/*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (C) 2012 Intel Corporation * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "nvme_private.h" int nvme_ns_cmd_read(struct nvme_namespace *ns, void *payload, uint64_t lba, uint32_t lba_count, nvme_cb_fn_t cb_fn, void *cb_arg) { struct nvme_request *req; req = nvme_allocate_request_vaddr(payload, lba_count*nvme_ns_get_sector_size(ns), cb_fn, cb_arg); if (req == NULL) return (ENOMEM); nvme_ns_read_cmd(&req->cmd, ns->id, lba, lba_count); nvme_ctrlr_submit_io_request(ns->ctrlr, req); return (0); } int nvme_ns_cmd_read_bio(struct nvme_namespace *ns, struct bio *bp, nvme_cb_fn_t cb_fn, void *cb_arg) { struct nvme_request *req; uint64_t lba; uint64_t lba_count; req = nvme_allocate_request_bio(bp, cb_fn, cb_arg); if (req == NULL) return (ENOMEM); lba = bp->bio_offset / nvme_ns_get_sector_size(ns); lba_count = bp->bio_bcount / nvme_ns_get_sector_size(ns); nvme_ns_read_cmd(&req->cmd, ns->id, lba, lba_count); nvme_ctrlr_submit_io_request(ns->ctrlr, req); return (0); } int nvme_ns_cmd_write(struct nvme_namespace *ns, void *payload, uint64_t lba, uint32_t lba_count, nvme_cb_fn_t cb_fn, void *cb_arg) { struct nvme_request *req; req = nvme_allocate_request_vaddr(payload, lba_count*nvme_ns_get_sector_size(ns), cb_fn, cb_arg); if (req == NULL) return (ENOMEM); nvme_ns_write_cmd(&req->cmd, ns->id, lba, lba_count); nvme_ctrlr_submit_io_request(ns->ctrlr, req); return (0); } int nvme_ns_cmd_write_bio(struct nvme_namespace *ns, struct bio *bp, nvme_cb_fn_t cb_fn, void *cb_arg) { struct nvme_request *req; uint64_t lba; uint64_t lba_count; req = nvme_allocate_request_bio(bp, cb_fn, cb_arg); if (req == NULL) return (ENOMEM); lba = bp->bio_offset / nvme_ns_get_sector_size(ns); lba_count = bp->bio_bcount / nvme_ns_get_sector_size(ns); nvme_ns_write_cmd(&req->cmd, ns->id, lba, lba_count); nvme_ctrlr_submit_io_request(ns->ctrlr, req); return (0); } int nvme_ns_cmd_deallocate(struct nvme_namespace *ns, void *payload, uint8_t num_ranges, nvme_cb_fn_t cb_fn, void *cb_arg) { struct nvme_request *req; struct nvme_command *cmd; req = nvme_allocate_request_vaddr(payload, num_ranges * sizeof(struct nvme_dsm_range), cb_fn, cb_arg); if (req == NULL) return (ENOMEM); cmd = &req->cmd; cmd->opc = NVME_OPC_DATASET_MANAGEMENT; cmd->nsid = htole32(ns->id); /* TODO: create a delete command data structure */ cmd->cdw10 = htole32(num_ranges - 1); cmd->cdw11 = htole32(NVME_DSM_ATTR_DEALLOCATE); nvme_ctrlr_submit_io_request(ns->ctrlr, req); return (0); } int nvme_ns_cmd_flush(struct nvme_namespace *ns, nvme_cb_fn_t cb_fn, void *cb_arg) { struct nvme_request *req; req = nvme_allocate_request_null(cb_fn, cb_arg); if (req == NULL) return (ENOMEM); nvme_ns_flush_cmd(&req->cmd, ns->id); nvme_ctrlr_submit_io_request(ns->ctrlr, req); return (0); } /* Timeout = 1 sec */ #define NVD_DUMP_TIMEOUT 200000 int nvme_ns_dump(struct nvme_namespace *ns, void *virt, off_t offset, size_t len) { struct nvme_completion_poll_status status; struct nvme_request *req; struct nvme_command *cmd; uint64_t lba, lba_count; int i; status.done = FALSE; req = nvme_allocate_request_vaddr(virt, len, nvme_completion_poll_cb, &status); if (req == NULL) return (ENOMEM); cmd = &req->cmd; if (len > 0) { lba = offset / nvme_ns_get_sector_size(ns); lba_count = len / nvme_ns_get_sector_size(ns); nvme_ns_write_cmd(cmd, ns->id, lba, lba_count); } else nvme_ns_flush_cmd(cmd, ns->id); nvme_ctrlr_submit_io_request(ns->ctrlr, req); if (req->qpair == NULL) return (ENXIO); i = 0; while ((i++ < NVD_DUMP_TIMEOUT) && (status.done == FALSE)) { DELAY(5); nvme_qpair_process_completions(req->qpair); } /* * Normally, when using the polling interface, we can't return a * timeout error because we don't know when the completion routines * will be called if the command later completes. However, in this * case we're running a system dump, so all interrupts are turned * off, the scheduler isn't running so there's nothing to complete * the transaction. */ if (status.done == FALSE) return (ETIMEDOUT); return (0); }