/****************************************************************************** * * Name : sky2.c * Project: Gigabit Ethernet Driver for FreeBSD 5.x/6.x * Version: $Revision: 1.23 $ * Date : $Date: 2005/12/22 09:04:11 $ * Purpose: Main driver source file * *****************************************************************************/ /****************************************************************************** * * LICENSE: * Copyright (C) Marvell International Ltd. and/or its affiliates * * The computer program files contained in this folder ("Files") * are provided to you under the BSD-type license terms provided * below, and any use of such Files and any derivative works * thereof created by you shall be governed by the following terms * and conditions: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * - Neither the name of Marvell nor the names of its contributors * may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * /LICENSE * *****************************************************************************/ /*- * Copyright (c) 1997, 1998, 1999, 2000 * Bill Paul . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ /*- * Copyright (c) 2003 Nathan L. Binkert * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /* * Device driver for the Marvell Yukon II Ethernet controller. * Due to lack of documentation, this driver is based on the code from * sk(4) and Marvell's myk(4) driver for FreeBSD 5.x. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include MODULE_DEPEND(msk, pci, 1, 1, 1); MODULE_DEPEND(msk, ether, 1, 1, 1); MODULE_DEPEND(msk, miibus, 1, 1, 1); /* "device miibus" required. See GENERIC if you get errors here. */ #include "miibus_if.h" /* Tunables. */ static int msi_disable = 0; TUNABLE_INT("hw.msk.msi_disable", &msi_disable); static int legacy_intr = 0; TUNABLE_INT("hw.msk.legacy_intr", &legacy_intr); static int jumbo_disable = 0; TUNABLE_INT("hw.msk.jumbo_disable", &jumbo_disable); #define MSK_CSUM_FEATURES (CSUM_TCP | CSUM_UDP) /* * Devices supported by this driver. */ static const struct msk_product { uint16_t msk_vendorid; uint16_t msk_deviceid; const char *msk_name; } msk_products[] = { { VENDORID_SK, DEVICEID_SK_YUKON2, "SK-9Sxx Gigabit Ethernet" }, { VENDORID_SK, DEVICEID_SK_YUKON2_EXPR, "SK-9Exx Gigabit Ethernet"}, { VENDORID_MARVELL, DEVICEID_MRVL_8021CU, "Marvell Yukon 88E8021CU Gigabit Ethernet" }, { VENDORID_MARVELL, DEVICEID_MRVL_8021X, "Marvell Yukon 88E8021 SX/LX Gigabit Ethernet" }, { VENDORID_MARVELL, DEVICEID_MRVL_8022CU, "Marvell Yukon 88E8022CU Gigabit Ethernet" }, { VENDORID_MARVELL, DEVICEID_MRVL_8022X, "Marvell Yukon 88E8022 SX/LX Gigabit Ethernet" }, { VENDORID_MARVELL, DEVICEID_MRVL_8061CU, "Marvell Yukon 88E8061CU Gigabit Ethernet" }, { VENDORID_MARVELL, DEVICEID_MRVL_8061X, "Marvell Yukon 88E8061 SX/LX Gigabit Ethernet" }, { VENDORID_MARVELL, DEVICEID_MRVL_8062CU, "Marvell Yukon 88E8062CU Gigabit Ethernet" }, { VENDORID_MARVELL, DEVICEID_MRVL_8062X, "Marvell Yukon 88E8062 SX/LX Gigabit Ethernet" }, { VENDORID_MARVELL, DEVICEID_MRVL_8035, "Marvell Yukon 88E8035 Fast Ethernet" }, { VENDORID_MARVELL, DEVICEID_MRVL_8036, "Marvell Yukon 88E8036 Fast Ethernet" }, { VENDORID_MARVELL, DEVICEID_MRVL_8038, "Marvell Yukon 88E8038 Fast Ethernet" }, { VENDORID_MARVELL, DEVICEID_MRVL_8039, "Marvell Yukon 88E8039 Fast Ethernet" }, { VENDORID_MARVELL, DEVICEID_MRVL_8040, "Marvell Yukon 88E8040 Fast Ethernet" }, { VENDORID_MARVELL, DEVICEID_MRVL_8040T, "Marvell Yukon 88E8040T Fast Ethernet" }, { VENDORID_MARVELL, DEVICEID_MRVL_8042, "Marvell Yukon 88E8042 Fast Ethernet" }, { VENDORID_MARVELL, DEVICEID_MRVL_8048, "Marvell Yukon 88E8048 Fast Ethernet" }, { VENDORID_MARVELL, DEVICEID_MRVL_4361, "Marvell Yukon 88E8050 Gigabit Ethernet" }, { VENDORID_MARVELL, DEVICEID_MRVL_4360, "Marvell Yukon 88E8052 Gigabit Ethernet" }, { VENDORID_MARVELL, DEVICEID_MRVL_4362, "Marvell Yukon 88E8053 Gigabit Ethernet" }, { VENDORID_MARVELL, DEVICEID_MRVL_4363, "Marvell Yukon 88E8055 Gigabit Ethernet" }, { VENDORID_MARVELL, DEVICEID_MRVL_4364, "Marvell Yukon 88E8056 Gigabit Ethernet" }, { VENDORID_MARVELL, DEVICEID_MRVL_4365, "Marvell Yukon 88E8070 Gigabit Ethernet" }, { VENDORID_MARVELL, DEVICEID_MRVL_436A, "Marvell Yukon 88E8058 Gigabit Ethernet" }, { VENDORID_MARVELL, DEVICEID_MRVL_436B, "Marvell Yukon 88E8071 Gigabit Ethernet" }, { VENDORID_MARVELL, DEVICEID_MRVL_436C, "Marvell Yukon 88E8072 Gigabit Ethernet" }, { VENDORID_MARVELL, DEVICEID_MRVL_436D, "Marvell Yukon 88E8055 Gigabit Ethernet" }, { VENDORID_MARVELL, DEVICEID_MRVL_4370, "Marvell Yukon 88E8075 Gigabit Ethernet" }, { VENDORID_MARVELL, DEVICEID_MRVL_4380, "Marvell Yukon 88E8057 Gigabit Ethernet" }, { VENDORID_MARVELL, DEVICEID_MRVL_4381, "Marvell Yukon 88E8059 Gigabit Ethernet" }, { VENDORID_DLINK, DEVICEID_DLINK_DGE550SX, "D-Link 550SX Gigabit Ethernet" }, { VENDORID_DLINK, DEVICEID_DLINK_DGE560SX, "D-Link 560SX Gigabit Ethernet" }, { VENDORID_DLINK, DEVICEID_DLINK_DGE560T, "D-Link 560T Gigabit Ethernet" } }; static const char *model_name[] = { "Yukon XL", "Yukon EC Ultra", "Yukon EX", "Yukon EC", "Yukon FE", "Yukon FE+", "Yukon Supreme", "Yukon Ultra 2", "Yukon Unknown", "Yukon Optima", }; static int mskc_probe(device_t); static int mskc_attach(device_t); static int mskc_detach(device_t); static int mskc_shutdown(device_t); static int mskc_setup_rambuffer(struct msk_softc *); static int mskc_suspend(device_t); static int mskc_resume(device_t); static bus_dma_tag_t mskc_get_dma_tag(device_t, device_t); static void mskc_reset(struct msk_softc *); static int msk_probe(device_t); static int msk_attach(device_t); static int msk_detach(device_t); static void msk_tick(void *); static void msk_intr(void *); static void msk_intr_phy(struct msk_if_softc *); static void msk_intr_gmac(struct msk_if_softc *); static __inline void msk_rxput(struct msk_if_softc *); static int msk_handle_events(struct msk_softc *); static void msk_handle_hwerr(struct msk_if_softc *, uint32_t); static void msk_intr_hwerr(struct msk_softc *); #ifndef __NO_STRICT_ALIGNMENT static __inline void msk_fixup_rx(struct mbuf *); #endif static __inline void msk_rxcsum(struct msk_if_softc *, uint32_t, struct mbuf *); static void msk_rxeof(struct msk_if_softc *, uint32_t, uint32_t, int); static void msk_jumbo_rxeof(struct msk_if_softc *, uint32_t, uint32_t, int); static void msk_txeof(struct msk_if_softc *, int); static int msk_encap(struct msk_if_softc *, struct mbuf **); static void msk_start(struct ifnet *); static void msk_start_locked(struct ifnet *); static int msk_ioctl(struct ifnet *, u_long, caddr_t); static void msk_set_prefetch(struct msk_softc *, int, bus_addr_t, uint32_t); static void msk_set_rambuffer(struct msk_if_softc *); static void msk_set_tx_stfwd(struct msk_if_softc *); static void msk_init(void *); static void msk_init_locked(struct msk_if_softc *); static void msk_stop(struct msk_if_softc *); static void msk_watchdog(struct msk_if_softc *); static int msk_mediachange(struct ifnet *); static void msk_mediastatus(struct ifnet *, struct ifmediareq *); static void msk_phy_power(struct msk_softc *, int); static void msk_dmamap_cb(void *, bus_dma_segment_t *, int, int); static int msk_status_dma_alloc(struct msk_softc *); static void msk_status_dma_free(struct msk_softc *); static int msk_txrx_dma_alloc(struct msk_if_softc *); static int msk_rx_dma_jalloc(struct msk_if_softc *); static void msk_txrx_dma_free(struct msk_if_softc *); static void msk_rx_dma_jfree(struct msk_if_softc *); static int msk_rx_fill(struct msk_if_softc *, int); static int msk_init_rx_ring(struct msk_if_softc *); static int msk_init_jumbo_rx_ring(struct msk_if_softc *); static void msk_init_tx_ring(struct msk_if_softc *); static __inline void msk_discard_rxbuf(struct msk_if_softc *, int); static __inline void msk_discard_jumbo_rxbuf(struct msk_if_softc *, int); static int msk_newbuf(struct msk_if_softc *, int); static int msk_jumbo_newbuf(struct msk_if_softc *, int); static int msk_phy_readreg(struct msk_if_softc *, int, int); static int msk_phy_writereg(struct msk_if_softc *, int, int, int); static int msk_miibus_readreg(device_t, int, int); static int msk_miibus_writereg(device_t, int, int, int); static void msk_miibus_statchg(device_t); static void msk_rxfilter(struct msk_if_softc *); static void msk_setvlan(struct msk_if_softc *, struct ifnet *); static void msk_stats_clear(struct msk_if_softc *); static void msk_stats_update(struct msk_if_softc *); static int msk_sysctl_stat32(SYSCTL_HANDLER_ARGS); static int msk_sysctl_stat64(SYSCTL_HANDLER_ARGS); static void msk_sysctl_node(struct msk_if_softc *); static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int); static int sysctl_hw_msk_proc_limit(SYSCTL_HANDLER_ARGS); static device_method_t mskc_methods[] = { /* Device interface */ DEVMETHOD(device_probe, mskc_probe), DEVMETHOD(device_attach, mskc_attach), DEVMETHOD(device_detach, mskc_detach), DEVMETHOD(device_suspend, mskc_suspend), DEVMETHOD(device_resume, mskc_resume), DEVMETHOD(device_shutdown, mskc_shutdown), DEVMETHOD(bus_get_dma_tag, mskc_get_dma_tag), DEVMETHOD_END }; static driver_t mskc_driver = { "mskc", mskc_methods, sizeof(struct msk_softc) }; static devclass_t mskc_devclass; static device_method_t msk_methods[] = { /* Device interface */ DEVMETHOD(device_probe, msk_probe), DEVMETHOD(device_attach, msk_attach), DEVMETHOD(device_detach, msk_detach), DEVMETHOD(device_shutdown, bus_generic_shutdown), /* MII interface */ DEVMETHOD(miibus_readreg, msk_miibus_readreg), DEVMETHOD(miibus_writereg, msk_miibus_writereg), DEVMETHOD(miibus_statchg, msk_miibus_statchg), DEVMETHOD_END }; static driver_t msk_driver = { "msk", msk_methods, sizeof(struct msk_if_softc) }; static devclass_t msk_devclass; DRIVER_MODULE(mskc, pci, mskc_driver, mskc_devclass, NULL, NULL); DRIVER_MODULE(msk, mskc, msk_driver, msk_devclass, NULL, NULL); DRIVER_MODULE(miibus, msk, miibus_driver, miibus_devclass, NULL, NULL); static struct resource_spec msk_res_spec_io[] = { { SYS_RES_IOPORT, PCIR_BAR(1), RF_ACTIVE }, { -1, 0, 0 } }; static struct resource_spec msk_res_spec_mem[] = { { SYS_RES_MEMORY, PCIR_BAR(0), RF_ACTIVE }, { -1, 0, 0 } }; static struct resource_spec msk_irq_spec_legacy[] = { { SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE }, { -1, 0, 0 } }; static struct resource_spec msk_irq_spec_msi[] = { { SYS_RES_IRQ, 1, RF_ACTIVE }, { -1, 0, 0 } }; static int msk_miibus_readreg(device_t dev, int phy, int reg) { struct msk_if_softc *sc_if; sc_if = device_get_softc(dev); return (msk_phy_readreg(sc_if, phy, reg)); } static int msk_phy_readreg(struct msk_if_softc *sc_if, int phy, int reg) { struct msk_softc *sc; int i, val; sc = sc_if->msk_softc; GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_CTRL, GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD); for (i = 0; i < MSK_TIMEOUT; i++) { DELAY(1); val = GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_CTRL); if ((val & GM_SMI_CT_RD_VAL) != 0) { val = GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_DATA); break; } } if (i == MSK_TIMEOUT) { if_printf(sc_if->msk_ifp, "phy failed to come ready\n"); val = 0; } return (val); } static int msk_miibus_writereg(device_t dev, int phy, int reg, int val) { struct msk_if_softc *sc_if; sc_if = device_get_softc(dev); return (msk_phy_writereg(sc_if, phy, reg, val)); } static int msk_phy_writereg(struct msk_if_softc *sc_if, int phy, int reg, int val) { struct msk_softc *sc; int i; sc = sc_if->msk_softc; GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_DATA, val); GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_CTRL, GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg)); for (i = 0; i < MSK_TIMEOUT; i++) { DELAY(1); if ((GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_CTRL) & GM_SMI_CT_BUSY) == 0) break; } if (i == MSK_TIMEOUT) if_printf(sc_if->msk_ifp, "phy write timeout\n"); return (0); } static void msk_miibus_statchg(device_t dev) { struct msk_softc *sc; struct msk_if_softc *sc_if; struct mii_data *mii; struct ifnet *ifp; uint32_t gmac; sc_if = device_get_softc(dev); sc = sc_if->msk_softc; MSK_IF_LOCK_ASSERT(sc_if); mii = device_get_softc(sc_if->msk_miibus); ifp = sc_if->msk_ifp; if (mii == NULL || ifp == NULL || (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) return; sc_if->msk_flags &= ~MSK_FLAG_LINK; if ((mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) == (IFM_AVALID | IFM_ACTIVE)) { switch (IFM_SUBTYPE(mii->mii_media_active)) { case IFM_10_T: case IFM_100_TX: sc_if->msk_flags |= MSK_FLAG_LINK; break; case IFM_1000_T: case IFM_1000_SX: case IFM_1000_LX: case IFM_1000_CX: if ((sc_if->msk_flags & MSK_FLAG_FASTETHER) == 0) sc_if->msk_flags |= MSK_FLAG_LINK; break; default: break; } } if ((sc_if->msk_flags & MSK_FLAG_LINK) != 0) { /* Enable Tx FIFO Underrun. */ CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_MSK), GM_IS_TX_FF_UR | GM_IS_RX_FF_OR); /* * Because mii(4) notify msk(4) that it detected link status * change, there is no need to enable automatic * speed/flow-control/duplex updates. */ gmac = GM_GPCR_AU_ALL_DIS; switch (IFM_SUBTYPE(mii->mii_media_active)) { case IFM_1000_SX: case IFM_1000_T: gmac |= GM_GPCR_SPEED_1000; break; case IFM_100_TX: gmac |= GM_GPCR_SPEED_100; break; case IFM_10_T: break; } if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) == 0) gmac |= GM_GPCR_FC_RX_DIS; if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) == 0) gmac |= GM_GPCR_FC_TX_DIS; if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) gmac |= GM_GPCR_DUP_FULL; else gmac |= GM_GPCR_FC_RX_DIS | GM_GPCR_FC_TX_DIS; gmac |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA; GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac); /* Read again to ensure writing. */ GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL); gmac = GMC_PAUSE_OFF; if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) { if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0) gmac = GMC_PAUSE_ON; } CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), gmac); /* Enable PHY interrupt for FIFO underrun/overflow. */ msk_phy_writereg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_MASK, PHY_M_IS_FIFO_ERROR); } else { /* * Link state changed to down. * Disable PHY interrupts. */ msk_phy_writereg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_MASK, 0); /* Disable Rx/Tx MAC. */ gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL); if ((gmac & (GM_GPCR_RX_ENA | GM_GPCR_TX_ENA)) != 0) { gmac &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA); GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac); /* Read again to ensure writing. */ GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL); } } } static void msk_rxfilter(struct msk_if_softc *sc_if) { struct msk_softc *sc; struct ifnet *ifp; struct ifmultiaddr *ifma; uint32_t mchash[2]; uint32_t crc; uint16_t mode; sc = sc_if->msk_softc; MSK_IF_LOCK_ASSERT(sc_if); ifp = sc_if->msk_ifp; bzero(mchash, sizeof(mchash)); mode = GMAC_READ_2(sc, sc_if->msk_port, GM_RX_CTRL); if ((ifp->if_flags & IFF_PROMISC) != 0) mode &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA); else if ((ifp->if_flags & IFF_ALLMULTI) != 0) { mode |= GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA; mchash[0] = 0xffff; mchash[1] = 0xffff; } else { mode |= GM_RXCR_UCF_ENA; if_maddr_rlock(ifp); TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; crc = ether_crc32_be(LLADDR((struct sockaddr_dl *) ifma->ifma_addr), ETHER_ADDR_LEN); /* Just want the 6 least significant bits. */ crc &= 0x3f; /* Set the corresponding bit in the hash table. */ mchash[crc >> 5] |= 1 << (crc & 0x1f); } if_maddr_runlock(ifp); if (mchash[0] != 0 || mchash[1] != 0) mode |= GM_RXCR_MCF_ENA; } GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H1, mchash[0] & 0xffff); GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H2, (mchash[0] >> 16) & 0xffff); GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H3, mchash[1] & 0xffff); GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H4, (mchash[1] >> 16) & 0xffff); GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, mode); } static void msk_setvlan(struct msk_if_softc *sc_if, struct ifnet *ifp) { struct msk_softc *sc; sc = sc_if->msk_softc; if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) { CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), RX_VLAN_STRIP_ON); CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), TX_VLAN_TAG_ON); } else { CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), RX_VLAN_STRIP_OFF); CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), TX_VLAN_TAG_OFF); } } static int msk_rx_fill(struct msk_if_softc *sc_if, int jumbo) { uint16_t idx; int i; if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 && (sc_if->msk_ifp->if_capenable & IFCAP_RXCSUM) != 0) { /* Wait until controller executes OP_TCPSTART command. */ for (i = 100; i > 0; i--) { DELAY(100); idx = CSR_READ_2(sc_if->msk_softc, Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_GET_IDX_REG)); if (idx != 0) break; } if (i == 0) { device_printf(sc_if->msk_if_dev, "prefetch unit stuck?\n"); return (ETIMEDOUT); } /* * Fill consumed LE with free buffer. This can be done * in Rx handler but we don't want to add special code * in fast handler. */ if (jumbo > 0) { if (msk_jumbo_newbuf(sc_if, 0) != 0) return (ENOBUFS); bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_ring_tag, sc_if->msk_cdata.msk_jumbo_rx_ring_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); } else { if (msk_newbuf(sc_if, 0) != 0) return (ENOBUFS); bus_dmamap_sync(sc_if->msk_cdata.msk_rx_ring_tag, sc_if->msk_cdata.msk_rx_ring_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); } sc_if->msk_cdata.msk_rx_prod = 0; CSR_WRITE_2(sc_if->msk_softc, Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG), sc_if->msk_cdata.msk_rx_prod); } return (0); } static int msk_init_rx_ring(struct msk_if_softc *sc_if) { struct msk_ring_data *rd; struct msk_rxdesc *rxd; int i, nbuf, prod; MSK_IF_LOCK_ASSERT(sc_if); sc_if->msk_cdata.msk_rx_cons = 0; sc_if->msk_cdata.msk_rx_prod = 0; sc_if->msk_cdata.msk_rx_putwm = MSK_PUT_WM; rd = &sc_if->msk_rdata; bzero(rd->msk_rx_ring, sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT); for (i = prod = 0; i < MSK_RX_RING_CNT; i++) { rxd = &sc_if->msk_cdata.msk_rxdesc[prod]; rxd->rx_m = NULL; rxd->rx_le = &rd->msk_rx_ring[prod]; MSK_INC(prod, MSK_RX_RING_CNT); } nbuf = MSK_RX_BUF_CNT; prod = 0; /* Have controller know how to compute Rx checksum. */ if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 && (sc_if->msk_ifp->if_capenable & IFCAP_RXCSUM) != 0) { #ifdef MSK_64BIT_DMA rxd = &sc_if->msk_cdata.msk_rxdesc[prod]; rxd->rx_m = NULL; rxd->rx_le = &rd->msk_rx_ring[prod]; rxd->rx_le->msk_addr = htole32(ETHER_HDR_LEN << 16 | ETHER_HDR_LEN); rxd->rx_le->msk_control = htole32(OP_TCPSTART | HW_OWNER); MSK_INC(prod, MSK_RX_RING_CNT); MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_RX_RING_CNT); #endif rxd = &sc_if->msk_cdata.msk_rxdesc[prod]; rxd->rx_m = NULL; rxd->rx_le = &rd->msk_rx_ring[prod]; rxd->rx_le->msk_addr = htole32(ETHER_HDR_LEN << 16 | ETHER_HDR_LEN); rxd->rx_le->msk_control = htole32(OP_TCPSTART | HW_OWNER); MSK_INC(prod, MSK_RX_RING_CNT); MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_RX_RING_CNT); nbuf--; } for (i = 0; i < nbuf; i++) { if (msk_newbuf(sc_if, prod) != 0) return (ENOBUFS); MSK_RX_INC(prod, MSK_RX_RING_CNT); } bus_dmamap_sync(sc_if->msk_cdata.msk_rx_ring_tag, sc_if->msk_cdata.msk_rx_ring_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); /* Update prefetch unit. */ sc_if->msk_cdata.msk_rx_prod = prod; CSR_WRITE_2(sc_if->msk_softc, Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG), (sc_if->msk_cdata.msk_rx_prod + MSK_RX_RING_CNT - 1) % MSK_RX_RING_CNT); if (msk_rx_fill(sc_if, 0) != 0) return (ENOBUFS); return (0); } static int msk_init_jumbo_rx_ring(struct msk_if_softc *sc_if) { struct msk_ring_data *rd; struct msk_rxdesc *rxd; int i, nbuf, prod; MSK_IF_LOCK_ASSERT(sc_if); sc_if->msk_cdata.msk_rx_cons = 0; sc_if->msk_cdata.msk_rx_prod = 0; sc_if->msk_cdata.msk_rx_putwm = MSK_PUT_WM; rd = &sc_if->msk_rdata; bzero(rd->msk_jumbo_rx_ring, sizeof(struct msk_rx_desc) * MSK_JUMBO_RX_RING_CNT); for (i = prod = 0; i < MSK_JUMBO_RX_RING_CNT; i++) { rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[prod]; rxd->rx_m = NULL; rxd->rx_le = &rd->msk_jumbo_rx_ring[prod]; MSK_INC(prod, MSK_JUMBO_RX_RING_CNT); } nbuf = MSK_RX_BUF_CNT; prod = 0; /* Have controller know how to compute Rx checksum. */ if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 && (sc_if->msk_ifp->if_capenable & IFCAP_RXCSUM) != 0) { #ifdef MSK_64BIT_DMA rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[prod]; rxd->rx_m = NULL; rxd->rx_le = &rd->msk_jumbo_rx_ring[prod]; rxd->rx_le->msk_addr = htole32(ETHER_HDR_LEN << 16 | ETHER_HDR_LEN); rxd->rx_le->msk_control = htole32(OP_TCPSTART | HW_OWNER); MSK_INC(prod, MSK_JUMBO_RX_RING_CNT); MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_JUMBO_RX_RING_CNT); #endif rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[prod]; rxd->rx_m = NULL; rxd->rx_le = &rd->msk_jumbo_rx_ring[prod]; rxd->rx_le->msk_addr = htole32(ETHER_HDR_LEN << 16 | ETHER_HDR_LEN); rxd->rx_le->msk_control = htole32(OP_TCPSTART | HW_OWNER); MSK_INC(prod, MSK_JUMBO_RX_RING_CNT); MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_JUMBO_RX_RING_CNT); nbuf--; } for (i = 0; i < nbuf; i++) { if (msk_jumbo_newbuf(sc_if, prod) != 0) return (ENOBUFS); MSK_RX_INC(prod, MSK_JUMBO_RX_RING_CNT); } bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_ring_tag, sc_if->msk_cdata.msk_jumbo_rx_ring_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); /* Update prefetch unit. */ sc_if->msk_cdata.msk_rx_prod = prod; CSR_WRITE_2(sc_if->msk_softc, Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG), (sc_if->msk_cdata.msk_rx_prod + MSK_JUMBO_RX_RING_CNT - 1) % MSK_JUMBO_RX_RING_CNT); if (msk_rx_fill(sc_if, 1) != 0) return (ENOBUFS); return (0); } static void msk_init_tx_ring(struct msk_if_softc *sc_if) { struct msk_ring_data *rd; struct msk_txdesc *txd; int i; sc_if->msk_cdata.msk_tso_mtu = 0; sc_if->msk_cdata.msk_last_csum = 0; sc_if->msk_cdata.msk_tx_prod = 0; sc_if->msk_cdata.msk_tx_cons = 0; sc_if->msk_cdata.msk_tx_cnt = 0; sc_if->msk_cdata.msk_tx_high_addr = 0; rd = &sc_if->msk_rdata; bzero(rd->msk_tx_ring, sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT); for (i = 0; i < MSK_TX_RING_CNT; i++) { txd = &sc_if->msk_cdata.msk_txdesc[i]; txd->tx_m = NULL; txd->tx_le = &rd->msk_tx_ring[i]; } bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag, sc_if->msk_cdata.msk_tx_ring_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); } static __inline void msk_discard_rxbuf(struct msk_if_softc *sc_if, int idx) { struct msk_rx_desc *rx_le; struct msk_rxdesc *rxd; struct mbuf *m; #ifdef MSK_64BIT_DMA rxd = &sc_if->msk_cdata.msk_rxdesc[idx]; rx_le = rxd->rx_le; rx_le->msk_control = htole32(OP_ADDR64 | HW_OWNER); MSK_INC(idx, MSK_RX_RING_CNT); #endif rxd = &sc_if->msk_cdata.msk_rxdesc[idx]; m = rxd->rx_m; rx_le = rxd->rx_le; rx_le->msk_control = htole32(m->m_len | OP_PACKET | HW_OWNER); } static __inline void msk_discard_jumbo_rxbuf(struct msk_if_softc *sc_if, int idx) { struct msk_rx_desc *rx_le; struct msk_rxdesc *rxd; struct mbuf *m; #ifdef MSK_64BIT_DMA rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx]; rx_le = rxd->rx_le; rx_le->msk_control = htole32(OP_ADDR64 | HW_OWNER); MSK_INC(idx, MSK_JUMBO_RX_RING_CNT); #endif rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx]; m = rxd->rx_m; rx_le = rxd->rx_le; rx_le->msk_control = htole32(m->m_len | OP_PACKET | HW_OWNER); } static int msk_newbuf(struct msk_if_softc *sc_if, int idx) { struct msk_rx_desc *rx_le; struct msk_rxdesc *rxd; struct mbuf *m; bus_dma_segment_t segs[1]; bus_dmamap_t map; int nsegs; m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); if (m == NULL) return (ENOBUFS); m->m_len = m->m_pkthdr.len = MCLBYTES; if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0) m_adj(m, ETHER_ALIGN); #ifndef __NO_STRICT_ALIGNMENT else m_adj(m, MSK_RX_BUF_ALIGN); #endif if (bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_rx_tag, sc_if->msk_cdata.msk_rx_sparemap, m, segs, &nsegs, BUS_DMA_NOWAIT) != 0) { m_freem(m); return (ENOBUFS); } KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); rxd = &sc_if->msk_cdata.msk_rxdesc[idx]; #ifdef MSK_64BIT_DMA rx_le = rxd->rx_le; rx_le->msk_addr = htole32(MSK_ADDR_HI(segs[0].ds_addr)); rx_le->msk_control = htole32(OP_ADDR64 | HW_OWNER); MSK_INC(idx, MSK_RX_RING_CNT); rxd = &sc_if->msk_cdata.msk_rxdesc[idx]; #endif if (rxd->rx_m != NULL) { bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap); rxd->rx_m = NULL; } map = rxd->rx_dmamap; rxd->rx_dmamap = sc_if->msk_cdata.msk_rx_sparemap; sc_if->msk_cdata.msk_rx_sparemap = map; bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap, BUS_DMASYNC_PREREAD); rxd->rx_m = m; rx_le = rxd->rx_le; rx_le->msk_addr = htole32(MSK_ADDR_LO(segs[0].ds_addr)); rx_le->msk_control = htole32(segs[0].ds_len | OP_PACKET | HW_OWNER); return (0); } static int msk_jumbo_newbuf(struct msk_if_softc *sc_if, int idx) { struct msk_rx_desc *rx_le; struct msk_rxdesc *rxd; struct mbuf *m; bus_dma_segment_t segs[1]; bus_dmamap_t map; int nsegs; m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES); if (m == NULL) return (ENOBUFS); m->m_len = m->m_pkthdr.len = MJUM9BYTES; if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0) m_adj(m, ETHER_ALIGN); #ifndef __NO_STRICT_ALIGNMENT else m_adj(m, MSK_RX_BUF_ALIGN); #endif if (bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_jumbo_rx_tag, sc_if->msk_cdata.msk_jumbo_rx_sparemap, m, segs, &nsegs, BUS_DMA_NOWAIT) != 0) { m_freem(m); return (ENOBUFS); } KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx]; #ifdef MSK_64BIT_DMA rx_le = rxd->rx_le; rx_le->msk_addr = htole32(MSK_ADDR_HI(segs[0].ds_addr)); rx_le->msk_control = htole32(OP_ADDR64 | HW_OWNER); MSK_INC(idx, MSK_JUMBO_RX_RING_CNT); rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx]; #endif if (rxd->rx_m != NULL) { bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag, rxd->rx_dmamap, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_tag, rxd->rx_dmamap); rxd->rx_m = NULL; } map = rxd->rx_dmamap; rxd->rx_dmamap = sc_if->msk_cdata.msk_jumbo_rx_sparemap; sc_if->msk_cdata.msk_jumbo_rx_sparemap = map; bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag, rxd->rx_dmamap, BUS_DMASYNC_PREREAD); rxd->rx_m = m; rx_le = rxd->rx_le; rx_le->msk_addr = htole32(MSK_ADDR_LO(segs[0].ds_addr)); rx_le->msk_control = htole32(segs[0].ds_len | OP_PACKET | HW_OWNER); return (0); } /* * Set media options. */ static int msk_mediachange(struct ifnet *ifp) { struct msk_if_softc *sc_if; struct mii_data *mii; int error; sc_if = ifp->if_softc; MSK_IF_LOCK(sc_if); mii = device_get_softc(sc_if->msk_miibus); error = mii_mediachg(mii); MSK_IF_UNLOCK(sc_if); return (error); } /* * Report current media status. */ static void msk_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr) { struct msk_if_softc *sc_if; struct mii_data *mii; sc_if = ifp->if_softc; MSK_IF_LOCK(sc_if); if ((ifp->if_flags & IFF_UP) == 0) { MSK_IF_UNLOCK(sc_if); return; } mii = device_get_softc(sc_if->msk_miibus); mii_pollstat(mii); ifmr->ifm_active = mii->mii_media_active; ifmr->ifm_status = mii->mii_media_status; MSK_IF_UNLOCK(sc_if); } static int msk_ioctl(struct ifnet *ifp, u_long command, caddr_t data) { struct msk_if_softc *sc_if; struct ifreq *ifr; struct mii_data *mii; int error, mask, reinit; sc_if = ifp->if_softc; ifr = (struct ifreq *)data; error = 0; switch(command) { case SIOCSIFMTU: MSK_IF_LOCK(sc_if); if (ifr->ifr_mtu > MSK_JUMBO_MTU || ifr->ifr_mtu < ETHERMIN) error = EINVAL; else if (ifp->if_mtu != ifr->ifr_mtu) { if (ifr->ifr_mtu > ETHERMTU) { if ((sc_if->msk_flags & MSK_FLAG_JUMBO) == 0) { error = EINVAL; MSK_IF_UNLOCK(sc_if); break; } if ((sc_if->msk_flags & MSK_FLAG_JUMBO_NOCSUM) != 0) { ifp->if_hwassist &= ~(MSK_CSUM_FEATURES | CSUM_TSO); ifp->if_capenable &= ~(IFCAP_TSO4 | IFCAP_TXCSUM); VLAN_CAPABILITIES(ifp); } } ifp->if_mtu = ifr->ifr_mtu; if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { ifp->if_drv_flags &= ~IFF_DRV_RUNNING; msk_init_locked(sc_if); } } MSK_IF_UNLOCK(sc_if); break; case SIOCSIFFLAGS: MSK_IF_LOCK(sc_if); if ((ifp->if_flags & IFF_UP) != 0) { if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 && ((ifp->if_flags ^ sc_if->msk_if_flags) & (IFF_PROMISC | IFF_ALLMULTI)) != 0) msk_rxfilter(sc_if); else if ((sc_if->msk_flags & MSK_FLAG_DETACH) == 0) msk_init_locked(sc_if); } else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) msk_stop(sc_if); sc_if->msk_if_flags = ifp->if_flags; MSK_IF_UNLOCK(sc_if); break; case SIOCADDMULTI: case SIOCDELMULTI: MSK_IF_LOCK(sc_if); if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) msk_rxfilter(sc_if); MSK_IF_UNLOCK(sc_if); break; case SIOCGIFMEDIA: case SIOCSIFMEDIA: mii = device_get_softc(sc_if->msk_miibus); error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); break; case SIOCSIFCAP: reinit = 0; MSK_IF_LOCK(sc_if); mask = ifr->ifr_reqcap ^ ifp->if_capenable; if ((mask & IFCAP_TXCSUM) != 0 && (IFCAP_TXCSUM & ifp->if_capabilities) != 0) { ifp->if_capenable ^= IFCAP_TXCSUM; if ((IFCAP_TXCSUM & ifp->if_capenable) != 0) ifp->if_hwassist |= MSK_CSUM_FEATURES; else ifp->if_hwassist &= ~MSK_CSUM_FEATURES; } if ((mask & IFCAP_RXCSUM) != 0 && (IFCAP_RXCSUM & ifp->if_capabilities) != 0) { ifp->if_capenable ^= IFCAP_RXCSUM; if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0) reinit = 1; } if ((mask & IFCAP_VLAN_HWCSUM) != 0 && (IFCAP_VLAN_HWCSUM & ifp->if_capabilities) != 0) ifp->if_capenable ^= IFCAP_VLAN_HWCSUM; if ((mask & IFCAP_TSO4) != 0 && (IFCAP_TSO4 & ifp->if_capabilities) != 0) { ifp->if_capenable ^= IFCAP_TSO4; if ((IFCAP_TSO4 & ifp->if_capenable) != 0) ifp->if_hwassist |= CSUM_TSO; else ifp->if_hwassist &= ~CSUM_TSO; } if ((mask & IFCAP_VLAN_HWTSO) != 0 && (IFCAP_VLAN_HWTSO & ifp->if_capabilities) != 0) ifp->if_capenable ^= IFCAP_VLAN_HWTSO; if ((mask & IFCAP_VLAN_HWTAGGING) != 0 && (IFCAP_VLAN_HWTAGGING & ifp->if_capabilities) != 0) { ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; if ((IFCAP_VLAN_HWTAGGING & ifp->if_capenable) == 0) ifp->if_capenable &= ~(IFCAP_VLAN_HWTSO | IFCAP_VLAN_HWCSUM); msk_setvlan(sc_if, ifp); } if (ifp->if_mtu > ETHERMTU && (sc_if->msk_flags & MSK_FLAG_JUMBO_NOCSUM) != 0) { ifp->if_hwassist &= ~(MSK_CSUM_FEATURES | CSUM_TSO); ifp->if_capenable &= ~(IFCAP_TSO4 | IFCAP_TXCSUM); } VLAN_CAPABILITIES(ifp); if (reinit > 0 && (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { ifp->if_drv_flags &= ~IFF_DRV_RUNNING; msk_init_locked(sc_if); } MSK_IF_UNLOCK(sc_if); break; default: error = ether_ioctl(ifp, command, data); break; } return (error); } static int mskc_probe(device_t dev) { const struct msk_product *mp; uint16_t vendor, devid; int i; vendor = pci_get_vendor(dev); devid = pci_get_device(dev); mp = msk_products; for (i = 0; i < nitems(msk_products); i++, mp++) { if (vendor == mp->msk_vendorid && devid == mp->msk_deviceid) { device_set_desc(dev, mp->msk_name); return (BUS_PROBE_DEFAULT); } } return (ENXIO); } static int mskc_setup_rambuffer(struct msk_softc *sc) { int next; int i; /* Get adapter SRAM size. */ sc->msk_ramsize = CSR_READ_1(sc, B2_E_0) * 4; if (bootverbose) device_printf(sc->msk_dev, "RAM buffer size : %dKB\n", sc->msk_ramsize); if (sc->msk_ramsize == 0) return (0); sc->msk_pflags |= MSK_FLAG_RAMBUF; /* * Give receiver 2/3 of memory and round down to the multiple * of 1024. Tx/Rx RAM buffer size of Yukon II should be multiple * of 1024. */ sc->msk_rxqsize = rounddown((sc->msk_ramsize * 1024 * 2) / 3, 1024); sc->msk_txqsize = (sc->msk_ramsize * 1024) - sc->msk_rxqsize; for (i = 0, next = 0; i < sc->msk_num_port; i++) { sc->msk_rxqstart[i] = next; sc->msk_rxqend[i] = next + sc->msk_rxqsize - 1; next = sc->msk_rxqend[i] + 1; sc->msk_txqstart[i] = next; sc->msk_txqend[i] = next + sc->msk_txqsize - 1; next = sc->msk_txqend[i] + 1; if (bootverbose) { device_printf(sc->msk_dev, "Port %d : Rx Queue %dKB(0x%08x:0x%08x)\n", i, sc->msk_rxqsize / 1024, sc->msk_rxqstart[i], sc->msk_rxqend[i]); device_printf(sc->msk_dev, "Port %d : Tx Queue %dKB(0x%08x:0x%08x)\n", i, sc->msk_txqsize / 1024, sc->msk_txqstart[i], sc->msk_txqend[i]); } } return (0); } static void msk_phy_power(struct msk_softc *sc, int mode) { uint32_t our, val; int i; switch (mode) { case MSK_PHY_POWERUP: /* Switch power to VCC (WA for VAUX problem). */ CSR_WRITE_1(sc, B0_POWER_CTRL, PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON); /* Disable Core Clock Division, set Clock Select to 0. */ CSR_WRITE_4(sc, B2_Y2_CLK_CTRL, Y2_CLK_DIV_DIS); val = 0; if (sc->msk_hw_id == CHIP_ID_YUKON_XL && sc->msk_hw_rev > CHIP_REV_YU_XL_A1) { /* Enable bits are inverted. */ val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS | Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS | Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS; } /* * Enable PCI & Core Clock, enable clock gating for both Links. */ CSR_WRITE_1(sc, B2_Y2_CLK_GATE, val); our = CSR_PCI_READ_4(sc, PCI_OUR_REG_1); our &= ~(PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD); if (sc->msk_hw_id == CHIP_ID_YUKON_XL) { if (sc->msk_hw_rev > CHIP_REV_YU_XL_A1) { /* Deassert Low Power for 1st PHY. */ our |= PCI_Y2_PHY1_COMA; if (sc->msk_num_port > 1) our |= PCI_Y2_PHY2_COMA; } } if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U || sc->msk_hw_id == CHIP_ID_YUKON_EX || sc->msk_hw_id >= CHIP_ID_YUKON_FE_P) { val = CSR_PCI_READ_4(sc, PCI_OUR_REG_4); val &= (PCI_FORCE_ASPM_REQUEST | PCI_ASPM_GPHY_LINK_DOWN | PCI_ASPM_INT_FIFO_EMPTY | PCI_ASPM_CLKRUN_REQUEST); /* Set all bits to 0 except bits 15..12. */ CSR_PCI_WRITE_4(sc, PCI_OUR_REG_4, val); val = CSR_PCI_READ_4(sc, PCI_OUR_REG_5); val &= PCI_CTL_TIM_VMAIN_AV_MSK; CSR_PCI_WRITE_4(sc, PCI_OUR_REG_5, val); CSR_PCI_WRITE_4(sc, PCI_CFG_REG_1, 0); CSR_WRITE_2(sc, B0_CTST, Y2_HW_WOL_ON); /* * Disable status race, workaround for * Yukon EC Ultra & Yukon EX. */ val = CSR_READ_4(sc, B2_GP_IO); val |= GLB_GPIO_STAT_RACE_DIS; CSR_WRITE_4(sc, B2_GP_IO, val); CSR_READ_4(sc, B2_GP_IO); } /* Release PHY from PowerDown/COMA mode. */ CSR_PCI_WRITE_4(sc, PCI_OUR_REG_1, our); for (i = 0; i < sc->msk_num_port; i++) { CSR_WRITE_2(sc, MR_ADDR(i, GMAC_LINK_CTRL), GMLC_RST_SET); CSR_WRITE_2(sc, MR_ADDR(i, GMAC_LINK_CTRL), GMLC_RST_CLR); } break; case MSK_PHY_POWERDOWN: val = CSR_PCI_READ_4(sc, PCI_OUR_REG_1); val |= PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD; if (sc->msk_hw_id == CHIP_ID_YUKON_XL && sc->msk_hw_rev > CHIP_REV_YU_XL_A1) { val &= ~PCI_Y2_PHY1_COMA; if (sc->msk_num_port > 1) val &= ~PCI_Y2_PHY2_COMA; } CSR_PCI_WRITE_4(sc, PCI_OUR_REG_1, val); val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS | Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS | Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS; if (sc->msk_hw_id == CHIP_ID_YUKON_XL && sc->msk_hw_rev > CHIP_REV_YU_XL_A1) { /* Enable bits are inverted. */ val = 0; } /* * Disable PCI & Core Clock, disable clock gating for * both Links. */ CSR_WRITE_1(sc, B2_Y2_CLK_GATE, val); CSR_WRITE_1(sc, B0_POWER_CTRL, PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF); break; default: break; } } static void mskc_reset(struct msk_softc *sc) { bus_addr_t addr; uint16_t status; uint32_t val; int i, initram; /* Disable ASF. */ if (sc->msk_hw_id >= CHIP_ID_YUKON_XL && sc->msk_hw_id <= CHIP_ID_YUKON_SUPR) { if (sc->msk_hw_id == CHIP_ID_YUKON_EX || sc->msk_hw_id == CHIP_ID_YUKON_SUPR) { CSR_WRITE_4(sc, B28_Y2_CPU_WDOG, 0); status = CSR_READ_2(sc, B28_Y2_ASF_HCU_CCSR); /* Clear AHB bridge & microcontroller reset. */ status &= ~(Y2_ASF_HCU_CCSR_AHB_RST | Y2_ASF_HCU_CCSR_CPU_RST_MODE); /* Clear ASF microcontroller state. */ status &= ~Y2_ASF_HCU_CCSR_UC_STATE_MSK; status &= ~Y2_ASF_HCU_CCSR_CPU_CLK_DIVIDE_MSK; CSR_WRITE_2(sc, B28_Y2_ASF_HCU_CCSR, status); CSR_WRITE_4(sc, B28_Y2_CPU_WDOG, 0); } else CSR_WRITE_1(sc, B28_Y2_ASF_STAT_CMD, Y2_ASF_RESET); CSR_WRITE_2(sc, B0_CTST, Y2_ASF_DISABLE); /* * Since we disabled ASF, S/W reset is required for * Power Management. */ CSR_WRITE_2(sc, B0_CTST, CS_RST_SET); CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR); } /* Clear all error bits in the PCI status register. */ status = pci_read_config(sc->msk_dev, PCIR_STATUS, 2); CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON); pci_write_config(sc->msk_dev, PCIR_STATUS, status | PCIM_STATUS_PERR | PCIM_STATUS_SERR | PCIM_STATUS_RMABORT | PCIM_STATUS_RTABORT | PCIM_STATUS_MDPERR, 2); CSR_WRITE_2(sc, B0_CTST, CS_MRST_CLR); switch (sc->msk_bustype) { case MSK_PEX_BUS: /* Clear all PEX errors. */ CSR_PCI_WRITE_4(sc, PEX_UNC_ERR_STAT, 0xffffffff); val = CSR_PCI_READ_4(sc, PEX_UNC_ERR_STAT); if ((val & PEX_RX_OV) != 0) { sc->msk_intrmask &= ~Y2_IS_HW_ERR; sc->msk_intrhwemask &= ~Y2_IS_PCI_EXP; } break; case MSK_PCI_BUS: case MSK_PCIX_BUS: /* Set Cache Line Size to 2(8bytes) if configured to 0. */ val = pci_read_config(sc->msk_dev, PCIR_CACHELNSZ, 1); if (val == 0) pci_write_config(sc->msk_dev, PCIR_CACHELNSZ, 2, 1); if (sc->msk_bustype == MSK_PCIX_BUS) { /* Set Cache Line Size opt. */ val = pci_read_config(sc->msk_dev, PCI_OUR_REG_1, 4); val |= PCI_CLS_OPT; pci_write_config(sc->msk_dev, PCI_OUR_REG_1, val, 4); } break; } /* Set PHY power state. */ msk_phy_power(sc, MSK_PHY_POWERUP); /* Reset GPHY/GMAC Control */ for (i = 0; i < sc->msk_num_port; i++) { /* GPHY Control reset. */ CSR_WRITE_1(sc, MR_ADDR(i, GPHY_CTRL), GPC_RST_SET); CSR_WRITE_1(sc, MR_ADDR(i, GPHY_CTRL), GPC_RST_CLR); /* GMAC Control reset. */ CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_RST_SET); CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_RST_CLR); CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_F_LOOPB_OFF); if (sc->msk_hw_id == CHIP_ID_YUKON_EX || sc->msk_hw_id == CHIP_ID_YUKON_SUPR) CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_BYP_MACSECRX_ON | GMC_BYP_MACSECTX_ON | GMC_BYP_RETR_ON); } if (sc->msk_hw_id == CHIP_ID_YUKON_SUPR && sc->msk_hw_rev > CHIP_REV_YU_SU_B0) CSR_PCI_WRITE_4(sc, PCI_OUR_REG_3, PCI_CLK_MACSEC_DIS); if (sc->msk_hw_id == CHIP_ID_YUKON_OPT && sc->msk_hw_rev == 0) { /* Disable PCIe PHY powerdown(reg 0x80, bit7). */ CSR_WRITE_4(sc, Y2_PEX_PHY_DATA, (0x0080 << 16) | 0x0080); } CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF); /* LED On. */ CSR_WRITE_2(sc, B0_CTST, Y2_LED_STAT_ON); /* Clear TWSI IRQ. */ CSR_WRITE_4(sc, B2_I2C_IRQ, I2C_CLR_IRQ); /* Turn off hardware timer. */ CSR_WRITE_1(sc, B2_TI_CTRL, TIM_STOP); CSR_WRITE_1(sc, B2_TI_CTRL, TIM_CLR_IRQ); /* Turn off descriptor polling. */ CSR_WRITE_1(sc, B28_DPT_CTRL, DPT_STOP); /* Turn off time stamps. */ CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_STOP); CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ); initram = 0; if (sc->msk_hw_id == CHIP_ID_YUKON_XL || sc->msk_hw_id == CHIP_ID_YUKON_EC || sc->msk_hw_id == CHIP_ID_YUKON_FE) initram++; /* Configure timeout values. */ for (i = 0; initram > 0 && i < sc->msk_num_port; i++) { CSR_WRITE_2(sc, SELECT_RAM_BUFFER(i, B3_RI_CTRL), RI_RST_SET); CSR_WRITE_2(sc, SELECT_RAM_BUFFER(i, B3_RI_CTRL), RI_RST_CLR); CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_R1), MSK_RI_TO_53); CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA1), MSK_RI_TO_53); CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS1), MSK_RI_TO_53); CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_R1), MSK_RI_TO_53); CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA1), MSK_RI_TO_53); CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS1), MSK_RI_TO_53); CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_R2), MSK_RI_TO_53); CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA2), MSK_RI_TO_53); CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS2), MSK_RI_TO_53); CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_R2), MSK_RI_TO_53); CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA2), MSK_RI_TO_53); CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS2), MSK_RI_TO_53); } /* Disable all interrupts. */ CSR_WRITE_4(sc, B0_HWE_IMSK, 0); CSR_READ_4(sc, B0_HWE_IMSK); CSR_WRITE_4(sc, B0_IMSK, 0); CSR_READ_4(sc, B0_IMSK); /* * On dual port PCI-X card, there is an problem where status * can be received out of order due to split transactions. */ if (sc->msk_pcixcap != 0 && sc->msk_num_port > 1) { uint16_t pcix_cmd; pcix_cmd = pci_read_config(sc->msk_dev, sc->msk_pcixcap + PCIXR_COMMAND, 2); /* Clear Max Outstanding Split Transactions. */ pcix_cmd &= ~PCIXM_COMMAND_MAX_SPLITS; CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON); pci_write_config(sc->msk_dev, sc->msk_pcixcap + PCIXR_COMMAND, pcix_cmd, 2); CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF); } if (sc->msk_expcap != 0) { /* Change Max. Read Request Size to 2048 bytes. */ if (pci_get_max_read_req(sc->msk_dev) == 512) pci_set_max_read_req(sc->msk_dev, 2048); } /* Clear status list. */ bzero(sc->msk_stat_ring, sizeof(struct msk_stat_desc) * sc->msk_stat_count); sc->msk_stat_cons = 0; bus_dmamap_sync(sc->msk_stat_tag, sc->msk_stat_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_RST_SET); CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_RST_CLR); /* Set the status list base address. */ addr = sc->msk_stat_ring_paddr; CSR_WRITE_4(sc, STAT_LIST_ADDR_LO, MSK_ADDR_LO(addr)); CSR_WRITE_4(sc, STAT_LIST_ADDR_HI, MSK_ADDR_HI(addr)); /* Set the status list last index. */ CSR_WRITE_2(sc, STAT_LAST_IDX, sc->msk_stat_count - 1); if (sc->msk_hw_id == CHIP_ID_YUKON_EC && sc->msk_hw_rev == CHIP_REV_YU_EC_A1) { /* WA for dev. #4.3 */ CSR_WRITE_2(sc, STAT_TX_IDX_TH, ST_TXTH_IDX_MASK); /* WA for dev. #4.18 */ CSR_WRITE_1(sc, STAT_FIFO_WM, 0x21); CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x07); } else { CSR_WRITE_2(sc, STAT_TX_IDX_TH, 0x0a); CSR_WRITE_1(sc, STAT_FIFO_WM, 0x10); if (sc->msk_hw_id == CHIP_ID_YUKON_XL && sc->msk_hw_rev == CHIP_REV_YU_XL_A0) CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x04); else CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x10); CSR_WRITE_4(sc, STAT_ISR_TIMER_INI, 0x0190); } /* * Use default value for STAT_ISR_TIMER_INI, STAT_LEV_TIMER_INI. */ CSR_WRITE_4(sc, STAT_TX_TIMER_INI, MSK_USECS(sc, 1000)); /* Enable status unit. */ CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_OP_ON); CSR_WRITE_1(sc, STAT_TX_TIMER_CTRL, TIM_START); CSR_WRITE_1(sc, STAT_LEV_TIMER_CTRL, TIM_START); CSR_WRITE_1(sc, STAT_ISR_TIMER_CTRL, TIM_START); } static int msk_probe(device_t dev) { struct msk_softc *sc; char desc[100]; sc = device_get_softc(device_get_parent(dev)); /* * Not much to do here. We always know there will be * at least one GMAC present, and if there are two, * mskc_attach() will create a second device instance * for us. */ snprintf(desc, sizeof(desc), "Marvell Technology Group Ltd. %s Id 0x%02x Rev 0x%02x", model_name[sc->msk_hw_id - CHIP_ID_YUKON_XL], sc->msk_hw_id, sc->msk_hw_rev); device_set_desc_copy(dev, desc); return (BUS_PROBE_DEFAULT); } static int msk_attach(device_t dev) { struct msk_softc *sc; struct msk_if_softc *sc_if; struct ifnet *ifp; struct msk_mii_data *mmd; int i, port, error; uint8_t eaddr[6]; if (dev == NULL) return (EINVAL); error = 0; sc_if = device_get_softc(dev); sc = device_get_softc(device_get_parent(dev)); mmd = device_get_ivars(dev); port = mmd->port; sc_if->msk_if_dev = dev; sc_if->msk_port = port; sc_if->msk_softc = sc; sc_if->msk_flags = sc->msk_pflags; sc->msk_if[port] = sc_if; /* Setup Tx/Rx queue register offsets. */ if (port == MSK_PORT_A) { sc_if->msk_txq = Q_XA1; sc_if->msk_txsq = Q_XS1; sc_if->msk_rxq = Q_R1; } else { sc_if->msk_txq = Q_XA2; sc_if->msk_txsq = Q_XS2; sc_if->msk_rxq = Q_R2; } callout_init_mtx(&sc_if->msk_tick_ch, &sc_if->msk_softc->msk_mtx, 0); msk_sysctl_node(sc_if); if ((error = msk_txrx_dma_alloc(sc_if)) != 0) goto fail; msk_rx_dma_jalloc(sc_if); ifp = sc_if->msk_ifp = if_alloc(IFT_ETHER); if (ifp == NULL) { device_printf(sc_if->msk_if_dev, "can not if_alloc()\n"); error = ENOSPC; goto fail; } ifp->if_softc = sc_if; if_initname(ifp, device_get_name(dev), device_get_unit(dev)); ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_TSO4; /* * Enable Rx checksum offloading if controller supports * new descriptor formant and controller is not Yukon XL. */ if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 && sc->msk_hw_id != CHIP_ID_YUKON_XL) ifp->if_capabilities |= IFCAP_RXCSUM; if ((sc_if->msk_flags & MSK_FLAG_DESCV2) != 0 && (sc_if->msk_flags & MSK_FLAG_NORX_CSUM) == 0) ifp->if_capabilities |= IFCAP_RXCSUM; ifp->if_hwassist = MSK_CSUM_FEATURES | CSUM_TSO; ifp->if_capenable = ifp->if_capabilities; ifp->if_ioctl = msk_ioctl; ifp->if_start = msk_start; ifp->if_init = msk_init; IFQ_SET_MAXLEN(&ifp->if_snd, MSK_TX_RING_CNT - 1); ifp->if_snd.ifq_drv_maxlen = MSK_TX_RING_CNT - 1; IFQ_SET_READY(&ifp->if_snd); /* * Get station address for this interface. Note that * dual port cards actually come with three station * addresses: one for each port, plus an extra. The * extra one is used by the SysKonnect driver software * as a 'virtual' station address for when both ports * are operating in failover mode. Currently we don't * use this extra address. */ MSK_IF_LOCK(sc_if); for (i = 0; i < ETHER_ADDR_LEN; i++) eaddr[i] = CSR_READ_1(sc, B2_MAC_1 + (port * 8) + i); /* * Call MI attach routine. Can't hold locks when calling into ether_*. */ MSK_IF_UNLOCK(sc_if); ether_ifattach(ifp, eaddr); MSK_IF_LOCK(sc_if); /* VLAN capability setup */ ifp->if_capabilities |= IFCAP_VLAN_MTU; if ((sc_if->msk_flags & MSK_FLAG_NOHWVLAN) == 0) { /* * Due to Tx checksum offload hardware bugs, msk(4) manually * computes checksum for short frames. For VLAN tagged frames * this workaround does not work so disable checksum offload * for VLAN interface. */ ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWTSO; /* * Enable Rx checksum offloading for VLAN tagged frames * if controller support new descriptor format. */ if ((sc_if->msk_flags & MSK_FLAG_DESCV2) != 0 && (sc_if->msk_flags & MSK_FLAG_NORX_CSUM) == 0) ifp->if_capabilities |= IFCAP_VLAN_HWCSUM; } ifp->if_capenable = ifp->if_capabilities; /* * Disable RX checksum offloading on controllers that don't use * new descriptor format but give chance to enable it. */ if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0) ifp->if_capenable &= ~IFCAP_RXCSUM; /* * Tell the upper layer(s) we support long frames. * Must appear after the call to ether_ifattach() because * ether_ifattach() sets ifi_hdrlen to the default value. */ ifp->if_hdrlen = sizeof(struct ether_vlan_header); /* * Do miibus setup. */ MSK_IF_UNLOCK(sc_if); error = mii_attach(dev, &sc_if->msk_miibus, ifp, msk_mediachange, msk_mediastatus, BMSR_DEFCAPMASK, PHY_ADDR_MARV, MII_OFFSET_ANY, mmd->mii_flags); if (error != 0) { device_printf(sc_if->msk_if_dev, "attaching PHYs failed\n"); ether_ifdetach(ifp); error = ENXIO; goto fail; } fail: if (error != 0) { /* Access should be ok even though lock has been dropped */ sc->msk_if[port] = NULL; msk_detach(dev); } return (error); } /* * Attach the interface. Allocate softc structures, do ifmedia * setup and ethernet/BPF attach. */ static int mskc_attach(device_t dev) { struct msk_softc *sc; struct msk_mii_data *mmd; int error, msic, msir, reg; sc = device_get_softc(dev); sc->msk_dev = dev; mtx_init(&sc->msk_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, MTX_DEF); /* * Map control/status registers. */ pci_enable_busmaster(dev); /* Allocate I/O resource */ #ifdef MSK_USEIOSPACE sc->msk_res_spec = msk_res_spec_io; #else sc->msk_res_spec = msk_res_spec_mem; #endif sc->msk_irq_spec = msk_irq_spec_legacy; error = bus_alloc_resources(dev, sc->msk_res_spec, sc->msk_res); if (error) { if (sc->msk_res_spec == msk_res_spec_mem) sc->msk_res_spec = msk_res_spec_io; else sc->msk_res_spec = msk_res_spec_mem; error = bus_alloc_resources(dev, sc->msk_res_spec, sc->msk_res); if (error) { device_printf(dev, "couldn't allocate %s resources\n", sc->msk_res_spec == msk_res_spec_mem ? "memory" : "I/O"); mtx_destroy(&sc->msk_mtx); return (ENXIO); } } /* Enable all clocks before accessing any registers. */ CSR_PCI_WRITE_4(sc, PCI_OUR_REG_3, 0); CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR); sc->msk_hw_id = CSR_READ_1(sc, B2_CHIP_ID); sc->msk_hw_rev = (CSR_READ_1(sc, B2_MAC_CFG) >> 4) & 0x0f; /* Bail out if chip is not recognized. */ if (sc->msk_hw_id < CHIP_ID_YUKON_XL || sc->msk_hw_id > CHIP_ID_YUKON_OPT || sc->msk_hw_id == CHIP_ID_YUKON_UNKNOWN) { device_printf(dev, "unknown device: id=0x%02x, rev=0x%02x\n", sc->msk_hw_id, sc->msk_hw_rev); mtx_destroy(&sc->msk_mtx); return (ENXIO); } SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "process_limit", CTLTYPE_INT | CTLFLAG_RW, &sc->msk_process_limit, 0, sysctl_hw_msk_proc_limit, "I", "max number of Rx events to process"); sc->msk_process_limit = MSK_PROC_DEFAULT; error = resource_int_value(device_get_name(dev), device_get_unit(dev), "process_limit", &sc->msk_process_limit); if (error == 0) { if (sc->msk_process_limit < MSK_PROC_MIN || sc->msk_process_limit > MSK_PROC_MAX) { device_printf(dev, "process_limit value out of range; " "using default: %d\n", MSK_PROC_DEFAULT); sc->msk_process_limit = MSK_PROC_DEFAULT; } } sc->msk_int_holdoff = MSK_INT_HOLDOFF_DEFAULT; SYSCTL_ADD_INT(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "int_holdoff", CTLFLAG_RW, &sc->msk_int_holdoff, 0, "Maximum number of time to delay interrupts"); resource_int_value(device_get_name(dev), device_get_unit(dev), "int_holdoff", &sc->msk_int_holdoff); sc->msk_pmd = CSR_READ_1(sc, B2_PMD_TYP); /* Check number of MACs. */ sc->msk_num_port = 1; if ((CSR_READ_1(sc, B2_Y2_HW_RES) & CFG_DUAL_MAC_MSK) == CFG_DUAL_MAC_MSK) { if (!(CSR_READ_1(sc, B2_Y2_CLK_GATE) & Y2_STATUS_LNK2_INAC)) sc->msk_num_port++; } /* Check bus type. */ if (pci_find_cap(sc->msk_dev, PCIY_EXPRESS, ®) == 0) { sc->msk_bustype = MSK_PEX_BUS; sc->msk_expcap = reg; } else if (pci_find_cap(sc->msk_dev, PCIY_PCIX, ®) == 0) { sc->msk_bustype = MSK_PCIX_BUS; sc->msk_pcixcap = reg; } else sc->msk_bustype = MSK_PCI_BUS; switch (sc->msk_hw_id) { case CHIP_ID_YUKON_EC: sc->msk_clock = 125; /* 125 MHz */ sc->msk_pflags |= MSK_FLAG_JUMBO; break; case CHIP_ID_YUKON_EC_U: sc->msk_clock = 125; /* 125 MHz */ sc->msk_pflags |= MSK_FLAG_JUMBO | MSK_FLAG_JUMBO_NOCSUM; break; case CHIP_ID_YUKON_EX: sc->msk_clock = 125; /* 125 MHz */ sc->msk_pflags |= MSK_FLAG_JUMBO | MSK_FLAG_DESCV2 | MSK_FLAG_AUTOTX_CSUM; /* * Yukon Extreme seems to have silicon bug for * automatic Tx checksum calculation capability. */ if (sc->msk_hw_rev == CHIP_REV_YU_EX_B0) sc->msk_pflags &= ~MSK_FLAG_AUTOTX_CSUM; /* * Yukon Extreme A0 could not use store-and-forward * for jumbo frames, so disable Tx checksum * offloading for jumbo frames. */ if (sc->msk_hw_rev == CHIP_REV_YU_EX_A0) sc->msk_pflags |= MSK_FLAG_JUMBO_NOCSUM; break; case CHIP_ID_YUKON_FE: sc->msk_clock = 100; /* 100 MHz */ sc->msk_pflags |= MSK_FLAG_FASTETHER; break; case CHIP_ID_YUKON_FE_P: sc->msk_clock = 50; /* 50 MHz */ sc->msk_pflags |= MSK_FLAG_FASTETHER | MSK_FLAG_DESCV2 | MSK_FLAG_AUTOTX_CSUM; if (sc->msk_hw_rev == CHIP_REV_YU_FE_P_A0) { /* * XXX * FE+ A0 has status LE writeback bug so msk(4) * does not rely on status word of received frame * in msk_rxeof() which in turn disables all * hardware assistance bits reported by the status * word as well as validity of the received frame. * Just pass received frames to upper stack with * minimal test and let upper stack handle them. */ sc->msk_pflags |= MSK_FLAG_NOHWVLAN | MSK_FLAG_NORXCHK | MSK_FLAG_NORX_CSUM; } break; case CHIP_ID_YUKON_XL: sc->msk_clock = 156; /* 156 MHz */ sc->msk_pflags |= MSK_FLAG_JUMBO; break; case CHIP_ID_YUKON_SUPR: sc->msk_clock = 125; /* 125 MHz */ sc->msk_pflags |= MSK_FLAG_JUMBO | MSK_FLAG_DESCV2 | MSK_FLAG_AUTOTX_CSUM; break; case CHIP_ID_YUKON_UL_2: sc->msk_clock = 125; /* 125 MHz */ sc->msk_pflags |= MSK_FLAG_JUMBO; break; case CHIP_ID_YUKON_OPT: sc->msk_clock = 125; /* 125 MHz */ sc->msk_pflags |= MSK_FLAG_JUMBO | MSK_FLAG_DESCV2; break; default: sc->msk_clock = 156; /* 156 MHz */ break; } /* Allocate IRQ resources. */ msic = pci_msi_count(dev); if (bootverbose) device_printf(dev, "MSI count : %d\n", msic); if (legacy_intr != 0) msi_disable = 1; if (msi_disable == 0 && msic > 0) { msir = 1; if (pci_alloc_msi(dev, &msir) == 0) { if (msir == 1) { sc->msk_pflags |= MSK_FLAG_MSI; sc->msk_irq_spec = msk_irq_spec_msi; } else pci_release_msi(dev); } } error = bus_alloc_resources(dev, sc->msk_irq_spec, sc->msk_irq); if (error) { device_printf(dev, "couldn't allocate IRQ resources\n"); goto fail; } if ((error = msk_status_dma_alloc(sc)) != 0) goto fail; /* Set base interrupt mask. */ sc->msk_intrmask = Y2_IS_HW_ERR | Y2_IS_STAT_BMU; sc->msk_intrhwemask = Y2_IS_TIST_OV | Y2_IS_MST_ERR | Y2_IS_IRQ_STAT | Y2_IS_PCI_EXP | Y2_IS_PCI_NEXP; /* Reset the adapter. */ mskc_reset(sc); if ((error = mskc_setup_rambuffer(sc)) != 0) goto fail; sc->msk_devs[MSK_PORT_A] = device_add_child(dev, "msk", -1); if (sc->msk_devs[MSK_PORT_A] == NULL) { device_printf(dev, "failed to add child for PORT_A\n"); error = ENXIO; goto fail; } mmd = malloc(sizeof(struct msk_mii_data), M_DEVBUF, M_WAITOK | M_ZERO); if (mmd == NULL) { device_printf(dev, "failed to allocate memory for " "ivars of PORT_A\n"); error = ENXIO; goto fail; } mmd->port = MSK_PORT_A; mmd->pmd = sc->msk_pmd; mmd->mii_flags |= MIIF_DOPAUSE; if (sc->msk_pmd == 'L' || sc->msk_pmd == 'S') mmd->mii_flags |= MIIF_HAVEFIBER; if (sc->msk_pmd == 'P') mmd->mii_flags |= MIIF_HAVEFIBER | MIIF_MACPRIV0; device_set_ivars(sc->msk_devs[MSK_PORT_A], mmd); if (sc->msk_num_port > 1) { sc->msk_devs[MSK_PORT_B] = device_add_child(dev, "msk", -1); if (sc->msk_devs[MSK_PORT_B] == NULL) { device_printf(dev, "failed to add child for PORT_B\n"); error = ENXIO; goto fail; } mmd = malloc(sizeof(struct msk_mii_data), M_DEVBUF, M_WAITOK | M_ZERO); if (mmd == NULL) { device_printf(dev, "failed to allocate memory for " "ivars of PORT_B\n"); error = ENXIO; goto fail; } mmd->port = MSK_PORT_B; mmd->pmd = sc->msk_pmd; if (sc->msk_pmd == 'L' || sc->msk_pmd == 'S') mmd->mii_flags |= MIIF_HAVEFIBER; if (sc->msk_pmd == 'P') mmd->mii_flags |= MIIF_HAVEFIBER | MIIF_MACPRIV0; device_set_ivars(sc->msk_devs[MSK_PORT_B], mmd); } error = bus_generic_attach(dev); if (error) { device_printf(dev, "failed to attach port(s)\n"); goto fail; } /* Hook interrupt last to avoid having to lock softc. */ error = bus_setup_intr(dev, sc->msk_irq[0], INTR_TYPE_NET | INTR_MPSAFE, NULL, msk_intr, sc, &sc->msk_intrhand); if (error != 0) { device_printf(dev, "couldn't set up interrupt handler\n"); goto fail; } fail: if (error != 0) mskc_detach(dev); return (error); } /* * Shutdown hardware and free up resources. This can be called any * time after the mutex has been initialized. It is called in both * the error case in attach and the normal detach case so it needs * to be careful about only freeing resources that have actually been * allocated. */ static int msk_detach(device_t dev) { struct msk_softc *sc; struct msk_if_softc *sc_if; struct ifnet *ifp; sc_if = device_get_softc(dev); KASSERT(mtx_initialized(&sc_if->msk_softc->msk_mtx), ("msk mutex not initialized in msk_detach")); MSK_IF_LOCK(sc_if); ifp = sc_if->msk_ifp; if (device_is_attached(dev)) { /* XXX */ sc_if->msk_flags |= MSK_FLAG_DETACH; msk_stop(sc_if); /* Can't hold locks while calling detach. */ MSK_IF_UNLOCK(sc_if); callout_drain(&sc_if->msk_tick_ch); if (ifp) ether_ifdetach(ifp); MSK_IF_LOCK(sc_if); } /* * We're generally called from mskc_detach() which is using * device_delete_child() to get to here. It's already trashed * miibus for us, so don't do it here or we'll panic. * * if (sc_if->msk_miibus != NULL) { * device_delete_child(dev, sc_if->msk_miibus); * sc_if->msk_miibus = NULL; * } */ msk_rx_dma_jfree(sc_if); msk_txrx_dma_free(sc_if); bus_generic_detach(dev); sc = sc_if->msk_softc; sc->msk_if[sc_if->msk_port] = NULL; MSK_IF_UNLOCK(sc_if); if (ifp) if_free(ifp); return (0); } static int mskc_detach(device_t dev) { struct msk_softc *sc; sc = device_get_softc(dev); KASSERT(mtx_initialized(&sc->msk_mtx), ("msk mutex not initialized")); if (device_is_alive(dev)) { if (sc->msk_devs[MSK_PORT_A] != NULL) { free(device_get_ivars(sc->msk_devs[MSK_PORT_A]), M_DEVBUF); device_delete_child(dev, sc->msk_devs[MSK_PORT_A]); } if (sc->msk_devs[MSK_PORT_B] != NULL) { free(device_get_ivars(sc->msk_devs[MSK_PORT_B]), M_DEVBUF); device_delete_child(dev, sc->msk_devs[MSK_PORT_B]); } bus_generic_detach(dev); } /* Disable all interrupts. */ CSR_WRITE_4(sc, B0_IMSK, 0); CSR_READ_4(sc, B0_IMSK); CSR_WRITE_4(sc, B0_HWE_IMSK, 0); CSR_READ_4(sc, B0_HWE_IMSK); /* LED Off. */ CSR_WRITE_2(sc, B0_CTST, Y2_LED_STAT_OFF); /* Put hardware reset. */ CSR_WRITE_2(sc, B0_CTST, CS_RST_SET); msk_status_dma_free(sc); if (sc->msk_intrhand) { bus_teardown_intr(dev, sc->msk_irq[0], sc->msk_intrhand); sc->msk_intrhand = NULL; } bus_release_resources(dev, sc->msk_irq_spec, sc->msk_irq); if ((sc->msk_pflags & MSK_FLAG_MSI) != 0) pci_release_msi(dev); bus_release_resources(dev, sc->msk_res_spec, sc->msk_res); mtx_destroy(&sc->msk_mtx); return (0); } static bus_dma_tag_t mskc_get_dma_tag(device_t bus, device_t child __unused) { return (bus_get_dma_tag(bus)); } struct msk_dmamap_arg { bus_addr_t msk_busaddr; }; static void msk_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error) { struct msk_dmamap_arg *ctx; if (error != 0) return; ctx = arg; ctx->msk_busaddr = segs[0].ds_addr; } /* Create status DMA region. */ static int msk_status_dma_alloc(struct msk_softc *sc) { struct msk_dmamap_arg ctx; bus_size_t stat_sz; int count, error; /* * It seems controller requires number of status LE entries * is power of 2 and the maximum number of status LE entries * is 4096. For dual-port controllers, the number of status * LE entries should be large enough to hold both port's * status updates. */ count = 3 * MSK_RX_RING_CNT + MSK_TX_RING_CNT; count = imin(4096, roundup2(count, 1024)); sc->msk_stat_count = count; stat_sz = count * sizeof(struct msk_stat_desc); error = bus_dma_tag_create( bus_get_dma_tag(sc->msk_dev), /* parent */ MSK_STAT_ALIGN, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ stat_sz, /* maxsize */ 1, /* nsegments */ stat_sz, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->msk_stat_tag); if (error != 0) { device_printf(sc->msk_dev, "failed to create status DMA tag\n"); return (error); } /* Allocate DMA'able memory and load the DMA map for status ring. */ error = bus_dmamem_alloc(sc->msk_stat_tag, (void **)&sc->msk_stat_ring, BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->msk_stat_map); if (error != 0) { device_printf(sc->msk_dev, "failed to allocate DMA'able memory for status ring\n"); return (error); } ctx.msk_busaddr = 0; error = bus_dmamap_load(sc->msk_stat_tag, sc->msk_stat_map, sc->msk_stat_ring, stat_sz, msk_dmamap_cb, &ctx, BUS_DMA_NOWAIT); if (error != 0) { device_printf(sc->msk_dev, "failed to load DMA'able memory for status ring\n"); return (error); } sc->msk_stat_ring_paddr = ctx.msk_busaddr; return (0); } static void msk_status_dma_free(struct msk_softc *sc) { /* Destroy status block. */ if (sc->msk_stat_tag) { if (sc->msk_stat_ring_paddr) { bus_dmamap_unload(sc->msk_stat_tag, sc->msk_stat_map); sc->msk_stat_ring_paddr = 0; } if (sc->msk_stat_ring) { bus_dmamem_free(sc->msk_stat_tag, sc->msk_stat_ring, sc->msk_stat_map); sc->msk_stat_ring = NULL; } bus_dma_tag_destroy(sc->msk_stat_tag); sc->msk_stat_tag = NULL; } } static int msk_txrx_dma_alloc(struct msk_if_softc *sc_if) { struct msk_dmamap_arg ctx; struct msk_txdesc *txd; struct msk_rxdesc *rxd; bus_size_t rxalign; int error, i; /* Create parent DMA tag. */ error = bus_dma_tag_create( bus_get_dma_tag(sc_if->msk_if_dev), /* parent */ 1, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ BUS_SPACE_MAXSIZE_32BIT, /* maxsize */ 0, /* nsegments */ BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc_if->msk_cdata.msk_parent_tag); if (error != 0) { device_printf(sc_if->msk_if_dev, "failed to create parent DMA tag\n"); goto fail; } /* Create tag for Tx ring. */ error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */ MSK_RING_ALIGN, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ MSK_TX_RING_SZ, /* maxsize */ 1, /* nsegments */ MSK_TX_RING_SZ, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc_if->msk_cdata.msk_tx_ring_tag); if (error != 0) { device_printf(sc_if->msk_if_dev, "failed to create Tx ring DMA tag\n"); goto fail; } /* Create tag for Rx ring. */ error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */ MSK_RING_ALIGN, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ MSK_RX_RING_SZ, /* maxsize */ 1, /* nsegments */ MSK_RX_RING_SZ, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc_if->msk_cdata.msk_rx_ring_tag); if (error != 0) { device_printf(sc_if->msk_if_dev, "failed to create Rx ring DMA tag\n"); goto fail; } /* Create tag for Tx buffers. */ error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */ 1, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ MSK_TSO_MAXSIZE, /* maxsize */ MSK_MAXTXSEGS, /* nsegments */ MSK_TSO_MAXSGSIZE, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc_if->msk_cdata.msk_tx_tag); if (error != 0) { device_printf(sc_if->msk_if_dev, "failed to create Tx DMA tag\n"); goto fail; } rxalign = 1; /* * Workaround hardware hang which seems to happen when Rx buffer * is not aligned on multiple of FIFO word(8 bytes). */ if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0) rxalign = MSK_RX_BUF_ALIGN; /* Create tag for Rx buffers. */ error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */ rxalign, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ MCLBYTES, /* maxsize */ 1, /* nsegments */ MCLBYTES, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc_if->msk_cdata.msk_rx_tag); if (error != 0) { device_printf(sc_if->msk_if_dev, "failed to create Rx DMA tag\n"); goto fail; } /* Allocate DMA'able memory and load the DMA map for Tx ring. */ error = bus_dmamem_alloc(sc_if->msk_cdata.msk_tx_ring_tag, (void **)&sc_if->msk_rdata.msk_tx_ring, BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->msk_cdata.msk_tx_ring_map); if (error != 0) { device_printf(sc_if->msk_if_dev, "failed to allocate DMA'able memory for Tx ring\n"); goto fail; } ctx.msk_busaddr = 0; error = bus_dmamap_load(sc_if->msk_cdata.msk_tx_ring_tag, sc_if->msk_cdata.msk_tx_ring_map, sc_if->msk_rdata.msk_tx_ring, MSK_TX_RING_SZ, msk_dmamap_cb, &ctx, BUS_DMA_NOWAIT); if (error != 0) { device_printf(sc_if->msk_if_dev, "failed to load DMA'able memory for Tx ring\n"); goto fail; } sc_if->msk_rdata.msk_tx_ring_paddr = ctx.msk_busaddr; /* Allocate DMA'able memory and load the DMA map for Rx ring. */ error = bus_dmamem_alloc(sc_if->msk_cdata.msk_rx_ring_tag, (void **)&sc_if->msk_rdata.msk_rx_ring, BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->msk_cdata.msk_rx_ring_map); if (error != 0) { device_printf(sc_if->msk_if_dev, "failed to allocate DMA'able memory for Rx ring\n"); goto fail; } ctx.msk_busaddr = 0; error = bus_dmamap_load(sc_if->msk_cdata.msk_rx_ring_tag, sc_if->msk_cdata.msk_rx_ring_map, sc_if->msk_rdata.msk_rx_ring, MSK_RX_RING_SZ, msk_dmamap_cb, &ctx, BUS_DMA_NOWAIT); if (error != 0) { device_printf(sc_if->msk_if_dev, "failed to load DMA'able memory for Rx ring\n"); goto fail; } sc_if->msk_rdata.msk_rx_ring_paddr = ctx.msk_busaddr; /* Create DMA maps for Tx buffers. */ for (i = 0; i < MSK_TX_RING_CNT; i++) { txd = &sc_if->msk_cdata.msk_txdesc[i]; txd->tx_m = NULL; txd->tx_dmamap = NULL; error = bus_dmamap_create(sc_if->msk_cdata.msk_tx_tag, 0, &txd->tx_dmamap); if (error != 0) { device_printf(sc_if->msk_if_dev, "failed to create Tx dmamap\n"); goto fail; } } /* Create DMA maps for Rx buffers. */ if ((error = bus_dmamap_create(sc_if->msk_cdata.msk_rx_tag, 0, &sc_if->msk_cdata.msk_rx_sparemap)) != 0) { device_printf(sc_if->msk_if_dev, "failed to create spare Rx dmamap\n"); goto fail; } for (i = 0; i < MSK_RX_RING_CNT; i++) { rxd = &sc_if->msk_cdata.msk_rxdesc[i]; rxd->rx_m = NULL; rxd->rx_dmamap = NULL; error = bus_dmamap_create(sc_if->msk_cdata.msk_rx_tag, 0, &rxd->rx_dmamap); if (error != 0) { device_printf(sc_if->msk_if_dev, "failed to create Rx dmamap\n"); goto fail; } } fail: return (error); } static int msk_rx_dma_jalloc(struct msk_if_softc *sc_if) { struct msk_dmamap_arg ctx; struct msk_rxdesc *jrxd; bus_size_t rxalign; int error, i; if (jumbo_disable != 0 || (sc_if->msk_flags & MSK_FLAG_JUMBO) == 0) { sc_if->msk_flags &= ~MSK_FLAG_JUMBO; device_printf(sc_if->msk_if_dev, "disabling jumbo frame support\n"); return (0); } /* Create tag for jumbo Rx ring. */ error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */ MSK_RING_ALIGN, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ MSK_JUMBO_RX_RING_SZ, /* maxsize */ 1, /* nsegments */ MSK_JUMBO_RX_RING_SZ, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc_if->msk_cdata.msk_jumbo_rx_ring_tag); if (error != 0) { device_printf(sc_if->msk_if_dev, "failed to create jumbo Rx ring DMA tag\n"); goto jumbo_fail; } rxalign = 1; /* * Workaround hardware hang which seems to happen when Rx buffer * is not aligned on multiple of FIFO word(8 bytes). */ if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0) rxalign = MSK_RX_BUF_ALIGN; /* Create tag for jumbo Rx buffers. */ error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */ rxalign, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ MJUM9BYTES, /* maxsize */ 1, /* nsegments */ MJUM9BYTES, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc_if->msk_cdata.msk_jumbo_rx_tag); if (error != 0) { device_printf(sc_if->msk_if_dev, "failed to create jumbo Rx DMA tag\n"); goto jumbo_fail; } /* Allocate DMA'able memory and load the DMA map for jumbo Rx ring. */ error = bus_dmamem_alloc(sc_if->msk_cdata.msk_jumbo_rx_ring_tag, (void **)&sc_if->msk_rdata.msk_jumbo_rx_ring, BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->msk_cdata.msk_jumbo_rx_ring_map); if (error != 0) { device_printf(sc_if->msk_if_dev, "failed to allocate DMA'able memory for jumbo Rx ring\n"); goto jumbo_fail; } ctx.msk_busaddr = 0; error = bus_dmamap_load(sc_if->msk_cdata.msk_jumbo_rx_ring_tag, sc_if->msk_cdata.msk_jumbo_rx_ring_map, sc_if->msk_rdata.msk_jumbo_rx_ring, MSK_JUMBO_RX_RING_SZ, msk_dmamap_cb, &ctx, BUS_DMA_NOWAIT); if (error != 0) { device_printf(sc_if->msk_if_dev, "failed to load DMA'able memory for jumbo Rx ring\n"); goto jumbo_fail; } sc_if->msk_rdata.msk_jumbo_rx_ring_paddr = ctx.msk_busaddr; /* Create DMA maps for jumbo Rx buffers. */ if ((error = bus_dmamap_create(sc_if->msk_cdata.msk_jumbo_rx_tag, 0, &sc_if->msk_cdata.msk_jumbo_rx_sparemap)) != 0) { device_printf(sc_if->msk_if_dev, "failed to create spare jumbo Rx dmamap\n"); goto jumbo_fail; } for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) { jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i]; jrxd->rx_m = NULL; jrxd->rx_dmamap = NULL; error = bus_dmamap_create(sc_if->msk_cdata.msk_jumbo_rx_tag, 0, &jrxd->rx_dmamap); if (error != 0) { device_printf(sc_if->msk_if_dev, "failed to create jumbo Rx dmamap\n"); goto jumbo_fail; } } return (0); jumbo_fail: msk_rx_dma_jfree(sc_if); device_printf(sc_if->msk_if_dev, "disabling jumbo frame support " "due to resource shortage\n"); sc_if->msk_flags &= ~MSK_FLAG_JUMBO; return (error); } static void msk_txrx_dma_free(struct msk_if_softc *sc_if) { struct msk_txdesc *txd; struct msk_rxdesc *rxd; int i; /* Tx ring. */ if (sc_if->msk_cdata.msk_tx_ring_tag) { if (sc_if->msk_rdata.msk_tx_ring_paddr) bus_dmamap_unload(sc_if->msk_cdata.msk_tx_ring_tag, sc_if->msk_cdata.msk_tx_ring_map); if (sc_if->msk_rdata.msk_tx_ring) bus_dmamem_free(sc_if->msk_cdata.msk_tx_ring_tag, sc_if->msk_rdata.msk_tx_ring, sc_if->msk_cdata.msk_tx_ring_map); sc_if->msk_rdata.msk_tx_ring = NULL; sc_if->msk_rdata.msk_tx_ring_paddr = 0; bus_dma_tag_destroy(sc_if->msk_cdata.msk_tx_ring_tag); sc_if->msk_cdata.msk_tx_ring_tag = NULL; } /* Rx ring. */ if (sc_if->msk_cdata.msk_rx_ring_tag) { if (sc_if->msk_rdata.msk_rx_ring_paddr) bus_dmamap_unload(sc_if->msk_cdata.msk_rx_ring_tag, sc_if->msk_cdata.msk_rx_ring_map); if (sc_if->msk_rdata.msk_rx_ring) bus_dmamem_free(sc_if->msk_cdata.msk_rx_ring_tag, sc_if->msk_rdata.msk_rx_ring, sc_if->msk_cdata.msk_rx_ring_map); sc_if->msk_rdata.msk_rx_ring = NULL; sc_if->msk_rdata.msk_rx_ring_paddr = 0; bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_ring_tag); sc_if->msk_cdata.msk_rx_ring_tag = NULL; } /* Tx buffers. */ if (sc_if->msk_cdata.msk_tx_tag) { for (i = 0; i < MSK_TX_RING_CNT; i++) { txd = &sc_if->msk_cdata.msk_txdesc[i]; if (txd->tx_dmamap) { bus_dmamap_destroy(sc_if->msk_cdata.msk_tx_tag, txd->tx_dmamap); txd->tx_dmamap = NULL; } } bus_dma_tag_destroy(sc_if->msk_cdata.msk_tx_tag); sc_if->msk_cdata.msk_tx_tag = NULL; } /* Rx buffers. */ if (sc_if->msk_cdata.msk_rx_tag) { for (i = 0; i < MSK_RX_RING_CNT; i++) { rxd = &sc_if->msk_cdata.msk_rxdesc[i]; if (rxd->rx_dmamap) { bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap); rxd->rx_dmamap = NULL; } } if (sc_if->msk_cdata.msk_rx_sparemap) { bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag, sc_if->msk_cdata.msk_rx_sparemap); sc_if->msk_cdata.msk_rx_sparemap = 0; } bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_tag); sc_if->msk_cdata.msk_rx_tag = NULL; } if (sc_if->msk_cdata.msk_parent_tag) { bus_dma_tag_destroy(sc_if->msk_cdata.msk_parent_tag); sc_if->msk_cdata.msk_parent_tag = NULL; } } static void msk_rx_dma_jfree(struct msk_if_softc *sc_if) { struct msk_rxdesc *jrxd; int i; /* Jumbo Rx ring. */ if (sc_if->msk_cdata.msk_jumbo_rx_ring_tag) { if (sc_if->msk_rdata.msk_jumbo_rx_ring_paddr) bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_ring_tag, sc_if->msk_cdata.msk_jumbo_rx_ring_map); if (sc_if->msk_rdata.msk_jumbo_rx_ring) bus_dmamem_free(sc_if->msk_cdata.msk_jumbo_rx_ring_tag, sc_if->msk_rdata.msk_jumbo_rx_ring, sc_if->msk_cdata.msk_jumbo_rx_ring_map); sc_if->msk_rdata.msk_jumbo_rx_ring = NULL; sc_if->msk_rdata.msk_jumbo_rx_ring_paddr = 0; bus_dma_tag_destroy(sc_if->msk_cdata.msk_jumbo_rx_ring_tag); sc_if->msk_cdata.msk_jumbo_rx_ring_tag = NULL; } /* Jumbo Rx buffers. */ if (sc_if->msk_cdata.msk_jumbo_rx_tag) { for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) { jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i]; if (jrxd->rx_dmamap) { bus_dmamap_destroy( sc_if->msk_cdata.msk_jumbo_rx_tag, jrxd->rx_dmamap); jrxd->rx_dmamap = NULL; } } if (sc_if->msk_cdata.msk_jumbo_rx_sparemap) { bus_dmamap_destroy(sc_if->msk_cdata.msk_jumbo_rx_tag, sc_if->msk_cdata.msk_jumbo_rx_sparemap); sc_if->msk_cdata.msk_jumbo_rx_sparemap = 0; } bus_dma_tag_destroy(sc_if->msk_cdata.msk_jumbo_rx_tag); sc_if->msk_cdata.msk_jumbo_rx_tag = NULL; } } static int msk_encap(struct msk_if_softc *sc_if, struct mbuf **m_head) { struct msk_txdesc *txd, *txd_last; struct msk_tx_desc *tx_le; struct mbuf *m; bus_dmamap_t map; bus_dma_segment_t txsegs[MSK_MAXTXSEGS]; uint32_t control, csum, prod, si; uint16_t offset, tcp_offset, tso_mtu; int error, i, nseg, tso; MSK_IF_LOCK_ASSERT(sc_if); tcp_offset = offset = 0; m = *m_head; if (((sc_if->msk_flags & MSK_FLAG_AUTOTX_CSUM) == 0 && (m->m_pkthdr.csum_flags & MSK_CSUM_FEATURES) != 0) || ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 && (m->m_pkthdr.csum_flags & CSUM_TSO) != 0)) { /* * Since mbuf has no protocol specific structure information * in it we have to inspect protocol information here to * setup TSO and checksum offload. I don't know why Marvell * made a such decision in chip design because other GigE * hardwares normally takes care of all these chores in * hardware. However, TSO performance of Yukon II is very * good such that it's worth to implement it. */ struct ether_header *eh; struct ip *ip; struct tcphdr *tcp; if (M_WRITABLE(m) == 0) { /* Get a writable copy. */ m = m_dup(*m_head, M_NOWAIT); m_freem(*m_head); if (m == NULL) { *m_head = NULL; return (ENOBUFS); } *m_head = m; } offset = sizeof(struct ether_header); m = m_pullup(m, offset); if (m == NULL) { *m_head = NULL; return (ENOBUFS); } eh = mtod(m, struct ether_header *); /* Check if hardware VLAN insertion is off. */ if (eh->ether_type == htons(ETHERTYPE_VLAN)) { offset = sizeof(struct ether_vlan_header); m = m_pullup(m, offset); if (m == NULL) { *m_head = NULL; return (ENOBUFS); } } m = m_pullup(m, offset + sizeof(struct ip)); if (m == NULL) { *m_head = NULL; return (ENOBUFS); } ip = (struct ip *)(mtod(m, char *) + offset); offset += (ip->ip_hl << 2); tcp_offset = offset; if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) { m = m_pullup(m, offset + sizeof(struct tcphdr)); if (m == NULL) { *m_head = NULL; return (ENOBUFS); } tcp = (struct tcphdr *)(mtod(m, char *) + offset); offset += (tcp->th_off << 2); } else if ((sc_if->msk_flags & MSK_FLAG_AUTOTX_CSUM) == 0 && (m->m_pkthdr.len < MSK_MIN_FRAMELEN) && (m->m_pkthdr.csum_flags & CSUM_TCP) != 0) { /* * It seems that Yukon II has Tx checksum offload bug * for small TCP packets that's less than 60 bytes in * size (e.g. TCP window probe packet, pure ACK packet). * Common work around like padding with zeros to make * the frame minimum ethernet frame size didn't work at * all. * Instead of disabling checksum offload completely we * resort to S/W checksum routine when we encounter * short TCP frames. * Short UDP packets appear to be handled correctly by * Yukon II. Also I assume this bug does not happen on * controllers that use newer descriptor format or * automatic Tx checksum calculation. */ m = m_pullup(m, offset + sizeof(struct tcphdr)); if (m == NULL) { *m_head = NULL; return (ENOBUFS); } *(uint16_t *)(m->m_data + offset + m->m_pkthdr.csum_data) = in_cksum_skip(m, m->m_pkthdr.len, offset); m->m_pkthdr.csum_flags &= ~CSUM_TCP; } *m_head = m; } prod = sc_if->msk_cdata.msk_tx_prod; txd = &sc_if->msk_cdata.msk_txdesc[prod]; txd_last = txd; map = txd->tx_dmamap; error = bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_tx_tag, map, *m_head, txsegs, &nseg, BUS_DMA_NOWAIT); if (error == EFBIG) { m = m_collapse(*m_head, M_NOWAIT, MSK_MAXTXSEGS); if (m == NULL) { m_freem(*m_head); *m_head = NULL; return (ENOBUFS); } *m_head = m; error = bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_tx_tag, map, *m_head, txsegs, &nseg, BUS_DMA_NOWAIT); if (error != 0) { m_freem(*m_head); *m_head = NULL; return (error); } } else if (error != 0) return (error); if (nseg == 0) { m_freem(*m_head); *m_head = NULL; return (EIO); } /* Check number of available descriptors. */ if (sc_if->msk_cdata.msk_tx_cnt + nseg >= (MSK_TX_RING_CNT - MSK_RESERVED_TX_DESC_CNT)) { bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, map); return (ENOBUFS); } control = 0; tso = 0; tx_le = NULL; /* Check TSO support. */ if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) { if ((sc_if->msk_flags & MSK_FLAG_DESCV2) != 0) tso_mtu = m->m_pkthdr.tso_segsz; else tso_mtu = offset + m->m_pkthdr.tso_segsz; if (tso_mtu != sc_if->msk_cdata.msk_tso_mtu) { tx_le = &sc_if->msk_rdata.msk_tx_ring[prod]; tx_le->msk_addr = htole32(tso_mtu); if ((sc_if->msk_flags & MSK_FLAG_DESCV2) != 0) tx_le->msk_control = htole32(OP_MSS | HW_OWNER); else tx_le->msk_control = htole32(OP_LRGLEN | HW_OWNER); sc_if->msk_cdata.msk_tx_cnt++; MSK_INC(prod, MSK_TX_RING_CNT); sc_if->msk_cdata.msk_tso_mtu = tso_mtu; } tso++; } /* Check if we have a VLAN tag to insert. */ if ((m->m_flags & M_VLANTAG) != 0) { if (tx_le == NULL) { tx_le = &sc_if->msk_rdata.msk_tx_ring[prod]; tx_le->msk_addr = htole32(0); tx_le->msk_control = htole32(OP_VLAN | HW_OWNER | htons(m->m_pkthdr.ether_vtag)); sc_if->msk_cdata.msk_tx_cnt++; MSK_INC(prod, MSK_TX_RING_CNT); } else { tx_le->msk_control |= htole32(OP_VLAN | htons(m->m_pkthdr.ether_vtag)); } control |= INS_VLAN; } /* Check if we have to handle checksum offload. */ if (tso == 0 && (m->m_pkthdr.csum_flags & MSK_CSUM_FEATURES) != 0) { if ((sc_if->msk_flags & MSK_FLAG_AUTOTX_CSUM) != 0) control |= CALSUM; else { control |= CALSUM | WR_SUM | INIT_SUM | LOCK_SUM; if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0) control |= UDPTCP; /* Checksum write position. */ csum = (tcp_offset + m->m_pkthdr.csum_data) & 0xffff; /* Checksum start position. */ csum |= (uint32_t)tcp_offset << 16; if (csum != sc_if->msk_cdata.msk_last_csum) { tx_le = &sc_if->msk_rdata.msk_tx_ring[prod]; tx_le->msk_addr = htole32(csum); tx_le->msk_control = htole32(1 << 16 | (OP_TCPLISW | HW_OWNER)); sc_if->msk_cdata.msk_tx_cnt++; MSK_INC(prod, MSK_TX_RING_CNT); sc_if->msk_cdata.msk_last_csum = csum; } } } #ifdef MSK_64BIT_DMA if (MSK_ADDR_HI(txsegs[0].ds_addr) != sc_if->msk_cdata.msk_tx_high_addr) { sc_if->msk_cdata.msk_tx_high_addr = MSK_ADDR_HI(txsegs[0].ds_addr); tx_le = &sc_if->msk_rdata.msk_tx_ring[prod]; tx_le->msk_addr = htole32(MSK_ADDR_HI(txsegs[0].ds_addr)); tx_le->msk_control = htole32(OP_ADDR64 | HW_OWNER); sc_if->msk_cdata.msk_tx_cnt++; MSK_INC(prod, MSK_TX_RING_CNT); } #endif si = prod; tx_le = &sc_if->msk_rdata.msk_tx_ring[prod]; tx_le->msk_addr = htole32(MSK_ADDR_LO(txsegs[0].ds_addr)); if (tso == 0) tx_le->msk_control = htole32(txsegs[0].ds_len | control | OP_PACKET); else tx_le->msk_control = htole32(txsegs[0].ds_len | control | OP_LARGESEND); sc_if->msk_cdata.msk_tx_cnt++; MSK_INC(prod, MSK_TX_RING_CNT); for (i = 1; i < nseg; i++) { tx_le = &sc_if->msk_rdata.msk_tx_ring[prod]; #ifdef MSK_64BIT_DMA if (MSK_ADDR_HI(txsegs[i].ds_addr) != sc_if->msk_cdata.msk_tx_high_addr) { sc_if->msk_cdata.msk_tx_high_addr = MSK_ADDR_HI(txsegs[i].ds_addr); tx_le = &sc_if->msk_rdata.msk_tx_ring[prod]; tx_le->msk_addr = htole32(MSK_ADDR_HI(txsegs[i].ds_addr)); tx_le->msk_control = htole32(OP_ADDR64 | HW_OWNER); sc_if->msk_cdata.msk_tx_cnt++; MSK_INC(prod, MSK_TX_RING_CNT); tx_le = &sc_if->msk_rdata.msk_tx_ring[prod]; } #endif tx_le->msk_addr = htole32(MSK_ADDR_LO(txsegs[i].ds_addr)); tx_le->msk_control = htole32(txsegs[i].ds_len | control | OP_BUFFER | HW_OWNER); sc_if->msk_cdata.msk_tx_cnt++; MSK_INC(prod, MSK_TX_RING_CNT); } /* Update producer index. */ sc_if->msk_cdata.msk_tx_prod = prod; /* Set EOP on the last descriptor. */ prod = (prod + MSK_TX_RING_CNT - 1) % MSK_TX_RING_CNT; tx_le = &sc_if->msk_rdata.msk_tx_ring[prod]; tx_le->msk_control |= htole32(EOP); /* Turn the first descriptor ownership to hardware. */ tx_le = &sc_if->msk_rdata.msk_tx_ring[si]; tx_le->msk_control |= htole32(HW_OWNER); txd = &sc_if->msk_cdata.msk_txdesc[prod]; map = txd_last->tx_dmamap; txd_last->tx_dmamap = txd->tx_dmamap; txd->tx_dmamap = map; txd->tx_m = m; /* Sync descriptors. */ bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag, map, BUS_DMASYNC_PREWRITE); bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag, sc_if->msk_cdata.msk_tx_ring_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); return (0); } static void msk_start(struct ifnet *ifp) { struct msk_if_softc *sc_if; sc_if = ifp->if_softc; MSK_IF_LOCK(sc_if); msk_start_locked(ifp); MSK_IF_UNLOCK(sc_if); } static void msk_start_locked(struct ifnet *ifp) { struct msk_if_softc *sc_if; struct mbuf *m_head; int enq; sc_if = ifp->if_softc; MSK_IF_LOCK_ASSERT(sc_if); if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != IFF_DRV_RUNNING || (sc_if->msk_flags & MSK_FLAG_LINK) == 0) return; for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) && sc_if->msk_cdata.msk_tx_cnt < (MSK_TX_RING_CNT - MSK_RESERVED_TX_DESC_CNT); ) { IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); if (m_head == NULL) break; /* * Pack the data into the transmit ring. If we * don't have room, set the OACTIVE flag and wait * for the NIC to drain the ring. */ if (msk_encap(sc_if, &m_head) != 0) { if (m_head == NULL) break; IFQ_DRV_PREPEND(&ifp->if_snd, m_head); ifp->if_drv_flags |= IFF_DRV_OACTIVE; break; } enq++; /* * If there's a BPF listener, bounce a copy of this frame * to him. */ ETHER_BPF_MTAP(ifp, m_head); } if (enq > 0) { /* Transmit */ CSR_WRITE_2(sc_if->msk_softc, Y2_PREF_Q_ADDR(sc_if->msk_txq, PREF_UNIT_PUT_IDX_REG), sc_if->msk_cdata.msk_tx_prod); /* Set a timeout in case the chip goes out to lunch. */ sc_if->msk_watchdog_timer = MSK_TX_TIMEOUT; } } static void msk_watchdog(struct msk_if_softc *sc_if) { struct ifnet *ifp; MSK_IF_LOCK_ASSERT(sc_if); if (sc_if->msk_watchdog_timer == 0 || --sc_if->msk_watchdog_timer) return; ifp = sc_if->msk_ifp; if ((sc_if->msk_flags & MSK_FLAG_LINK) == 0) { if (bootverbose) if_printf(sc_if->msk_ifp, "watchdog timeout " "(missed link)\n"); if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); ifp->if_drv_flags &= ~IFF_DRV_RUNNING; msk_init_locked(sc_if); return; } if_printf(ifp, "watchdog timeout\n"); if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); ifp->if_drv_flags &= ~IFF_DRV_RUNNING; msk_init_locked(sc_if); if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) msk_start_locked(ifp); } static int mskc_shutdown(device_t dev) { struct msk_softc *sc; int i; sc = device_get_softc(dev); MSK_LOCK(sc); for (i = 0; i < sc->msk_num_port; i++) { if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL && ((sc->msk_if[i]->msk_ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)) msk_stop(sc->msk_if[i]); } MSK_UNLOCK(sc); /* Put hardware reset. */ CSR_WRITE_2(sc, B0_CTST, CS_RST_SET); return (0); } static int mskc_suspend(device_t dev) { struct msk_softc *sc; int i; sc = device_get_softc(dev); MSK_LOCK(sc); for (i = 0; i < sc->msk_num_port; i++) { if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL && ((sc->msk_if[i]->msk_ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)) msk_stop(sc->msk_if[i]); } /* Disable all interrupts. */ CSR_WRITE_4(sc, B0_IMSK, 0); CSR_READ_4(sc, B0_IMSK); CSR_WRITE_4(sc, B0_HWE_IMSK, 0); CSR_READ_4(sc, B0_HWE_IMSK); msk_phy_power(sc, MSK_PHY_POWERDOWN); /* Put hardware reset. */ CSR_WRITE_2(sc, B0_CTST, CS_RST_SET); sc->msk_pflags |= MSK_FLAG_SUSPEND; MSK_UNLOCK(sc); return (0); } static int mskc_resume(device_t dev) { struct msk_softc *sc; int i; sc = device_get_softc(dev); MSK_LOCK(sc); CSR_PCI_WRITE_4(sc, PCI_OUR_REG_3, 0); mskc_reset(sc); for (i = 0; i < sc->msk_num_port; i++) { if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL && ((sc->msk_if[i]->msk_ifp->if_flags & IFF_UP) != 0)) { sc->msk_if[i]->msk_ifp->if_drv_flags &= ~IFF_DRV_RUNNING; msk_init_locked(sc->msk_if[i]); } } sc->msk_pflags &= ~MSK_FLAG_SUSPEND; MSK_UNLOCK(sc); return (0); } #ifndef __NO_STRICT_ALIGNMENT static __inline void msk_fixup_rx(struct mbuf *m) { int i; uint16_t *src, *dst; src = mtod(m, uint16_t *); dst = src - 3; for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++) *dst++ = *src++; m->m_data -= (MSK_RX_BUF_ALIGN - ETHER_ALIGN); } #endif static __inline void msk_rxcsum(struct msk_if_softc *sc_if, uint32_t control, struct mbuf *m) { struct ether_header *eh; struct ip *ip; struct udphdr *uh; int32_t hlen, len, pktlen, temp32; uint16_t csum, *opts; if ((sc_if->msk_flags & MSK_FLAG_DESCV2) != 0) { if ((control & (CSS_IPV4 | CSS_IPFRAG)) == CSS_IPV4) { m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; if ((control & CSS_IPV4_CSUM_OK) != 0) m->m_pkthdr.csum_flags |= CSUM_IP_VALID; if ((control & (CSS_TCP | CSS_UDP)) != 0 && (control & (CSS_TCPUDP_CSUM_OK)) != 0) { m->m_pkthdr.csum_flags |= CSUM_DATA_VALID | CSUM_PSEUDO_HDR; m->m_pkthdr.csum_data = 0xffff; } } return; } /* * Marvell Yukon controllers that support OP_RXCHKS has known * to have various Rx checksum offloading bugs. These * controllers can be configured to compute simple checksum * at two different positions. So we can compute IP and TCP/UDP * checksum at the same time. We intentionally have controller * compute TCP/UDP checksum twice by specifying the same * checksum start position and compare the result. If the value * is different it would indicate the hardware logic was wrong. */ if ((sc_if->msk_csum & 0xFFFF) != (sc_if->msk_csum >> 16)) { if (bootverbose) device_printf(sc_if->msk_if_dev, "Rx checksum value mismatch!\n"); return; } pktlen = m->m_pkthdr.len; if (pktlen < sizeof(struct ether_header) + sizeof(struct ip)) return; eh = mtod(m, struct ether_header *); if (eh->ether_type != htons(ETHERTYPE_IP)) return; ip = (struct ip *)(eh + 1); if (ip->ip_v != IPVERSION) return; hlen = ip->ip_hl << 2; pktlen -= sizeof(struct ether_header); if (hlen < sizeof(struct ip)) return; if (ntohs(ip->ip_len) < hlen) return; if (ntohs(ip->ip_len) != pktlen) return; if (ip->ip_off & htons(IP_MF | IP_OFFMASK)) return; /* can't handle fragmented packet. */ switch (ip->ip_p) { case IPPROTO_TCP: if (pktlen < (hlen + sizeof(struct tcphdr))) return; break; case IPPROTO_UDP: if (pktlen < (hlen + sizeof(struct udphdr))) return; uh = (struct udphdr *)((caddr_t)ip + hlen); if (uh->uh_sum == 0) return; /* no checksum */ break; default: return; } csum = bswap16(sc_if->msk_csum & 0xFFFF); /* Checksum fixup for IP options. */ len = hlen - sizeof(struct ip); if (len > 0) { opts = (uint16_t *)(ip + 1); for (; len > 0; len -= sizeof(uint16_t), opts++) { temp32 = csum - *opts; temp32 = (temp32 >> 16) + (temp32 & 65535); csum = temp32 & 65535; } } m->m_pkthdr.csum_flags |= CSUM_DATA_VALID; m->m_pkthdr.csum_data = csum; } static void msk_rxeof(struct msk_if_softc *sc_if, uint32_t status, uint32_t control, int len) { struct mbuf *m; struct ifnet *ifp; struct msk_rxdesc *rxd; int cons, rxlen; ifp = sc_if->msk_ifp; MSK_IF_LOCK_ASSERT(sc_if); cons = sc_if->msk_cdata.msk_rx_cons; do { rxlen = status >> 16; if ((status & GMR_FS_VLAN) != 0 && (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) rxlen -= ETHER_VLAN_ENCAP_LEN; if ((sc_if->msk_flags & MSK_FLAG_NORXCHK) != 0) { /* * For controllers that returns bogus status code * just do minimal check and let upper stack * handle this frame. */ if (len > MSK_MAX_FRAMELEN || len < ETHER_HDR_LEN) { if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); msk_discard_rxbuf(sc_if, cons); break; } } else if (len > sc_if->msk_framesize || ((status & GMR_FS_ANY_ERR) != 0) || ((status & GMR_FS_RX_OK) == 0) || (rxlen != len)) { /* Don't count flow-control packet as errors. */ if ((status & GMR_FS_GOOD_FC) == 0) if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); msk_discard_rxbuf(sc_if, cons); break; } #ifdef MSK_64BIT_DMA rxd = &sc_if->msk_cdata.msk_rxdesc[(cons + 1) % MSK_RX_RING_CNT]; #else rxd = &sc_if->msk_cdata.msk_rxdesc[cons]; #endif m = rxd->rx_m; if (msk_newbuf(sc_if, cons) != 0) { if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1); /* Reuse old buffer. */ msk_discard_rxbuf(sc_if, cons); break; } m->m_pkthdr.rcvif = ifp; m->m_pkthdr.len = m->m_len = len; #ifndef __NO_STRICT_ALIGNMENT if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0) msk_fixup_rx(m); #endif if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) msk_rxcsum(sc_if, control, m); /* Check for VLAN tagged packets. */ if ((status & GMR_FS_VLAN) != 0 && (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) { m->m_pkthdr.ether_vtag = sc_if->msk_vtag; m->m_flags |= M_VLANTAG; } MSK_IF_UNLOCK(sc_if); (*ifp->if_input)(ifp, m); MSK_IF_LOCK(sc_if); } while (0); MSK_RX_INC(sc_if->msk_cdata.msk_rx_cons, MSK_RX_RING_CNT); MSK_RX_INC(sc_if->msk_cdata.msk_rx_prod, MSK_RX_RING_CNT); } static void msk_jumbo_rxeof(struct msk_if_softc *sc_if, uint32_t status, uint32_t control, int len) { struct mbuf *m; struct ifnet *ifp; struct msk_rxdesc *jrxd; int cons, rxlen; ifp = sc_if->msk_ifp; MSK_IF_LOCK_ASSERT(sc_if); cons = sc_if->msk_cdata.msk_rx_cons; do { rxlen = status >> 16; if ((status & GMR_FS_VLAN) != 0 && (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) rxlen -= ETHER_VLAN_ENCAP_LEN; if (len > sc_if->msk_framesize || ((status & GMR_FS_ANY_ERR) != 0) || ((status & GMR_FS_RX_OK) == 0) || (rxlen != len)) { /* Don't count flow-control packet as errors. */ if ((status & GMR_FS_GOOD_FC) == 0) if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); msk_discard_jumbo_rxbuf(sc_if, cons); break; } #ifdef MSK_64BIT_DMA jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[(cons + 1) % MSK_JUMBO_RX_RING_CNT]; #else jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[cons]; #endif m = jrxd->rx_m; if (msk_jumbo_newbuf(sc_if, cons) != 0) { if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1); /* Reuse old buffer. */ msk_discard_jumbo_rxbuf(sc_if, cons); break; } m->m_pkthdr.rcvif = ifp; m->m_pkthdr.len = m->m_len = len; #ifndef __NO_STRICT_ALIGNMENT if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) != 0) msk_fixup_rx(m); #endif if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) msk_rxcsum(sc_if, control, m); /* Check for VLAN tagged packets. */ if ((status & GMR_FS_VLAN) != 0 && (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) { m->m_pkthdr.ether_vtag = sc_if->msk_vtag; m->m_flags |= M_VLANTAG; } MSK_IF_UNLOCK(sc_if); (*ifp->if_input)(ifp, m); MSK_IF_LOCK(sc_if); } while (0); MSK_RX_INC(sc_if->msk_cdata.msk_rx_cons, MSK_JUMBO_RX_RING_CNT); MSK_RX_INC(sc_if->msk_cdata.msk_rx_prod, MSK_JUMBO_RX_RING_CNT); } static void msk_txeof(struct msk_if_softc *sc_if, int idx) { struct msk_txdesc *txd; struct msk_tx_desc *cur_tx; struct ifnet *ifp; uint32_t control; int cons, prog; MSK_IF_LOCK_ASSERT(sc_if); ifp = sc_if->msk_ifp; bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag, sc_if->msk_cdata.msk_tx_ring_map, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); /* * Go through our tx ring and free mbufs for those * frames that have been sent. */ cons = sc_if->msk_cdata.msk_tx_cons; prog = 0; for (; cons != idx; MSK_INC(cons, MSK_TX_RING_CNT)) { if (sc_if->msk_cdata.msk_tx_cnt <= 0) break; prog++; cur_tx = &sc_if->msk_rdata.msk_tx_ring[cons]; control = le32toh(cur_tx->msk_control); sc_if->msk_cdata.msk_tx_cnt--; ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; if ((control & EOP) == 0) continue; txd = &sc_if->msk_cdata.msk_txdesc[cons]; bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag, txd->tx_dmamap, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, txd->tx_dmamap); if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!", __func__)); m_freem(txd->tx_m); txd->tx_m = NULL; } if (prog > 0) { sc_if->msk_cdata.msk_tx_cons = cons; if (sc_if->msk_cdata.msk_tx_cnt == 0) sc_if->msk_watchdog_timer = 0; /* No need to sync LEs as we didn't update LEs. */ } } static void msk_tick(void *xsc_if) { struct msk_if_softc *sc_if; struct mii_data *mii; sc_if = xsc_if; MSK_IF_LOCK_ASSERT(sc_if); mii = device_get_softc(sc_if->msk_miibus); mii_tick(mii); if ((sc_if->msk_flags & MSK_FLAG_LINK) == 0) msk_miibus_statchg(sc_if->msk_if_dev); msk_handle_events(sc_if->msk_softc); msk_watchdog(sc_if); callout_reset(&sc_if->msk_tick_ch, hz, msk_tick, sc_if); } static void msk_intr_phy(struct msk_if_softc *sc_if) { uint16_t status; msk_phy_readreg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_STAT); status = msk_phy_readreg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_STAT); /* Handle FIFO Underrun/Overflow? */ if ((status & PHY_M_IS_FIFO_ERROR)) device_printf(sc_if->msk_if_dev, "PHY FIFO underrun/overflow.\n"); } static void msk_intr_gmac(struct msk_if_softc *sc_if) { struct msk_softc *sc; uint8_t status; sc = sc_if->msk_softc; status = CSR_READ_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_SRC)); /* GMAC Rx FIFO overrun. */ if ((status & GM_IS_RX_FF_OR) != 0) CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_CLI_RX_FO); /* GMAC Tx FIFO underrun. */ if ((status & GM_IS_TX_FF_UR) != 0) { CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_CLI_TX_FU); device_printf(sc_if->msk_if_dev, "Tx FIFO underrun!\n"); /* * XXX * In case of Tx underrun, we may need to flush/reset * Tx MAC but that would also require resynchronization * with status LEs. Reinitializing status LEs would * affect other port in dual MAC configuration so it * should be avoided as possible as we can. * Due to lack of documentation it's all vague guess but * it needs more investigation. */ } } static void msk_handle_hwerr(struct msk_if_softc *sc_if, uint32_t status) { struct msk_softc *sc; sc = sc_if->msk_softc; if ((status & Y2_IS_PAR_RD1) != 0) { device_printf(sc_if->msk_if_dev, "RAM buffer read parity error\n"); /* Clear IRQ. */ CSR_WRITE_2(sc, SELECT_RAM_BUFFER(sc_if->msk_port, B3_RI_CTRL), RI_CLR_RD_PERR); } if ((status & Y2_IS_PAR_WR1) != 0) { device_printf(sc_if->msk_if_dev, "RAM buffer write parity error\n"); /* Clear IRQ. */ CSR_WRITE_2(sc, SELECT_RAM_BUFFER(sc_if->msk_port, B3_RI_CTRL), RI_CLR_WR_PERR); } if ((status & Y2_IS_PAR_MAC1) != 0) { device_printf(sc_if->msk_if_dev, "Tx MAC parity error\n"); /* Clear IRQ. */ CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_CLI_TX_PE); } if ((status & Y2_IS_PAR_RX1) != 0) { device_printf(sc_if->msk_if_dev, "Rx parity error\n"); /* Clear IRQ. */ CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_CLR_IRQ_PAR); } if ((status & (Y2_IS_TCP_TXS1 | Y2_IS_TCP_TXA1)) != 0) { device_printf(sc_if->msk_if_dev, "TCP segmentation error\n"); /* Clear IRQ. */ CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_CLR_IRQ_TCP); } } static void msk_intr_hwerr(struct msk_softc *sc) { uint32_t status; uint32_t tlphead[4]; status = CSR_READ_4(sc, B0_HWE_ISRC); /* Time Stamp timer overflow. */ if ((status & Y2_IS_TIST_OV) != 0) CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ); if ((status & Y2_IS_PCI_NEXP) != 0) { /* * PCI Express Error occured which is not described in PEX * spec. * This error is also mapped either to Master Abort( * Y2_IS_MST_ERR) or Target Abort (Y2_IS_IRQ_STAT) bit and * can only be cleared there. */ device_printf(sc->msk_dev, "PCI Express protocol violation error\n"); } if ((status & (Y2_IS_MST_ERR | Y2_IS_IRQ_STAT)) != 0) { uint16_t v16; if ((status & Y2_IS_MST_ERR) != 0) device_printf(sc->msk_dev, "unexpected IRQ Status error\n"); else device_printf(sc->msk_dev, "unexpected IRQ Master error\n"); /* Reset all bits in the PCI status register. */ v16 = pci_read_config(sc->msk_dev, PCIR_STATUS, 2); CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON); pci_write_config(sc->msk_dev, PCIR_STATUS, v16 | PCIM_STATUS_PERR | PCIM_STATUS_SERR | PCIM_STATUS_RMABORT | PCIM_STATUS_RTABORT | PCIM_STATUS_MDPERR, 2); CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF); } /* Check for PCI Express Uncorrectable Error. */ if ((status & Y2_IS_PCI_EXP) != 0) { uint32_t v32; /* * On PCI Express bus bridges are called root complexes (RC). * PCI Express errors are recognized by the root complex too, * which requests the system to handle the problem. After * error occurrence it may be that no access to the adapter * may be performed any longer. */ v32 = CSR_PCI_READ_4(sc, PEX_UNC_ERR_STAT); if ((v32 & PEX_UNSUP_REQ) != 0) { /* Ignore unsupported request error. */ device_printf(sc->msk_dev, "Uncorrectable PCI Express error\n"); } if ((v32 & (PEX_FATAL_ERRORS | PEX_POIS_TLP)) != 0) { int i; /* Get TLP header form Log Registers. */ for (i = 0; i < 4; i++) tlphead[i] = CSR_PCI_READ_4(sc, PEX_HEADER_LOG + i * 4); /* Check for vendor defined broadcast message. */ if (!(tlphead[0] == 0x73004001 && tlphead[1] == 0x7f)) { sc->msk_intrhwemask &= ~Y2_IS_PCI_EXP; CSR_WRITE_4(sc, B0_HWE_IMSK, sc->msk_intrhwemask); CSR_READ_4(sc, B0_HWE_IMSK); } } /* Clear the interrupt. */ CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON); CSR_PCI_WRITE_4(sc, PEX_UNC_ERR_STAT, 0xffffffff); CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF); } if ((status & Y2_HWE_L1_MASK) != 0 && sc->msk_if[MSK_PORT_A] != NULL) msk_handle_hwerr(sc->msk_if[MSK_PORT_A], status); if ((status & Y2_HWE_L2_MASK) != 0 && sc->msk_if[MSK_PORT_B] != NULL) msk_handle_hwerr(sc->msk_if[MSK_PORT_B], status >> 8); } static __inline void msk_rxput(struct msk_if_softc *sc_if) { struct msk_softc *sc; sc = sc_if->msk_softc; if (sc_if->msk_framesize > (MCLBYTES - MSK_RX_BUF_ALIGN)) bus_dmamap_sync( sc_if->msk_cdata.msk_jumbo_rx_ring_tag, sc_if->msk_cdata.msk_jumbo_rx_ring_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); else bus_dmamap_sync( sc_if->msk_cdata.msk_rx_ring_tag, sc_if->msk_cdata.msk_rx_ring_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); CSR_WRITE_2(sc, Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG), sc_if->msk_cdata.msk_rx_prod); } static int msk_handle_events(struct msk_softc *sc) { struct msk_if_softc *sc_if; int rxput[2]; struct msk_stat_desc *sd; uint32_t control, status; int cons, len, port, rxprog; if (sc->msk_stat_cons == CSR_READ_2(sc, STAT_PUT_IDX)) return (0); /* Sync status LEs. */ bus_dmamap_sync(sc->msk_stat_tag, sc->msk_stat_map, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); rxput[MSK_PORT_A] = rxput[MSK_PORT_B] = 0; rxprog = 0; cons = sc->msk_stat_cons; for (;;) { sd = &sc->msk_stat_ring[cons]; control = le32toh(sd->msk_control); if ((control & HW_OWNER) == 0) break; control &= ~HW_OWNER; sd->msk_control = htole32(control); status = le32toh(sd->msk_status); len = control & STLE_LEN_MASK; port = (control >> 16) & 0x01; sc_if = sc->msk_if[port]; if (sc_if == NULL) { device_printf(sc->msk_dev, "invalid port opcode " "0x%08x\n", control & STLE_OP_MASK); continue; } switch (control & STLE_OP_MASK) { case OP_RXVLAN: sc_if->msk_vtag = ntohs(len); break; case OP_RXCHKSVLAN: sc_if->msk_vtag = ntohs(len); /* FALLTHROUGH */ case OP_RXCHKS: sc_if->msk_csum = status; break; case OP_RXSTAT: if (!(sc_if->msk_ifp->if_drv_flags & IFF_DRV_RUNNING)) break; if (sc_if->msk_framesize > (MCLBYTES - MSK_RX_BUF_ALIGN)) msk_jumbo_rxeof(sc_if, status, control, len); else msk_rxeof(sc_if, status, control, len); rxprog++; /* * Because there is no way to sync single Rx LE * put the DMA sync operation off until the end of * event processing. */ rxput[port]++; /* Update prefetch unit if we've passed water mark. */ if (rxput[port] >= sc_if->msk_cdata.msk_rx_putwm) { msk_rxput(sc_if); rxput[port] = 0; } break; case OP_TXINDEXLE: if (sc->msk_if[MSK_PORT_A] != NULL) msk_txeof(sc->msk_if[MSK_PORT_A], status & STLE_TXA1_MSKL); if (sc->msk_if[MSK_PORT_B] != NULL) msk_txeof(sc->msk_if[MSK_PORT_B], ((status & STLE_TXA2_MSKL) >> STLE_TXA2_SHIFTL) | ((len & STLE_TXA2_MSKH) << STLE_TXA2_SHIFTH)); break; default: device_printf(sc->msk_dev, "unhandled opcode 0x%08x\n", control & STLE_OP_MASK); break; } MSK_INC(cons, sc->msk_stat_count); if (rxprog > sc->msk_process_limit) break; } sc->msk_stat_cons = cons; bus_dmamap_sync(sc->msk_stat_tag, sc->msk_stat_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); if (rxput[MSK_PORT_A] > 0) msk_rxput(sc->msk_if[MSK_PORT_A]); if (rxput[MSK_PORT_B] > 0) msk_rxput(sc->msk_if[MSK_PORT_B]); return (sc->msk_stat_cons != CSR_READ_2(sc, STAT_PUT_IDX)); } static void msk_intr(void *xsc) { struct msk_softc *sc; struct msk_if_softc *sc_if0, *sc_if1; struct ifnet *ifp0, *ifp1; uint32_t status; int domore; sc = xsc; MSK_LOCK(sc); /* Reading B0_Y2_SP_ISRC2 masks further interrupts. */ status = CSR_READ_4(sc, B0_Y2_SP_ISRC2); if (status == 0 || status == 0xffffffff || (sc->msk_pflags & MSK_FLAG_SUSPEND) != 0 || (status & sc->msk_intrmask) == 0) { CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2); MSK_UNLOCK(sc); return; } sc_if0 = sc->msk_if[MSK_PORT_A]; sc_if1 = sc->msk_if[MSK_PORT_B]; ifp0 = ifp1 = NULL; if (sc_if0 != NULL) ifp0 = sc_if0->msk_ifp; if (sc_if1 != NULL) ifp1 = sc_if1->msk_ifp; if ((status & Y2_IS_IRQ_PHY1) != 0 && sc_if0 != NULL) msk_intr_phy(sc_if0); if ((status & Y2_IS_IRQ_PHY2) != 0 && sc_if1 != NULL) msk_intr_phy(sc_if1); if ((status & Y2_IS_IRQ_MAC1) != 0 && sc_if0 != NULL) msk_intr_gmac(sc_if0); if ((status & Y2_IS_IRQ_MAC2) != 0 && sc_if1 != NULL) msk_intr_gmac(sc_if1); if ((status & (Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2)) != 0) { device_printf(sc->msk_dev, "Rx descriptor error\n"); sc->msk_intrmask &= ~(Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2); CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask); CSR_READ_4(sc, B0_IMSK); } if ((status & (Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2)) != 0) { device_printf(sc->msk_dev, "Tx descriptor error\n"); sc->msk_intrmask &= ~(Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2); CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask); CSR_READ_4(sc, B0_IMSK); } if ((status & Y2_IS_HW_ERR) != 0) msk_intr_hwerr(sc); domore = msk_handle_events(sc); if ((status & Y2_IS_STAT_BMU) != 0 && domore == 0) CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_CLR_IRQ); /* Reenable interrupts. */ CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2); if (ifp0 != NULL && (ifp0->if_drv_flags & IFF_DRV_RUNNING) != 0 && !IFQ_DRV_IS_EMPTY(&ifp0->if_snd)) msk_start_locked(ifp0); if (ifp1 != NULL && (ifp1->if_drv_flags & IFF_DRV_RUNNING) != 0 && !IFQ_DRV_IS_EMPTY(&ifp1->if_snd)) msk_start_locked(ifp1); MSK_UNLOCK(sc); } static void msk_set_tx_stfwd(struct msk_if_softc *sc_if) { struct msk_softc *sc; struct ifnet *ifp; ifp = sc_if->msk_ifp; sc = sc_if->msk_softc; if ((sc->msk_hw_id == CHIP_ID_YUKON_EX && sc->msk_hw_rev != CHIP_REV_YU_EX_A0) || sc->msk_hw_id >= CHIP_ID_YUKON_SUPR) { CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), TX_STFW_ENA); } else { if (ifp->if_mtu > ETHERMTU) { /* Set Tx GMAC FIFO Almost Empty Threshold. */ CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_AE_THR), MSK_ECU_JUMBO_WM << 16 | MSK_ECU_AE_THR); /* Disable Store & Forward mode for Tx. */ CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), TX_STFW_DIS); } else { CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), TX_STFW_ENA); } } } static void msk_init(void *xsc) { struct msk_if_softc *sc_if = xsc; MSK_IF_LOCK(sc_if); msk_init_locked(sc_if); MSK_IF_UNLOCK(sc_if); } static void msk_init_locked(struct msk_if_softc *sc_if) { struct msk_softc *sc; struct ifnet *ifp; struct mii_data *mii; uint8_t *eaddr; uint16_t gmac; uint32_t reg; int error; MSK_IF_LOCK_ASSERT(sc_if); ifp = sc_if->msk_ifp; sc = sc_if->msk_softc; mii = device_get_softc(sc_if->msk_miibus); if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) return; error = 0; /* Cancel pending I/O and free all Rx/Tx buffers. */ msk_stop(sc_if); if (ifp->if_mtu < ETHERMTU) sc_if->msk_framesize = ETHERMTU; else sc_if->msk_framesize = ifp->if_mtu; sc_if->msk_framesize += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN; if (ifp->if_mtu > ETHERMTU && (sc_if->msk_flags & MSK_FLAG_JUMBO_NOCSUM) != 0) { ifp->if_hwassist &= ~(MSK_CSUM_FEATURES | CSUM_TSO); ifp->if_capenable &= ~(IFCAP_TSO4 | IFCAP_TXCSUM); } /* GMAC Control reset. */ CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_RST_SET); CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_RST_CLR); CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_F_LOOPB_OFF); if (sc->msk_hw_id == CHIP_ID_YUKON_EX || sc->msk_hw_id == CHIP_ID_YUKON_SUPR) CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_BYP_MACSECRX_ON | GMC_BYP_MACSECTX_ON | GMC_BYP_RETR_ON); /* * Initialize GMAC first such that speed/duplex/flow-control * parameters are renegotiated when interface is brought up. */ GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, 0); /* Dummy read the Interrupt Source Register. */ CSR_READ_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_SRC)); /* Clear MIB stats. */ msk_stats_clear(sc_if); /* Disable FCS. */ GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, GM_RXCR_CRC_DIS); /* Setup Transmit Control Register. */ GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF)); /* Setup Transmit Flow Control Register. */ GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_FLOW_CTRL, 0xffff); /* Setup Transmit Parameter Register. */ GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_PARAM, TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) | TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) | TX_IPG_JAM_DATA(TX_IPG_JAM_DEF) | TX_BACK_OFF_LIM(TX_BOF_LIM_DEF)); gmac = DATA_BLIND_VAL(DATA_BLIND_DEF) | GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF); if (ifp->if_mtu > ETHERMTU) gmac |= GM_SMOD_JUMBO_ENA; GMAC_WRITE_2(sc, sc_if->msk_port, GM_SERIAL_MODE, gmac); /* Set station address. */ eaddr = IF_LLADDR(ifp); GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_1L, eaddr[0] | (eaddr[1] << 8)); GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_1M, eaddr[2] | (eaddr[3] << 8)); GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_1H, eaddr[4] | (eaddr[5] << 8)); GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_2L, eaddr[0] | (eaddr[1] << 8)); GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_2M, eaddr[2] | (eaddr[3] << 8)); GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_2H, eaddr[4] | (eaddr[5] << 8)); /* Disable interrupts for counter overflows. */ GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_IRQ_MSK, 0); GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_IRQ_MSK, 0); GMAC_WRITE_2(sc, sc_if->msk_port, GM_TR_IRQ_MSK, 0); /* Configure Rx MAC FIFO. */ CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_SET); CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_CLR); reg = GMF_OPER_ON | GMF_RX_F_FL_ON; if (sc->msk_hw_id == CHIP_ID_YUKON_FE_P || sc->msk_hw_id == CHIP_ID_YUKON_EX) reg |= GMF_RX_OVER_ON; CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), reg); /* Set receive filter. */ msk_rxfilter(sc_if); if (sc->msk_hw_id == CHIP_ID_YUKON_XL) { /* Clear flush mask - HW bug. */ CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_MSK), 0); } else { /* Flush Rx MAC FIFO on any flow control or error. */ CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_MSK), GMR_FS_ANY_ERR); } /* * Set Rx FIFO flush threshold to 64 bytes + 1 FIFO word * due to hardware hang on receipt of pause frames. */ reg = RX_GMF_FL_THR_DEF + 1; /* Another magic for Yukon FE+ - From Linux. */ if (sc->msk_hw_id == CHIP_ID_YUKON_FE_P && sc->msk_hw_rev == CHIP_REV_YU_FE_P_A0) reg = 0x178; CSR_WRITE_2(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_THR), reg); /* Configure Tx MAC FIFO. */ CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_SET); CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_CLR); CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_OPER_ON); /* Configure hardware VLAN tag insertion/stripping. */ msk_setvlan(sc_if, ifp); if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0) { /* Set Rx Pause threshold. */ CSR_WRITE_2(sc, MR_ADDR(sc_if->msk_port, RX_GMF_LP_THR), MSK_ECU_LLPP); CSR_WRITE_2(sc, MR_ADDR(sc_if->msk_port, RX_GMF_UP_THR), MSK_ECU_ULPP); /* Configure store-and-forward for Tx. */ msk_set_tx_stfwd(sc_if); } if (sc->msk_hw_id == CHIP_ID_YUKON_FE_P && sc->msk_hw_rev == CHIP_REV_YU_FE_P_A0) { /* Disable dynamic watermark - from Linux. */ reg = CSR_READ_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_EA)); reg &= ~0x03; CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_EA), reg); } /* * Disable Force Sync bit and Alloc bit in Tx RAM interface * arbiter as we don't use Sync Tx queue. */ CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC); /* Enable the RAM Interface Arbiter. */ CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), TXA_ENA_ARB); /* Setup RAM buffer. */ msk_set_rambuffer(sc_if); /* Disable Tx sync Queue. */ CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txsq, RB_CTRL), RB_RST_SET); /* Setup Tx Queue Bus Memory Interface. */ CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_CLR_RESET); CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_OPER_INIT); CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_FIFO_OP_ON); CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_txq, Q_WM), MSK_BMU_TX_WM); switch (sc->msk_hw_id) { case CHIP_ID_YUKON_EC_U: if (sc->msk_hw_rev == CHIP_REV_YU_EC_U_A0) { /* Fix for Yukon-EC Ultra: set BMU FIFO level */ CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_txq, Q_AL), MSK_ECU_TXFF_LEV); } break; case CHIP_ID_YUKON_EX: /* * Yukon Extreme seems to have silicon bug for * automatic Tx checksum calculation capability. */ if (sc->msk_hw_rev == CHIP_REV_YU_EX_B0) CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_F), F_TX_CHK_AUTO_OFF); break; } /* Setup Rx Queue Bus Memory Interface. */ CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_CLR_RESET); CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_OPER_INIT); CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_FIFO_OP_ON); CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_rxq, Q_WM), MSK_BMU_RX_WM); if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U && sc->msk_hw_rev >= CHIP_REV_YU_EC_U_A1) { /* MAC Rx RAM Read is controlled by hardware. */ CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_F), F_M_RX_RAM_DIS); } msk_set_prefetch(sc, sc_if->msk_txq, sc_if->msk_rdata.msk_tx_ring_paddr, MSK_TX_RING_CNT - 1); msk_init_tx_ring(sc_if); /* Disable Rx checksum offload and RSS hash. */ reg = BMU_DIS_RX_RSS_HASH; if ((sc_if->msk_flags & MSK_FLAG_DESCV2) == 0 && (ifp->if_capenable & IFCAP_RXCSUM) != 0) reg |= BMU_ENA_RX_CHKSUM; else reg |= BMU_DIS_RX_CHKSUM; CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), reg); if (sc_if->msk_framesize > (MCLBYTES - MSK_RX_BUF_ALIGN)) { msk_set_prefetch(sc, sc_if->msk_rxq, sc_if->msk_rdata.msk_jumbo_rx_ring_paddr, MSK_JUMBO_RX_RING_CNT - 1); error = msk_init_jumbo_rx_ring(sc_if); } else { msk_set_prefetch(sc, sc_if->msk_rxq, sc_if->msk_rdata.msk_rx_ring_paddr, MSK_RX_RING_CNT - 1); error = msk_init_rx_ring(sc_if); } if (error != 0) { device_printf(sc_if->msk_if_dev, "initialization failed: no memory for Rx buffers\n"); msk_stop(sc_if); return; } if (sc->msk_hw_id == CHIP_ID_YUKON_EX || sc->msk_hw_id == CHIP_ID_YUKON_SUPR) { /* Disable flushing of non-ASF packets. */ CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RX_MACSEC_FLUSH_OFF); } /* Configure interrupt handling. */ if (sc_if->msk_port == MSK_PORT_A) { sc->msk_intrmask |= Y2_IS_PORT_A; sc->msk_intrhwemask |= Y2_HWE_L1_MASK; } else { sc->msk_intrmask |= Y2_IS_PORT_B; sc->msk_intrhwemask |= Y2_HWE_L2_MASK; } /* Configure IRQ moderation mask. */ CSR_WRITE_4(sc, B2_IRQM_MSK, sc->msk_intrmask); if (sc->msk_int_holdoff > 0) { /* Configure initial IRQ moderation timer value. */ CSR_WRITE_4(sc, B2_IRQM_INI, MSK_USECS(sc, sc->msk_int_holdoff)); CSR_WRITE_4(sc, B2_IRQM_VAL, MSK_USECS(sc, sc->msk_int_holdoff)); /* Start IRQ moderation. */ CSR_WRITE_1(sc, B2_IRQM_CTRL, TIM_START); } CSR_WRITE_4(sc, B0_HWE_IMSK, sc->msk_intrhwemask); CSR_READ_4(sc, B0_HWE_IMSK); CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask); CSR_READ_4(sc, B0_IMSK); ifp->if_drv_flags |= IFF_DRV_RUNNING; ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; sc_if->msk_flags &= ~MSK_FLAG_LINK; mii_mediachg(mii); callout_reset(&sc_if->msk_tick_ch, hz, msk_tick, sc_if); } static void msk_set_rambuffer(struct msk_if_softc *sc_if) { struct msk_softc *sc; int ltpp, utpp; sc = sc_if->msk_softc; if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0) return; /* Setup Rx Queue. */ CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_RST_CLR); CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_START), sc->msk_rxqstart[sc_if->msk_port] / 8); CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_END), sc->msk_rxqend[sc_if->msk_port] / 8); CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_WP), sc->msk_rxqstart[sc_if->msk_port] / 8); CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RP), sc->msk_rxqstart[sc_if->msk_port] / 8); utpp = (sc->msk_rxqend[sc_if->msk_port] + 1 - sc->msk_rxqstart[sc_if->msk_port] - MSK_RB_ULPP) / 8; ltpp = (sc->msk_rxqend[sc_if->msk_port] + 1 - sc->msk_rxqstart[sc_if->msk_port] - MSK_RB_LLPP_B) / 8; if (sc->msk_rxqsize < MSK_MIN_RXQ_SIZE) ltpp += (MSK_RB_LLPP_B - MSK_RB_LLPP_S) / 8; CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RX_UTPP), utpp); CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RX_LTPP), ltpp); /* Set Rx priority(RB_RX_UTHP/RB_RX_LTHP) thresholds? */ CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_ENA_OP_MD); CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL)); /* Setup Tx Queue. */ CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_RST_CLR); CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_START), sc->msk_txqstart[sc_if->msk_port] / 8); CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_END), sc->msk_txqend[sc_if->msk_port] / 8); CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_WP), sc->msk_txqstart[sc_if->msk_port] / 8); CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_RP), sc->msk_txqstart[sc_if->msk_port] / 8); /* Enable Store & Forward for Tx side. */ CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_ENA_STFWD); CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_ENA_OP_MD); CSR_READ_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL)); } static void msk_set_prefetch(struct msk_softc *sc, int qaddr, bus_addr_t addr, uint32_t count) { /* Reset the prefetch unit. */ CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG), PREF_UNIT_RST_SET); CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG), PREF_UNIT_RST_CLR); /* Set LE base address. */ CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_LOW_REG), MSK_ADDR_LO(addr)); CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_HI_REG), MSK_ADDR_HI(addr)); /* Set the list last index. */ CSR_WRITE_2(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_LAST_IDX_REG), count); /* Turn on prefetch unit. */ CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG), PREF_UNIT_OP_ON); /* Dummy read to ensure write. */ CSR_READ_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG)); } static void msk_stop(struct msk_if_softc *sc_if) { struct msk_softc *sc; struct msk_txdesc *txd; struct msk_rxdesc *rxd; struct msk_rxdesc *jrxd; struct ifnet *ifp; uint32_t val; int i; MSK_IF_LOCK_ASSERT(sc_if); sc = sc_if->msk_softc; ifp = sc_if->msk_ifp; callout_stop(&sc_if->msk_tick_ch); sc_if->msk_watchdog_timer = 0; /* Disable interrupts. */ if (sc_if->msk_port == MSK_PORT_A) { sc->msk_intrmask &= ~Y2_IS_PORT_A; sc->msk_intrhwemask &= ~Y2_HWE_L1_MASK; } else { sc->msk_intrmask &= ~Y2_IS_PORT_B; sc->msk_intrhwemask &= ~Y2_HWE_L2_MASK; } CSR_WRITE_4(sc, B0_HWE_IMSK, sc->msk_intrhwemask); CSR_READ_4(sc, B0_HWE_IMSK); CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask); CSR_READ_4(sc, B0_IMSK); /* Disable Tx/Rx MAC. */ val = GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL); val &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA); GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, val); /* Read again to ensure writing. */ GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL); /* Update stats and clear counters. */ msk_stats_update(sc_if); /* Stop Tx BMU. */ CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_STOP); val = CSR_READ_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR)); for (i = 0; i < MSK_TIMEOUT; i++) { if ((val & (BMU_STOP | BMU_IDLE)) == 0) { CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_STOP); val = CSR_READ_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR)); } else break; DELAY(1); } if (i == MSK_TIMEOUT) device_printf(sc_if->msk_if_dev, "Tx BMU stop failed\n"); CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_RST_SET | RB_DIS_OP_MD); /* Disable all GMAC interrupt. */ CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_MSK), 0); /* Disable PHY interrupt. */ msk_phy_writereg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_MASK, 0); /* Disable the RAM Interface Arbiter. */ CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), TXA_DIS_ARB); /* Reset the PCI FIFO of the async Tx queue */ CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_RST_SET | BMU_FIFO_RST); /* Reset the Tx prefetch units. */ CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(sc_if->msk_txq, PREF_UNIT_CTRL_REG), PREF_UNIT_RST_SET); /* Reset the RAM Buffer async Tx queue. */ CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_RST_SET); /* Reset Tx MAC FIFO. */ CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_SET); /* Set Pause Off. */ CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_PAUSE_OFF); /* * The Rx Stop command will not work for Yukon-2 if the BMU does not * reach the end of packet and since we can't make sure that we have * incoming data, we must reset the BMU while it is not during a DMA * transfer. Since it is possible that the Rx path is still active, * the Rx RAM buffer will be stopped first, so any possible incoming * data will not trigger a DMA. After the RAM buffer is stopped, the * BMU is polled until any DMA in progress is ended and only then it * will be reset. */ /* Disable the RAM Buffer receive queue. */ CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_DIS_OP_MD); for (i = 0; i < MSK_TIMEOUT; i++) { if (CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, Q_RSL)) == CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, Q_RL))) break; DELAY(1); } if (i == MSK_TIMEOUT) device_printf(sc_if->msk_if_dev, "Rx BMU stop failed\n"); CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_RST_SET | BMU_FIFO_RST); /* Reset the Rx prefetch unit. */ CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_CTRL_REG), PREF_UNIT_RST_SET); /* Reset the RAM Buffer receive queue. */ CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_RST_SET); /* Reset Rx MAC FIFO. */ CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_SET); /* Free Rx and Tx mbufs still in the queues. */ for (i = 0; i < MSK_RX_RING_CNT; i++) { rxd = &sc_if->msk_cdata.msk_rxdesc[i]; if (rxd->rx_m != NULL) { bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap); m_freem(rxd->rx_m); rxd->rx_m = NULL; } } for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) { jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i]; if (jrxd->rx_m != NULL) { bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag, jrxd->rx_dmamap, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_tag, jrxd->rx_dmamap); m_freem(jrxd->rx_m); jrxd->rx_m = NULL; } } for (i = 0; i < MSK_TX_RING_CNT; i++) { txd = &sc_if->msk_cdata.msk_txdesc[i]; if (txd->tx_m != NULL) { bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag, txd->tx_dmamap, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, txd->tx_dmamap); m_freem(txd->tx_m); txd->tx_m = NULL; } } /* * Mark the interface down. */ ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); sc_if->msk_flags &= ~MSK_FLAG_LINK; } /* * When GM_PAR_MIB_CLR bit of GM_PHY_ADDR is set, reading lower * counter clears high 16 bits of the counter such that accessing * lower 16 bits should be the last operation. */ #define MSK_READ_MIB32(x, y) \ (((uint32_t)GMAC_READ_2(sc, x, (y) + 4)) << 16) + \ (uint32_t)GMAC_READ_2(sc, x, y) #define MSK_READ_MIB64(x, y) \ (((uint64_t)MSK_READ_MIB32(x, (y) + 8)) << 32) + \ (uint64_t)MSK_READ_MIB32(x, y) static void msk_stats_clear(struct msk_if_softc *sc_if) { struct msk_softc *sc; uint32_t reg; uint16_t gmac; int i; MSK_IF_LOCK_ASSERT(sc_if); sc = sc_if->msk_softc; /* Set MIB Clear Counter Mode. */ gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_PHY_ADDR); GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac | GM_PAR_MIB_CLR); /* Read all MIB Counters with Clear Mode set. */ for (i = GM_RXF_UC_OK; i <= GM_TXE_FIFO_UR; i += sizeof(uint32_t)) reg = MSK_READ_MIB32(sc_if->msk_port, i); /* Clear MIB Clear Counter Mode. */ gmac &= ~GM_PAR_MIB_CLR; GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac); } static void msk_stats_update(struct msk_if_softc *sc_if) { struct msk_softc *sc; struct ifnet *ifp; struct msk_hw_stats *stats; uint16_t gmac; uint32_t reg; MSK_IF_LOCK_ASSERT(sc_if); ifp = sc_if->msk_ifp; if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) return; sc = sc_if->msk_softc; stats = &sc_if->msk_stats; /* Set MIB Clear Counter Mode. */ gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_PHY_ADDR); GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac | GM_PAR_MIB_CLR); /* Rx stats. */ stats->rx_ucast_frames += MSK_READ_MIB32(sc_if->msk_port, GM_RXF_UC_OK); stats->rx_bcast_frames += MSK_READ_MIB32(sc_if->msk_port, GM_RXF_BC_OK); stats->rx_pause_frames += MSK_READ_MIB32(sc_if->msk_port, GM_RXF_MPAUSE); stats->rx_mcast_frames += MSK_READ_MIB32(sc_if->msk_port, GM_RXF_MC_OK); stats->rx_crc_errs += MSK_READ_MIB32(sc_if->msk_port, GM_RXF_FCS_ERR); reg = MSK_READ_MIB32(sc_if->msk_port, GM_RXF_SPARE1); stats->rx_good_octets += MSK_READ_MIB64(sc_if->msk_port, GM_RXO_OK_LO); stats->rx_bad_octets += MSK_READ_MIB64(sc_if->msk_port, GM_RXO_ERR_LO); stats->rx_runts += MSK_READ_MIB32(sc_if->msk_port, GM_RXF_SHT); stats->rx_runt_errs += MSK_READ_MIB32(sc_if->msk_port, GM_RXE_FRAG); stats->rx_pkts_64 += MSK_READ_MIB32(sc_if->msk_port, GM_RXF_64B); stats->rx_pkts_65_127 += MSK_READ_MIB32(sc_if->msk_port, GM_RXF_127B); stats->rx_pkts_128_255 += MSK_READ_MIB32(sc_if->msk_port, GM_RXF_255B); stats->rx_pkts_256_511 += MSK_READ_MIB32(sc_if->msk_port, GM_RXF_511B); stats->rx_pkts_512_1023 += MSK_READ_MIB32(sc_if->msk_port, GM_RXF_1023B); stats->rx_pkts_1024_1518 += MSK_READ_MIB32(sc_if->msk_port, GM_RXF_1518B); stats->rx_pkts_1519_max += MSK_READ_MIB32(sc_if->msk_port, GM_RXF_MAX_SZ); stats->rx_pkts_too_long += MSK_READ_MIB32(sc_if->msk_port, GM_RXF_LNG_ERR); stats->rx_pkts_jabbers += MSK_READ_MIB32(sc_if->msk_port, GM_RXF_JAB_PKT); reg = MSK_READ_MIB32(sc_if->msk_port, GM_RXF_SPARE2); stats->rx_fifo_oflows += MSK_READ_MIB32(sc_if->msk_port, GM_RXE_FIFO_OV); reg = MSK_READ_MIB32(sc_if->msk_port, GM_RXF_SPARE3); /* Tx stats. */ stats->tx_ucast_frames += MSK_READ_MIB32(sc_if->msk_port, GM_TXF_UC_OK); stats->tx_bcast_frames += MSK_READ_MIB32(sc_if->msk_port, GM_TXF_BC_OK); stats->tx_pause_frames += MSK_READ_MIB32(sc_if->msk_port, GM_TXF_MPAUSE); stats->tx_mcast_frames += MSK_READ_MIB32(sc_if->msk_port, GM_TXF_MC_OK); stats->tx_octets += MSK_READ_MIB64(sc_if->msk_port, GM_TXO_OK_LO); stats->tx_pkts_64 += MSK_READ_MIB32(sc_if->msk_port, GM_TXF_64B); stats->tx_pkts_65_127 += MSK_READ_MIB32(sc_if->msk_port, GM_TXF_127B); stats->tx_pkts_128_255 += MSK_READ_MIB32(sc_if->msk_port, GM_TXF_255B); stats->tx_pkts_256_511 += MSK_READ_MIB32(sc_if->msk_port, GM_TXF_511B); stats->tx_pkts_512_1023 += MSK_READ_MIB32(sc_if->msk_port, GM_TXF_1023B); stats->tx_pkts_1024_1518 += MSK_READ_MIB32(sc_if->msk_port, GM_TXF_1518B); stats->tx_pkts_1519_max += MSK_READ_MIB32(sc_if->msk_port, GM_TXF_MAX_SZ); reg = MSK_READ_MIB32(sc_if->msk_port, GM_TXF_SPARE1); stats->tx_colls += MSK_READ_MIB32(sc_if->msk_port, GM_TXF_COL); stats->tx_late_colls += MSK_READ_MIB32(sc_if->msk_port, GM_TXF_LAT_COL); stats->tx_excess_colls += MSK_READ_MIB32(sc_if->msk_port, GM_TXF_ABO_COL); stats->tx_multi_colls += MSK_READ_MIB32(sc_if->msk_port, GM_TXF_MUL_COL); stats->tx_single_colls += MSK_READ_MIB32(sc_if->msk_port, GM_TXF_SNG_COL); stats->tx_underflows += MSK_READ_MIB32(sc_if->msk_port, GM_TXE_FIFO_UR); /* Clear MIB Clear Counter Mode. */ gmac &= ~GM_PAR_MIB_CLR; GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac); } static int msk_sysctl_stat32(SYSCTL_HANDLER_ARGS) { struct msk_softc *sc; struct msk_if_softc *sc_if; uint32_t result, *stat; int off; sc_if = (struct msk_if_softc *)arg1; sc = sc_if->msk_softc; off = arg2; stat = (uint32_t *)((uint8_t *)&sc_if->msk_stats + off); MSK_IF_LOCK(sc_if); result = MSK_READ_MIB32(sc_if->msk_port, GM_MIB_CNT_BASE + off * 2); result += *stat; MSK_IF_UNLOCK(sc_if); return (sysctl_handle_int(oidp, &result, 0, req)); } static int msk_sysctl_stat64(SYSCTL_HANDLER_ARGS) { struct msk_softc *sc; struct msk_if_softc *sc_if; uint64_t result, *stat; int off; sc_if = (struct msk_if_softc *)arg1; sc = sc_if->msk_softc; off = arg2; stat = (uint64_t *)((uint8_t *)&sc_if->msk_stats + off); MSK_IF_LOCK(sc_if); result = MSK_READ_MIB64(sc_if->msk_port, GM_MIB_CNT_BASE + off * 2); result += *stat; MSK_IF_UNLOCK(sc_if); return (sysctl_handle_64(oidp, &result, 0, req)); } #undef MSK_READ_MIB32 #undef MSK_READ_MIB64 #define MSK_SYSCTL_STAT32(sc, c, o, p, n, d) \ SYSCTL_ADD_PROC(c, p, OID_AUTO, o, CTLTYPE_UINT | CTLFLAG_RD, \ sc, offsetof(struct msk_hw_stats, n), msk_sysctl_stat32, \ "IU", d) #define MSK_SYSCTL_STAT64(sc, c, o, p, n, d) \ SYSCTL_ADD_PROC(c, p, OID_AUTO, o, CTLTYPE_U64 | CTLFLAG_RD, \ sc, offsetof(struct msk_hw_stats, n), msk_sysctl_stat64, \ "QU", d) static void msk_sysctl_node(struct msk_if_softc *sc_if) { struct sysctl_ctx_list *ctx; struct sysctl_oid_list *child, *schild; struct sysctl_oid *tree; ctx = device_get_sysctl_ctx(sc_if->msk_if_dev); child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc_if->msk_if_dev)); tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD, NULL, "MSK Statistics"); schild = child = SYSCTL_CHILDREN(tree); tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "rx", CTLFLAG_RD, NULL, "MSK RX Statistics"); child = SYSCTL_CHILDREN(tree); MSK_SYSCTL_STAT32(sc_if, ctx, "ucast_frames", child, rx_ucast_frames, "Good unicast frames"); MSK_SYSCTL_STAT32(sc_if, ctx, "bcast_frames", child, rx_bcast_frames, "Good broadcast frames"); MSK_SYSCTL_STAT32(sc_if, ctx, "pause_frames", child, rx_pause_frames, "Pause frames"); MSK_SYSCTL_STAT32(sc_if, ctx, "mcast_frames", child, rx_mcast_frames, "Multicast frames"); MSK_SYSCTL_STAT32(sc_if, ctx, "crc_errs", child, rx_crc_errs, "CRC errors"); MSK_SYSCTL_STAT64(sc_if, ctx, "good_octets", child, rx_good_octets, "Good octets"); MSK_SYSCTL_STAT64(sc_if, ctx, "bad_octets", child, rx_bad_octets, "Bad octets"); MSK_SYSCTL_STAT32(sc_if, ctx, "frames_64", child, rx_pkts_64, "64 bytes frames"); MSK_SYSCTL_STAT32(sc_if, ctx, "frames_65_127", child, rx_pkts_65_127, "65 to 127 bytes frames"); MSK_SYSCTL_STAT32(sc_if, ctx, "frames_128_255", child, rx_pkts_128_255, "128 to 255 bytes frames"); MSK_SYSCTL_STAT32(sc_if, ctx, "frames_256_511", child, rx_pkts_256_511, "256 to 511 bytes frames"); MSK_SYSCTL_STAT32(sc_if, ctx, "frames_512_1023", child, rx_pkts_512_1023, "512 to 1023 bytes frames"); MSK_SYSCTL_STAT32(sc_if, ctx, "frames_1024_1518", child, rx_pkts_1024_1518, "1024 to 1518 bytes frames"); MSK_SYSCTL_STAT32(sc_if, ctx, "frames_1519_max", child, rx_pkts_1519_max, "1519 to max frames"); MSK_SYSCTL_STAT32(sc_if, ctx, "frames_too_long", child, rx_pkts_too_long, "frames too long"); MSK_SYSCTL_STAT32(sc_if, ctx, "jabbers", child, rx_pkts_jabbers, "Jabber errors"); MSK_SYSCTL_STAT32(sc_if, ctx, "overflows", child, rx_fifo_oflows, "FIFO overflows"); tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "tx", CTLFLAG_RD, NULL, "MSK TX Statistics"); child = SYSCTL_CHILDREN(tree); MSK_SYSCTL_STAT32(sc_if, ctx, "ucast_frames", child, tx_ucast_frames, "Unicast frames"); MSK_SYSCTL_STAT32(sc_if, ctx, "bcast_frames", child, tx_bcast_frames, "Broadcast frames"); MSK_SYSCTL_STAT32(sc_if, ctx, "pause_frames", child, tx_pause_frames, "Pause frames"); MSK_SYSCTL_STAT32(sc_if, ctx, "mcast_frames", child, tx_mcast_frames, "Multicast frames"); MSK_SYSCTL_STAT64(sc_if, ctx, "octets", child, tx_octets, "Octets"); MSK_SYSCTL_STAT32(sc_if, ctx, "frames_64", child, tx_pkts_64, "64 bytes frames"); MSK_SYSCTL_STAT32(sc_if, ctx, "frames_65_127", child, tx_pkts_65_127, "65 to 127 bytes frames"); MSK_SYSCTL_STAT32(sc_if, ctx, "frames_128_255", child, tx_pkts_128_255, "128 to 255 bytes frames"); MSK_SYSCTL_STAT32(sc_if, ctx, "frames_256_511", child, tx_pkts_256_511, "256 to 511 bytes frames"); MSK_SYSCTL_STAT32(sc_if, ctx, "frames_512_1023", child, tx_pkts_512_1023, "512 to 1023 bytes frames"); MSK_SYSCTL_STAT32(sc_if, ctx, "frames_1024_1518", child, tx_pkts_1024_1518, "1024 to 1518 bytes frames"); MSK_SYSCTL_STAT32(sc_if, ctx, "frames_1519_max", child, tx_pkts_1519_max, "1519 to max frames"); MSK_SYSCTL_STAT32(sc_if, ctx, "colls", child, tx_colls, "Collisions"); MSK_SYSCTL_STAT32(sc_if, ctx, "late_colls", child, tx_late_colls, "Late collisions"); MSK_SYSCTL_STAT32(sc_if, ctx, "excess_colls", child, tx_excess_colls, "Excessive collisions"); MSK_SYSCTL_STAT32(sc_if, ctx, "multi_colls", child, tx_multi_colls, "Multiple collisions"); MSK_SYSCTL_STAT32(sc_if, ctx, "single_colls", child, tx_single_colls, "Single collisions"); MSK_SYSCTL_STAT32(sc_if, ctx, "underflows", child, tx_underflows, "FIFO underflows"); } #undef MSK_SYSCTL_STAT32 #undef MSK_SYSCTL_STAT64 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high) { int error, value; if (!arg1) return (EINVAL); value = *(int *)arg1; error = sysctl_handle_int(oidp, &value, 0, req); if (error || !req->newptr) return (error); if (value < low || value > high) return (EINVAL); *(int *)arg1 = value; return (0); } static int sysctl_hw_msk_proc_limit(SYSCTL_HANDLER_ARGS) { return (sysctl_int_range(oidp, arg1, arg2, req, MSK_PROC_MIN, MSK_PROC_MAX)); }