/*- * Copyright (C) 2012-2016 Intel Corporation * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include "nvme_private.h" static int nvme_pci_probe(device_t); static int nvme_pci_attach(device_t); static int nvme_pci_detach(device_t); static int nvme_pci_suspend(device_t); static int nvme_pci_resume(device_t); static void nvme_ctrlr_setup_interrupts(struct nvme_controller *ctrlr); static device_method_t nvme_pci_methods[] = { /* Device interface */ DEVMETHOD(device_probe, nvme_pci_probe), DEVMETHOD(device_attach, nvme_pci_attach), DEVMETHOD(device_detach, nvme_pci_detach), DEVMETHOD(device_suspend, nvme_pci_suspend), DEVMETHOD(device_resume, nvme_pci_resume), DEVMETHOD(device_shutdown, nvme_shutdown), { 0, 0 } }; static driver_t nvme_pci_driver = { "nvme", nvme_pci_methods, sizeof(struct nvme_controller), }; DRIVER_MODULE(nvme, pci, nvme_pci_driver, nvme_devclass, NULL, 0); static struct _pcsid { uint32_t devid; int match_subdevice; uint16_t subdevice; const char *desc; uint32_t quirks; } pci_ids[] = { { 0x01118086, 0, 0, "NVMe Controller" }, { IDT32_PCI_ID, 0, 0, "IDT NVMe Controller (32 channel)" }, { IDT8_PCI_ID, 0, 0, "IDT NVMe Controller (8 channel)" }, { 0x09538086, 1, 0x3702, "DC P3700 SSD" }, { 0x09538086, 1, 0x3703, "DC P3700 SSD [2.5\" SFF]" }, { 0x09538086, 1, 0x3704, "DC P3500 SSD [Add-in Card]" }, { 0x09538086, 1, 0x3705, "DC P3500 SSD [2.5\" SFF]" }, { 0x09538086, 1, 0x3709, "DC P3600 SSD [Add-in Card]" }, { 0x09538086, 1, 0x370a, "DC P3600 SSD [2.5\" SFF]" }, { 0x00031c58, 0, 0, "HGST SN100", QUIRK_DELAY_B4_CHK_RDY }, { 0x00231c58, 0, 0, "WDC SN200", QUIRK_DELAY_B4_CHK_RDY }, { 0x05401c5f, 0, 0, "Memblaze Pblaze4", QUIRK_DELAY_B4_CHK_RDY }, { 0xa821144d, 0, 0, "Samsung PM1725", QUIRK_DELAY_B4_CHK_RDY }, { 0xa822144d, 0, 0, "Samsung PM1725a", QUIRK_DELAY_B4_CHK_RDY }, { 0x00000000, 0, 0, NULL } }; static int nvme_match(uint32_t devid, uint16_t subdevice, struct _pcsid *ep) { if (devid != ep->devid) return 0; if (!ep->match_subdevice) return 1; if (subdevice == ep->subdevice) return 1; else return 0; } static int nvme_pci_probe (device_t device) { struct nvme_controller *ctrlr = DEVICE2SOFTC(device); struct _pcsid *ep; uint32_t devid; uint16_t subdevice; devid = pci_get_devid(device); subdevice = pci_get_subdevice(device); ep = pci_ids; while (ep->devid) { if (nvme_match(devid, subdevice, ep)) break; ++ep; } if (ep->devid) ctrlr->quirks = ep->quirks; if (ep->desc) { device_set_desc(device, ep->desc); return (BUS_PROBE_DEFAULT); } #if defined(PCIS_STORAGE_NVM) if (pci_get_class(device) == PCIC_STORAGE && pci_get_subclass(device) == PCIS_STORAGE_NVM && pci_get_progif(device) == PCIP_STORAGE_NVM_ENTERPRISE_NVMHCI_1_0) { device_set_desc(device, "Generic NVMe Device"); return (BUS_PROBE_GENERIC); } #endif return (ENXIO); } static int nvme_ctrlr_allocate_bar(struct nvme_controller *ctrlr) { ctrlr->resource_id = PCIR_BAR(0); ctrlr->resource = bus_alloc_resource_any(ctrlr->dev, SYS_RES_MEMORY, &ctrlr->resource_id, RF_ACTIVE); if(ctrlr->resource == NULL) { nvme_printf(ctrlr, "unable to allocate pci resource\n"); return (ENOMEM); } ctrlr->bus_tag = rman_get_bustag(ctrlr->resource); ctrlr->bus_handle = rman_get_bushandle(ctrlr->resource); ctrlr->regs = (struct nvme_registers *)ctrlr->bus_handle; /* * The NVMe spec allows for the MSI-X table to be placed behind * BAR 4/5, separate from the control/doorbell registers. Always * try to map this bar, because it must be mapped prior to calling * pci_alloc_msix(). If the table isn't behind BAR 4/5, * bus_alloc_resource() will just return NULL which is OK. */ ctrlr->bar4_resource_id = PCIR_BAR(4); ctrlr->bar4_resource = bus_alloc_resource_any(ctrlr->dev, SYS_RES_MEMORY, &ctrlr->bar4_resource_id, RF_ACTIVE); return (0); } static int nvme_pci_attach(device_t dev) { struct nvme_controller*ctrlr = DEVICE2SOFTC(dev); int status; ctrlr->dev = dev; status = nvme_ctrlr_allocate_bar(ctrlr); if (status != 0) goto bad; pci_enable_busmaster(dev); nvme_ctrlr_setup_interrupts(ctrlr); return nvme_attach(dev); bad: if (ctrlr->resource != NULL) { bus_release_resource(dev, SYS_RES_MEMORY, ctrlr->resource_id, ctrlr->resource); } if (ctrlr->bar4_resource != NULL) { bus_release_resource(dev, SYS_RES_MEMORY, ctrlr->bar4_resource_id, ctrlr->bar4_resource); } if (ctrlr->tag) bus_teardown_intr(dev, ctrlr->res, ctrlr->tag); if (ctrlr->res) bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(ctrlr->res), ctrlr->res); if (ctrlr->msix_enabled) pci_release_msi(dev); return status; } static int nvme_pci_detach(device_t dev) { struct nvme_controller*ctrlr = DEVICE2SOFTC(dev); int rv; rv = nvme_detach(dev); if (ctrlr->msix_enabled) pci_release_msi(dev); pci_disable_busmaster(dev); return (rv); } static int nvme_ctrlr_configure_intx(struct nvme_controller *ctrlr) { ctrlr->msix_enabled = 0; ctrlr->num_io_queues = 1; ctrlr->num_cpus_per_ioq = mp_ncpus; ctrlr->rid = 0; ctrlr->res = bus_alloc_resource_any(ctrlr->dev, SYS_RES_IRQ, &ctrlr->rid, RF_SHAREABLE | RF_ACTIVE); if (ctrlr->res == NULL) { nvme_printf(ctrlr, "unable to allocate shared IRQ\n"); return (ENOMEM); } bus_setup_intr(ctrlr->dev, ctrlr->res, INTR_TYPE_MISC | INTR_MPSAFE, NULL, nvme_ctrlr_intx_handler, ctrlr, &ctrlr->tag); if (ctrlr->tag == NULL) { nvme_printf(ctrlr, "unable to setup intx handler\n"); return (ENOMEM); } return (0); } static void nvme_ctrlr_setup_interrupts(struct nvme_controller *ctrlr) { device_t dev; int per_cpu_io_queues; int min_cpus_per_ioq; int num_vectors_requested, num_vectors_allocated; int num_vectors_available; dev = ctrlr->dev; min_cpus_per_ioq = 1; TUNABLE_INT_FETCH("hw.nvme.min_cpus_per_ioq", &min_cpus_per_ioq); if (min_cpus_per_ioq < 1) { min_cpus_per_ioq = 1; } else if (min_cpus_per_ioq > mp_ncpus) { min_cpus_per_ioq = mp_ncpus; } per_cpu_io_queues = 1; TUNABLE_INT_FETCH("hw.nvme.per_cpu_io_queues", &per_cpu_io_queues); if (per_cpu_io_queues == 0) { min_cpus_per_ioq = mp_ncpus; } ctrlr->force_intx = 0; TUNABLE_INT_FETCH("hw.nvme.force_intx", &ctrlr->force_intx); /* * FreeBSD currently cannot allocate more than about 190 vectors at * boot, meaning that systems with high core count and many devices * requesting per-CPU interrupt vectors will not get their full * allotment. So first, try to allocate as many as we may need to * understand what is available, then immediately release them. * Then figure out how many of those we will actually use, based on * assigning an equal number of cores to each I/O queue. */ /* One vector for per core I/O queue, plus one vector for admin queue. */ num_vectors_available = min(pci_msix_count(dev), mp_ncpus + 1); if (pci_alloc_msix(dev, &num_vectors_available) != 0) { num_vectors_available = 0; } pci_release_msi(dev); if (ctrlr->force_intx || num_vectors_available < 2) { nvme_ctrlr_configure_intx(ctrlr); return; } /* * Do not use all vectors for I/O queues - one must be saved for the * admin queue. */ ctrlr->num_cpus_per_ioq = max(min_cpus_per_ioq, howmany(mp_ncpus, num_vectors_available - 1)); ctrlr->num_io_queues = howmany(mp_ncpus, ctrlr->num_cpus_per_ioq); num_vectors_requested = ctrlr->num_io_queues + 1; num_vectors_allocated = num_vectors_requested; /* * Now just allocate the number of vectors we need. This should * succeed, since we previously called pci_alloc_msix() * successfully returning at least this many vectors, but just to * be safe, if something goes wrong just revert to INTx. */ if (pci_alloc_msix(dev, &num_vectors_allocated) != 0) { nvme_ctrlr_configure_intx(ctrlr); return; } if (num_vectors_allocated < num_vectors_requested) { pci_release_msi(dev); nvme_ctrlr_configure_intx(ctrlr); return; } ctrlr->msix_enabled = 1; } static int nvme_pci_suspend(device_t dev) { struct nvme_controller *ctrlr; ctrlr = DEVICE2SOFTC(dev); return (nvme_ctrlr_suspend(ctrlr)); } static int nvme_pci_resume(device_t dev) { struct nvme_controller *ctrlr; ctrlr = DEVICE2SOFTC(dev); return (nvme_ctrlr_resume(ctrlr)); }