/*- * Copyright (c) 2016-2017 Alexander Motin * Copyright (C) 2013 Intel Corporation * Copyright (C) 2015 EMC Corporation * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * The Non-Transparent Bridge (NTB) is a device that allows you to connect * two or more systems using a PCI-e links, providing remote memory access. * * This module contains a transport for sending and receiving messages by * writing to remote memory window(s) provided by underlying NTB device. * * NOTE: Much of the code in this module is shared with Linux. Any patches may * be picked up and redistributed in Linux with a dual GPL/BSD license. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ntb.h" #include "ntb_transport.h" #define KTR_NTB KTR_SPARE3 #define NTB_TRANSPORT_VERSION 4 static SYSCTL_NODE(_hw, OID_AUTO, ntb_transport, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, "ntb_transport"); static unsigned g_ntb_transport_debug_level; SYSCTL_UINT(_hw_ntb_transport, OID_AUTO, debug_level, CTLFLAG_RWTUN, &g_ntb_transport_debug_level, 0, "ntb_transport log level -- higher is more verbose"); #define ntb_printf(lvl, ...) do { \ if ((lvl) <= g_ntb_transport_debug_level) { \ printf(__VA_ARGS__); \ } \ } while (0) static unsigned transport_mtu = 0x10000; static uint64_t max_mw_size = 256*1024*1024; SYSCTL_UQUAD(_hw_ntb_transport, OID_AUTO, max_mw_size, CTLFLAG_RDTUN, &max_mw_size, 0, "If enabled (non-zero), limit the size of large memory windows. " "Both sides of the NTB MUST set the same value here."); static unsigned enable_xeon_watchdog; SYSCTL_UINT(_hw_ntb_transport, OID_AUTO, enable_xeon_watchdog, CTLFLAG_RDTUN, &enable_xeon_watchdog, 0, "If non-zero, write a register every second to " "keep a watchdog from tearing down the NTB link"); STAILQ_HEAD(ntb_queue_list, ntb_queue_entry); typedef uint32_t ntb_q_idx_t; struct ntb_queue_entry { /* ntb_queue list reference */ STAILQ_ENTRY(ntb_queue_entry) entry; /* info on data to be transferred */ void *cb_data; void *buf; uint32_t len; uint32_t flags; struct ntb_transport_qp *qp; struct ntb_payload_header *x_hdr; ntb_q_idx_t index; }; struct ntb_rx_info { ntb_q_idx_t entry; }; struct ntb_transport_qp { struct ntb_transport_ctx *transport; device_t dev; void *cb_data; bool client_ready; volatile bool link_is_up; uint8_t qp_num; /* Only 64 QPs are allowed. 0-63 */ struct ntb_rx_info *rx_info; struct ntb_rx_info *remote_rx_info; void (*tx_handler)(struct ntb_transport_qp *qp, void *qp_data, void *data, int len); struct ntb_queue_list tx_free_q; struct mtx ntb_tx_free_q_lock; caddr_t tx_mw; bus_addr_t tx_mw_phys; ntb_q_idx_t tx_index; ntb_q_idx_t tx_max_entry; uint64_t tx_max_frame; void (*rx_handler)(struct ntb_transport_qp *qp, void *qp_data, void *data, int len); struct ntb_queue_list rx_post_q; struct ntb_queue_list rx_pend_q; /* ntb_rx_q_lock: synchronize access to rx_XXXX_q */ struct mtx ntb_rx_q_lock; struct task rxc_db_work; struct taskqueue *rxc_tq; caddr_t rx_buff; ntb_q_idx_t rx_index; ntb_q_idx_t rx_max_entry; uint64_t rx_max_frame; void (*event_handler)(void *data, enum ntb_link_event status); struct callout link_work; struct callout rx_full; uint64_t last_rx_no_buf; /* Stats */ uint64_t rx_bytes; uint64_t rx_pkts; uint64_t rx_ring_empty; uint64_t rx_err_no_buf; uint64_t rx_err_oflow; uint64_t rx_err_ver; uint64_t tx_bytes; uint64_t tx_pkts; uint64_t tx_ring_full; uint64_t tx_err_no_buf; struct mtx tx_lock; }; struct ntb_transport_mw { vm_paddr_t phys_addr; size_t phys_size; size_t xlat_align; size_t xlat_align_size; bus_addr_t addr_limit; /* Tx buff is vbase / phys_addr / tx_size */ caddr_t vbase; size_t tx_size; /* Rx buff is virt_addr / dma_addr / rx_size */ bus_dma_tag_t dma_tag; bus_dmamap_t dma_map; caddr_t virt_addr; bus_addr_t dma_addr; size_t rx_size; /* rx_size increased to size alignment requirements of the hardware. */ size_t buff_size; }; struct ntb_transport_child { device_t dev; int consumer; int qpoff; int qpcnt; struct ntb_transport_child *next; }; struct ntb_transport_ctx { device_t dev; struct ntb_transport_child *child; struct ntb_transport_mw *mw_vec; struct ntb_transport_qp *qp_vec; int compact; unsigned mw_count; unsigned qp_count; uint64_t qp_bitmap; volatile bool link_is_up; enum ntb_speed link_speed; enum ntb_width link_width; struct callout link_work; struct callout link_watchdog; struct task link_cleanup; }; enum { NTBT_DESC_DONE_FLAG = 1 << 0, NTBT_LINK_DOWN_FLAG = 1 << 1, }; struct ntb_payload_header { ntb_q_idx_t ver; uint32_t len; uint32_t flags; }; enum { /* * The order of this enum is part of the remote protocol. Do not * reorder without bumping protocol version (and it's probably best * to keep the protocol in lock-step with the Linux NTB driver. */ NTBT_VERSION = 0, NTBT_QP_LINKS, NTBT_NUM_QPS, NTBT_NUM_MWS, /* * N.B.: transport_link_work assumes MW1 enums = MW0 + 2. */ NTBT_MW0_SZ_HIGH, NTBT_MW0_SZ_LOW, NTBT_MW1_SZ_HIGH, NTBT_MW1_SZ_LOW, /* * Some NTB-using hardware have a watchdog to work around NTB hangs; if * a register or doorbell isn't written every few seconds, the link is * torn down. Write an otherwise unused register every few seconds to * work around this watchdog. */ NTBT_WATCHDOG_SPAD = 15 }; /* * Compart version of sratchpad protocol, using twice less registers. */ enum { NTBTC_PARAMS = 0, /* NUM_QPS << 24 + NUM_MWS << 16 + VERSION */ NTBTC_QP_LINKS, /* QP links status */ NTBTC_MW0_SZ, /* MW size limited to 32 bits. */ }; #define QP_TO_MW(nt, qp) ((qp) % nt->mw_count) #define NTB_QP_DEF_NUM_ENTRIES 100 #define NTB_LINK_DOWN_TIMEOUT 100 static int ntb_transport_probe(device_t dev); static int ntb_transport_attach(device_t dev); static int ntb_transport_detach(device_t dev); static void ntb_transport_init_queue(struct ntb_transport_ctx *nt, unsigned int qp_num); static int ntb_process_tx(struct ntb_transport_qp *qp, struct ntb_queue_entry *entry); static void ntb_transport_rxc_db(void *arg, int pending); static int ntb_process_rxc(struct ntb_transport_qp *qp); static void ntb_memcpy_rx(struct ntb_transport_qp *qp, struct ntb_queue_entry *entry, void *offset); static inline void ntb_rx_copy_callback(struct ntb_transport_qp *qp, void *data); static void ntb_complete_rxc(struct ntb_transport_qp *qp); static void ntb_transport_doorbell_callback(void *data, uint32_t vector); static void ntb_transport_event_callback(void *data); static void ntb_transport_link_work(void *arg); static int ntb_set_mw(struct ntb_transport_ctx *, int num_mw, size_t size); static void ntb_free_mw(struct ntb_transport_ctx *nt, int num_mw); static int ntb_transport_setup_qp_mw(struct ntb_transport_ctx *nt, unsigned int qp_num); static void ntb_qp_link_work(void *arg); static void ntb_transport_link_cleanup(struct ntb_transport_ctx *nt); static void ntb_transport_link_cleanup_work(void *, int); static void ntb_qp_link_down(struct ntb_transport_qp *qp); static void ntb_qp_link_down_reset(struct ntb_transport_qp *qp); static void ntb_qp_link_cleanup(struct ntb_transport_qp *qp); static void ntb_send_link_down(struct ntb_transport_qp *qp); static void ntb_list_add(struct mtx *lock, struct ntb_queue_entry *entry, struct ntb_queue_list *list); static struct ntb_queue_entry *ntb_list_rm(struct mtx *lock, struct ntb_queue_list *list); static struct ntb_queue_entry *ntb_list_mv(struct mtx *lock, struct ntb_queue_list *from, struct ntb_queue_list *to); static void xeon_link_watchdog_hb(void *); static const struct ntb_ctx_ops ntb_transport_ops = { .link_event = ntb_transport_event_callback, .db_event = ntb_transport_doorbell_callback, }; MALLOC_DEFINE(M_NTB_T, "ntb_transport", "ntb transport driver"); static inline void iowrite32(uint32_t val, void *addr) { bus_space_write_4(X86_BUS_SPACE_MEM, 0/* HACK */, (uintptr_t)addr, val); } /* Transport Init and teardown */ static void xeon_link_watchdog_hb(void *arg) { struct ntb_transport_ctx *nt; nt = arg; ntb_spad_write(nt->dev, NTBT_WATCHDOG_SPAD, 0); callout_reset(&nt->link_watchdog, 1 * hz, xeon_link_watchdog_hb, nt); } static int ntb_transport_probe(device_t dev) { device_set_desc(dev, "NTB Transport"); return (0); } static int ntb_transport_attach(device_t dev) { struct ntb_transport_ctx *nt = device_get_softc(dev); struct ntb_transport_child **cpp = &nt->child; struct ntb_transport_child *nc; struct ntb_transport_mw *mw; uint64_t db_bitmap; int rc, i, db_count, spad_count, qp, qpu, qpo, qpt; char cfg[128] = ""; char buf[32]; char *n, *np, *c, *name; nt->dev = dev; nt->mw_count = ntb_mw_count(dev); spad_count = ntb_spad_count(dev); db_bitmap = ntb_db_valid_mask(dev); db_count = flsll(db_bitmap); KASSERT(db_bitmap == ((uint64_t)1 << db_count) - 1, ("Doorbells are not sequential (%jx).\n", db_bitmap)); if (nt->mw_count == 0) { device_printf(dev, "At least 1 memory window required.\n"); return (ENXIO); } nt->compact = (spad_count < 4 + 2 * nt->mw_count); snprintf(buf, sizeof(buf), "hint.%s.%d.compact", device_get_name(dev), device_get_unit(dev)); TUNABLE_INT_FETCH(buf, &nt->compact); if (nt->compact) { if (spad_count < 3) { device_printf(dev, "At least 3 scratchpads required.\n"); return (ENXIO); } if (spad_count < 2 + nt->mw_count) { nt->mw_count = spad_count - 2; device_printf(dev, "Scratchpads enough only for %d " "memory windows.\n", nt->mw_count); } } else { if (spad_count < 6) { device_printf(dev, "At least 6 scratchpads required.\n"); return (ENXIO); } if (spad_count < 4 + 2 * nt->mw_count) { nt->mw_count = (spad_count - 4) / 2; device_printf(dev, "Scratchpads enough only for %d " "memory windows.\n", nt->mw_count); } } if (db_bitmap == 0) { device_printf(dev, "At least one doorbell required.\n"); return (ENXIO); } nt->mw_vec = malloc(nt->mw_count * sizeof(*nt->mw_vec), M_NTB_T, M_WAITOK | M_ZERO); for (i = 0; i < nt->mw_count; i++) { mw = &nt->mw_vec[i]; rc = ntb_mw_get_range(dev, i, &mw->phys_addr, &mw->vbase, &mw->phys_size, &mw->xlat_align, &mw->xlat_align_size, &mw->addr_limit); if (rc != 0) goto err; mw->tx_size = mw->phys_size; if (max_mw_size != 0 && mw->tx_size > max_mw_size) { device_printf(dev, "Memory window %d limited from " "%ju to %ju\n", i, (uintmax_t)mw->tx_size, max_mw_size); mw->tx_size = max_mw_size; } if (nt->compact && mw->tx_size > UINT32_MAX) { device_printf(dev, "Memory window %d is too big " "(%ju)\n", i, (uintmax_t)mw->tx_size); rc = ENXIO; goto err; } mw->rx_size = 0; mw->buff_size = 0; mw->virt_addr = NULL; mw->dma_addr = 0; rc = ntb_mw_set_wc(dev, i, VM_MEMATTR_WRITE_COMBINING); if (rc) ntb_printf(0, "Unable to set mw%d caching\n", i); /* * Try to preallocate receive memory early, since there may * be not enough contiguous memory later. It is quite likely * that NTB windows are symmetric and this allocation remain, * but even if not, we will just reallocate it later. */ ntb_set_mw(nt, i, mw->tx_size); } qpu = 0; qpo = imin(db_count, nt->mw_count); qpt = db_count; snprintf(buf, sizeof(buf), "hint.%s.%d.config", device_get_name(dev), device_get_unit(dev)); TUNABLE_STR_FETCH(buf, cfg, sizeof(cfg)); n = cfg; i = 0; while ((c = strsep(&n, ",")) != NULL) { np = c; name = strsep(&np, ":"); if (name != NULL && name[0] == 0) name = NULL; qp = (np && np[0] != 0) ? strtol(np, NULL, 10) : qpo - qpu; if (qp <= 0) qp = 1; if (qp > qpt - qpu) { device_printf(dev, "Not enough resources for config\n"); break; } nc = malloc(sizeof(*nc), M_DEVBUF, M_WAITOK | M_ZERO); nc->consumer = i; nc->qpoff = qpu; nc->qpcnt = qp; nc->dev = device_add_child(dev, name, -1); if (nc->dev == NULL) { device_printf(dev, "Can not add child.\n"); break; } device_set_ivars(nc->dev, nc); *cpp = nc; cpp = &nc->next; if (bootverbose) { device_printf(dev, "%d \"%s\": queues %d", i, name, qpu); if (qp > 1) printf("-%d", qpu + qp - 1); printf("\n"); } qpu += qp; i++; } nt->qp_count = qpu; nt->qp_vec = malloc(nt->qp_count * sizeof(*nt->qp_vec), M_NTB_T, M_WAITOK | M_ZERO); for (i = 0; i < nt->qp_count; i++) ntb_transport_init_queue(nt, i); callout_init(&nt->link_work, 1); callout_init(&nt->link_watchdog, 1); TASK_INIT(&nt->link_cleanup, 0, ntb_transport_link_cleanup_work, nt); nt->link_is_up = false; rc = ntb_set_ctx(dev, nt, &ntb_transport_ops); if (rc != 0) goto err; ntb_link_enable(dev, NTB_SPEED_AUTO, NTB_WIDTH_AUTO); for (i = 0; i < nt->mw_count; i++) { mw = &nt->mw_vec[i]; rc = ntb_mw_set_trans(nt->dev, i, mw->dma_addr, mw->buff_size); if (rc != 0) ntb_printf(0, "load time mw%d xlat fails, rc %d\n", i, rc); } if (enable_xeon_watchdog != 0) callout_reset(&nt->link_watchdog, 0, xeon_link_watchdog_hb, nt); bus_generic_attach(dev); return (0); err: free(nt->qp_vec, M_NTB_T); free(nt->mw_vec, M_NTB_T); return (rc); } static int ntb_transport_detach(device_t dev) { struct ntb_transport_ctx *nt = device_get_softc(dev); struct ntb_transport_child **cpp = &nt->child; struct ntb_transport_child *nc; int error = 0, i; while ((nc = *cpp) != NULL) { *cpp = (*cpp)->next; error = device_delete_child(dev, nc->dev); if (error) break; free(nc, M_DEVBUF); } KASSERT(nt->qp_bitmap == 0, ("Some queues not freed on detach (%jx)", nt->qp_bitmap)); ntb_transport_link_cleanup(nt); taskqueue_drain(taskqueue_swi, &nt->link_cleanup); callout_drain(&nt->link_work); callout_drain(&nt->link_watchdog); ntb_link_disable(dev); ntb_clear_ctx(dev); for (i = 0; i < nt->mw_count; i++) ntb_free_mw(nt, i); free(nt->qp_vec, M_NTB_T); free(nt->mw_vec, M_NTB_T); return (0); } static int ntb_transport_print_child(device_t dev, device_t child) { struct ntb_transport_child *nc = device_get_ivars(child); int retval; retval = bus_print_child_header(dev, child); if (nc->qpcnt > 0) { printf(" queue %d", nc->qpoff); if (nc->qpcnt > 1) printf("-%d", nc->qpoff + nc->qpcnt - 1); } retval += printf(" at consumer %d", nc->consumer); retval += bus_print_child_domain(dev, child); retval += bus_print_child_footer(dev, child); return (retval); } static int ntb_transport_child_location(device_t dev, device_t child, struct sbuf *sb) { struct ntb_transport_child *nc = device_get_ivars(child); sbuf_printf(sb, "consumer=%d", nc->consumer); return (0); } int ntb_transport_queue_count(device_t dev) { struct ntb_transport_child *nc = device_get_ivars(dev); return (nc->qpcnt); } static void ntb_transport_init_queue(struct ntb_transport_ctx *nt, unsigned int qp_num) { struct ntb_transport_mw *mw; struct ntb_transport_qp *qp; vm_paddr_t mw_base; uint64_t qp_offset; size_t tx_size; unsigned num_qps_mw, mw_num, mw_count; mw_count = nt->mw_count; mw_num = QP_TO_MW(nt, qp_num); mw = &nt->mw_vec[mw_num]; qp = &nt->qp_vec[qp_num]; qp->qp_num = qp_num; qp->transport = nt; qp->dev = nt->dev; qp->client_ready = false; qp->event_handler = NULL; ntb_qp_link_down_reset(qp); if (mw_num < nt->qp_count % mw_count) num_qps_mw = nt->qp_count / mw_count + 1; else num_qps_mw = nt->qp_count / mw_count; mw_base = mw->phys_addr; tx_size = mw->tx_size / num_qps_mw; qp_offset = tx_size * (qp_num / mw_count); qp->tx_mw = mw->vbase + qp_offset; KASSERT(qp->tx_mw != NULL, ("uh oh?")); /* XXX Assumes that a vm_paddr_t is equivalent to bus_addr_t */ qp->tx_mw_phys = mw_base + qp_offset; KASSERT(qp->tx_mw_phys != 0, ("uh oh?")); tx_size -= sizeof(struct ntb_rx_info); qp->rx_info = (void *)(qp->tx_mw + tx_size); /* Due to house-keeping, there must be at least 2 buffs */ qp->tx_max_frame = qmin(transport_mtu, tx_size / 2); qp->tx_max_entry = tx_size / qp->tx_max_frame; callout_init(&qp->link_work, 1); callout_init(&qp->rx_full, 1); mtx_init(&qp->ntb_rx_q_lock, "ntb rx q", NULL, MTX_SPIN); mtx_init(&qp->ntb_tx_free_q_lock, "ntb tx free q", NULL, MTX_SPIN); mtx_init(&qp->tx_lock, "ntb transport tx", NULL, MTX_DEF); TASK_INIT(&qp->rxc_db_work, 0, ntb_transport_rxc_db, qp); qp->rxc_tq = taskqueue_create("ntbt_rx", M_WAITOK, taskqueue_thread_enqueue, &qp->rxc_tq); taskqueue_start_threads(&qp->rxc_tq, 1, PI_NET, "%s rx%d", device_get_nameunit(nt->dev), qp_num); STAILQ_INIT(&qp->rx_post_q); STAILQ_INIT(&qp->rx_pend_q); STAILQ_INIT(&qp->tx_free_q); } void ntb_transport_free_queue(struct ntb_transport_qp *qp) { struct ntb_transport_ctx *nt = qp->transport; struct ntb_queue_entry *entry; callout_drain(&qp->link_work); ntb_db_set_mask(qp->dev, 1ull << qp->qp_num); taskqueue_drain_all(qp->rxc_tq); taskqueue_free(qp->rxc_tq); qp->cb_data = NULL; qp->rx_handler = NULL; qp->tx_handler = NULL; qp->event_handler = NULL; while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_pend_q))) free(entry, M_NTB_T); while ((entry = ntb_list_rm(&qp->ntb_rx_q_lock, &qp->rx_post_q))) free(entry, M_NTB_T); while ((entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q))) free(entry, M_NTB_T); nt->qp_bitmap &= ~(1 << qp->qp_num); } /** * ntb_transport_create_queue - Create a new NTB transport layer queue * @rx_handler: receive callback function * @tx_handler: transmit callback function * @event_handler: event callback function * * Create a new NTB transport layer queue and provide the queue with a callback * routine for both transmit and receive. The receive callback routine will be * used to pass up data when the transport has received it on the queue. The * transmit callback routine will be called when the transport has completed the * transmission of the data on the queue and the data is ready to be freed. * * RETURNS: pointer to newly created ntb_queue, NULL on error. */ struct ntb_transport_qp * ntb_transport_create_queue(device_t dev, int q, const struct ntb_queue_handlers *handlers, void *data) { struct ntb_transport_child *nc = device_get_ivars(dev); struct ntb_transport_ctx *nt = device_get_softc(device_get_parent(dev)); struct ntb_queue_entry *entry; struct ntb_transport_qp *qp; int i; if (q < 0 || q >= nc->qpcnt) return (NULL); qp = &nt->qp_vec[nc->qpoff + q]; nt->qp_bitmap |= (1 << qp->qp_num); qp->cb_data = data; qp->rx_handler = handlers->rx_handler; qp->tx_handler = handlers->tx_handler; qp->event_handler = handlers->event_handler; for (i = 0; i < NTB_QP_DEF_NUM_ENTRIES; i++) { entry = malloc(sizeof(*entry), M_NTB_T, M_WAITOK | M_ZERO); entry->cb_data = data; entry->buf = NULL; entry->len = transport_mtu; entry->qp = qp; ntb_list_add(&qp->ntb_rx_q_lock, entry, &qp->rx_pend_q); } for (i = 0; i < NTB_QP_DEF_NUM_ENTRIES; i++) { entry = malloc(sizeof(*entry), M_NTB_T, M_WAITOK | M_ZERO); entry->qp = qp; ntb_list_add(&qp->ntb_tx_free_q_lock, entry, &qp->tx_free_q); } ntb_db_clear(dev, 1ull << qp->qp_num); return (qp); } /** * ntb_transport_link_up - Notify NTB transport of client readiness to use queue * @qp: NTB transport layer queue to be enabled * * Notify NTB transport layer of client readiness to use queue */ void ntb_transport_link_up(struct ntb_transport_qp *qp) { struct ntb_transport_ctx *nt = qp->transport; qp->client_ready = true; ntb_printf(2, "qp %d client ready\n", qp->qp_num); if (nt->link_is_up) callout_reset(&qp->link_work, 0, ntb_qp_link_work, qp); } /* Transport Tx */ /** * ntb_transport_tx_enqueue - Enqueue a new NTB queue entry * @qp: NTB transport layer queue the entry is to be enqueued on * @cb: per buffer pointer for callback function to use * @data: pointer to data buffer that will be sent * @len: length of the data buffer * * Enqueue a new transmit buffer onto the transport queue from which a NTB * payload will be transmitted. This assumes that a lock is being held to * serialize access to the qp. * * RETURNS: An appropriate ERRNO error value on error, or zero for success. */ int ntb_transport_tx_enqueue(struct ntb_transport_qp *qp, void *cb, void *data, unsigned int len) { struct ntb_queue_entry *entry; int rc; if (!qp->link_is_up || len == 0) { CTR0(KTR_NTB, "TX: link not up"); return (EINVAL); } entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q); if (entry == NULL) { CTR0(KTR_NTB, "TX: could not get entry from tx_free_q"); qp->tx_err_no_buf++; return (EBUSY); } CTR1(KTR_NTB, "TX: got entry %p from tx_free_q", entry); entry->cb_data = cb; entry->buf = data; entry->len = len; entry->flags = 0; mtx_lock(&qp->tx_lock); rc = ntb_process_tx(qp, entry); mtx_unlock(&qp->tx_lock); if (rc != 0) { ntb_list_add(&qp->ntb_tx_free_q_lock, entry, &qp->tx_free_q); CTR1(KTR_NTB, "TX: process_tx failed. Returning entry %p to tx_free_q", entry); } return (rc); } static void ntb_tx_copy_callback(void *data) { struct ntb_queue_entry *entry = data; struct ntb_transport_qp *qp = entry->qp; struct ntb_payload_header *hdr = entry->x_hdr; iowrite32(entry->flags | NTBT_DESC_DONE_FLAG, &hdr->flags); CTR1(KTR_NTB, "TX: hdr %p set DESC_DONE", hdr); ntb_peer_db_set(qp->dev, 1ull << qp->qp_num); /* * The entry length can only be zero if the packet is intended to be a * "link down" or similar. Since no payload is being sent in these * cases, there is nothing to add to the completion queue. */ if (entry->len > 0) { qp->tx_bytes += entry->len; if (qp->tx_handler) qp->tx_handler(qp, qp->cb_data, entry->buf, entry->len); else m_freem(entry->buf); entry->buf = NULL; } CTR3(KTR_NTB, "TX: entry %p sent. hdr->ver = %u, hdr->flags = 0x%x, Returning " "to tx_free_q", entry, hdr->ver, hdr->flags); ntb_list_add(&qp->ntb_tx_free_q_lock, entry, &qp->tx_free_q); } static void ntb_memcpy_tx(struct ntb_queue_entry *entry, void *offset) { CTR2(KTR_NTB, "TX: copying %d bytes to offset %p", entry->len, offset); if (entry->buf != NULL) { m_copydata((struct mbuf *)entry->buf, 0, entry->len, offset); /* * Ensure that the data is fully copied before setting the * flags */ wmb(); } ntb_tx_copy_callback(entry); } static void ntb_async_tx(struct ntb_transport_qp *qp, struct ntb_queue_entry *entry) { struct ntb_payload_header *hdr; void *offset; offset = qp->tx_mw + qp->tx_max_frame * qp->tx_index; hdr = (struct ntb_payload_header *)((char *)offset + qp->tx_max_frame - sizeof(struct ntb_payload_header)); entry->x_hdr = hdr; iowrite32(entry->len, &hdr->len); iowrite32(qp->tx_pkts, &hdr->ver); ntb_memcpy_tx(entry, offset); } static int ntb_process_tx(struct ntb_transport_qp *qp, struct ntb_queue_entry *entry) { CTR3(KTR_NTB, "TX: process_tx: tx_pkts=%lu, tx_index=%u, remote entry=%u", qp->tx_pkts, qp->tx_index, qp->remote_rx_info->entry); if (qp->tx_index == qp->remote_rx_info->entry) { CTR0(KTR_NTB, "TX: ring full"); qp->tx_ring_full++; return (EAGAIN); } if (entry->len > qp->tx_max_frame - sizeof(struct ntb_payload_header)) { if (qp->tx_handler != NULL) qp->tx_handler(qp, qp->cb_data, entry->buf, EIO); else m_freem(entry->buf); entry->buf = NULL; ntb_list_add(&qp->ntb_tx_free_q_lock, entry, &qp->tx_free_q); CTR1(KTR_NTB, "TX: frame too big. returning entry %p to tx_free_q", entry); return (0); } CTR2(KTR_NTB, "TX: copying entry %p to index %u", entry, qp->tx_index); ntb_async_tx(qp, entry); qp->tx_index++; qp->tx_index %= qp->tx_max_entry; qp->tx_pkts++; return (0); } /* Transport Rx */ static void ntb_transport_rxc_db(void *arg, int pending __unused) { struct ntb_transport_qp *qp = arg; uint64_t qp_mask = 1ull << qp->qp_num; int rc; CTR0(KTR_NTB, "RX: transport_rx"); again: while ((rc = ntb_process_rxc(qp)) == 0) ; CTR1(KTR_NTB, "RX: process_rxc returned %d", rc); if ((ntb_db_read(qp->dev) & qp_mask) != 0) { /* If db is set, clear it and check queue once more. */ ntb_db_clear(qp->dev, qp_mask); goto again; } if (qp->link_is_up) ntb_db_clear_mask(qp->dev, qp_mask); } static int ntb_process_rxc(struct ntb_transport_qp *qp) { struct ntb_payload_header *hdr; struct ntb_queue_entry *entry; caddr_t offset; offset = qp->rx_buff + qp->rx_max_frame * qp->rx_index; hdr = (void *)(offset + qp->rx_max_frame - sizeof(struct ntb_payload_header)); CTR1(KTR_NTB, "RX: process_rxc rx_index = %u", qp->rx_index); if ((hdr->flags & NTBT_DESC_DONE_FLAG) == 0) { CTR0(KTR_NTB, "RX: hdr not done"); qp->rx_ring_empty++; return (EAGAIN); } if ((hdr->flags & NTBT_LINK_DOWN_FLAG) != 0) { CTR0(KTR_NTB, "RX: link down"); ntb_qp_link_down(qp); hdr->flags = 0; return (EAGAIN); } if (hdr->ver != (uint32_t)qp->rx_pkts) { CTR2(KTR_NTB,"RX: ver != rx_pkts (%x != %lx). " "Returning entry to rx_pend_q", hdr->ver, qp->rx_pkts); qp->rx_err_ver++; return (EIO); } entry = ntb_list_mv(&qp->ntb_rx_q_lock, &qp->rx_pend_q, &qp->rx_post_q); if (entry == NULL) { qp->rx_err_no_buf++; CTR0(KTR_NTB, "RX: No entries in rx_pend_q"); return (EAGAIN); } callout_stop(&qp->rx_full); CTR1(KTR_NTB, "RX: rx entry %p from rx_pend_q", entry); entry->x_hdr = hdr; entry->index = qp->rx_index; if (hdr->len > entry->len) { CTR2(KTR_NTB, "RX: len too long. Wanted %ju got %ju", (uintmax_t)hdr->len, (uintmax_t)entry->len); qp->rx_err_oflow++; entry->len = -EIO; entry->flags |= NTBT_DESC_DONE_FLAG; ntb_complete_rxc(qp); } else { qp->rx_bytes += hdr->len; qp->rx_pkts++; CTR1(KTR_NTB, "RX: received %ld rx_pkts", qp->rx_pkts); entry->len = hdr->len; ntb_memcpy_rx(qp, entry, offset); } qp->rx_index++; qp->rx_index %= qp->rx_max_entry; return (0); } static void ntb_memcpy_rx(struct ntb_transport_qp *qp, struct ntb_queue_entry *entry, void *offset) { struct ifnet *ifp = entry->cb_data; unsigned int len = entry->len; CTR2(KTR_NTB, "RX: copying %d bytes from offset %p", len, offset); entry->buf = (void *)m_devget(offset, len, 0, ifp, NULL); if (entry->buf == NULL) entry->len = -ENOMEM; /* Ensure that the data is globally visible before clearing the flag */ wmb(); CTR2(KTR_NTB, "RX: copied entry %p to mbuf %p.", entry, entry->buf); ntb_rx_copy_callback(qp, entry); } static inline void ntb_rx_copy_callback(struct ntb_transport_qp *qp, void *data) { struct ntb_queue_entry *entry; entry = data; entry->flags |= NTBT_DESC_DONE_FLAG; ntb_complete_rxc(qp); } static void ntb_complete_rxc(struct ntb_transport_qp *qp) { struct ntb_queue_entry *entry; struct mbuf *m; unsigned len; CTR0(KTR_NTB, "RX: rx_completion_task"); mtx_lock_spin(&qp->ntb_rx_q_lock); while (!STAILQ_EMPTY(&qp->rx_post_q)) { entry = STAILQ_FIRST(&qp->rx_post_q); if ((entry->flags & NTBT_DESC_DONE_FLAG) == 0) break; entry->x_hdr->flags = 0; iowrite32(entry->index, &qp->rx_info->entry); STAILQ_REMOVE_HEAD(&qp->rx_post_q, entry); len = entry->len; m = entry->buf; /* * Re-initialize queue_entry for reuse; rx_handler takes * ownership of the mbuf. */ entry->buf = NULL; entry->len = transport_mtu; entry->cb_data = qp->cb_data; STAILQ_INSERT_TAIL(&qp->rx_pend_q, entry, entry); mtx_unlock_spin(&qp->ntb_rx_q_lock); CTR2(KTR_NTB, "RX: completing entry %p, mbuf %p", entry, m); if (qp->rx_handler != NULL && qp->client_ready) qp->rx_handler(qp, qp->cb_data, m, len); else m_freem(m); mtx_lock_spin(&qp->ntb_rx_q_lock); } mtx_unlock_spin(&qp->ntb_rx_q_lock); } static void ntb_transport_doorbell_callback(void *data, uint32_t vector) { struct ntb_transport_ctx *nt = data; struct ntb_transport_qp *qp; uint64_t vec_mask; unsigned qp_num; vec_mask = ntb_db_vector_mask(nt->dev, vector); vec_mask &= nt->qp_bitmap; if ((vec_mask & (vec_mask - 1)) != 0) vec_mask &= ntb_db_read(nt->dev); if (vec_mask != 0) { ntb_db_set_mask(nt->dev, vec_mask); ntb_db_clear(nt->dev, vec_mask); } while (vec_mask != 0) { qp_num = ffsll(vec_mask) - 1; qp = &nt->qp_vec[qp_num]; if (qp->link_is_up) taskqueue_enqueue(qp->rxc_tq, &qp->rxc_db_work); vec_mask &= ~(1ull << qp_num); } } /* Link Event handler */ static void ntb_transport_event_callback(void *data) { struct ntb_transport_ctx *nt = data; if (ntb_link_is_up(nt->dev, &nt->link_speed, &nt->link_width)) { ntb_printf(1, "HW link up\n"); callout_reset(&nt->link_work, 0, ntb_transport_link_work, nt); } else { ntb_printf(1, "HW link down\n"); taskqueue_enqueue(taskqueue_swi, &nt->link_cleanup); } } /* Link bring up */ static void ntb_transport_link_work(void *arg) { struct ntb_transport_ctx *nt = arg; struct ntb_transport_mw *mw; device_t dev = nt->dev; struct ntb_transport_qp *qp; uint64_t val64, size; uint32_t val; unsigned i; int rc; /* send the local info, in the opposite order of the way we read it */ if (nt->compact) { for (i = 0; i < nt->mw_count; i++) { size = nt->mw_vec[i].tx_size; KASSERT(size <= UINT32_MAX, ("size too big (%jx)", size)); ntb_peer_spad_write(dev, NTBTC_MW0_SZ + i, size); } ntb_peer_spad_write(dev, NTBTC_QP_LINKS, 0); ntb_peer_spad_write(dev, NTBTC_PARAMS, (nt->qp_count << 24) | (nt->mw_count << 16) | NTB_TRANSPORT_VERSION); } else { for (i = 0; i < nt->mw_count; i++) { size = nt->mw_vec[i].tx_size; ntb_peer_spad_write(dev, NTBT_MW0_SZ_HIGH + (i * 2), size >> 32); ntb_peer_spad_write(dev, NTBT_MW0_SZ_LOW + (i * 2), size); } ntb_peer_spad_write(dev, NTBT_NUM_MWS, nt->mw_count); ntb_peer_spad_write(dev, NTBT_NUM_QPS, nt->qp_count); ntb_peer_spad_write(dev, NTBT_QP_LINKS, 0); ntb_peer_spad_write(dev, NTBT_VERSION, NTB_TRANSPORT_VERSION); } /* Query the remote side for its info */ val = 0; if (nt->compact) { ntb_spad_read(dev, NTBTC_PARAMS, &val); if (val != ((nt->qp_count << 24) | (nt->mw_count << 16) | NTB_TRANSPORT_VERSION)) goto out; } else { ntb_spad_read(dev, NTBT_VERSION, &val); if (val != NTB_TRANSPORT_VERSION) goto out; ntb_spad_read(dev, NTBT_NUM_QPS, &val); if (val != nt->qp_count) goto out; ntb_spad_read(dev, NTBT_NUM_MWS, &val); if (val != nt->mw_count) goto out; } for (i = 0; i < nt->mw_count; i++) { if (nt->compact) { ntb_spad_read(dev, NTBTC_MW0_SZ + i, &val); val64 = val; } else { ntb_spad_read(dev, NTBT_MW0_SZ_HIGH + (i * 2), &val); val64 = (uint64_t)val << 32; ntb_spad_read(dev, NTBT_MW0_SZ_LOW + (i * 2), &val); val64 |= val; } mw = &nt->mw_vec[i]; mw->rx_size = val64; val64 = roundup(val64, mw->xlat_align_size); if (mw->buff_size != val64) { rc = ntb_set_mw(nt, i, val64); if (rc != 0) { ntb_printf(0, "link up set mw%d fails, rc %d\n", i, rc); goto free_mws; } /* Notify HW the memory location of the receive buffer */ rc = ntb_mw_set_trans(nt->dev, i, mw->dma_addr, mw->buff_size); if (rc != 0) { ntb_printf(0, "link up mw%d xlat fails, rc %d\n", i, rc); goto free_mws; } } } nt->link_is_up = true; ntb_printf(1, "transport link up\n"); for (i = 0; i < nt->qp_count; i++) { qp = &nt->qp_vec[i]; ntb_transport_setup_qp_mw(nt, i); if (qp->client_ready) callout_reset(&qp->link_work, 0, ntb_qp_link_work, qp); } return; free_mws: for (i = 0; i < nt->mw_count; i++) ntb_free_mw(nt, i); out: if (ntb_link_is_up(dev, &nt->link_speed, &nt->link_width)) callout_reset(&nt->link_work, NTB_LINK_DOWN_TIMEOUT * hz / 1000, ntb_transport_link_work, nt); } struct ntb_load_cb_args { bus_addr_t addr; int error; }; static void ntb_load_cb(void *xsc, bus_dma_segment_t *segs, int nsegs, int error) { struct ntb_load_cb_args *cba = (struct ntb_load_cb_args *)xsc; if (!(cba->error = error)) cba->addr = segs[0].ds_addr; } static int ntb_set_mw(struct ntb_transport_ctx *nt, int num_mw, size_t size) { struct ntb_transport_mw *mw = &nt->mw_vec[num_mw]; struct ntb_load_cb_args cba; size_t buff_size; if (size == 0) return (EINVAL); buff_size = roundup(size, mw->xlat_align_size); /* No need to re-setup */ if (mw->buff_size == buff_size) return (0); if (mw->buff_size != 0) ntb_free_mw(nt, num_mw); /* Alloc memory for receiving data. Must be aligned */ mw->buff_size = buff_size; if (bus_dma_tag_create(bus_get_dma_tag(nt->dev), mw->xlat_align, 0, mw->addr_limit, BUS_SPACE_MAXADDR, NULL, NULL, mw->buff_size, 1, mw->buff_size, 0, NULL, NULL, &mw->dma_tag)) { ntb_printf(0, "Unable to create MW tag of size %zu\n", mw->buff_size); mw->buff_size = 0; return (ENOMEM); } if (bus_dmamem_alloc(mw->dma_tag, (void **)&mw->virt_addr, BUS_DMA_WAITOK | BUS_DMA_ZERO, &mw->dma_map)) { bus_dma_tag_destroy(mw->dma_tag); ntb_printf(0, "Unable to allocate MW buffer of size %zu\n", mw->buff_size); mw->buff_size = 0; return (ENOMEM); } if (bus_dmamap_load(mw->dma_tag, mw->dma_map, mw->virt_addr, mw->buff_size, ntb_load_cb, &cba, BUS_DMA_NOWAIT) || cba.error) { bus_dmamem_free(mw->dma_tag, mw->virt_addr, mw->dma_map); bus_dma_tag_destroy(mw->dma_tag); ntb_printf(0, "Unable to load MW buffer of size %zu\n", mw->buff_size); mw->buff_size = 0; return (ENOMEM); } mw->dma_addr = cba.addr; return (0); } static void ntb_free_mw(struct ntb_transport_ctx *nt, int num_mw) { struct ntb_transport_mw *mw = &nt->mw_vec[num_mw]; if (mw->virt_addr == NULL) return; ntb_mw_clear_trans(nt->dev, num_mw); bus_dmamap_unload(mw->dma_tag, mw->dma_map); bus_dmamem_free(mw->dma_tag, mw->virt_addr, mw->dma_map); bus_dma_tag_destroy(mw->dma_tag); mw->buff_size = 0; mw->virt_addr = NULL; } static int ntb_transport_setup_qp_mw(struct ntb_transport_ctx *nt, unsigned int qp_num) { struct ntb_transport_qp *qp = &nt->qp_vec[qp_num]; struct ntb_transport_mw *mw; void *offset; ntb_q_idx_t i; size_t rx_size; unsigned num_qps_mw, mw_num, mw_count; mw_count = nt->mw_count; mw_num = QP_TO_MW(nt, qp_num); mw = &nt->mw_vec[mw_num]; if (mw->virt_addr == NULL) return (ENOMEM); if (mw_num < nt->qp_count % mw_count) num_qps_mw = nt->qp_count / mw_count + 1; else num_qps_mw = nt->qp_count / mw_count; rx_size = mw->rx_size / num_qps_mw; qp->rx_buff = mw->virt_addr + rx_size * (qp_num / mw_count); rx_size -= sizeof(struct ntb_rx_info); qp->remote_rx_info = (void*)(qp->rx_buff + rx_size); /* Due to house-keeping, there must be at least 2 buffs */ qp->rx_max_frame = qmin(transport_mtu, rx_size / 2); qp->rx_max_entry = rx_size / qp->rx_max_frame; qp->rx_index = 0; qp->remote_rx_info->entry = qp->rx_max_entry - 1; /* Set up the hdr offsets with 0s */ for (i = 0; i < qp->rx_max_entry; i++) { offset = (void *)(qp->rx_buff + qp->rx_max_frame * (i + 1) - sizeof(struct ntb_payload_header)); memset(offset, 0, sizeof(struct ntb_payload_header)); } qp->rx_pkts = 0; qp->tx_pkts = 0; qp->tx_index = 0; return (0); } static void ntb_qp_link_work(void *arg) { struct ntb_transport_qp *qp = arg; device_t dev = qp->dev; struct ntb_transport_ctx *nt = qp->transport; int i; uint32_t val; /* Report queues that are up on our side */ for (i = 0, val = 0; i < nt->qp_count; i++) { if (nt->qp_vec[i].client_ready) val |= (1 << i); } ntb_peer_spad_write(dev, NTBT_QP_LINKS, val); /* See if the remote side is up */ ntb_spad_read(dev, NTBT_QP_LINKS, &val); if ((val & (1ull << qp->qp_num)) != 0) { ntb_printf(2, "qp %d link up\n", qp->qp_num); qp->link_is_up = true; if (qp->event_handler != NULL) qp->event_handler(qp->cb_data, NTB_LINK_UP); ntb_db_clear_mask(dev, 1ull << qp->qp_num); } else if (nt->link_is_up) callout_reset(&qp->link_work, NTB_LINK_DOWN_TIMEOUT * hz / 1000, ntb_qp_link_work, qp); } /* Link down event*/ static void ntb_transport_link_cleanup(struct ntb_transport_ctx *nt) { struct ntb_transport_qp *qp; int i; callout_drain(&nt->link_work); nt->link_is_up = 0; /* Pass along the info to any clients */ for (i = 0; i < nt->qp_count; i++) { if ((nt->qp_bitmap & (1 << i)) != 0) { qp = &nt->qp_vec[i]; ntb_qp_link_cleanup(qp); callout_drain(&qp->link_work); } } /* * The scratchpad registers keep the values if the remote side * goes down, blast them now to give them a sane value the next * time they are accessed */ ntb_spad_clear(nt->dev); } static void ntb_transport_link_cleanup_work(void *arg, int pending __unused) { ntb_transport_link_cleanup(arg); } static void ntb_qp_link_down(struct ntb_transport_qp *qp) { ntb_qp_link_cleanup(qp); } static void ntb_qp_link_down_reset(struct ntb_transport_qp *qp) { qp->link_is_up = false; ntb_db_set_mask(qp->dev, 1ull << qp->qp_num); qp->tx_index = qp->rx_index = 0; qp->tx_bytes = qp->rx_bytes = 0; qp->tx_pkts = qp->rx_pkts = 0; qp->rx_ring_empty = 0; qp->tx_ring_full = 0; qp->rx_err_no_buf = qp->tx_err_no_buf = 0; qp->rx_err_oflow = qp->rx_err_ver = 0; } static void ntb_qp_link_cleanup(struct ntb_transport_qp *qp) { callout_drain(&qp->link_work); ntb_qp_link_down_reset(qp); if (qp->event_handler != NULL) qp->event_handler(qp->cb_data, NTB_LINK_DOWN); } /* Link commanded down */ /** * ntb_transport_link_down - Notify NTB transport to no longer enqueue data * @qp: NTB transport layer queue to be disabled * * Notify NTB transport layer of client's desire to no longer receive data on * transport queue specified. It is the client's responsibility to ensure all * entries on queue are purged or otherwise handled appropriately. */ void ntb_transport_link_down(struct ntb_transport_qp *qp) { struct ntb_transport_ctx *nt = qp->transport; int i; uint32_t val; qp->client_ready = false; for (i = 0, val = 0; i < nt->qp_count; i++) { if (nt->qp_vec[i].client_ready) val |= (1 << i); } ntb_peer_spad_write(qp->dev, NTBT_QP_LINKS, val); if (qp->link_is_up) ntb_send_link_down(qp); else callout_drain(&qp->link_work); } /** * ntb_transport_link_query - Query transport link state * @qp: NTB transport layer queue to be queried * * Query connectivity to the remote system of the NTB transport queue * * RETURNS: true for link up or false for link down */ bool ntb_transport_link_query(struct ntb_transport_qp *qp) { return (qp->link_is_up); } /** * ntb_transport_link_speed - Query transport link speed * @qp: NTB transport layer queue to be queried * * Query connection speed to the remote system of the NTB transport queue * * RETURNS: link speed in bits per second */ uint64_t ntb_transport_link_speed(struct ntb_transport_qp *qp) { struct ntb_transport_ctx *nt = qp->transport; uint64_t rate; if (!nt->link_is_up) return (0); switch (nt->link_speed) { case NTB_SPEED_GEN1: rate = 2500000000 * 8 / 10; break; case NTB_SPEED_GEN2: rate = 5000000000 * 8 / 10; break; case NTB_SPEED_GEN3: rate = 8000000000 * 128 / 130; break; case NTB_SPEED_GEN4: rate = 16000000000 * 128 / 130; break; default: return (0); } if (nt->link_width <= 0) return (0); return (rate * nt->link_width); } static void ntb_send_link_down(struct ntb_transport_qp *qp) { struct ntb_queue_entry *entry; int i, rc; if (!qp->link_is_up) return; for (i = 0; i < NTB_LINK_DOWN_TIMEOUT; i++) { entry = ntb_list_rm(&qp->ntb_tx_free_q_lock, &qp->tx_free_q); if (entry != NULL) break; pause("NTB Wait for link down", hz / 10); } if (entry == NULL) return; entry->cb_data = NULL; entry->buf = NULL; entry->len = 0; entry->flags = NTBT_LINK_DOWN_FLAG; mtx_lock(&qp->tx_lock); rc = ntb_process_tx(qp, entry); mtx_unlock(&qp->tx_lock); if (rc != 0) printf("ntb: Failed to send link down\n"); ntb_qp_link_down_reset(qp); } /* List Management */ static void ntb_list_add(struct mtx *lock, struct ntb_queue_entry *entry, struct ntb_queue_list *list) { mtx_lock_spin(lock); STAILQ_INSERT_TAIL(list, entry, entry); mtx_unlock_spin(lock); } static struct ntb_queue_entry * ntb_list_rm(struct mtx *lock, struct ntb_queue_list *list) { struct ntb_queue_entry *entry; mtx_lock_spin(lock); if (STAILQ_EMPTY(list)) { entry = NULL; goto out; } entry = STAILQ_FIRST(list); STAILQ_REMOVE_HEAD(list, entry); out: mtx_unlock_spin(lock); return (entry); } static struct ntb_queue_entry * ntb_list_mv(struct mtx *lock, struct ntb_queue_list *from, struct ntb_queue_list *to) { struct ntb_queue_entry *entry; mtx_lock_spin(lock); if (STAILQ_EMPTY(from)) { entry = NULL; goto out; } entry = STAILQ_FIRST(from); STAILQ_REMOVE_HEAD(from, entry); STAILQ_INSERT_TAIL(to, entry, entry); out: mtx_unlock_spin(lock); return (entry); } /** * ntb_transport_qp_num - Query the qp number * @qp: NTB transport layer queue to be queried * * Query qp number of the NTB transport queue * * RETURNS: a zero based number specifying the qp number */ unsigned char ntb_transport_qp_num(struct ntb_transport_qp *qp) { return (qp->qp_num); } /** * ntb_transport_max_size - Query the max payload size of a qp * @qp: NTB transport layer queue to be queried * * Query the maximum payload size permissible on the given qp * * RETURNS: the max payload size of a qp */ unsigned int ntb_transport_max_size(struct ntb_transport_qp *qp) { return (qp->tx_max_frame - sizeof(struct ntb_payload_header)); } unsigned int ntb_transport_tx_free_entry(struct ntb_transport_qp *qp) { unsigned int head = qp->tx_index; unsigned int tail = qp->remote_rx_info->entry; return (tail >= head ? tail - head : qp->tx_max_entry + tail - head); } static device_method_t ntb_transport_methods[] = { /* Device interface */ DEVMETHOD(device_probe, ntb_transport_probe), DEVMETHOD(device_attach, ntb_transport_attach), DEVMETHOD(device_detach, ntb_transport_detach), /* Bus interface */ DEVMETHOD(bus_child_location, ntb_transport_child_location), DEVMETHOD(bus_print_child, ntb_transport_print_child), DEVMETHOD_END }; static DEFINE_CLASS_0(ntb_transport, ntb_transport_driver, ntb_transport_methods, sizeof(struct ntb_transport_ctx)); DRIVER_MODULE(ntb_transport, ntb_hw, ntb_transport_driver, NULL, NULL); MODULE_DEPEND(ntb_transport, ntb, 1, 1, 1); MODULE_VERSION(ntb_transport, 1);