->qpair; cpl.sqid = qpair->id; cpl.cid = tr->cid; cpl.status |= NVMEF(NVME_STATUS_SCT, sct); cpl.status |= NVMEF(NVME_STATUS_SC, sc); cpl.status |= NVMEF(NVME_STATUS_DNR, dnr); /* M=0 : this is artificial so no data in error log page */ /* CRD=0 : this is artificial and no delayed retry support anyway */ /* P=0 : phase not checked */ nvme_qpair_complete_tracker(tr, &cpl, print_on_error); } void nvme_qpair_manual_complete_request(struct nvme_qpair *qpair, struct nvme_request *req, uint32_t sct, uint32_t sc) { struct nvme_completion cpl; bool error; memset(&cpl, 0, sizeof(cpl)); cpl.sqid = qpair->id; cpl.status |= NVMEF(NVME_STATUS_SCT, sct); cpl.status |= NVMEF(NVME_STATUS_SC, sc); error = nvme_completion_is_error(&cpl); if (error) { nvme_qpair_print_command(qpair, &req->cmd); nvme_qpair_print_completion(qpair, &cpl); } if (req->cb_fn) req->cb_fn(req->cb_arg, &cpl); nvme_free_request(req); } /* Locked version of completion processor */ static bool _nvme_qpair_process_completions(struct nvme_qpair *qpair) { struct nvme_tracker *tr; struct nvme_completion cpl; bool done = false; bool in_panic = dumping || SCHEDULER_STOPPED(); mtx_assert(&qpair->recovery, MA_OWNED); /* * qpair is not enabled, likely because a controller reset is in * progress. Ignore the interrupt - any I/O that was associated with * this interrupt will get retried when the reset is complete. Any * pending completions for when we're in startup will be completed * as soon as initialization is complete and we start sending commands * to the device. */ if (qpair->recovery_state != RECOVERY_NONE) { qpair->num_ignored++; return (false); } /* * Sanity check initialization. After we reset the hardware, the phase * is defined to be 1. So if we get here with zero prior calls and the * phase is 0, it means that we've lost a race between the * initialization and the ISR running. With the phase wrong, we'll * process a bunch of completions that aren't really completions leading * to a KASSERT below. */ KASSERT(!(qpair->num_intr_handler_calls == 0 && qpair->phase == 0), ("%s: Phase wrong for first interrupt call.", device_get_nameunit(qpair->ctrlr->dev))); qpair->num_intr_handler_calls++; bus_dmamap_sync(qpair->dma_tag, qpair->queuemem_map, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); /* * A panic can stop the CPU this routine is running on at any point. If * we're called during a panic, complete the sq_head wrap protocol for * the case where we are interrupted just after the increment at 1 * below, but before we can reset cq_head to zero at 2. Also cope with * the case where we do the zero at 2, but may or may not have done the * phase adjustment at step 3. The panic machinery flushes all pending * memory writes, so we can make these strong ordering assumptions * that would otherwise be unwise if we were racing in real time. */ if (__predict_false(in_panic)) { if (qpair->cq_head == qpair->num_entries) { /* * Here we know that we need to zero cq_head and then negate * the phase, which hasn't been assigned if cq_head isn't * zero due to the atomic_store_rel. */ qpair->cq_head = 0; qpair->phase = !qpair->phase; } else if (qpair->cq_head == 0) { /* * In this case, we know that the assignment at 2 * happened below, but we don't know if it 3 happened or * not. To do this, we look at the last completion * entry and set the phase to the opposite phase * that it has. This gets us back in sync */ cpl = qpair->cpl[qpair->num_entries - 1]; nvme_completion_swapbytes(&cpl); qpair->phase = !NVME_STATUS_GET_P(cpl.status); } } while (1) { uint16_t status; /* * We need to do this dance to avoid a race between the host and * the device where the device overtakes the host while the host * is reading this record, leaving the status field 'new' and * the sqhd and cid fields potentially stale. If the phase * doesn't match, that means status hasn't yet been updated and * we'll get any pending changes next time. It also means that * the phase must be the same the second time. We have to sync * before reading to ensure any bouncing completes. */ status = le16toh(qpair->cpl[qpair->cq_head].status); if (NVME_STATUS_GET_P(status) != qpair->phase) break; bus_dmamap_sync(qpair->dma_tag, qpair->queuemem_map, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); cpl = qpair->cpl[qpair->cq_head]; nvme_completion_swapbytes(&cpl); KASSERT( NVME_STATUS_GET_P(status) == NVME_STATUS_GET_P(cpl.status), ("Phase unexpectedly inconsistent")); if (cpl.cid < qpair->num_trackers) tr = qpair->act_tr[cpl.cid]; else tr = NULL; done = true; if (tr != NULL) { nvme_qpair_complete_tracker(tr, &cpl, ERROR_PRINT_ALL); qpair->sq_head = cpl.sqhd; } else if (!in_panic) { /* * A missing tracker is normally an error. However, a * panic can stop the CPU this routine is running on * after completing an I/O but before updating * qpair->cq_head at 1 below. Later, we re-enter this * routine to poll I/O associated with the kernel * dump. We find that the tr has been set to null before * calling the completion routine. If it hasn't * completed (or it triggers a panic), then '1' below * won't have updated cq_head. Rather than panic again, * ignore this condition because it's not unexpected. */ nvme_printf(qpair->ctrlr, "cpl (cid = %u) does not map to outstanding cmd\n", cpl.cid); nvme_qpair_print_completion(qpair, &qpair->cpl[qpair->cq_head]); KASSERT(0, ("received completion for unknown cmd")); } /* * There's a number of races with the following (see above) when * the system panics. We compensate for each one of them by * using the atomic store to force strong ordering (at least when * viewed in the aftermath of a panic). */ if (++qpair->cq_head == qpair->num_entries) { /* 1 */ atomic_store_rel_int(&qpair->cq_head, 0); /* 2 */ qpair->phase = !qpair->phase; /* 3 */ } } if (done) { bus_space_write_4(qpair->ctrlr->bus_tag, qpair->ctrlr->bus_handle, qpair->cq_hdbl_off, qpair->cq_head); } return (done); } bool nvme_qpair_process_completions(struct nvme_qpair *qpair) { bool done; /* * Interlock with reset / recovery code. This is an usually uncontended * to make sure that we drain out of the ISRs before we reset the card * and to prevent races with the recovery process called from a timeout * context. */ if (!mtx_trylock(&qpair->recovery)) { qpair->num_recovery_nolock++; return (false); } done = _nvme_qpair_process_completions(qpair); mtx_unlock(&qpair->recovery); return (done); } static void nvme_qpair_msi_handler(void *arg) { struct nvme_qpair *qpair = arg; nvme_qpair_process_completions(qpair); } int nvme_qpair_construct(struct nvme_qpair *qpair, uint32_t num_entries, uint32_t num_trackers, struct nvme_controller *ctrlr) { struct nvme_tracker *tr; size_t cmdsz, cplsz, prpsz, allocsz, prpmemsz; uint64_t queuemem_phys, prpmem_phys, list_phys; uint8_t *queuemem, *prpmem, *prp_list; int i, err; qpair->vector = ctrlr->msi_count > 1 ? qpair->id : 0; qpair->num_entries = num_entries; qpair->num_trackers = num_trackers; qpair->ctrlr = ctrlr; mtx_init(&qpair->lock, "nvme qpair lock", NULL, MTX_DEF); mtx_init(&qpair->recovery, "nvme qpair recovery", NULL, MTX_DEF); callout_init_mtx(&qpair->timer, &qpair->recovery, 0); qpair->timer_armed = false; qpair->recovery_state = RECOVERY_WAITING; /* Note: NVMe PRP format is restricted to 4-byte alignment. */ err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev), 4, ctrlr->page_size, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, ctrlr->max_xfer_size, howmany(ctrlr->max_xfer_size, ctrlr->page_size) + 1, ctrlr->page_size, 0, NULL, NULL, &qpair->dma_tag_payload); if (err != 0) { nvme_printf(ctrlr, "payload tag create failed %d\n", err); goto out; } /* * Each component must be page aligned, and individual PRP lists * cannot cross a page boundary. */ cmdsz = qpair->num_entries * sizeof(struct nvme_command); cmdsz = roundup2(cmdsz, ctrlr->page_size); cplsz = qpair->num_entries * sizeof(struct nvme_completion); cplsz = roundup2(cplsz, ctrlr->page_size); /* * For commands requiring more than 2 PRP entries, one PRP will be * embedded in the command (prp1), and the rest of the PRP entries * will be in a list pointed to by the command (prp2). */ prpsz = sizeof(uint64_t) * howmany(ctrlr->max_xfer_size, ctrlr->page_size); prpmemsz = qpair->num_trackers * prpsz; allocsz = cmdsz + cplsz + prpmemsz; err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev), ctrlr->page_size, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, allocsz, 1, allocsz, 0, NULL, NULL, &qpair->dma_tag); if (err != 0) { nvme_printf(ctrlr, "tag create failed %d\n", err); goto out; } bus_dma_tag_set_domain(qpair->dma_tag, qpair->domain); if (bus_dmamem_alloc(qpair->dma_tag, (void **)&queuemem, BUS_DMA_COHERENT | BUS_DMA_NOWAIT, &qpair->queuemem_map)) { nvme_printf(ctrlr, "failed to alloc qpair memory\n"); goto out; } if (bus_dmamap_load(qpair->dma_tag, qpair->queuemem_map, queuemem, allocsz, nvme_single_map, &queuemem_phys, 0) != 0) { nvme_printf(ctrlr, "failed to load qpair memory\n"); bus_dmamem_free(qpair->dma_tag, qpair->cmd, qpair->queuemem_map); goto out; } qpair->num_cmds = 0; qpair->num_intr_handler_calls = 0; qpair->num_retries = 0; qpair->num_failures = 0; qpair->num_ignored = 0; qpair->cmd = (struct nvme_command *)queuemem; qpair->cpl = (struct nvme_completion *)(queuemem + cmdsz); prpmem = (uint8_t *)(queuemem + cmdsz + cplsz); qpair->cmd_bus_addr = queuemem_phys; qpair->cpl_bus_addr = queuemem_phys + cmdsz; prpmem_phys = queuemem_phys + cmdsz + cplsz; /* * Calcuate the stride of the doorbell register. Many emulators set this * value to correspond to a cache line. However, some hardware has set * it to various small values. */ qpair->sq_tdbl_off = nvme_mmio_offsetof(doorbell[0]) + (qpair->id << (ctrlr->dstrd + 1)); qpair->cq_hdbl_off = nvme_mmio_offsetof(doorbell[0]) + (qpair->id << (ctrlr->dstrd + 1)) + (1 << ctrlr->dstrd); TAILQ_INIT(&qpair->free_tr); TAILQ_INIT(&qpair->outstanding_tr); STAILQ_INIT(&qpair->queued_req); list_phys = prpmem_phys; prp_list = prpmem; for (i = 0; i < qpair->num_trackers; i++) { if (list_phys + prpsz > prpmem_phys + prpmemsz) { qpair->num_trackers = i; break; } /* * Make sure that the PRP list for this tracker doesn't * overflow to another nvme page. */ if (trunc_page(list_phys) != trunc_page(list_phys + prpsz - 1)) { list_phys = roundup2(list_phys, ctrlr->page_size); prp_list = (uint8_t *)roundup2((uintptr_t)prp_list, ctrlr->page_size); } tr = malloc_domainset(sizeof(*tr), M_NVME, DOMAINSET_PREF(qpair->domain), M_ZERO | M_WAITOK); bus_dmamap_create(qpair->dma_tag_payload, 0, &tr->payload_dma_map); tr->cid = i; tr->qpair = qpair; tr->prp = (uint64_t *)prp_list; tr->prp_bus_addr = list_phys; TAILQ_INSERT_HEAD(&qpair->free_tr, tr, tailq); list_phys += prpsz; prp_list += prpsz; } if (qpair->num_trackers == 0) { nvme_printf(ctrlr, "failed to allocate enough trackers\n"); goto out; } qpair->act_tr = malloc_domainset(sizeof(struct nvme_tracker *) * qpair->num_entries, M_NVME, DOMAINSET_PREF(qpair->domain), M_ZERO | M_WAITOK); if (ctrlr->msi_count > 1) { /* * MSI-X vector resource IDs start at 1, so we add one to * the queue's vector to get the corresponding rid to use. */ qpair->rid = qpair->vector + 1; qpair->res = bus_alloc_resource_any(ctrlr->dev, SYS_RES_IRQ, &qpair->rid, RF_ACTIVE); if (qpair->res == NULL) { nvme_printf(ctrlr, "unable to allocate MSI\n"); goto out; } if (bus_setup_intr(ctrlr->dev, qpair->res, INTR_TYPE_MISC | INTR_MPSAFE, NULL, nvme_qpair_msi_handler, qpair, &qpair->tag) != 0) { nvme_printf(ctrlr, "unable to setup MSI\n"); goto out; } if (qpair->id == 0) { bus_describe_intr(ctrlr->dev, qpair->res, qpair->tag, "admin"); } else { bus_describe_intr(ctrlr->dev, qpair->res, qpair->tag, "io%d", qpair->id - 1); } } return (0); out: nvme_qpair_destroy(qpair); return (ENOMEM); } static void nvme_qpair_destroy(struct nvme_qpair *qpair) { struct nvme_tracker *tr; mtx_lock(&qpair->recovery); qpair->timer_armed = false; mtx_unlock(&qpair->recovery); callout_drain(&qpair->timer); if (qpair->tag) { bus_teardown_intr(qpair->ctrlr->dev, qpair->res, qpair->tag); qpair->tag = NULL; } if (qpair->act_tr) { free(qpair->act_tr, M_NVME); qpair->act_tr = NULL; } while (!TAILQ_EMPTY(&qpair->free_tr)) { tr = TAILQ_FIRST(&qpair->free_tr); TAILQ_REMOVE(&qpair->free_tr, tr, tailq); bus_dmamap_destroy(qpair->dma_tag_payload, tr->payload_dma_map); free(tr, M_NVME); } if (qpair->cmd != NULL) { bus_dmamap_unload(qpair->dma_tag, qpair->queuemem_map); bus_dmamem_free(qpair->dma_tag, qpair->cmd, qpair->queuemem_map); qpair->cmd = NULL; } if (qpair->dma_tag) { bus_dma_tag_destroy(qpair->dma_tag); qpair->dma_tag = NULL; } if (qpair->dma_tag_payload) { bus_dma_tag_destroy(qpair->dma_tag_payload); qpair->dma_tag_payload = NULL; } if (mtx_initialized(&qpair->lock)) mtx_destroy(&qpair->lock); if (mtx_initialized(&qpair->recovery)) mtx_destroy(&qpair->recovery); if (qpair->res) { bus_release_resource(qpair->ctrlr->dev, SYS_RES_IRQ, rman_get_rid(qpair->res), qpair->res); qpair->res = NULL; } } static void nvme_admin_qpair_abort_aers(struct nvme_qpair *qpair) { struct nvme_tracker *tr; /* * nvme_complete_tracker must be called without the qpair lock held. It * takes the lock to adjust outstanding_tr list, so make sure we don't * have it yet (since this is a general purpose routine). We take the * lock to make the list traverse safe, but have to drop the lock to * complete any AER. We restart the list scan when we do this to make * this safe. There's interlock with the ISR so we know this tracker * won't be completed twice. */ mtx_assert(&qpair->lock, MA_NOTOWNED); mtx_lock(&qpair->lock); tr = TAILQ_FIRST(&qpair->outstanding_tr); while (tr != NULL) { if (tr->req->cmd.opc == NVME_OPC_ASYNC_EVENT_REQUEST) { mtx_unlock(&qpair->lock); nvme_qpair_manual_complete_tracker(tr, NVME_SCT_GENERIC, NVME_SC_ABORTED_SQ_DELETION, 0, ERROR_PRINT_NONE); mtx_lock(&qpair->lock); tr = TAILQ_FIRST(&qpair->outstanding_tr); } else { tr = TAILQ_NEXT(tr, tailq); } } mtx_unlock(&qpair->lock); } void nvme_admin_qpair_destroy(struct nvme_qpair *qpair) { mtx_assert(&qpair->lock, MA_NOTOWNED); nvme_admin_qpair_abort_aers(qpair); nvme_qpair_destroy(qpair); } void nvme_io_qpair_destroy(struct nvme_qpair *qpair) { nvme_qpair_destroy(qpair); } static void nvme_abort_complete(void *arg, const struct nvme_completion *status) { struct nvme_tracker *tr = arg; /* * If cdw0 == 1, the controller was not able to abort the command * we requested. We still need to check the active tracker array, * to cover race where I/O timed out at same time controller was * completing the I/O. */ if (status->cdw0 == 1 && tr->qpair->act_tr[tr->cid] != NULL) { /* * An I/O has timed out, and the controller was unable to * abort it for some reason. Construct a fake completion * status, and then complete the I/O's tracker manually. */ nvme_printf(tr->qpair->ctrlr, "abort command failed, aborting command manually\n"); nvme_qpair_manual_complete_tracker(tr, NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST, 0, ERROR_PRINT_ALL); } } static void nvme_qpair_timeout(void *arg) { struct nvme_qpair *qpair = arg; struct nvme_controller *ctrlr = qpair->ctrlr; struct nvme_tracker *tr; sbintime_t now; bool idle = false; bool needs_reset; uint32_t csts; uint8_t cfs; mtx_assert(&qpair->recovery, MA_OWNED); /* * If the controller is failed, then stop polling. This ensures that any * failure processing that races with the qpair timeout will fail * safely. */ if (qpair->ctrlr->is_failed) { nvme_printf(qpair->ctrlr, "Failed controller, stopping watchdog timeout.\n"); qpair->timer_armed = false; return; } /* * Shutdown condition: We set qpair->timer_armed to false in * nvme_qpair_destroy before calling callout_drain. When we call that, * this routine might get called one last time. Exit w/o setting a * timeout. None of the watchdog stuff needs to be done since we're * destroying the qpair. */ if (!qpair->timer_armed) { nvme_printf(qpair->ctrlr, "Timeout fired during nvme_qpair_destroy\n"); return; } switch (qpair->recovery_state) { case RECOVERY_NONE: /* * Read csts to get value of cfs - controller fatal status. If * we are in the hot-plug or controller failed status proceed * directly to reset. We also bail early if the status reads all * 1's or the control fatal status bit is now 1. The latter is * always true when the former is true, but not vice versa. The * intent of the code is that if the card is gone (all 1's) or * we've failed, then try to do a reset (which someitmes * unwedges a card reading all 1's that's not gone away, but * usually doesn't). */ csts = nvme_mmio_read_4(ctrlr, csts); cfs = NVMEV(NVME_CSTS_REG_CFS, csts); if (csts == NVME_GONE || cfs == 1) goto do_reset; /* * Process completions. We already have the recovery lock, so * call the locked version. */ _nvme_qpair_process_completions(qpair); /* * Check to see if we need to timeout any commands. If we do, then * we also enter a recovery phase. */ now = getsbinuptime(); needs_reset = false; idle = true; mtx_lock(&qpair->lock); TAILQ_FOREACH(tr, &qpair->outstanding_tr, tailq) { /* * Skip async commands, they are posted to the card for * an indefinite amount of time and have no deadline. */ if (tr->deadline == SBT_MAX) continue; if (now > tr->deadline) { if (tr->req->cb_fn != nvme_abort_complete && ctrlr->enable_aborts) { /* * This isn't an abort command, ask * for a hardware abort. */ nvme_ctrlr_cmd_abort(ctrlr, tr->cid, qpair->id, nvme_abort_complete, tr); } else { /* * Otherwise we have a live command in * the card (either one we couldn't * abort, or aborts weren't enabled). * The only safe way to proceed is to do * a reset. */ needs_reset = true; } } else { idle = false; } } mtx_unlock(&qpair->lock); if (!needs_reset) break; /* * We've had a command timeout that we weren't able to abort * * If we get here due to a possible surprise hot-unplug event, * then we let nvme_ctrlr_reset confirm and fail the * controller. */ do_reset: nvme_printf(ctrlr, "Resetting controller due to a timeout%s.\n", (csts == 0xffffffff) ? " and possible hot unplug" : (cfs ? " and fatal error status" : "")); qpair->recovery_state = RECOVERY_WAITING; nvme_ctrlr_reset(ctrlr); idle = false; /* We want to keep polling */ break; case RECOVERY_WAITING: /* * These messages aren't interesting while we're suspended. We * put the queues into waiting state while * suspending. Suspending takes a while, so we'll see these * during that time and they aren't diagnostic. At other times, * they indicate a problem that's worth complaining about. */ if (!device_is_suspended(ctrlr->dev)) nvme_printf(ctrlr, "Waiting for reset to complete\n"); idle = false; /* We want to keep polling */ break; } /* * Rearm the timeout. */ if (!idle) { callout_schedule_sbt(&qpair->timer, SBT_1S / 2, SBT_1S / 2, 0); } else { qpair->timer_armed = false; } } /* * Submit the tracker to the hardware. Must already be in the * outstanding queue when called. */ void nvme_qpair_submit_tracker(struct nvme_qpair *qpair, struct nvme_tracker *tr) { struct nvme_request *req; struct nvme_controller *ctrlr; int timeout; mtx_assert(&qpair->lock, MA_OWNED); req = tr->req; req->cmd.cid = tr->cid; qpair->act_tr[tr->cid] = tr; ctrlr = qpair->ctrlr; if (req->timeout) { if (req->cb_fn == nvme_completion_poll_cb) timeout = 1; else if (qpair->id == 0) timeout = ctrlr->admin_timeout_period; else timeout = ctrlr->timeout_period; tr->deadline = getsbinuptime() + timeout * SBT_1S; if (!qpair->timer_armed) { qpair->timer_armed = true; callout_reset_sbt_on(&qpair->timer, SBT_1S / 2, SBT_1S / 2, nvme_qpair_timeout, qpair, qpair->cpu, 0); } } else tr->deadline = SBT_MAX; /* Copy the command from the tracker to the submission queue. */ memcpy(&qpair->cmd[qpair->sq_tail], &req->cmd, sizeof(req->cmd)); if (++qpair->sq_tail == qpair->num_entries) qpair->sq_tail = 0; bus_dmamap_sync(qpair->dma_tag, qpair->queuemem_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); bus_space_write_4(qpair->ctrlr->bus_tag, qpair->ctrlr->bus_handle, qpair->sq_tdbl_off, qpair->sq_tail); qpair->num_cmds++; } static void nvme_payload_map(void *arg, bus_dma_segment_t *seg, int nseg, int error) { struct nvme_tracker *tr = arg; uint32_t cur_nseg; /* * If the mapping operation failed, return immediately. The caller * is responsible for detecting the error status and failing the * tracker manually. */ if (error != 0) { nvme_printf(tr->qpair->ctrlr, "nvme_payload_map err %d\n", error); return; } /* * Note that we specified ctrlr->page_size for alignment and max * segment size when creating the bus dma tags. So here we can safely * just transfer each segment to its associated PRP entry. */ tr->req->cmd.prp1 = htole64(seg[0].ds_addr); if (nseg == 2) { tr->req->cmd.prp2 = htole64(seg[1].ds_addr); } else if (nseg > 2) { cur_nseg = 1; tr->req->cmd.prp2 = htole64((uint64_t)tr->prp_bus_addr); while (cur_nseg < nseg) { tr->prp[cur_nseg-1] = htole64((uint64_t)seg[cur_nseg].ds_addr); cur_nseg++; } } else { /* * prp2 should not be used by the controller * since there is only one segment, but set * to 0 just to be safe. */ tr->req->cmd.prp2 = 0; } bus_dmamap_sync(tr->qpair->dma_tag_payload, tr->payload_dma_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); nvme_qpair_submit_tracker(tr->qpair, tr); } static void _nvme_qpair_submit_request(struct nvme_qpair *qpair, struct nvme_request *req) { struct nvme_tracker *tr; int err = 0; mtx_assert(&qpair->lock, MA_OWNED); tr = TAILQ_FIRST(&qpair->free_tr); req->qpair = qpair; if (tr == NULL || qpair->recovery_state != RECOVERY_NONE) { /* * No tracker is available, or the qpair is disabled due to an * in-progress controller-level reset. If we lose the race with * recovery_state, then we may add an extra request to the queue * which will be resubmitted later. We only set recovery_state * to NONE with qpair->lock also held, so if we observe that the * state is not NONE, we know it can't transition to NONE below * when we've submitted the request to hardware. * * Also, as part of the failure process, we set recovery_state * to RECOVERY_WAITING, so we check here to see if we've failed * the controller. We set it before we call the qpair_fail * functions, which take out the lock lock before messing with * queued_req. Since we hold that lock, we know it's safe to * either fail directly, or queue the failure should is_failed * be stale. If we lose the race reading is_failed, then * nvme_qpair_fail will fail the queued request. */ if (qpair->ctrlr->is_failed) { /* * The controller has failed, so fail the request. */ nvme_qpair_manual_complete_request(qpair, req, NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST); } else { /* * Put the request on the qpair's request queue to be * processed when a tracker frees up via a command * completion or when the controller reset is * completed. */ STAILQ_INSERT_TAIL(&qpair->queued_req, req, stailq); } return; } TAILQ_REMOVE(&qpair->free_tr, tr, tailq); TAILQ_INSERT_TAIL(&qpair->outstanding_tr, tr, tailq); tr->deadline = SBT_MAX; tr->req = req; if (!req->payload_valid) { nvme_qpair_submit_tracker(tr->qpair, tr); return; } err = bus_dmamap_load_mem(tr->qpair->dma_tag_payload, tr->payload_dma_map, &req->payload, nvme_payload_map, tr, 0); if (err != 0) { /* * The dmamap operation failed, so we manually fail the * tracker here with DATA_TRANSFER_ERROR status. * * nvme_qpair_manual_complete_tracker must not be called * with the qpair lock held. */ nvme_printf(qpair->ctrlr, "bus_dmamap_load_mem returned 0x%x!\n", err); mtx_unlock(&qpair->lock); nvme_qpair_manual_complete_tracker(tr, NVME_SCT_GENERIC, NVME_SC_DATA_TRANSFER_ERROR, DO_NOT_RETRY, ERROR_PRINT_ALL); mtx_lock(&qpair->lock); } } void nvme_qpair_submit_request(struct nvme_qpair *qpair, struct nvme_request *req) { mtx_lock(&qpair->lock); _nvme_qpair_submit_request(qpair, req); mtx_unlock(&qpair->lock); } static void nvme_qpair_enable(struct nvme_qpair *qpair) { if (mtx_initialized(&qpair->recovery)) mtx_assert(&qpair->recovery, MA_OWNED); if (mtx_initialized(&qpair->lock)) mtx_assert(&qpair->lock, MA_OWNED); KASSERT(!qpair->ctrlr->is_failed, ("Enabling a failed qpair\n")); qpair->recovery_state = RECOVERY_NONE; } void nvme_qpair_reset(struct nvme_qpair *qpair) { qpair->sq_head = qpair->sq_tail = qpair->cq_head = 0; /* * First time through the completion queue, HW will set phase * bit on completions to 1. So set this to 1 here, indicating * we're looking for a 1 to know which entries have completed. * we'll toggle the bit each time when the completion queue * rolls over. */ qpair->phase = 1; memset(qpair->cmd, 0, qpair->num_entries * sizeof(struct nvme_command)); memset(qpair->cpl, 0, qpair->num_entries * sizeof(struct nvme_completion)); } void nvme_admin_qpair_enable(struct nvme_qpair *qpair) { struct nvme_tracker *tr; struct nvme_tracker *tr_temp; bool rpt; /* * Manually abort each outstanding admin command. Do not retry * admin commands found here, since they will be left over from * a controller reset and its likely the context in which the * command was issued no longer applies. */ rpt = !TAILQ_EMPTY(&qpair->outstanding_tr); if (rpt) nvme_printf(qpair->ctrlr, "aborting outstanding admin command\n"); TAILQ_FOREACH_SAFE(tr, &qpair->outstanding_tr, tailq, tr_temp) { nvme_qpair_manual_complete_tracker(tr, NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST, DO_NOT_RETRY, ERROR_PRINT_ALL); } if (rpt) nvme_printf(qpair->ctrlr, "done aborting outstanding admin\n"); mtx_lock(&qpair->recovery); mtx_lock(&qpair->lock); nvme_qpair_enable(qpair); mtx_unlock(&qpair->lock); mtx_unlock(&qpair->recovery); } void nvme_io_qpair_enable(struct nvme_qpair *qpair) { STAILQ_HEAD(, nvme_request) temp; struct nvme_tracker *tr; struct nvme_tracker *tr_temp; struct nvme_request *req; bool report; /* * Manually abort each outstanding I/O. This normally results in a * retry, unless the retry count on the associated request has * reached its limit. */ report = !TAILQ_EMPTY(&qpair->outstanding_tr); if (report) nvme_printf(qpair->ctrlr, "aborting outstanding i/o\n"); TAILQ_FOREACH_SAFE(tr, &qpair->outstanding_tr, tailq, tr_temp) { nvme_qpair_manual_complete_tracker(tr, NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST, 0, ERROR_PRINT_NO_RETRY); } if (report) nvme_printf(qpair->ctrlr, "done aborting outstanding i/o\n"); mtx_lock(&qpair->recovery); mtx_lock(&qpair->lock); nvme_qpair_enable(qpair); STAILQ_INIT(&temp); STAILQ_SWAP(&qpair->queued_req, &temp, nvme_request); report = !STAILQ_EMPTY(&temp); if (report) nvme_printf(qpair->ctrlr, "resubmitting queued i/o\n"); while (!STAILQ_EMPTY(&temp)) { req = STAILQ_FIRST(&temp); STAILQ_REMOVE_HEAD(&temp, stailq); nvme_qpair_print_command(qpair, &req->cmd); _nvme_qpair_submit_request(qpair, req); } if (report) nvme_printf(qpair->ctrlr, "done resubmitting i/o\n"); mtx_unlock(&qpair->lock); mtx_unlock(&qpair->recovery); } static void nvme_qpair_disable(struct nvme_qpair *qpair) { struct nvme_tracker *tr, *tr_temp; if (mtx_initialized(&qpair->recovery)) mtx_assert(&qpair->recovery, MA_OWNED); if (mtx_initialized(&qpair->lock)) mtx_assert(&qpair->lock, MA_OWNED); qpair->recovery_state = RECOVERY_WAITING; TAILQ_FOREACH_SAFE(tr, &qpair->outstanding_tr, tailq, tr_temp) { tr->deadline = SBT_MAX; } } void nvme_admin_qpair_disable(struct nvme_qpair *qpair) { mtx_lock(&qpair->recovery); mtx_lock(&qpair->lock); nvme_qpair_disable(qpair); mtx_unlock(&qpair->lock); nvme_admin_qpair_abort_aers(qpair); mtx_unlock(&qpair->recovery); } void nvme_io_qpair_disable(struct nvme_qpair *qpair) { mtx_lock(&qpair->recovery); mtx_lock(&qpair->lock); nvme_qpair_disable(qpair); mtx_unlock(&qpair->lock); mtx_unlock(&qpair->recovery); } void nvme_qpair_fail(struct nvme_qpair *qpair) { struct nvme_tracker *tr; struct nvme_request *req; if (!mtx_initialized(&qpair->lock)) return; mtx_lock(&qpair->lock); if (!STAILQ_EMPTY(&qpair->queued_req)) { nvme_printf(qpair->ctrlr, "failing queued i/o\n"); } while (!STAILQ_EMPTY(&qpair->queued_req)) { req = STAILQ_FIRST(&qpair->queued_req); STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq); mtx_unlock(&qpair->lock); nvme_qpair_manual_complete_request(qpair, req, NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST); mtx_lock(&qpair->lock); } if (!TAILQ_EMPTY(&qpair->outstanding_tr)) { nvme_printf(qpair->ctrlr, "failing outstanding i/o\n"); } /* Manually abort each outstanding I/O. */ while (!TAILQ_EMPTY(&qpair->outstanding_tr)) { tr = TAILQ_FIRST(&qpair->outstanding_tr); /* * Do not remove the tracker. The abort_tracker path will * do that for us. */ mtx_unlock(&qpair->lock); nvme_qpair_manual_complete_tracker(tr, NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST, DO_NOT_RETRY, ERROR_PRINT_ALL); mtx_lock(&qpair->lock); } mtx_unlock(&qpair->lock); }