/*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (C) 2011-2014 Matteo Landi, Luigi Rizzo * Copyright (C) 2013-2016 Universita` di Pisa * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * * The header contains the definitions of constants and function * prototypes used only in kernelspace. */ #ifndef _NET_NETMAP_KERN_H_ #define _NET_NETMAP_KERN_H_ #if defined(linux) #if defined(CONFIG_NETMAP_EXTMEM) #define WITH_EXTMEM #endif #if defined(CONFIG_NETMAP_VALE) #define WITH_VALE #endif #if defined(CONFIG_NETMAP_PIPE) #define WITH_PIPES #endif #if defined(CONFIG_NETMAP_MONITOR) #define WITH_MONITOR #endif #if defined(CONFIG_NETMAP_GENERIC) #define WITH_GENERIC #endif #if defined(CONFIG_NETMAP_PTNETMAP) #define WITH_PTNETMAP #endif #if defined(CONFIG_NETMAP_SINK) #define WITH_SINK #endif #if defined(CONFIG_NETMAP_NULL) #define WITH_NMNULL #endif #elif defined (_WIN32) #define WITH_VALE // comment out to disable VALE support #define WITH_PIPES #define WITH_MONITOR #define WITH_GENERIC #define WITH_NMNULL #else /* neither linux nor windows */ #define WITH_VALE // comment out to disable VALE support #define WITH_PIPES #define WITH_MONITOR #define WITH_GENERIC #define WITH_EXTMEM #define WITH_NMNULL #endif #if defined(__FreeBSD__) #include #define likely(x) __builtin_expect((long)!!(x), 1L) #define unlikely(x) __builtin_expect((long)!!(x), 0L) #define __user #define NM_LOCK_T struct mtx /* low level spinlock, used to protect queues */ #define NM_MTX_T struct sx /* OS-specific mutex (sleepable) */ #define NM_MTX_INIT(m) sx_init(&(m), #m) #define NM_MTX_DESTROY(m) sx_destroy(&(m)) #define NM_MTX_LOCK(m) sx_xlock(&(m)) #define NM_MTX_SPINLOCK(m) while (!sx_try_xlock(&(m))) ; #define NM_MTX_UNLOCK(m) sx_xunlock(&(m)) #define NM_MTX_ASSERT(m) sx_assert(&(m), SA_XLOCKED) #define NM_SELINFO_T struct nm_selinfo #define NM_SELRECORD_T struct thread #define MBUF_LEN(m) ((m)->m_pkthdr.len) #define MBUF_TXQ(m) ((m)->m_pkthdr.flowid) #define MBUF_TRANSMIT(na, ifp, m) ((na)->if_transmit(ifp, m)) #define GEN_TX_MBUF_IFP(m) ((m)->m_pkthdr.rcvif) #define GEN_TX_MBUF_NA(m) ((struct netmap_adapter *)(m)->m_ext.ext_arg1) #define NM_ATOMIC_T volatile int /* required by atomic/bitops.h */ /* atomic operations */ #include #define NM_ATOMIC_TEST_AND_SET(p) (!atomic_cmpset_acq_int((p), 0, 1)) #define NM_ATOMIC_CLEAR(p) atomic_store_rel_int((p), 0) struct netmap_adapter *netmap_getna(if_t ifp); #define MBUF_REFCNT(m) ((m)->m_ext.ext_count) #define SET_MBUF_REFCNT(m, x) (m)->m_ext.ext_count = x #define MBUF_QUEUED(m) 1 struct nm_selinfo { /* Support for select(2) and poll(2). */ struct selinfo si; /* Support for kqueue(9). See comments in netmap_freebsd.c */ struct taskqueue *ntfytq; struct task ntfytask; struct mtx m; char mtxname[32]; int kqueue_users; }; struct hrtimer { /* Not used in FreeBSD. */ }; #define NM_BNS_GET(b) #define NM_BNS_PUT(b) #elif defined (linux) #define NM_LOCK_T safe_spinlock_t // see bsd_glue.h #define NM_SELINFO_T wait_queue_head_t #define MBUF_LEN(m) ((m)->len) #define MBUF_TRANSMIT(na, ifp, m) \ ({ \ /* Avoid infinite recursion with generic. */ \ m->priority = NM_MAGIC_PRIORITY_TX; \ (((struct net_device_ops *)(na)->if_transmit)->ndo_start_xmit(m, ifp)); \ 0; \ }) /* See explanation in nm_os_generic_xmit_frame. */ #define GEN_TX_MBUF_IFP(m) ((if_t)skb_shinfo(m)->destructor_arg) #define NM_ATOMIC_T volatile long unsigned int #define NM_MTX_T struct mutex /* OS-specific sleepable lock */ #define NM_MTX_INIT(m) mutex_init(&(m)) #define NM_MTX_DESTROY(m) do { (void)(m); } while (0) #define NM_MTX_LOCK(m) mutex_lock(&(m)) #define NM_MTX_UNLOCK(m) mutex_unlock(&(m)) #define NM_MTX_ASSERT(m) mutex_is_locked(&(m)) #ifndef DEV_NETMAP #define DEV_NETMAP #endif /* DEV_NETMAP */ #elif defined (__APPLE__) #warning apple support is incomplete. #define likely(x) __builtin_expect(!!(x), 1) #define unlikely(x) __builtin_expect(!!(x), 0) #define NM_LOCK_T IOLock * #define NM_SELINFO_T struct selinfo #define MBUF_LEN(m) ((m)->m_pkthdr.len) #elif defined (_WIN32) #include "../../../WINDOWS/win_glue.h" #define NM_SELRECORD_T IO_STACK_LOCATION #define NM_SELINFO_T win_SELINFO // see win_glue.h #define NM_LOCK_T win_spinlock_t // see win_glue.h #define NM_MTX_T KGUARDED_MUTEX /* OS-specific mutex (sleepable) */ #define NM_MTX_INIT(m) KeInitializeGuardedMutex(&m); #define NM_MTX_DESTROY(m) do { (void)(m); } while (0) #define NM_MTX_LOCK(m) KeAcquireGuardedMutex(&(m)) #define NM_MTX_UNLOCK(m) KeReleaseGuardedMutex(&(m)) #define NM_MTX_ASSERT(m) assert(&m.Count>0) //These linknames are for the NDIS driver #define NETMAP_NDIS_LINKNAME_STRING L"\\DosDevices\\NMAPNDIS" #define NETMAP_NDIS_NTDEVICE_STRING L"\\Device\\NMAPNDIS" //Definition of internal driver-to-driver ioctl codes #define NETMAP_KERNEL_XCHANGE_POINTERS _IO('i', 180) #define NETMAP_KERNEL_SEND_SHUTDOWN_SIGNAL _IO_direct('i', 195) typedef struct hrtimer{ KTIMER timer; BOOLEAN active; KDPC deferred_proc; }; /* MSVC does not have likely/unlikely support */ #ifdef _MSC_VER #define likely(x) (x) #define unlikely(x) (x) #else #define likely(x) __builtin_expect((long)!!(x), 1L) #define unlikely(x) __builtin_expect((long)!!(x), 0L) #endif //_MSC_VER #else #error unsupported platform #endif /* end - platform-specific code */ #ifndef _WIN32 /* support for emulated sysctl */ #define SYSBEGIN(x) #define SYSEND #endif /* _WIN32 */ #define NM_ACCESS_ONCE(x) (*(volatile __typeof__(x) *)&(x)) #define NMG_LOCK_T NM_MTX_T #define NMG_LOCK_INIT() NM_MTX_INIT(netmap_global_lock) #define NMG_LOCK_DESTROY() NM_MTX_DESTROY(netmap_global_lock) #define NMG_LOCK() NM_MTX_LOCK(netmap_global_lock) #define NMG_UNLOCK() NM_MTX_UNLOCK(netmap_global_lock) #define NMG_LOCK_ASSERT() NM_MTX_ASSERT(netmap_global_lock) #if defined(__FreeBSD__) #define nm_prerr_int printf #define nm_prinf_int printf #elif defined (_WIN32) #define nm_prerr_int DbgPrint #define nm_prinf_int DbgPrint #elif defined(linux) #define nm_prerr_int(fmt, arg...) printk(KERN_ERR fmt, ##arg) #define nm_prinf_int(fmt, arg...) printk(KERN_INFO fmt, ##arg) #endif #define nm_prinf(format, ...) \ do { \ struct timeval __xxts; \ microtime(&__xxts); \ nm_prinf_int("%03d.%06d [%4d] %-25s " format "\n",\ (int)__xxts.tv_sec % 1000, (int)__xxts.tv_usec, \ __LINE__, __FUNCTION__, ##__VA_ARGS__); \ } while (0) #define nm_prerr(format, ...) \ do { \ struct timeval __xxts; \ microtime(&__xxts); \ nm_prerr_int("%03d.%06d [%4d] %-25s " format "\n",\ (int)__xxts.tv_sec % 1000, (int)__xxts.tv_usec, \ __LINE__, __FUNCTION__, ##__VA_ARGS__); \ } while (0) /* Disabled printf (used to be nm_prdis). */ #define nm_prdis(format, ...) /* Rate limited, lps indicates how many per second. */ #define nm_prlim(lps, format, ...) \ do { \ static int t0, __cnt; \ if (t0 != time_second) { \ t0 = time_second; \ __cnt = 0; \ } \ if (__cnt++ < lps) \ nm_prinf(format, ##__VA_ARGS__); \ } while (0) struct netmap_adapter; struct nm_bdg_fwd; struct nm_bridge; struct netmap_priv_d; struct nm_bdg_args; /* os-specific NM_SELINFO_T initialization/destruction functions */ int nm_os_selinfo_init(NM_SELINFO_T *, const char *name); void nm_os_selinfo_uninit(NM_SELINFO_T *); const char *nm_dump_buf(char *p, int len, int lim, char *dst); void nm_os_selwakeup(NM_SELINFO_T *si); void nm_os_selrecord(NM_SELRECORD_T *sr, NM_SELINFO_T *si); int nm_os_ifnet_init(void); void nm_os_ifnet_fini(void); void nm_os_ifnet_lock(void); void nm_os_ifnet_unlock(void); unsigned nm_os_ifnet_mtu(if_t ifp); void nm_os_get_module(void); void nm_os_put_module(void); void netmap_make_zombie(if_t); void netmap_undo_zombie(if_t); /* os independent alloc/realloc/free */ void *nm_os_malloc(size_t); void *nm_os_vmalloc(size_t); void *nm_os_realloc(void *, size_t new_size, size_t old_size); void nm_os_free(void *); void nm_os_vfree(void *); /* os specific attach/detach enter/exit-netmap-mode routines */ void nm_os_onattach(if_t); void nm_os_ondetach(if_t); void nm_os_onenter(if_t); void nm_os_onexit(if_t); /* passes a packet up to the host stack. * If the packet is sent (or dropped) immediately it returns NULL, * otherwise it links the packet to prev and returns m. * In this case, a final call with m=NULL and prev != NULL will send up * the entire chain to the host stack. */ void *nm_os_send_up(if_t, struct mbuf *m, struct mbuf *prev); int nm_os_mbuf_has_seg_offld(struct mbuf *m); int nm_os_mbuf_has_csum_offld(struct mbuf *m); #include "netmap_mbq.h" extern NMG_LOCK_T netmap_global_lock; enum txrx { NR_RX = 0, NR_TX = 1, NR_TXRX }; static __inline const char* nm_txrx2str(enum txrx t) { return (t== NR_RX ? "RX" : "TX"); } static __inline enum txrx nm_txrx_swap(enum txrx t) { return (t== NR_RX ? NR_TX : NR_RX); } #define for_rx_tx(t) for ((t) = 0; (t) < NR_TXRX; (t)++) #ifdef WITH_MONITOR struct netmap_zmon_list { struct netmap_kring *next; struct netmap_kring *prev; }; #endif /* WITH_MONITOR */ /* * private, kernel view of a ring. Keeps track of the status of * a ring across system calls. * * nr_hwcur index of the next buffer to refill. * It corresponds to ring->head * at the time the system call returns. * * nr_hwtail index of the first buffer owned by the kernel. * On RX, hwcur->hwtail are receive buffers * not yet released. hwcur is advanced following * ring->head, hwtail is advanced on incoming packets, * and a wakeup is generated when hwtail passes ring->cur * On TX, hwcur->rcur have been filled by the sender * but not sent yet to the NIC; rcur->hwtail are available * for new transmissions, and hwtail->hwcur-1 are pending * transmissions not yet acknowledged. * * The indexes in the NIC and netmap rings are offset by nkr_hwofs slots. * This is so that, on a reset, buffers owned by userspace are not * modified by the kernel. In particular: * RX rings: the next empty buffer (hwtail + hwofs) coincides with * the next empty buffer as known by the hardware (next_to_check or so). * TX rings: hwcur + hwofs coincides with next_to_send * * The following fields are used to implement lock-free copy of packets * from input to output ports in VALE switch: * nkr_hwlease buffer after the last one being copied. * A writer in nm_bdg_flush reserves N buffers * from nr_hwlease, advances it, then does the * copy outside the lock. * In RX rings (used for VALE ports), * nkr_hwtail <= nkr_hwlease < nkr_hwcur+N-1 * In TX rings (used for NIC or host stack ports) * nkr_hwcur <= nkr_hwlease < nkr_hwtail * nkr_leases array of nkr_num_slots where writers can report * completion of their block. NR_NOSLOT (~0) indicates * that the writer has not finished yet * nkr_lease_idx index of next free slot in nr_leases, to be assigned * * The kring is manipulated by txsync/rxsync and generic netmap function. * * Concurrent rxsync or txsync on the same ring are prevented through * by nm_kr_(try)lock() which in turn uses nr_busy. This is all we need * for NIC rings, and for TX rings attached to the host stack. * * RX rings attached to the host stack use an mbq (rx_queue) on both * rxsync_from_host() and netmap_transmit(). The mbq is protected * by its internal lock. * * RX rings attached to the VALE switch are accessed by both senders * and receiver. They are protected through the q_lock on the RX ring. */ struct netmap_kring { struct netmap_ring *ring; uint32_t nr_hwcur; /* should be nr_hwhead */ uint32_t nr_hwtail; /* * Copies of values in user rings, so we do not need to look * at the ring (which could be modified). These are set in the * *sync_prologue()/finalize() routines. */ uint32_t rhead; uint32_t rcur; uint32_t rtail; uint32_t nr_kflags; /* private driver flags */ #define NKR_PENDINTR 0x1 // Pending interrupt. #define NKR_EXCLUSIVE 0x2 /* exclusive binding */ #define NKR_FORWARD 0x4 /* (host ring only) there are packets to forward */ #define NKR_NEEDRING 0x8 /* ring needed even if users==0 * (used internally by pipes and * by ptnetmap host ports) */ #define NKR_NOINTR 0x10 /* don't use interrupts on this ring */ #define NKR_FAKERING 0x20 /* don't allocate/free buffers */ uint32_t nr_mode; uint32_t nr_pending_mode; #define NKR_NETMAP_OFF 0x0 #define NKR_NETMAP_ON 0x1 uint32_t nkr_num_slots; /* * On a NIC reset, the NIC ring indexes may be reset but the * indexes in the netmap rings remain the same. nkr_hwofs * keeps track of the offset between the two. * * Moreover, during reset, we can restore only the subset of * the NIC ring that corresponds to the kernel-owned part of * the netmap ring. The rest of the slots must be restored * by the *sync routines when the user releases more slots. * The nkr_to_refill field keeps track of the number of slots * that still need to be restored. */ int32_t nkr_hwofs; int32_t nkr_to_refill; /* last_reclaim is opaque marker to help reduce the frequency * of operations such as reclaiming tx buffers. A possible use * is set it to ticks and do the reclaim only once per tick. */ uint64_t last_reclaim; NM_SELINFO_T si; /* poll/select wait queue */ NM_LOCK_T q_lock; /* protects kring and ring. */ NM_ATOMIC_T nr_busy; /* prevent concurrent syscalls */ /* the adapter the owns this kring */ struct netmap_adapter *na; /* the adapter that wants to be notified when this kring has * new slots available. This is usually the same as the above, * but wrappers may let it point to themselves */ struct netmap_adapter *notify_na; /* The following fields are for VALE switch support */ struct nm_bdg_fwd *nkr_ft; uint32_t *nkr_leases; #define NR_NOSLOT ((uint32_t)~0) /* used in nkr_*lease* */ uint32_t nkr_hwlease; uint32_t nkr_lease_idx; /* while nkr_stopped is set, no new [tr]xsync operations can * be started on this kring. * This is used by netmap_disable_all_rings() * to find a synchronization point where critical data * structures pointed to by the kring can be added or removed */ volatile int nkr_stopped; /* Support for adapters without native netmap support. * On tx rings we preallocate an array of tx buffers * (same size as the netmap ring), on rx rings we * store incoming mbufs in a queue that is drained by * a rxsync. */ struct mbuf **tx_pool; struct mbuf *tx_event; /* TX event used as a notification */ NM_LOCK_T tx_event_lock; /* protects the tx_event mbuf */ #ifdef __FreeBSD__ struct callout tx_event_callout; #endif struct mbq rx_queue; /* intercepted rx mbufs. */ uint32_t users; /* existing bindings for this ring */ uint32_t ring_id; /* kring identifier */ enum txrx tx; /* kind of ring (tx or rx) */ char name[64]; /* diagnostic */ /* [tx]sync callback for this kring. * The default nm_kring_create callback (netmap_krings_create) * sets the nm_sync callback of each hardware tx(rx) kring to * the corresponding nm_txsync(nm_rxsync) taken from the * netmap_adapter; moreover, it sets the sync callback * of the host tx(rx) ring to netmap_txsync_to_host * (netmap_rxsync_from_host). * * Overrides: the above configuration is not changed by * any of the nm_krings_create callbacks. */ int (*nm_sync)(struct netmap_kring *kring, int flags); int (*nm_notify)(struct netmap_kring *kring, int flags); #ifdef WITH_PIPES struct netmap_kring *pipe; /* if this is a pipe ring, * pointer to the other end */ uint32_t pipe_tail; /* hwtail updated by the other end */ #endif /* WITH_PIPES */ /* mask for the offset-related part of the ptr field in the slots */ uint64_t offset_mask; /* maximum user-specified offset, as stipulated at bind time. * Larger offset requests will be silently capped to offset_max. */ uint64_t offset_max; /* minimum gap between two consecutive offsets into the same * buffer, as stipulated at bind time. This is used to choose * the hwbuf_len, but is not otherwise checked for compliance * at runtime. */ uint64_t offset_gap; /* size of hardware buffer. This may be less than the size of * the netmap buffers because of non-zero offsets, or because * the netmap buffer size exceeds the capability of the hardware. */ uint64_t hwbuf_len; /* required alignment (in bytes) for the buffers used by this ring. * Netmap buffers are aligned to cachelines, which should suffice * for most NICs. If the user is passing offsets, though, we need * to check that the resulting buf address complies with any * alignment restriction. */ uint64_t buf_align; /* hardware specific logic for the selection of the hwbuf_len */ int (*nm_bufcfg)(struct netmap_kring *kring, uint64_t target); int (*save_notify)(struct netmap_kring *kring, int flags); #ifdef WITH_MONITOR /* array of krings that are monitoring this kring */ struct netmap_kring **monitors; uint32_t max_monitors; /* current size of the monitors array */ uint32_t n_monitors; /* next unused entry in the monitor array */ uint32_t mon_pos[NR_TXRX]; /* index of this ring in the monitored ring array */ uint32_t mon_tail; /* last seen slot on rx */ /* circular list of zero-copy monitors */ struct netmap_zmon_list zmon_list[NR_TXRX]; /* * Monitors work by intercepting the sync and notify callbacks of the * monitored krings. This is implemented by replacing the pointers * above and saving the previous ones in mon_* pointers below */ int (*mon_sync)(struct netmap_kring *kring, int flags); int (*mon_notify)(struct netmap_kring *kring, int flags); #endif } #ifdef _WIN32 __declspec(align(64)); #else __attribute__((__aligned__(64))); #endif /* return 1 iff the kring needs to be turned on */ static inline int nm_kring_pending_on(struct netmap_kring *kring) { return kring->nr_pending_mode == NKR_NETMAP_ON && kring->nr_mode == NKR_NETMAP_OFF; } /* return 1 iff the kring needs to be turned off */ static inline int nm_kring_pending_off(struct netmap_kring *kring) { return kring->nr_pending_mode == NKR_NETMAP_OFF && kring->nr_mode == NKR_NETMAP_ON; } /* return the next index, with wraparound */ static inline uint32_t nm_next(uint32_t i, uint32_t lim) { return unlikely (i == lim) ? 0 : i + 1; } /* return the previous index, with wraparound */ static inline uint32_t nm_prev(uint32_t i, uint32_t lim) { return unlikely (i == 0) ? lim : i - 1; } /* * * Here is the layout for the Rx and Tx rings. RxRING TxRING +-----------------+ +-----------------+ | | | | | free | | free | +-----------------+ +-----------------+ head->| owned by user |<-hwcur | not sent to nic |<-hwcur | | | yet | +-----------------+ | | cur->| available to | | | | user, not read | +-----------------+ | yet | cur->| (being | | | | prepared) | | | | | +-----------------+ + ------ + tail->| |<-hwtail | |<-hwlease | (being | ... | | ... | prepared) | ... | | ... +-----------------+ ... | | ... | |<-hwlease +-----------------+ | | tail->| |<-hwtail | | | | | | | | | | | | +-----------------+ +-----------------+ * The cur/tail (user view) and hwcur/hwtail (kernel view) * are used in the normal operation of the card. * * When a ring is the output of a switch port (Rx ring for * a VALE port, Tx ring for the host stack or NIC), slots * are reserved in blocks through 'hwlease' which points * to the next unused slot. * On an Rx ring, hwlease is always after hwtail, * and completions cause hwtail to advance. * On a Tx ring, hwlease is always between cur and hwtail, * and completions cause cur to advance. * * nm_kr_space() returns the maximum number of slots that * can be assigned. * nm_kr_lease() reserves the required number of buffers, * advances nkr_hwlease and also returns an entry in * a circular array where completions should be reported. */ struct lut_entry; #ifdef __FreeBSD__ #define plut_entry lut_entry #endif struct netmap_lut { struct lut_entry *lut; struct plut_entry *plut; uint32_t objtotal; /* max buffer index */ uint32_t objsize; /* buffer size */ }; struct netmap_vp_adapter; // forward struct nm_bridge; /* Struct to be filled by nm_config callbacks. */ struct nm_config_info { unsigned num_tx_rings; unsigned num_rx_rings; unsigned num_tx_descs; unsigned num_rx_descs; unsigned rx_buf_maxsize; }; /* * default type for the magic field. * May be overridden in glue code. */ #ifndef NM_OS_MAGIC #define NM_OS_MAGIC uint32_t #endif /* !NM_OS_MAGIC */ /* * The "struct netmap_adapter" extends the "struct adapter" * (or equivalent) device descriptor. * It contains all base fields needed to support netmap operation. * There are in fact different types of netmap adapters * (native, generic, VALE switch...) so a netmap_adapter is * just the first field in the derived type. */ struct netmap_adapter { /* * On linux we do not have a good way to tell if an interface * is netmap-capable. So we always use the following trick: * NA(ifp) points here, and the first entry (which hopefully * always exists and is at least 32 bits) contains a magic * value which we can use to detect that the interface is good. */ NM_OS_MAGIC magic; uint32_t na_flags; /* enabled, and other flags */ #define NAF_SKIP_INTR 1 /* use the regular interrupt handler. * useful during initialization */ #define NAF_SW_ONLY 2 /* forward packets only to sw adapter */ #define NAF_BDG_MAYSLEEP 4 /* the bridge is allowed to sleep when * forwarding packets coming from this * interface */ #define NAF_MEM_OWNER 8 /* the adapter uses its own memory area * that cannot be changed */ #define NAF_NATIVE 16 /* the adapter is native. * Virtual ports (non persistent vale ports, * pipes, monitors...) should never use * this flag. */ #define NAF_NETMAP_ON 32 /* netmap is active (either native or * emulated). Where possible (e.g. FreeBSD) * IFCAP_NETMAP also mirrors this flag. */ #define NAF_HOST_RINGS 64 /* the adapter supports the host rings */ #define NAF_FORCE_NATIVE 128 /* the adapter is always NATIVE */ /* free */ #define NAF_MOREFRAG 512 /* the adapter supports NS_MOREFRAG */ #define NAF_OFFSETS 1024 /* the adapter supports the slot offsets */ #define NAF_HOST_ALL 2048 /* the adapter wants as many host rings as hw */ #define NAF_ZOMBIE (1U<<30) /* the nic driver has been unloaded */ #define NAF_BUSY (1U<<31) /* the adapter is used internally and * cannot be registered from userspace */ int active_fds; /* number of user-space descriptors using this interface, which is equal to the number of struct netmap_if objs in the mapped region. */ u_int num_rx_rings; /* number of adapter receive rings */ u_int num_tx_rings; /* number of adapter transmit rings */ u_int num_host_rx_rings; /* number of host receive rings */ u_int num_host_tx_rings; /* number of host transmit rings */ u_int num_tx_desc; /* number of descriptor in each queue */ u_int num_rx_desc; /* tx_rings and rx_rings are private but allocated as a * contiguous chunk of memory. Each array has N+K entries, * N for the hardware rings and K for the host rings. */ struct netmap_kring **tx_rings; /* array of TX rings. */ struct netmap_kring **rx_rings; /* array of RX rings. */ void *tailroom; /* space below the rings array */ /* (used for leases) */ NM_SELINFO_T si[NR_TXRX]; /* global wait queues */ /* count users of the global wait queues */ int si_users[NR_TXRX]; void *pdev; /* used to store pci device */ /* copy of if_qflush and if_transmit pointers, to intercept * packets from the network stack when netmap is active. */ int (*if_transmit)(if_t, struct mbuf *); /* copy of if_input for netmap_send_up() */ void (*if_input)(if_t, struct mbuf *); /* Back reference to the parent ifnet struct. Used for * hardware ports (emulated netmap included). */ if_t ifp; /* adapter is if_getsoftc(ifp) */ /*---- callbacks for this netmap adapter -----*/ /* * nm_dtor() is the cleanup routine called when destroying * the adapter. * Called with NMG_LOCK held. * * nm_register() is called on NIOCREGIF and close() to enter * or exit netmap mode on the NIC * Called with NNG_LOCK held. * * nm_txsync() pushes packets to the underlying hw/switch * * nm_rxsync() collects packets from the underlying hw/switch * * nm_config() returns configuration information from the OS * Called with NMG_LOCK held. * * nm_bufcfg() * the purpose of this callback is to fill the kring->hwbuf_len * (l) and kring->buf_align fields. The l value is most important * for RX rings, where we want to disallow writes outside of the * netmap buffer. The l value must be computed taking into account * the stipulated max_offset (o), possibly increased if there are * alignment constraints, the maxframe (m), if known, and the * current NETMAP_BUF_SIZE (b) of the memory region used by the * adapter. We want the largest supported l such that o + l <= b. * If m is known to be <= b - o, the callback may also choose the * largest l <= m, ignoring the offset. The buf_align field is * most important for TX rings when there are offsets. The user * will see this value in the ring->buf_align field. Misaligned * offsets will cause the corresponding packets to be silently * dropped. * * nm_krings_create() create and init the tx_rings and * rx_rings arrays of kring structures. In particular, * set the nm_sync callbacks for each ring. * There is no need to also allocate the corresponding * netmap_rings, since netmap_mem_rings_create() will always * be called to provide the missing ones. * Called with NNG_LOCK held. * * nm_krings_delete() cleanup and delete the tx_rings and rx_rings * arrays * Called with NMG_LOCK held. * * nm_notify() is used to act after data have become available * (or the stopped state of the ring has changed) * For hw devices this is typically a selwakeup(), * but for NIC/host ports attached to a switch (or vice-versa) * we also need to invoke the 'txsync' code downstream. * This callback pointer is actually used only to initialize * kring->nm_notify. * Return values are the same as for netmap_rx_irq(). */ void (*nm_dtor)(struct netmap_adapter *); int (*nm_register)(struct netmap_adapter *, int onoff); void (*nm_intr)(struct netmap_adapter *, int onoff); int (*nm_txsync)(struct netmap_kring *kring, int flags); int (*nm_rxsync)(struct netmap_kring *kring, int flags); int (*nm_notify)(struct netmap_kring *kring, int flags); int (*nm_bufcfg)(struct netmap_kring *kring, uint64_t target); #define NAF_FORCE_READ 1 #define NAF_FORCE_RECLAIM 2 #define NAF_CAN_FORWARD_DOWN 4 /* return configuration information */ int (*nm_config)(struct netmap_adapter *, struct nm_config_info *info); int (*nm_krings_create)(struct netmap_adapter *); void (*nm_krings_delete)(struct netmap_adapter *); /* * nm_bdg_attach() initializes the na_vp field to point * to an adapter that can be attached to a VALE switch. If the * current adapter is already a VALE port, na_vp is simply a cast; * otherwise, na_vp points to a netmap_bwrap_adapter. * If applicable, this callback also initializes na_hostvp, * that can be used to connect the adapter host rings to the * switch. * Called with NMG_LOCK held. * * nm_bdg_ctl() is called on the actual attach/detach to/from * to/from the switch, to perform adapter-specific * initializations * Called with NMG_LOCK held. */ int (*nm_bdg_attach)(const char *bdg_name, struct netmap_adapter *, struct nm_bridge *); int (*nm_bdg_ctl)(struct nmreq_header *, struct netmap_adapter *); /* adapter used to attach this adapter to a VALE switch (if any) */ struct netmap_vp_adapter *na_vp; /* adapter used to attach the host rings of this adapter * to a VALE switch (if any) */ struct netmap_vp_adapter *na_hostvp; /* standard refcount to control the lifetime of the adapter * (it should be equal to the lifetime of the corresponding ifp) */ int na_refcount; /* memory allocator (opaque) * We also cache a pointer to the lut_entry for translating * buffer addresses, the total number of buffers and the buffer size. */ struct netmap_mem_d *nm_mem; struct netmap_mem_d *nm_mem_prev; struct netmap_lut na_lut; /* additional information attached to this adapter * by other netmap subsystems. Currently used by * bwrap, LINUX/v1000 and ptnetmap */ void *na_private; /* array of pipes that have this adapter as a parent */ struct netmap_pipe_adapter **na_pipes; int na_next_pipe; /* next free slot in the array */ int na_max_pipes; /* size of the array */ /* Offset of ethernet header for each packet. */ u_int virt_hdr_len; /* Max number of bytes that the NIC can store in the buffer * referenced by each RX descriptor. This translates to the maximum * bytes that a single netmap slot can reference. Larger packets * require NS_MOREFRAG support. */ unsigned rx_buf_maxsize; char name[NETMAP_REQ_IFNAMSIZ]; /* used at least by pipes */ #ifdef WITH_MONITOR unsigned long monitor_id; /* debugging */ #endif }; static __inline u_int nma_get_ndesc(struct netmap_adapter *na, enum txrx t) { return (t == NR_TX ? na->num_tx_desc : na->num_rx_desc); } static __inline void nma_set_ndesc(struct netmap_adapter *na, enum txrx t, u_int v) { if (t == NR_TX) na->num_tx_desc = v; else na->num_rx_desc = v; } static __inline u_int nma_get_nrings(struct netmap_adapter *na, enum txrx t) { return (t == NR_TX ? na->num_tx_rings : na->num_rx_rings); } static __inline u_int nma_get_host_nrings(struct netmap_adapter *na, enum txrx t) { return (t == NR_TX ? na->num_host_tx_rings : na->num_host_rx_rings); } static __inline void nma_set_nrings(struct netmap_adapter *na, enum txrx t, u_int v) { if (t == NR_TX) na->num_tx_rings = v; else na->num_rx_rings = v; } static __inline void nma_set_host_nrings(struct netmap_adapter *na, enum txrx t, u_int v) { if (t == NR_TX) na->num_host_tx_rings = v; else na->num_host_rx_rings = v; } static __inline struct netmap_kring** NMR(struct netmap_adapter *na, enum txrx t) { return (t == NR_TX ? na->tx_rings : na->rx_rings); } int nma_intr_enable(struct netmap_adapter *na, int onoff); /* * If the NIC is owned by the kernel * (i.e., bridge), neither another bridge nor user can use it; * if the NIC is owned by a user, only users can share it. * Evaluation must be done under NMG_LOCK(). */ #define NETMAP_OWNED_BY_KERN(na) ((na)->na_flags & NAF_BUSY) #define NETMAP_OWNED_BY_ANY(na) \ (NETMAP_OWNED_BY_KERN(na) || ((na)->active_fds > 0)) /* * derived netmap adapters for various types of ports */ struct netmap_vp_adapter { /* VALE software port */ struct netmap_adapter up; /* * Bridge support: * * bdg_port is the port number used in the bridge; * na_bdg points to the bridge this NA is attached to. */ int bdg_port; struct nm_bridge *na_bdg; int retry; int autodelete; /* remove the ifp on last reference */ /* Maximum Frame Size, used in bdg_mismatch_datapath() */ u_int mfs; /* Last source MAC on this port */ uint64_t last_smac; }; struct netmap_hw_adapter { /* physical device */ struct netmap_adapter up; #ifdef linux struct net_device_ops nm_ndo; struct ethtool_ops nm_eto; #endif const struct ethtool_ops* save_ethtool; int (*nm_hw_register)(struct netmap_adapter *, int onoff); }; #ifdef WITH_GENERIC /* Mitigation support. */ struct nm_generic_mit { struct hrtimer mit_timer; int mit_pending; int mit_ring_idx; /* index of the ring being mitigated */ struct netmap_adapter *mit_na; /* backpointer */ }; struct netmap_generic_adapter { /* emulated device */ struct netmap_hw_adapter up; /* Pointer to a previously used netmap adapter. */ struct netmap_adapter *prev; /* Emulated netmap adapters support: * - mit implements rx interrupt mitigation; */ struct nm_generic_mit *mit; #ifdef linux netdev_tx_t (*save_start_xmit)(struct mbuf *, if_t); #endif /* Is the adapter able to use multiple RX slots to scatter * each packet pushed up by the driver? */ int rxsg; /* Is the transmission path controlled by a netmap-aware * device queue (i.e. qdisc on linux)? */ int txqdisc; }; #endif /* WITH_GENERIC */ static __inline u_int netmap_real_rings(struct netmap_adapter *na, enum txrx t) { return nma_get_nrings(na, t) + !!(na->na_flags & NAF_HOST_RINGS) * nma_get_host_nrings(na, t); } /* account for fake rings */ static __inline u_int netmap_all_rings(struct netmap_adapter *na, enum txrx t) { return max(nma_get_nrings(na, t) + 1, netmap_real_rings(na, t)); } int netmap_default_bdg_attach(const char *name, struct netmap_adapter *na, struct nm_bridge *); struct nm_bdg_polling_state; /* * Bridge wrapper for non VALE ports attached to a VALE switch. * * The real device must already have its own netmap adapter (hwna). * The bridge wrapper and the hwna adapter share the same set of * netmap rings and buffers, but they have two separate sets of * krings descriptors, with tx/rx meanings swapped: * * netmap * bwrap krings rings krings hwna * +------+ +------+ +-----+ +------+ +------+ * |tx_rings->| |\ /| |----| |<-tx_rings| * | | +------+ \ / +-----+ +------+ | | * | | X | | * | | / \ | | * | | +------+/ \+-----+ +------+ | | * |rx_rings->| | | |----| |<-rx_rings| * | | +------+ +-----+ +------+ | | * +------+ +------+ * * - packets coming from the bridge go to the brwap rx rings, * which are also the hwna tx rings. The bwrap notify callback * will then complete the hwna tx (see netmap_bwrap_notify). * * - packets coming from the outside go to the hwna rx rings, * which are also the bwrap tx rings. The (overwritten) hwna * notify method will then complete the bridge tx * (see netmap_bwrap_intr_notify). * * The bridge wrapper may optionally connect the hwna 'host' rings * to the bridge. This is done by using a second port in the * bridge and connecting it to the 'host' netmap_vp_adapter * contained in the netmap_bwrap_adapter. The brwap host adapter * cross-links the hwna host rings in the same way as shown above. * * - packets coming from the bridge and directed to the host stack * are handled by the bwrap host notify callback * (see netmap_bwrap_host_notify) * * - packets coming from the host stack are still handled by the * overwritten hwna notify callback (netmap_bwrap_intr_notify), * but are diverted to the host adapter depending on the ring number. * */ struct netmap_bwrap_adapter { struct netmap_vp_adapter up; struct netmap_vp_adapter host; /* for host rings */ struct netmap_adapter *hwna; /* the underlying device */ /* * When we attach a physical interface to the bridge, we * allow the controlling process to terminate, so we need * a place to store the n_detmap_priv_d data structure. * This is only done when physical interfaces * are attached to a bridge. */ struct netmap_priv_d *na_kpriv; struct nm_bdg_polling_state *na_polling_state; /* we overwrite the hwna->na_vp pointer, so we save * here its original value, to be restored at detach */ struct netmap_vp_adapter *saved_na_vp; int (*nm_intr_notify)(struct netmap_kring *kring, int flags); }; int nm_is_bwrap(struct netmap_adapter *na); int nm_bdg_polling(struct nmreq_header *hdr); int netmap_bdg_attach(struct nmreq_header *hdr, void *auth_token); int netmap_bdg_detach(struct nmreq_header *hdr, void *auth_token); #ifdef WITH_VALE int netmap_vale_list(struct nmreq_header *hdr); int netmap_vi_create(struct nmreq_header *hdr, int); int nm_vi_create(struct nmreq_header *); int nm_vi_destroy(const char *name); #else /* !WITH_VALE */ #define netmap_vi_create(hdr, a) (EOPNOTSUPP) #endif /* WITH_VALE */ #ifdef WITH_PIPES #define NM_MAXPIPES 64 /* max number of pipes per adapter */ struct netmap_pipe_adapter { /* pipe identifier is up.name */ struct netmap_adapter up; #define NM_PIPE_ROLE_MASTER 0x1 #define NM_PIPE_ROLE_SLAVE 0x2 int role; /* either NM_PIPE_ROLE_MASTER or NM_PIPE_ROLE_SLAVE */ struct netmap_adapter *parent; /* adapter that owns the memory */ struct netmap_pipe_adapter *peer; /* the other end of the pipe */ int peer_ref; /* 1 iff we are holding a ref to the peer */ if_t parent_ifp; /* maybe null */ u_int parent_slot; /* index in the parent pipe array */ }; #endif /* WITH_PIPES */ #ifdef WITH_NMNULL struct netmap_null_adapter { struct netmap_adapter up; }; #endif /* WITH_NMNULL */ /* return slots reserved to rx clients; used in drivers */ static inline uint32_t nm_kr_rxspace(struct netmap_kring *k) { int space = k->nr_hwtail - k->nr_hwcur; if (space < 0) space += k->nkr_num_slots; nm_prdis("preserving %d rx slots %d -> %d", space, k->nr_hwcur, k->nr_hwtail); return space; } /* return slots reserved to tx clients */ #define nm_kr_txspace(_k) nm_kr_rxspace(_k) /* True if no space in the tx ring, only valid after txsync_prologue */ static inline int nm_kr_txempty(struct netmap_kring *kring) { return kring->rhead == kring->nr_hwtail; } /* True if no more completed slots in the rx ring, only valid after * rxsync_prologue */ #define nm_kr_rxempty(_k) nm_kr_txempty(_k) /* True if the application needs to wait for more space on the ring * (more received packets or more free tx slots). * Only valid after *xsync_prologue. */ static inline int nm_kr_wouldblock(struct netmap_kring *kring) { return kring->rcur == kring->nr_hwtail; } /* * protect against multiple threads using the same ring. * also check that the ring has not been stopped or locked */ #define NM_KR_BUSY 1 /* some other thread is syncing the ring */ #define NM_KR_STOPPED 2 /* unbounded stop (ifconfig down or driver unload) */ #define NM_KR_LOCKED 3 /* bounded, brief stop for mutual exclusion */ /* release the previously acquired right to use the *sync() methods of the ring */ static __inline void nm_kr_put(struct netmap_kring *kr) { NM_ATOMIC_CLEAR(&kr->nr_busy); } /* true if the ifp that backed the adapter has disappeared (e.g., the * driver has been unloaded) */ static inline int nm_iszombie(struct netmap_adapter *na); /* try to obtain exclusive right to issue the *sync() operations on the ring. * The right is obtained and must be later relinquished via nm_kr_put() if and * only if nm_kr_tryget() returns 0. * If can_sleep is 1 there are only two other possible outcomes: * - the function returns NM_KR_BUSY * - the function returns NM_KR_STOPPED and sets the POLLERR bit in *perr * (if non-null) * In both cases the caller will typically skip the ring, possibly collecting * errors along the way. * If the calling context does not allow sleeping, the caller must pass 0 in can_sleep. * In the latter case, the function may also return NM_KR_LOCKED and leave *perr * untouched: ideally, the caller should try again at a later time. */ static __inline int nm_kr_tryget(struct netmap_kring *kr, int can_sleep, int *perr) { int busy = 1, stopped; /* check a first time without taking the lock * to avoid starvation for nm_kr_get() */ retry: stopped = kr->nkr_stopped; if (unlikely(stopped)) { goto stop; } busy = NM_ATOMIC_TEST_AND_SET(&kr->nr_busy); /* we should not return NM_KR_BUSY if the ring was * actually stopped, so check another time after * the barrier provided by the atomic operation */ stopped = kr->nkr_stopped; if (unlikely(stopped)) { goto stop; } if (unlikely(nm_iszombie(kr->na))) { stopped = NM_KR_STOPPED; goto stop; } return unlikely(busy) ? NM_KR_BUSY : 0; stop: if (!busy) nm_kr_put(kr); if (stopped == NM_KR_STOPPED) { /* if POLLERR is defined we want to use it to simplify netmap_poll(). * Otherwise, any non-zero value will do. */ #ifdef POLLERR #define NM_POLLERR POLLERR #else #define NM_POLLERR 1 #endif /* POLLERR */ if (perr) *perr |= NM_POLLERR; #undef NM_POLLERR } else if (can_sleep) { tsleep(kr, 0, "NM_KR_TRYGET", 4); goto retry; } return stopped; } /* put the ring in the 'stopped' state and wait for the current user (if any) to * notice. stopped must be either NM_KR_STOPPED or NM_KR_LOCKED */ static __inline void nm_kr_stop(struct netmap_kring *kr, int stopped) { kr->nkr_stopped = stopped; while (NM_ATOMIC_TEST_AND_SET(&kr->nr_busy)) tsleep(kr, 0, "NM_KR_GET", 4); } /* restart a ring after a stop */ static __inline void nm_kr_start(struct netmap_kring *kr) { kr->nkr_stopped = 0; nm_kr_put(kr); } /* * The following functions are used by individual drivers to * support netmap operation. * * netmap_attach() initializes a struct netmap_adapter, allocating the * struct netmap_ring's and the struct selinfo. * * netmap_detach() frees the memory allocated by netmap_attach(). * * netmap_transmit() replaces the if_transmit routine of the interface, * and is used to intercept packets coming from the stack. * * netmap_load_map/netmap_reload_map are helper routines to set/reset * the dmamap for a packet buffer * * netmap_reset() is a helper routine to be called in the hw driver * when reinitializing a ring. It should not be called by * virtual ports (vale, pipes, monitor) */ int netmap_attach(struct netmap_adapter *); int netmap_attach_ext(struct netmap_adapter *, size_t size, int override_reg); void netmap_detach(if_t); int netmap_transmit(if_t, struct mbuf *); struct netmap_slot *netmap_reset(struct netmap_adapter *na, enum txrx tx, u_int n, u_int new_cur); int netmap_ring_reinit(struct netmap_kring *); int netmap_rings_config_get(struct netmap_adapter *, struct nm_config_info *); /* Return codes for netmap_*x_irq. */ enum { /* Driver should do normal interrupt processing, e.g. because * the interface is not in netmap mode. */ NM_IRQ_PASS = 0, /* Port is in netmap mode, and the interrupt work has been * completed. The driver does not have to notify netmap * again before the next interrupt. */ NM_IRQ_COMPLETED = -1, /* Port is in netmap mode, but the interrupt work has not been * completed. The driver has to make sure netmap will be * notified again soon, even if no more interrupts come (e.g. * on Linux the driver should not call napi_complete()). */ NM_IRQ_RESCHED = -2, }; /* default functions to handle rx/tx interrupts */ int netmap_rx_irq(if_t, u_int, u_int *); #define netmap_tx_irq(_n, _q) netmap_rx_irq(_n, _q, NULL) int netmap_common_irq(struct netmap_adapter *, u_int, u_int *work_done); #ifdef WITH_VALE /* functions used by external modules to interface with VALE */ #define netmap_vp_to_ifp(_vp) ((_vp)->up.ifp) #define netmap_ifp_to_vp(_ifp) (NA(_ifp)->na_vp) #define netmap_ifp_to_host_vp(_ifp) (NA(_ifp)->na_hostvp) #define netmap_bdg_idx(_vp) ((_vp)->bdg_port) const char *netmap_bdg_name(struct netmap_vp_adapter *); #else /* !WITH_VALE */ #define netmap_vp_to_ifp(_vp) NULL #define netmap_ifp_to_vp(_ifp) NULL #define netmap_ifp_to_host_vp(_ifp) NULL #define netmap_bdg_idx(_vp) -1 #endif /* WITH_VALE */ static inline int nm_netmap_on(struct netmap_adapter *na) { return na && na->na_flags & NAF_NETMAP_ON; } static inline int nm_native_on(struct netmap_adapter *na) { return nm_netmap_on(na) && (na->na_flags & NAF_NATIVE); } static inline struct netmap_kring * netmap_kring_on(struct netmap_adapter *na, u_int q, enum txrx t) { struct netmap_kring *kring = NULL; if (!nm_native_on(na)) return NULL; if (t == NR_RX && q < na->num_rx_rings) kring = na->rx_rings[q]; else if (t == NR_TX && q < na->num_tx_rings) kring = na->tx_rings[q]; else return NULL; return (kring->nr_mode == NKR_NETMAP_ON) ? kring : NULL; } static inline int nm_iszombie(struct netmap_adapter *na) { return na == NULL || (na->na_flags & NAF_ZOMBIE); } void nm_set_native_flags(struct netmap_adapter *); void nm_clear_native_flags(struct netmap_adapter *); void netmap_krings_mode_commit(struct netmap_adapter *na, int onoff); /* * nm_*sync_prologue() functions are used in ioctl/poll and ptnetmap * kthreads. * We need netmap_ring* parameter, because in ptnetmap it is decoupled * from host kring. * The user-space ring pointers (head/cur/tail) are shared through * CSB between host and guest. */ /* * validates parameters in the ring/kring, returns a value for head * If any error, returns ring_size to force a reinit. */ uint32_t nm_txsync_prologue(struct netmap_kring *, struct netmap_ring *); /* * validates parameters in the ring/kring, returns a value for head * If any error, returns ring_size lim to force a reinit. */ uint32_t nm_rxsync_prologue(struct netmap_kring *, struct netmap_ring *); /* check/fix address and len in tx rings */ #if 1 /* debug version */ #define NM_CHECK_ADDR_LEN(_na, _a, _l) do { \ if (_a == NETMAP_BUF_BASE(_na) || _l > NETMAP_BUF_SIZE(_na)) { \ nm_prlim(5, "bad addr/len ring %d slot %d idx %d len %d", \ kring->ring_id, nm_i, slot->buf_idx, len); \ if (_l > NETMAP_BUF_SIZE(_na)) \ _l = NETMAP_BUF_SIZE(_na); \ } } while (0) #else /* no debug version */ #define NM_CHECK_ADDR_LEN(_na, _a, _l) do { \ if (_l > NETMAP_BUF_SIZE(_na)) \ _l = NETMAP_BUF_SIZE(_na); \ } while (0) #endif #define NM_CHECK_ADDR_LEN_OFF(na_, l_, o_) do { \ if ((l_) + (o_) < (l_) || \ (l_) + (o_) > NETMAP_BUF_SIZE(na_)) { \ (l_) = NETMAP_BUF_SIZE(na_) - (o_); \ } } while (0) /*---------------------------------------------------------------*/ /* * Support routines used by netmap subsystems * (native drivers, VALE, generic, pipes, monitors, ...) */ /* common routine for all functions that create a netmap adapter. It performs * two main tasks: * - if the na points to an ifp, mark the ifp as netmap capable * using na as its native adapter; * - provide defaults for the setup callbacks and the memory allocator */ int netmap_attach_common(struct netmap_adapter *); /* fill priv->np_[tr]xq{first,last} using the ringid and flags information * coming from a struct nmreq_register */ int netmap_interp_ringid(struct netmap_priv_d *priv, struct nmreq_header *hdr); /* update the ring parameters (number and size of tx and rx rings). * It calls the nm_config callback, if available. */ int netmap_update_config(struct netmap_adapter *na); /* create and initialize the common fields of the krings array. * using the information that must be already available in the na. * tailroom can be used to request the allocation of additional * tailroom bytes after the krings array. This is used by * netmap_vp_adapter's (i.e., VALE ports) to make room for * leasing-related data structures */ int netmap_krings_create(struct netmap_adapter *na, u_int tailroom); /* deletes the kring array of the adapter. The array must have * been created using netmap_krings_create */ void netmap_krings_delete(struct netmap_adapter *na); int netmap_hw_krings_create(struct netmap_adapter *na); void netmap_hw_krings_delete(struct netmap_adapter *na); /* set the stopped/enabled status of ring * When stopping, they also wait for all current activity on the ring to * terminate. The status change is then notified using the na nm_notify * callback. */ void netmap_set_ring(struct netmap_adapter *, u_int ring_id, enum txrx, int stopped); /* set the stopped/enabled status of all rings of the adapter. */ void netmap_set_all_rings(struct netmap_adapter *, int stopped); /* convenience wrappers for netmap_set_all_rings */ void netmap_disable_all_rings(if_t); void netmap_enable_all_rings(if_t); int netmap_buf_size_validate(const struct netmap_adapter *na, unsigned mtu); int netmap_do_regif(struct netmap_priv_d *priv, struct netmap_adapter *na, struct nmreq_header *); void netmap_do_unregif(struct netmap_priv_d *priv); u_int nm_bound_var(u_int *v, u_int dflt, u_int lo, u_int hi, const char *msg); int netmap_get_na(struct nmreq_header *hdr, struct netmap_adapter **na, if_t *ifp, struct netmap_mem_d *nmd, int create); void netmap_unget_na(struct netmap_adapter *na, if_t ifp); int netmap_get_hw_na(if_t ifp, struct netmap_mem_d *nmd, struct netmap_adapter **na); void netmap_mem_restore(struct netmap_adapter *na); #ifdef WITH_VALE uint32_t netmap_vale_learning(struct nm_bdg_fwd *ft, uint8_t *dst_ring, struct netmap_vp_adapter *, void *private_data); /* these are redefined in case of no VALE support */ int netmap_get_vale_na(struct nmreq_header *hdr, struct netmap_adapter **na, struct netmap_mem_d *nmd, int create); void *netmap_vale_create(const char *bdg_name, int *return_status); int netmap_vale_destroy(const char *bdg_name, void *auth_token); extern unsigned int vale_max_bridges; #else /* !WITH_VALE */ #define netmap_bdg_learning(_1, _2, _3, _4) 0 #define netmap_get_vale_na(_1, _2, _3, _4) 0 #define netmap_bdg_create(_1, _2) NULL #define netmap_bdg_destroy(_1, _2) 0 #define vale_max_bridges 1 #endif /* !WITH_VALE */ #ifdef WITH_PIPES /* max number of pipes per device */ #define NM_MAXPIPES 64 /* XXX this should probably be a sysctl */ void netmap_pipe_dealloc(struct netmap_adapter *); int netmap_get_pipe_na(struct nmreq_header *hdr, struct netmap_adapter **na, struct netmap_mem_d *nmd, int create); #else /* !WITH_PIPES */ #define NM_MAXPIPES 0 #define netmap_pipe_alloc(_1, _2) 0 #define netmap_pipe_dealloc(_1) #define netmap_get_pipe_na(hdr, _2, _3, _4) \ ((strchr(hdr->nr_name, '{') != NULL || strchr(hdr->nr_name, '}') != NULL) ? EOPNOTSUPP : 0) #endif #ifdef WITH_MONITOR int netmap_get_monitor_na(struct nmreq_header *hdr, struct netmap_adapter **na, struct netmap_mem_d *nmd, int create); void netmap_monitor_stop(struct netmap_adapter *na); #else #define netmap_get_monitor_na(hdr, _2, _3, _4) \ (((struct nmreq_register *)(uintptr_t)hdr->nr_body)->nr_flags & (NR_MONITOR_TX | NR_MONITOR_RX) ? EOPNOTSUPP : 0) #endif #ifdef WITH_NMNULL int netmap_get_null_na(struct nmreq_header *hdr, struct netmap_adapter **na, struct netmap_mem_d *nmd, int create); #else /* !WITH_NMNULL */ #define netmap_get_null_na(hdr, _2, _3, _4) \ (((struct nmreq_register *)(uintptr_t)hdr->nr_body)->nr_flags & (NR_MONITOR_TX | NR_MONITOR_RX) ? EOPNOTSUPP : 0) #endif /* WITH_NMNULL */ #ifdef CONFIG_NET_NS struct net *netmap_bns_get(void); void netmap_bns_put(struct net *); void netmap_bns_getbridges(struct nm_bridge **, u_int *); #else extern struct nm_bridge *nm_bridges; #define netmap_bns_get() #define netmap_bns_put(_1) #define netmap_bns_getbridges(b, n) \ do { *b = nm_bridges; *n = vale_max_bridges; } while (0) #endif /* Various prototypes */ int netmap_poll(struct netmap_priv_d *, int events, NM_SELRECORD_T *td); int netmap_init(void); void netmap_fini(void); int netmap_get_memory(struct netmap_priv_d* p); void netmap_dtor(void *data); int netmap_ioctl(struct netmap_priv_d *priv, u_long cmd, caddr_t data, struct thread *, int nr_body_is_user); int netmap_ioctl_legacy(struct netmap_priv_d *priv, u_long cmd, caddr_t data, struct thread *td); size_t nmreq_size_by_type(uint16_t nr_reqtype); /* netmap_adapter creation/destruction */ // #define NM_DEBUG_PUTGET 1 #ifdef NM_DEBUG_PUTGET #define NM_DBG(f) __##f void __netmap_adapter_get(struct netmap_adapter *na); #define netmap_adapter_get(na) \ do { \ struct netmap_adapter *__na = na; \ __netmap_adapter_get(__na); \ nm_prinf("getting %p:%s -> %d", __na, (__na)->name, (__na)->na_refcount); \ } while (0) int __netmap_adapter_put(struct netmap_adapter *na); #define netmap_adapter_put(na) \ ({ \ struct netmap_adapter *__na = na; \ if (__na == NULL) \ nm_prinf("putting NULL"); \ else \ nm_prinf("putting %p:%s -> %d", __na, (__na)->name, (__na)->na_refcount - 1); \ __netmap_adapter_put(__na); \ }) #else /* !NM_DEBUG_PUTGET */ #define NM_DBG(f) f void netmap_adapter_get(struct netmap_adapter *na); int netmap_adapter_put(struct netmap_adapter *na); #endif /* !NM_DEBUG_PUTGET */ /* * module variables */ #define NETMAP_BUF_BASE(_na) ((_na)->na_lut.lut[0].vaddr) #define NETMAP_BUF_SIZE(_na) ((_na)->na_lut.objsize) extern int netmap_no_pendintr; extern int netmap_verbose; #ifdef CONFIG_NETMAP_DEBUG extern int netmap_debug; /* for debugging */ #else /* !CONFIG_NETMAP_DEBUG */ #define netmap_debug (0) #endif /* !CONFIG_NETMAP_DEBUG */ enum { /* debug flags */ NM_DEBUG_ON = 1, /* generic debug messages */ NM_DEBUG_HOST = 0x2, /* debug host stack */ NM_DEBUG_RXSYNC = 0x10, /* debug on rxsync/txsync */ NM_DEBUG_TXSYNC = 0x20, NM_DEBUG_RXINTR = 0x100, /* debug on rx/tx intr (driver) */ NM_DEBUG_TXINTR = 0x200, NM_DEBUG_NIC_RXSYNC = 0x1000, /* debug on rx/tx intr (driver) */ NM_DEBUG_NIC_TXSYNC = 0x2000, NM_DEBUG_MEM = 0x4000, /* verbose memory allocations/deallocations */ NM_DEBUG_VALE = 0x8000, /* debug messages from memory allocators */ NM_DEBUG_BDG = NM_DEBUG_VALE, }; extern int netmap_txsync_retry; extern int netmap_generic_hwcsum; extern int netmap_generic_mit; extern int netmap_generic_ringsize; extern int netmap_generic_rings; #ifdef linux extern int netmap_generic_txqdisc; #endif /* * NA returns a pointer to the struct netmap adapter from the ifp. * The if_getnetmapadapter() and if_setnetmapadapter() helpers are * os-specific and must be defined in glue code. */ #define NA(_ifp) (if_getnetmapadapter(_ifp)) /* * we provide a default implementation of NM_ATTACH_NA/NM_DETACH_NA * based on the if_setnetmapadapter() setter function. * Glue code may override this by defining its own NM_ATTACH_NA */ #ifndef NM_ATTACH_NA /* * On old versions of FreeBSD, NA(ifp) is a pspare. On linux we * overload another pointer in the netdev. * * We check if NA(ifp) is set and its first element has a related * magic value. The capenable is within the struct netmap_adapter. */ #define NETMAP_MAGIC 0x52697a7a #define NM_NA_VALID(ifp) (NA(ifp) && \ ((uint32_t)(uintptr_t)NA(ifp) ^ NA(ifp)->magic) == NETMAP_MAGIC ) #define NM_ATTACH_NA(ifp, na) do { \ if_setnetmapadapter(ifp, na); \ if (NA(ifp)) \ NA(ifp)->magic = \ ((uint32_t)(uintptr_t)NA(ifp)) ^ NETMAP_MAGIC; \ } while(0) #define NM_RESTORE_NA(ifp, na) if_setnetmapadapter(ifp, na); #define NM_DETACH_NA(ifp) do { if_setnetmapadapter(ifp, NULL); } while (0) #define NM_NA_CLASH(ifp) (NA(ifp) && !NM_NA_VALID(ifp)) #endif /* !NM_ATTACH_NA */ #define NM_IS_NATIVE(ifp) (NM_NA_VALID(ifp) && NA(ifp)->nm_dtor == netmap_hw_dtor) #if defined(__FreeBSD__) /* Assigns the device IOMMU domain to an allocator. * Returns -ENOMEM in case the domain is different */ #define nm_iommu_group_id(dev) (-1) /* Callback invoked by the dma machinery after a successful dmamap_load */ static void netmap_dmamap_cb(__unused void *arg, __unused bus_dma_segment_t * segs, __unused int nseg, __unused int error) { } /* bus_dmamap_load wrapper: call aforementioned function if map != NULL. * XXX can we do it without a callback ? */ static inline int netmap_load_map(struct netmap_adapter *na, bus_dma_tag_t tag, bus_dmamap_t map, void *buf) { if (map) bus_dmamap_load(tag, map, buf, NETMAP_BUF_SIZE(na), netmap_dmamap_cb, NULL, BUS_DMA_NOWAIT); return 0; } static inline void netmap_unload_map(struct netmap_adapter *na, bus_dma_tag_t tag, bus_dmamap_t map) { if (map) bus_dmamap_unload(tag, map); } #define netmap_sync_map(na, tag, map, sz, t) /* update the map when a buffer changes. */ static inline void netmap_reload_map(struct netmap_adapter *na, bus_dma_tag_t tag, bus_dmamap_t map, void *buf) { if (map) { bus_dmamap_unload(tag, map); bus_dmamap_load(tag, map, buf, NETMAP_BUF_SIZE(na), netmap_dmamap_cb, NULL, BUS_DMA_NOWAIT); } } #elif defined(_WIN32) #else /* linux */ int nm_iommu_group_id(bus_dma_tag_t dev); #include /* * on linux we need * dma_map_single(&pdev->dev, virt_addr, len, direction) * dma_unmap_single(&adapter->pdev->dev, phys_addr, len, direction) */ #if 0 struct e1000_buffer *buffer_info = &tx_ring->buffer_info[l]; /* set time_stamp *before* dma to help avoid a possible race */ buffer_info->time_stamp = jiffies; buffer_info->mapped_as_page = false; buffer_info->length = len; //buffer_info->next_to_watch = l; /* reload dma map */ dma_unmap_single(&adapter->pdev->dev, buffer_info->dma, NETMAP_BUF_SIZE, DMA_TO_DEVICE); buffer_info->dma = dma_map_single(&adapter->pdev->dev, addr, NETMAP_BUF_SIZE, DMA_TO_DEVICE); if (dma_mapping_error(&adapter->pdev->dev, buffer_info->dma)) { nm_prerr("dma mapping error"); /* goto dma_error; See e1000_put_txbuf() */ /* XXX reset */ } tx_desc->buffer_addr = htole64(buffer_info->dma); //XXX #endif static inline int netmap_load_map(struct netmap_adapter *na, bus_dma_tag_t tag, bus_dmamap_t map, void *buf, u_int size) { if (map) { *map = dma_map_single(na->pdev, buf, size, DMA_BIDIRECTIONAL); if (dma_mapping_error(na->pdev, *map)) { *map = 0; return ENOMEM; } } return 0; } static inline void netmap_unload_map(struct netmap_adapter *na, bus_dma_tag_t tag, bus_dmamap_t map, u_int sz) { if (*map) { dma_unmap_single(na->pdev, *map, sz, DMA_BIDIRECTIONAL); } } #ifdef NETMAP_LINUX_HAVE_DMASYNC static inline void netmap_sync_map_cpu(struct netmap_adapter *na, bus_dma_tag_t tag, bus_dmamap_t map, u_int sz, enum txrx t) { if (*map) { dma_sync_single_for_cpu(na->pdev, *map, sz, (t == NR_TX ? DMA_TO_DEVICE : DMA_FROM_DEVICE)); } } static inline void netmap_sync_map_dev(struct netmap_adapter *na, bus_dma_tag_t tag, bus_dmamap_t map, u_int sz, enum txrx t) { if (*map) { dma_sync_single_for_device(na->pdev, *map, sz, (t == NR_TX ? DMA_TO_DEVICE : DMA_FROM_DEVICE)); } } static inline void netmap_reload_map(struct netmap_adapter *na, bus_dma_tag_t tag, bus_dmamap_t map, void *buf) { u_int sz = NETMAP_BUF_SIZE(na); if (*map) { dma_unmap_single(na->pdev, *map, sz, DMA_BIDIRECTIONAL); } *map = dma_map_single(na->pdev, buf, sz, DMA_BIDIRECTIONAL); } #else /* !NETMAP_LINUX_HAVE_DMASYNC */ #define netmap_sync_map_cpu(na, tag, map, sz, t) #define netmap_sync_map_dev(na, tag, map, sz, t) #endif /* NETMAP_LINUX_HAVE_DMASYNC */ #endif /* linux */ /* * functions to map NIC to KRING indexes (n2k) and vice versa (k2n) */ static inline int netmap_idx_n2k(struct netmap_kring *kr, int idx) { int n = kr->nkr_num_slots; if (likely(kr->nkr_hwofs == 0)) { return idx; } idx += kr->nkr_hwofs; if (idx < 0) return idx + n; else if (idx < n) return idx; else return idx - n; } static inline int netmap_idx_k2n(struct netmap_kring *kr, int idx) { int n = kr->nkr_num_slots; if (likely(kr->nkr_hwofs == 0)) { return idx; } idx -= kr->nkr_hwofs; if (idx < 0) return idx + n; else if (idx < n) return idx; else return idx - n; } /* Entries of the look-up table. */ #ifdef __FreeBSD__ struct lut_entry { void *vaddr; /* virtual address. */ vm_paddr_t paddr; /* physical address. */ }; #else /* linux & _WIN32 */ /* dma-mapping in linux can assign a buffer a different address * depending on the device, so we need to have a separate * physical-address look-up table for each na. * We can still share the vaddrs, though, therefore we split * the lut_entry structure. */ struct lut_entry { void *vaddr; /* virtual address. */ }; struct plut_entry { vm_paddr_t paddr; /* physical address. */ }; #endif /* linux & _WIN32 */ struct netmap_obj_pool; /* alignment for netmap buffers */ #define NM_BUF_ALIGN 64 /* * NMB return the virtual address of a buffer (buffer 0 on bad index) * PNMB also fills the physical address */ static inline void * NMB(struct netmap_adapter *na, struct netmap_slot *slot) { struct lut_entry *lut = na->na_lut.lut; uint32_t i = slot->buf_idx; return (unlikely(i >= na->na_lut.objtotal)) ? lut[0].vaddr : lut[i].vaddr; } static inline void * PNMB(struct netmap_adapter *na, struct netmap_slot *slot, uint64_t *pp) { uint32_t i = slot->buf_idx; struct lut_entry *lut = na->na_lut.lut; struct plut_entry *plut = na->na_lut.plut; void *ret = (i >= na->na_lut.objtotal) ? lut[0].vaddr : lut[i].vaddr; #ifdef _WIN32 *pp = (i >= na->na_lut.objtotal) ? (uint64_t)plut[0].paddr.QuadPart : (uint64_t)plut[i].paddr.QuadPart; #else *pp = (i >= na->na_lut.objtotal) ? plut[0].paddr : plut[i].paddr; #endif return ret; } static inline void nm_write_offset(struct netmap_kring *kring, struct netmap_slot *slot, uint64_t offset) { slot->ptr = (slot->ptr & ~kring->offset_mask) | (offset & kring->offset_mask); } static inline uint64_t nm_get_offset(struct netmap_kring *kring, struct netmap_slot *slot) { uint64_t offset = (slot->ptr & kring->offset_mask); if (unlikely(offset > kring->offset_max)) offset = kring->offset_max; return offset; } static inline void * NMB_O(struct netmap_kring *kring, struct netmap_slot *slot) { void *addr = NMB(kring->na, slot); return (char *)addr + nm_get_offset(kring, slot); } static inline void * PNMB_O(struct netmap_kring *kring, struct netmap_slot *slot, uint64_t *pp) { void *addr = PNMB(kring->na, slot, pp); uint64_t offset = nm_get_offset(kring, slot); addr = (char *)addr + offset; *pp += offset; return addr; } /* * Structure associated to each netmap file descriptor. * It is created on open and left unbound (np_nifp == NULL). * A successful NIOCREGIF will set np_nifp and the first few fields; * this is protected by a global lock (NMG_LOCK) due to low contention. * * np_refs counts the number of references to the structure: one for the fd, * plus (on FreeBSD) one for each active mmap which we track ourselves * (linux automatically tracks them, but FreeBSD does not). * np_refs is protected by NMG_LOCK. * * Read access to the structure is lock free, because ni_nifp once set * can only go to 0 when nobody is using the entry anymore. Readers * must check that np_nifp != NULL before using the other fields. */ struct netmap_priv_d { struct netmap_if * volatile np_nifp; /* netmap if descriptor. */ struct netmap_adapter *np_na; if_t np_ifp; uint32_t np_flags; /* from the ioctl */ u_int np_qfirst[NR_TXRX], np_qlast[NR_TXRX]; /* range of tx/rx rings to scan */ uint16_t np_txpoll; uint16_t np_kloop_state; /* use with NMG_LOCK held */ #define NM_SYNC_KLOOP_RUNNING (1 << 0) #define NM_SYNC_KLOOP_STOPPING (1 << 1) int np_sync_flags; /* to be passed to nm_sync */ int np_refs; /* use with NMG_LOCK held */ /* pointers to the selinfo to be used for selrecord. * Either the local or the global one depending on the * number of rings. */ NM_SELINFO_T *np_si[NR_TXRX]; /* In the optional CSB mode, the user must specify the start address * of two arrays of Communication Status Block (CSB) entries, for the * two directions (kernel read application write, and kernel write * application read). * The number of entries must agree with the number of rings bound to * the netmap file descriptor. The entries corresponding to the TX * rings are laid out before the ones corresponding to the RX rings. * * Array of CSB entries for application --> kernel communication * (N entries). */ struct nm_csb_atok *np_csb_atok_base; /* Array of CSB entries for kernel --> application communication * (N entries). */ struct nm_csb_ktoa *np_csb_ktoa_base; #ifdef linux struct file *np_filp; /* used by sync kloop */ #endif /* linux */ }; struct netmap_priv_d *netmap_priv_new(void); void netmap_priv_delete(struct netmap_priv_d *); static inline int nm_kring_pending(struct netmap_priv_d *np) { struct netmap_adapter *na = np->np_na; enum txrx t; int i; for_rx_tx(t) { for (i = np->np_qfirst[t]; i < np->np_qlast[t]; i++) { struct netmap_kring *kring = NMR(na, t)[i]; if (kring->nr_mode != kring->nr_pending_mode) { return 1; } } } return 0; } /* call with NMG_LOCK held */ static __inline int nm_si_user(struct netmap_priv_d *priv, enum txrx t) { return (priv->np_na != NULL && (priv->np_qlast[t] - priv->np_qfirst[t] > 1)); } #ifdef WITH_PIPES int netmap_pipe_txsync(struct netmap_kring *txkring, int flags); int netmap_pipe_rxsync(struct netmap_kring *rxkring, int flags); int netmap_pipe_krings_create_both(struct netmap_adapter *na, struct netmap_adapter *ona); void netmap_pipe_krings_delete_both(struct netmap_adapter *na, struct netmap_adapter *ona); int netmap_pipe_reg_both(struct netmap_adapter *na, struct netmap_adapter *ona); #endif /* WITH_PIPES */ #ifdef WITH_MONITOR struct netmap_monitor_adapter { struct netmap_adapter up; struct netmap_priv_d priv; uint32_t flags; }; #endif /* WITH_MONITOR */ #ifdef WITH_GENERIC /* * generic netmap emulation for devices that do not have * native netmap support. */ int generic_netmap_attach(if_t ifp); int generic_rx_handler(if_t ifp, struct mbuf *m); int nm_os_catch_rx(struct netmap_generic_adapter *gna, int intercept); int nm_os_catch_tx(struct netmap_generic_adapter *gna, int intercept); int na_is_generic(struct netmap_adapter *na); /* * the generic transmit routine is passed a structure to optionally * build a queue of descriptors, in an OS-specific way. * The payload is at addr, if non-null, and the routine should send or queue * the packet, returning 0 if successful, 1 on failure. * * At the end, if head is non-null, there will be an additional call * to the function with addr = NULL; this should tell the OS-specific * routine to send the queue and free any resources. Failure is ignored. */ struct nm_os_gen_arg { if_t ifp; void *m; /* os-specific mbuf-like object */ void *head, *tail; /* tailq, if the OS-specific routine needs to build one */ void *addr; /* payload of current packet */ u_int len; /* packet length */ u_int ring_nr; /* transmit ring index */ u_int qevent; /* in txqdisc mode, place an event on this mbuf */ }; int nm_os_generic_xmit_frame(struct nm_os_gen_arg *); int nm_os_generic_find_num_desc(if_t ifp, u_int *tx, u_int *rx); void nm_os_generic_find_num_queues(if_t ifp, u_int *txq, u_int *rxq); void nm_os_generic_set_features(struct netmap_generic_adapter *gna); static inline if_t netmap_generic_getifp(struct netmap_generic_adapter *gna) { if (gna->prev) return gna->prev->ifp; return gna->up.up.ifp; } void netmap_generic_irq(struct netmap_adapter *na, u_int q, u_int *work_done); //#define RATE_GENERIC /* Enables communication statistics for generic. */ #ifdef RATE_GENERIC void generic_rate(int txp, int txs, int txi, int rxp, int rxs, int rxi); #else #define generic_rate(txp, txs, txi, rxp, rxs, rxi) #endif /* * netmap_mitigation API. This is used by the generic adapter * to reduce the number of interrupt requests/selwakeup * to clients on incoming packets. */ void nm_os_mitigation_init(struct nm_generic_mit *mit, int idx, struct netmap_adapter *na); void nm_os_mitigation_start(struct nm_generic_mit *mit); void nm_os_mitigation_restart(struct nm_generic_mit *mit); int nm_os_mitigation_active(struct nm_generic_mit *mit); void nm_os_mitigation_cleanup(struct nm_generic_mit *mit); #else /* !WITH_GENERIC */ #define generic_netmap_attach(ifp) (EOPNOTSUPP) #define na_is_generic(na) (0) #endif /* WITH_GENERIC */ /* Shared declarations for the VALE switch. */ /* * Each transmit queue accumulates a batch of packets into * a structure before forwarding. Packets to the same * destination are put in a list using ft_next as a link field. * ft_frags and ft_next are valid only on the first fragment. */ struct nm_bdg_fwd { /* forwarding entry for a bridge */ void *ft_buf; /* netmap or indirect buffer */ uint8_t ft_frags; /* how many fragments (only on 1st frag) */ uint16_t ft_offset; /* dst port (unused) */ uint16_t ft_flags; /* flags, e.g. indirect */ uint16_t ft_len; /* src fragment len */ uint16_t ft_next; /* next packet to same destination */ }; /* struct 'virtio_net_hdr' from linux. */ struct nm_vnet_hdr { #define VIRTIO_NET_HDR_F_NEEDS_CSUM 1 /* Use csum_start, csum_offset */ #define VIRTIO_NET_HDR_F_DATA_VALID 2 /* Csum is valid */ uint8_t flags; #define VIRTIO_NET_HDR_GSO_NONE 0 /* Not a GSO frame */ #define VIRTIO_NET_HDR_GSO_TCPV4 1 /* GSO frame, IPv4 TCP (TSO) */ #define VIRTIO_NET_HDR_GSO_UDP 3 /* GSO frame, IPv4 UDP (UFO) */ #define VIRTIO_NET_HDR_GSO_TCPV6 4 /* GSO frame, IPv6 TCP */ #define VIRTIO_NET_HDR_GSO_ECN 0x80 /* TCP has ECN set */ uint8_t gso_type; uint16_t hdr_len; uint16_t gso_size; uint16_t csum_start; uint16_t csum_offset; }; #define WORST_CASE_GSO_HEADER (14+40+60) /* IPv6 + TCP */ /* Private definitions for IPv4, IPv6, UDP and TCP headers. */ struct nm_iphdr { uint8_t version_ihl; uint8_t tos; uint16_t tot_len; uint16_t id; uint16_t frag_off; uint8_t ttl; uint8_t protocol; uint16_t check; uint32_t saddr; uint32_t daddr; /*The options start here. */ }; struct nm_tcphdr { uint16_t source; uint16_t dest; uint32_t seq; uint32_t ack_seq; uint8_t doff; /* Data offset + Reserved */ uint8_t flags; uint16_t window; uint16_t check; uint16_t urg_ptr; }; struct nm_udphdr { uint16_t source; uint16_t dest; uint16_t len; uint16_t check; }; struct nm_ipv6hdr { uint8_t priority_version; uint8_t flow_lbl[3]; uint16_t payload_len; uint8_t nexthdr; uint8_t hop_limit; uint8_t saddr[16]; uint8_t daddr[16]; }; /* Type used to store a checksum (in host byte order) that hasn't been * folded yet. */ #define rawsum_t uint32_t rawsum_t nm_os_csum_raw(uint8_t *data, size_t len, rawsum_t cur_sum); uint16_t nm_os_csum_ipv4(struct nm_iphdr *iph); void nm_os_csum_tcpudp_ipv4(struct nm_iphdr *iph, void *data, size_t datalen, uint16_t *check); void nm_os_csum_tcpudp_ipv6(struct nm_ipv6hdr *ip6h, void *data, size_t datalen, uint16_t *check); uint16_t nm_os_csum_fold(rawsum_t cur_sum); void bdg_mismatch_datapath(struct netmap_vp_adapter *na, struct netmap_vp_adapter *dst_na, const struct nm_bdg_fwd *ft_p, struct netmap_ring *dst_ring, u_int *j, u_int lim, u_int *howmany); /* persistent virtual port routines */ int nm_os_vi_persist(const char *, if_t *); void nm_os_vi_detach(if_t); void nm_os_vi_init_index(void); /* * kernel thread routines */ struct nm_kctx; /* OS-specific kernel context - opaque */ typedef void (*nm_kctx_worker_fn_t)(void *data); /* kthread configuration */ struct nm_kctx_cfg { long type; /* kthread type/identifier */ nm_kctx_worker_fn_t worker_fn; /* worker function */ void *worker_private;/* worker parameter */ int attach_user; /* attach kthread to user process */ }; /* kthread configuration */ struct nm_kctx *nm_os_kctx_create(struct nm_kctx_cfg *cfg, void *opaque); int nm_os_kctx_worker_start(struct nm_kctx *); void nm_os_kctx_worker_stop(struct nm_kctx *); void nm_os_kctx_destroy(struct nm_kctx *); void nm_os_kctx_worker_setaff(struct nm_kctx *, int); u_int nm_os_ncpus(void); int netmap_sync_kloop(struct netmap_priv_d *priv, struct nmreq_header *hdr); int netmap_sync_kloop_stop(struct netmap_priv_d *priv); #ifdef WITH_PTNETMAP /* ptnetmap guest routines */ /* * ptnetmap_memdev routines used to talk with ptnetmap_memdev device driver */ struct ptnetmap_memdev; int nm_os_pt_memdev_iomap(struct ptnetmap_memdev *, vm_paddr_t *, void **, uint64_t *); void nm_os_pt_memdev_iounmap(struct ptnetmap_memdev *); uint32_t nm_os_pt_memdev_ioread(struct ptnetmap_memdev *, unsigned int); /* * netmap adapter for guest ptnetmap ports */ struct netmap_pt_guest_adapter { /* The netmap adapter to be used by netmap applications. * This field must be the first, to allow upcast. */ struct netmap_hw_adapter hwup; /* The netmap adapter to be used by the driver. */ struct netmap_hw_adapter dr; /* Reference counter to track users of backend netmap port: the * network stack and netmap clients. * Used to decide when we need (de)allocate krings/rings and * start (stop) ptnetmap kthreads. */ int backend_users; }; int netmap_pt_guest_attach(struct netmap_adapter *na, unsigned int nifp_offset, unsigned int memid); bool netmap_pt_guest_txsync(struct nm_csb_atok *atok, struct nm_csb_ktoa *ktoa, struct netmap_kring *kring, int flags); bool netmap_pt_guest_rxsync(struct nm_csb_atok *atok, struct nm_csb_ktoa *ktoa, struct netmap_kring *kring, int flags); int ptnet_nm_krings_create(struct netmap_adapter *na); void ptnet_nm_krings_delete(struct netmap_adapter *na); void ptnet_nm_dtor(struct netmap_adapter *na); /* Helper function wrapping nm_sync_kloop_appl_read(). */ static inline void ptnet_sync_tail(struct nm_csb_ktoa *ktoa, struct netmap_kring *kring) { struct netmap_ring *ring = kring->ring; /* Update hwcur and hwtail as known by the host. */ nm_sync_kloop_appl_read(ktoa, &kring->nr_hwtail, &kring->nr_hwcur); /* nm_sync_finalize */ ring->tail = kring->rtail = kring->nr_hwtail; } #endif /* WITH_PTNETMAP */ #ifdef __FreeBSD__ /* * FreeBSD mbuf allocator/deallocator in emulation mode: * * We allocate mbufs with m_gethdr(), since the mbuf header is needed * by the driver. We also attach a customly-provided external storage, * which in this case is a netmap buffer. * * The dtor function does nothing, however we need it since mb_free_ext() * has a KASSERT(), checking that the mbuf dtor function is not NULL. */ static inline void nm_generic_mbuf_dtor(struct mbuf *m) { uma_zfree(zone_clust, m->m_ext.ext_buf); } #define SET_MBUF_DESTRUCTOR(m, fn, na) do { \ (m)->m_ext.ext_free = (fn != NULL) ? \ (void *)fn : (void *)nm_generic_mbuf_dtor; \ (m)->m_ext.ext_arg1 = na; \ } while (0) static inline struct mbuf * nm_os_get_mbuf(if_t ifp __unused, int len) { struct mbuf *m; void *buf; KASSERT(len <= MCLBYTES, ("%s: len %d", __func__, len)); m = m_gethdr(M_NOWAIT, MT_DATA); if (__predict_false(m == NULL)) return (NULL); buf = uma_zalloc(zone_clust, M_NOWAIT); if (__predict_false(buf == NULL)) { m_free(m); return (NULL); } m_extadd(m, buf, MCLBYTES, nm_generic_mbuf_dtor, NULL, NULL, 0, EXT_NET_DRV); return (m); } static inline void nm_os_mbuf_reinit(struct mbuf *m) { void *buf; KASSERT((m->m_flags & M_EXT) != 0, ("%s: mbuf %p has no external storage", __func__, m)); KASSERT(m->m_ext.ext_size == MCLBYTES, ("%s: mbuf %p has wrong external storage size %u", __func__, m, m->m_ext.ext_size)); buf = m->m_ext.ext_buf; m_init(m, M_NOWAIT, MT_DATA, M_PKTHDR); m_extadd(m, buf, MCLBYTES, nm_generic_mbuf_dtor, NULL, NULL, 0, EXT_NET_DRV); } #endif /* __FreeBSD__ */ struct nmreq_option * nmreq_getoption(struct nmreq_header *, uint16_t); int netmap_init_bridges(void); void netmap_uninit_bridges(void); /* Functions to read and write CSB fields from the kernel. */ #if defined (linux) #define CSB_READ(csb, field, r) (get_user(r, &csb->field)) #define CSB_WRITE(csb, field, v) (put_user(v, &csb->field)) #else /* ! linux */ #define CSB_READ(csb, field, r) do { \ int32_t v __diagused; \ \ v = fuword32(&csb->field); \ KASSERT(v != -1, ("%s: fuword32 failed", __func__)); \ r = v; \ } while (0) #define CSB_WRITE(csb, field, v) do { \ int error __diagused; \ \ error = suword32(&csb->field, v); \ KASSERT(error == 0, ("%s: suword32 failed", __func__)); \ } while (0) #endif /* ! linux */ /* some macros that may not be defined */ #ifndef ETH_HLEN #define ETH_HLEN 6 #endif #ifndef ETH_FCS_LEN #define ETH_FCS_LEN 4 #endif #ifndef VLAN_HLEN #define VLAN_HLEN 4 #endif #endif /* _NET_NETMAP_KERN_H_ */