/* * Copyright (c) 2015, AVAGO Tech. All rights reserved. Author: Marian Choy * Copyright (c) 2014, LSI Corp. All rights reserved. Author: Marian Choy * Support: freebsdraid@avagotech.com * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. 2. Redistributions * in binary form must reproduce the above copyright notice, this list of * conditions and the following disclaimer in the documentation and/or other * materials provided with the distribution. 3. Neither the name of the * nor the names of its contributors may be used to endorse or * promote products derived from this software without specific prior written * permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * The views and conclusions contained in the software and documentation are * those of the authors and should not be interpreted as representing * official policies,either expressed or implied, of the FreeBSD Project. * * Send feedback to: Mail to: AVAGO TECHNOLOGIES, 1621 * Barber Lane, Milpitas, CA 95035 ATTN: MegaRaid FreeBSD * */ #include #include #include #include #include #include #include #include #include /* * Function prototypes */ u_int8_t MR_ValidateMapInfo(struct mrsas_softc *sc); u_int8_t mrsas_get_best_arm_pd(struct mrsas_softc *sc, PLD_LOAD_BALANCE_INFO lbInfo, struct IO_REQUEST_INFO *io_info); u_int8_t MR_BuildRaidContext(struct mrsas_softc *sc, struct IO_REQUEST_INFO *io_info, RAID_CONTEXT * pRAID_Context, MR_DRV_RAID_MAP_ALL * map); u_int8_t MR_GetPhyParams(struct mrsas_softc *sc, u_int32_t ld, u_int64_t stripRow, u_int16_t stripRef, struct IO_REQUEST_INFO *io_info, RAID_CONTEXT * pRAID_Context, MR_DRV_RAID_MAP_ALL * map); u_int8_t MR_TargetIdToLdGet(u_int32_t ldTgtId, MR_DRV_RAID_MAP_ALL *map); u_int32_t MR_LdBlockSizeGet(u_int32_t ldTgtId, MR_DRV_RAID_MAP_ALL * map); u_int16_t MR_GetLDTgtId(u_int32_t ld, MR_DRV_RAID_MAP_ALL * map); u_int16_t mrsas_get_updated_dev_handle(struct mrsas_softc *sc, PLD_LOAD_BALANCE_INFO lbInfo, struct IO_REQUEST_INFO *io_info); u_int32_t mega_mod64(u_int64_t dividend, u_int32_t divisor); u_int32_t MR_GetSpanBlock(u_int32_t ld, u_int64_t row, u_int64_t *span_blk, MR_DRV_RAID_MAP_ALL * map, int *div_error); u_int64_t mega_div64_32(u_int64_t dividend, u_int32_t divisor); void mrsas_update_load_balance_params(struct mrsas_softc *sc, MR_DRV_RAID_MAP_ALL * map, PLD_LOAD_BALANCE_INFO lbInfo); void mrsas_set_pd_lba(MRSAS_RAID_SCSI_IO_REQUEST * io_request, u_int8_t cdb_len, struct IO_REQUEST_INFO *io_info, union ccb *ccb, MR_DRV_RAID_MAP_ALL * local_map_ptr, u_int32_t ref_tag, u_int32_t ld_block_size); static u_int16_t MR_LdSpanArrayGet(u_int32_t ld, u_int32_t span, MR_DRV_RAID_MAP_ALL * map); static u_int16_t MR_PdDevHandleGet(u_int32_t pd, MR_DRV_RAID_MAP_ALL * map); static u_int16_t MR_ArPdGet(u_int32_t ar, u_int32_t arm, MR_DRV_RAID_MAP_ALL * map); static MR_LD_SPAN * MR_LdSpanPtrGet(u_int32_t ld, u_int32_t span, MR_DRV_RAID_MAP_ALL * map); static u_int8_t MR_LdDataArmGet(u_int32_t ld, u_int32_t armIdx, MR_DRV_RAID_MAP_ALL * map); static MR_SPAN_BLOCK_INFO * MR_LdSpanInfoGet(u_int32_t ld, MR_DRV_RAID_MAP_ALL * map); MR_LD_RAID *MR_LdRaidGet(u_int32_t ld, MR_DRV_RAID_MAP_ALL * map); static int MR_PopulateDrvRaidMap(struct mrsas_softc *sc); /* * Spanset related function prototypes Added for PRL11 configuration (Uneven * span support) */ void mr_update_span_set(MR_DRV_RAID_MAP_ALL * map, PLD_SPAN_INFO ldSpanInfo); static u_int8_t mr_spanset_get_phy_params(struct mrsas_softc *sc, u_int32_t ld, u_int64_t stripRow, u_int16_t stripRef, struct IO_REQUEST_INFO *io_info, RAID_CONTEXT * pRAID_Context, MR_DRV_RAID_MAP_ALL * map); static u_int64_t get_row_from_strip(struct mrsas_softc *sc, u_int32_t ld, u_int64_t strip, MR_DRV_RAID_MAP_ALL * map); static u_int32_t mr_spanset_get_span_block(struct mrsas_softc *sc, u_int32_t ld, u_int64_t row, u_int64_t *span_blk, MR_DRV_RAID_MAP_ALL * map, int *div_error); static u_int8_t get_arm(struct mrsas_softc *sc, u_int32_t ld, u_int8_t span, u_int64_t stripe, MR_DRV_RAID_MAP_ALL * map); /* * Spanset related defines Added for PRL11 configuration(Uneven span support) */ #define SPAN_ROW_SIZE(map, ld, index_) MR_LdSpanPtrGet(ld, index_, map)->spanRowSize #define SPAN_ROW_DATA_SIZE(map_, ld, index_) \ MR_LdSpanPtrGet(ld, index_, map)->spanRowDataSize #define SPAN_INVALID 0xff #define SPAN_DEBUG 0 /* * Related Defines */ typedef u_int64_t REGION_KEY; typedef u_int32_t REGION_LEN; #define MR_LD_STATE_OPTIMAL 3 #define FALSE 0 #define TRUE 1 #define LB_PENDING_CMDS_DEFAULT 4 /* * Related Macros */ #define ABS_DIFF(a,b) ( ((a) > (b)) ? ((a) - (b)) : ((b) - (a)) ) #define swap32(x) \ ((unsigned int)( \ (((unsigned int)(x) & (unsigned int)0x000000ffUL) << 24) | \ (((unsigned int)(x) & (unsigned int)0x0000ff00UL) << 8) | \ (((unsigned int)(x) & (unsigned int)0x00ff0000UL) >> 8) | \ (((unsigned int)(x) & (unsigned int)0xff000000UL) >> 24) )) /* * In-line functions for mod and divide of 64-bit dividend and 32-bit * divisor. Assumes a check for a divisor of zero is not possible. * * @param dividend: Dividend * @param divisor: Divisor * @return remainder */ #define mega_mod64(dividend, divisor) ({ \ int remainder; \ remainder = ((u_int64_t) (dividend)) % (u_int32_t) (divisor); \ remainder;}) #define mega_div64_32(dividend, divisor) ({ \ int quotient; \ quotient = ((u_int64_t) (dividend)) / (u_int32_t) (divisor); \ quotient;}) /* * Various RAID map access functions. These functions access the various * parts of the RAID map and returns the appropriate parameters. */ MR_LD_RAID * MR_LdRaidGet(u_int32_t ld, MR_DRV_RAID_MAP_ALL * map) { return (&map->raidMap.ldSpanMap[ld].ldRaid); } u_int16_t MR_GetLDTgtId(u_int32_t ld, MR_DRV_RAID_MAP_ALL * map) { return le16toh(map->raidMap.ldSpanMap[ld].ldRaid.targetId); } static u_int16_t MR_LdSpanArrayGet(u_int32_t ld, u_int32_t span, MR_DRV_RAID_MAP_ALL * map) { return le16toh(map->raidMap.ldSpanMap[ld].spanBlock[span].span.arrayRef); } static u_int8_t MR_LdDataArmGet(u_int32_t ld, u_int32_t armIdx, MR_DRV_RAID_MAP_ALL * map) { return map->raidMap.ldSpanMap[ld].dataArmMap[armIdx]; } static u_int16_t MR_PdDevHandleGet(u_int32_t pd, MR_DRV_RAID_MAP_ALL * map) { return map->raidMap.devHndlInfo[pd].curDevHdl; } static u_int8_t MR_PdInterfaceTypeGet(u_int32_t pd, MR_DRV_RAID_MAP_ALL *map) { return map->raidMap.devHndlInfo[pd].interfaceType; } static u_int16_t MR_ArPdGet(u_int32_t ar, u_int32_t arm, MR_DRV_RAID_MAP_ALL * map) { return le16toh(map->raidMap.arMapInfo[ar].pd[arm]); } static MR_LD_SPAN * MR_LdSpanPtrGet(u_int32_t ld, u_int32_t span, MR_DRV_RAID_MAP_ALL * map) { return &map->raidMap.ldSpanMap[ld].spanBlock[span].span; } static MR_SPAN_BLOCK_INFO * MR_LdSpanInfoGet(u_int32_t ld, MR_DRV_RAID_MAP_ALL * map) { return &map->raidMap.ldSpanMap[ld].spanBlock[0]; } u_int8_t MR_TargetIdToLdGet(u_int32_t ldTgtId, MR_DRV_RAID_MAP_ALL * map) { return map->raidMap.ldTgtIdToLd[ldTgtId]; } u_int32_t MR_LdBlockSizeGet(u_int32_t ldTgtId, MR_DRV_RAID_MAP_ALL * map) { MR_LD_RAID *raid; u_int32_t ld, ldBlockSize = MRSAS_SCSIBLOCKSIZE; ld = MR_TargetIdToLdGet(ldTgtId, map); /* * Check if logical drive was removed. */ if (ld >= MAX_LOGICAL_DRIVES) return ldBlockSize; raid = MR_LdRaidGet(ld, map); ldBlockSize = raid->logicalBlockLength; if (!ldBlockSize) ldBlockSize = MRSAS_SCSIBLOCKSIZE; return ldBlockSize; } /* * This function will Populate Driver Map using Dynamic firmware raid map */ static int MR_PopulateDrvRaidMapVentura(struct mrsas_softc *sc) { unsigned int i, j; u_int16_t ld_count; MR_FW_RAID_MAP_DYNAMIC *fw_map_dyn; MR_RAID_MAP_DESC_TABLE *desc_table; MR_DRV_RAID_MAP_ALL *drv_map = sc->ld_drv_map[(sc->map_id & 1)]; MR_DRV_RAID_MAP *pDrvRaidMap = &drv_map->raidMap; void *raid_map_data = NULL; fw_map_dyn = (MR_FW_RAID_MAP_DYNAMIC *) sc->raidmap_mem[(sc->map_id & 1)]; if (fw_map_dyn == NULL) { device_printf(sc->mrsas_dev, "from %s %d map0 %p map1 %p map size %d \n", __func__, __LINE__, sc->raidmap_mem[0], sc->raidmap_mem[1], sc->maxRaidMapSize); return 1; } #if VD_EXT_DEBUG device_printf(sc->mrsas_dev, " raidMapSize 0x%x, descTableOffset 0x%x, " " descTableSize 0x%x, descTableNumElements 0x%x \n", fw_map_dyn->raidMapSize, le32toh(fw_map_dyn->descTableOffset), fw_map_dyn->descTableSize, fw_map_dyn->descTableNumElements); #endif desc_table = (MR_RAID_MAP_DESC_TABLE *) ((char *)fw_map_dyn + le32toh(fw_map_dyn->descTableOffset)); if (desc_table != fw_map_dyn->raidMapDescTable) { device_printf(sc->mrsas_dev, "offsets of desc table are not matching returning " " FW raid map has been changed: desc %p original %p\n", desc_table, fw_map_dyn->raidMapDescTable); } memset(drv_map, 0, sc->drv_map_sz); ld_count = le16toh(fw_map_dyn->ldCount); pDrvRaidMap->ldCount = htole16(ld_count); pDrvRaidMap->fpPdIoTimeoutSec = fw_map_dyn->fpPdIoTimeoutSec; pDrvRaidMap->totalSize = htole32(sizeof(MR_DRV_RAID_MAP_ALL)); /* point to actual data starting point */ raid_map_data = (char *)fw_map_dyn + le32toh(fw_map_dyn->descTableOffset) + le32toh(fw_map_dyn->descTableSize); for (i = 0; i < le32toh(fw_map_dyn->descTableNumElements); ++i) { if (!desc_table) { device_printf(sc->mrsas_dev, "desc table is null, coming out %p \n", desc_table); return 1; } #if VD_EXT_DEBUG device_printf(sc->mrsas_dev, "raid_map_data %p \n", raid_map_data); device_printf(sc->mrsas_dev, "desc table %p \n", desc_table); device_printf(sc->mrsas_dev, "raidmap type %d, raidmapOffset 0x%x, " " raid map number of elements 0%x, raidmapsize 0x%x\n", le32toh(desc_table->raidMapDescType), desc_table->raidMapDescOffset, le32toh(desc_table->raidMapDescElements), desc_table->raidMapDescBufferSize); #endif switch (le32toh(desc_table->raidMapDescType)) { case RAID_MAP_DESC_TYPE_DEVHDL_INFO: fw_map_dyn->RaidMapDescPtrs.ptrStruct.devHndlInfo = (MR_DEV_HANDLE_INFO *) ((char *)raid_map_data + le32toh(desc_table->raidMapDescOffset)); #if VD_EXT_DEBUG device_printf(sc->mrsas_dev, "devHndlInfo address %p\n", fw_map_dyn->RaidMapDescPtrs.ptrStruct.devHndlInfo); #endif memcpy(pDrvRaidMap->devHndlInfo, fw_map_dyn->RaidMapDescPtrs.ptrStruct.devHndlInfo, sizeof(MR_DEV_HANDLE_INFO) * le32toh(desc_table->raidMapDescElements)); break; case RAID_MAP_DESC_TYPE_TGTID_INFO: fw_map_dyn->RaidMapDescPtrs.ptrStruct.ldTgtIdToLd = (u_int16_t *) ((char *)raid_map_data + le32toh(desc_table->raidMapDescOffset)); #if VD_EXT_DEBUG device_printf(sc->mrsas_dev, "ldTgtIdToLd address %p\n", fw_map_dyn->RaidMapDescPtrs.ptrStruct.ldTgtIdToLd); #endif for (j = 0; j < le32toh(desc_table->raidMapDescElements); j++) { pDrvRaidMap->ldTgtIdToLd[j] = fw_map_dyn->RaidMapDescPtrs.ptrStruct.ldTgtIdToLd[j]; #if VD_EXT_DEBUG device_printf(sc->mrsas_dev, " %d drv ldTgtIdToLd %d\n", j, pDrvRaidMap->ldTgtIdToLd[j]); #endif } break; case RAID_MAP_DESC_TYPE_ARRAY_INFO: fw_map_dyn->RaidMapDescPtrs.ptrStruct.arMapInfo = (MR_ARRAY_INFO *) ((char *)raid_map_data + le32toh(desc_table->raidMapDescOffset)); #if VD_EXT_DEBUG device_printf(sc->mrsas_dev, "arMapInfo address %p\n", fw_map_dyn->RaidMapDescPtrs.ptrStruct.arMapInfo); #endif memcpy(pDrvRaidMap->arMapInfo, fw_map_dyn->RaidMapDescPtrs.ptrStruct.arMapInfo, sizeof(MR_ARRAY_INFO) * le32toh(desc_table->raidMapDescElements)); break; case RAID_MAP_DESC_TYPE_SPAN_INFO: fw_map_dyn->RaidMapDescPtrs.ptrStruct.ldSpanMap = (MR_LD_SPAN_MAP *) ((char *)raid_map_data + le32toh(desc_table->raidMapDescOffset)); memcpy(pDrvRaidMap->ldSpanMap, fw_map_dyn->RaidMapDescPtrs.ptrStruct.ldSpanMap, sizeof(MR_LD_SPAN_MAP) * le32toh(desc_table->raidMapDescElements)); #if VD_EXT_DEBUG device_printf(sc->mrsas_dev, "ldSpanMap address %p\n", fw_map_dyn->RaidMapDescPtrs.ptrStruct.ldSpanMap); device_printf(sc->mrsas_dev, "MR_LD_SPAN_MAP size 0x%lx\n", sizeof(MR_LD_SPAN_MAP)); for (j = 0; j < ld_count; j++) { printf("mrsas(%d) : fw_map_dyn->ldSpanMap[%d].ldRaid.targetId 0x%x " "fw_map_dyn->ldSpanMap[%d].ldRaid.seqNum 0x%x size 0x%x\n", j, j, fw_map_dyn->RaidMapDescPtrs.ptrStruct.ldSpanMap[j].ldRaid.targetId, j, fw_map_dyn->RaidMapDescPtrs.ptrStruct.ldSpanMap[j].ldRaid.seqNum, (u_int32_t)fw_map_dyn->RaidMapDescPtrs.ptrStruct.ldSpanMap[j].ldRaid.rowSize); printf("mrsas(%d) : pDrvRaidMap->ldSpanMap[%d].ldRaid.targetId 0x%x " "pDrvRaidMap->ldSpanMap[%d].ldRaid.seqNum 0x%x size 0x%x\n", j, j, pDrvRaidMap->ldSpanMap[j].ldRaid.targetId, j, pDrvRaidMap->ldSpanMap[j].ldRaid.seqNum, (u_int32_t)pDrvRaidMap->ldSpanMap[j].ldRaid.rowSize); printf("mrsas : drv raid map all %p raid map %p LD RAID MAP %p/%p\n", drv_map, pDrvRaidMap, &fw_map_dyn->RaidMapDescPtrs.ptrStruct.ldSpanMap[j].ldRaid, &pDrvRaidMap->ldSpanMap[j].ldRaid); } #endif break; default: device_printf(sc->mrsas_dev, "wrong number of desctableElements %d\n", fw_map_dyn->descTableNumElements); } ++desc_table; } return 0; } /* * This function will Populate Driver Map using firmware raid map */ static int MR_PopulateDrvRaidMap(struct mrsas_softc *sc) { MR_FW_RAID_MAP_ALL *fw_map_old = NULL; MR_FW_RAID_MAP_EXT *fw_map_ext; MR_FW_RAID_MAP *pFwRaidMap = NULL; unsigned int i; u_int16_t ld_count; MR_DRV_RAID_MAP_ALL *drv_map = sc->ld_drv_map[(sc->map_id & 1)]; MR_DRV_RAID_MAP *pDrvRaidMap = &drv_map->raidMap; if (sc->maxRaidMapSize) { return MR_PopulateDrvRaidMapVentura(sc); } else if (sc->max256vdSupport) { fw_map_ext = (MR_FW_RAID_MAP_EXT *) sc->raidmap_mem[(sc->map_id & 1)]; ld_count = (u_int16_t)le16toh(fw_map_ext->ldCount); if (ld_count > MAX_LOGICAL_DRIVES_EXT) { device_printf(sc->mrsas_dev, "mrsas: LD count exposed in RAID map in not valid\n"); return 1; } #if VD_EXT_DEBUG for (i = 0; i < ld_count; i++) { printf("mrsas : Index 0x%x Target Id 0x%x Seq Num 0x%x Size 0/%lx\n", i, fw_map_ext->ldSpanMap[i].ldRaid.targetId, fw_map_ext->ldSpanMap[i].ldRaid.seqNum, fw_map_ext->ldSpanMap[i].ldRaid.size); } #endif memset(drv_map, 0, sc->drv_map_sz); pDrvRaidMap->ldCount = htole16(ld_count); pDrvRaidMap->fpPdIoTimeoutSec = fw_map_ext->fpPdIoTimeoutSec; for (i = 0; i < (MAX_LOGICAL_DRIVES_EXT); i++) { pDrvRaidMap->ldTgtIdToLd[i] = (u_int16_t)fw_map_ext->ldTgtIdToLd[i]; } memcpy(pDrvRaidMap->ldSpanMap, fw_map_ext->ldSpanMap, sizeof(MR_LD_SPAN_MAP) * ld_count); #if VD_EXT_DEBUG for (i = 0; i < ld_count; i++) { printf("mrsas(%d) : fw_map_ext->ldSpanMap[%d].ldRaid.targetId 0x%x " "fw_map_ext->ldSpanMap[%d].ldRaid.seqNum 0x%x size 0x%x\n", i, i, fw_map_ext->ldSpanMap[i].ldRaid.targetId, i, fw_map_ext->ldSpanMap[i].ldRaid.seqNum, (u_int32_t)fw_map_ext->ldSpanMap[i].ldRaid.rowSize); printf("mrsas(%d) : pDrvRaidMap->ldSpanMap[%d].ldRaid.targetId 0x%x" "pDrvRaidMap->ldSpanMap[%d].ldRaid.seqNum 0x%x size 0x%x\n", i, i, pDrvRaidMap->ldSpanMap[i].ldRaid.targetId, i, pDrvRaidMap->ldSpanMap[i].ldRaid.seqNum, (u_int32_t)pDrvRaidMap->ldSpanMap[i].ldRaid.rowSize); printf("mrsas : drv raid map all %p raid map %p LD RAID MAP %p/%p\n", drv_map, pDrvRaidMap, &fw_map_ext->ldSpanMap[i].ldRaid, &pDrvRaidMap->ldSpanMap[i].ldRaid); } #endif memcpy(pDrvRaidMap->arMapInfo, fw_map_ext->arMapInfo, sizeof(MR_ARRAY_INFO) * MAX_API_ARRAYS_EXT); memcpy(pDrvRaidMap->devHndlInfo, fw_map_ext->devHndlInfo, sizeof(MR_DEV_HANDLE_INFO) * MAX_RAIDMAP_PHYSICAL_DEVICES); pDrvRaidMap->totalSize = htole32(sizeof(MR_FW_RAID_MAP_EXT)); } else { fw_map_old = (MR_FW_RAID_MAP_ALL *) sc->raidmap_mem[(sc->map_id & 1)]; pFwRaidMap = &fw_map_old->raidMap; #if VD_EXT_DEBUG for (i = 0; i < le32toh(pFwRaidMap->ldCount); i++) { device_printf(sc->mrsas_dev, "Index 0x%x Target Id 0x%x Seq Num 0x%x Size 0/%lx\n", i, fw_map_old->raidMap.ldSpanMap[i].ldRaid.targetId, fw_map_old->raidMap.ldSpanMap[i].ldRaid.seqNum, fw_map_old->raidMap.ldSpanMap[i].ldRaid.size); } #endif memset(drv_map, 0, sc->drv_map_sz); pDrvRaidMap->totalSize = pFwRaidMap->totalSize; pDrvRaidMap->ldCount = pFwRaidMap->ldCount; pDrvRaidMap->fpPdIoTimeoutSec = pFwRaidMap->fpPdIoTimeoutSec; for (i = 0; i < MAX_RAIDMAP_LOGICAL_DRIVES + MAX_RAIDMAP_VIEWS; i++) { pDrvRaidMap->ldTgtIdToLd[i] = (u_int8_t)pFwRaidMap->ldTgtIdToLd[i]; } for (i = 0; i < pDrvRaidMap->ldCount; i++) { pDrvRaidMap->ldSpanMap[i] = pFwRaidMap->ldSpanMap[i]; #if VD_EXT_DEBUG device_printf(sc->mrsas_dev, "pFwRaidMap->ldSpanMap[%d].ldRaid.targetId 0x%x " "pFwRaidMap->ldSpanMap[%d].ldRaid.seqNum 0x%x size 0x%x\n", i, i, pFwRaidMap->ldSpanMap[i].ldRaid.targetId, pFwRaidMap->ldSpanMap[i].ldRaid.seqNum, (u_int32_t)pFwRaidMap->ldSpanMap[i].ldRaid.rowSize); device_printf(sc->mrsas_dev, "pDrvRaidMap->ldSpanMap[%d].ldRaid.targetId 0x%x" "pDrvRaidMap->ldSpanMap[%d].ldRaid.seqNum 0x%x size 0x%x\n", i, i, pDrvRaidMap->ldSpanMap[i].ldRaid.targetId, pDrvRaidMap->ldSpanMap[i].ldRaid.seqNum, (u_int32_t)pDrvRaidMap->ldSpanMap[i].ldRaid.rowSize); device_printf(sc->mrsas_dev, "drv raid map all %p raid map %p LD RAID MAP %p/%p\n", drv_map, pDrvRaidMap, &pFwRaidMap->ldSpanMap[i].ldRaid, &pDrvRaidMap->ldSpanMap[i].ldRaid); #endif } memcpy(pDrvRaidMap->arMapInfo, pFwRaidMap->arMapInfo, sizeof(MR_ARRAY_INFO) * MAX_RAIDMAP_ARRAYS); memcpy(pDrvRaidMap->devHndlInfo, pFwRaidMap->devHndlInfo, sizeof(MR_DEV_HANDLE_INFO) * MAX_RAIDMAP_PHYSICAL_DEVICES); } return 0; } /* * MR_ValidateMapInfo: Validate RAID map * input: Adapter instance soft state * * This function checks and validates the loaded RAID map. It returns 0 if * successful, and 1 otherwise. */ u_int8_t MR_ValidateMapInfo(struct mrsas_softc *sc) { if (!sc) { return 1; } if (MR_PopulateDrvRaidMap(sc)) return 0; MR_DRV_RAID_MAP_ALL *drv_map = sc->ld_drv_map[(sc->map_id & 1)]; MR_DRV_RAID_MAP *pDrvRaidMap = &drv_map->raidMap; u_int32_t expected_map_size; drv_map = sc->ld_drv_map[(sc->map_id & 1)]; pDrvRaidMap = &drv_map->raidMap; PLD_SPAN_INFO ldSpanInfo = (PLD_SPAN_INFO) & sc->log_to_span; if (sc->maxRaidMapSize) expected_map_size = sizeof(MR_DRV_RAID_MAP_ALL); else if (sc->max256vdSupport) expected_map_size = sizeof(MR_FW_RAID_MAP_EXT); else expected_map_size = (sizeof(MR_FW_RAID_MAP) - sizeof(MR_LD_SPAN_MAP)) + (sizeof(MR_LD_SPAN_MAP) * le16toh(pDrvRaidMap->ldCount)); if (le32toh(pDrvRaidMap->totalSize) != expected_map_size) { device_printf(sc->mrsas_dev, "map size %x not matching ld count\n", expected_map_size); device_printf(sc->mrsas_dev, "span map= %x\n", (unsigned int)sizeof(MR_LD_SPAN_MAP)); device_printf(sc->mrsas_dev, "pDrvRaidMap->totalSize=%x\n", le32toh(pDrvRaidMap->totalSize)); return 1; } if (sc->UnevenSpanSupport) { mr_update_span_set(drv_map, ldSpanInfo); } mrsas_update_load_balance_params(sc, drv_map, sc->load_balance_info); return 0; } /* * * Function to print info about span set created in driver from FW raid map * * Inputs: map * ldSpanInfo: ld map span info per HBA instance * * */ #if SPAN_DEBUG static int getSpanInfo(MR_DRV_RAID_MAP_ALL * map, PLD_SPAN_INFO ldSpanInfo) { u_int8_t span; u_int32_t element; MR_LD_RAID *raid; LD_SPAN_SET *span_set; MR_QUAD_ELEMENT *quad; int ldCount; u_int16_t ld; for (ldCount = 0; ldCount < MAX_LOGICAL_DRIVES; ldCount++) { ld = MR_TargetIdToLdGet(ldCount, map); if (ld >= MAX_LOGICAL_DRIVES) { continue; } raid = MR_LdRaidGet(ld, map); printf("LD %x: span_depth=%x\n", ld, raid->spanDepth); for (span = 0; span < raid->spanDepth; span++) printf("Span=%x, number of quads=%x\n", span, le32toh(map->raidMap.ldSpanMap[ld].spanBlock[span]. block_span_info.noElements)); for (element = 0; element < MAX_QUAD_DEPTH; element++) { span_set = &(ldSpanInfo[ld].span_set[element]); if (span_set->span_row_data_width == 0) break; printf("Span Set %x: width=%x, diff=%x\n", element, (unsigned int)span_set->span_row_data_width, (unsigned int)span_set->diff); printf("logical LBA start=0x%08lx, end=0x%08lx\n", (long unsigned int)span_set->log_start_lba, (long unsigned int)span_set->log_end_lba); printf("span row start=0x%08lx, end=0x%08lx\n", (long unsigned int)span_set->span_row_start, (long unsigned int)span_set->span_row_end); printf("data row start=0x%08lx, end=0x%08lx\n", (long unsigned int)span_set->data_row_start, (long unsigned int)span_set->data_row_end); printf("data strip start=0x%08lx, end=0x%08lx\n", (long unsigned int)span_set->data_strip_start, (long unsigned int)span_set->data_strip_end); for (span = 0; span < raid->spanDepth; span++) { if (map->raidMap.ldSpanMap[ld].spanBlock[span]. block_span_info.noElements >= element + 1) { quad = &map->raidMap.ldSpanMap[ld]. spanBlock[span].block_span_info. quad[element]; printf("Span=%x, Quad=%x, diff=%x\n", span, element, le32toh(quad->diff)); printf("offset_in_span=0x%08lx\n", (long unsigned int)le64toh(quad->offsetInSpan)); printf("logical start=0x%08lx, end=0x%08lx\n", (long unsigned int)le64toh(quad->logStart), (long unsigned int)le64toh(quad->logEnd)); } } } } return 0; } #endif /* * * This routine calculates the Span block for given row using spanset. * * Inputs : HBA instance * ld: Logical drive number * row: Row number * map: LD map * * Outputs : span - Span number block * - Absolute Block number in the physical disk * div_error - Devide error code. */ u_int32_t mr_spanset_get_span_block(struct mrsas_softc *sc, u_int32_t ld, u_int64_t row, u_int64_t *span_blk, MR_DRV_RAID_MAP_ALL * map, int *div_error) { MR_LD_RAID *raid = MR_LdRaidGet(ld, map); LD_SPAN_SET *span_set; MR_QUAD_ELEMENT *quad; u_int32_t span, info; PLD_SPAN_INFO ldSpanInfo = sc->log_to_span; for (info = 0; info < MAX_QUAD_DEPTH; info++) { span_set = &(ldSpanInfo[ld].span_set[info]); if (span_set->span_row_data_width == 0) break; if (row > span_set->data_row_end) continue; for (span = 0; span < raid->spanDepth; span++) if (le32toh(map->raidMap.ldSpanMap[ld].spanBlock[span]. block_span_info.noElements) >= info + 1) { quad = &map->raidMap.ldSpanMap[ld]. spanBlock[span]. block_span_info.quad[info]; if (quad->diff == 0) { *div_error = 1; return span; } if (le64toh(quad->logStart) <= row && row <= le64toh(quad->logEnd) && (mega_mod64(row - le64toh(quad->logStart), le32toh(quad->diff))) == 0) { if (span_blk != NULL) { u_int64_t blk; blk = mega_div64_32 ((row - le64toh(quad->logStart)), le32toh(quad->diff)); blk = (blk + le64toh(quad->offsetInSpan)) << raid->stripeShift; *span_blk = blk; } return span; } } } return SPAN_INVALID; } /* * * This routine calculates the row for given strip using spanset. * * Inputs : HBA instance * ld: Logical drive number * Strip: Strip * map: LD map * * Outputs : row - row associated with strip */ static u_int64_t get_row_from_strip(struct mrsas_softc *sc, u_int32_t ld, u_int64_t strip, MR_DRV_RAID_MAP_ALL * map) { MR_LD_RAID *raid = MR_LdRaidGet(ld, map); LD_SPAN_SET *span_set; PLD_SPAN_INFO ldSpanInfo = sc->log_to_span; u_int32_t info, strip_offset, span, span_offset; u_int64_t span_set_Strip, span_set_Row; for (info = 0; info < MAX_QUAD_DEPTH; info++) { span_set = &(ldSpanInfo[ld].span_set[info]); if (span_set->span_row_data_width == 0) break; if (strip > span_set->data_strip_end) continue; span_set_Strip = strip - span_set->data_strip_start; strip_offset = mega_mod64(span_set_Strip, span_set->span_row_data_width); span_set_Row = mega_div64_32(span_set_Strip, span_set->span_row_data_width) * span_set->diff; for (span = 0, span_offset = 0; span < raid->spanDepth; span++) if (le32toh(map->raidMap.ldSpanMap[ld].spanBlock[span]. block_span_info.noElements) >= info + 1) { if (strip_offset >= span_set->strip_offset[span]) span_offset++; else break; } mrsas_dprint(sc, MRSAS_PRL11, "AVAGO Debug : Strip 0x%llx, span_set_Strip 0x%llx, span_set_Row 0x%llx " "data width 0x%llx span offset 0x%llx\n", (unsigned long long)strip, (unsigned long long)span_set_Strip, (unsigned long long)span_set_Row, (unsigned long long)span_set->span_row_data_width, (unsigned long long)span_offset); mrsas_dprint(sc, MRSAS_PRL11, "AVAGO Debug : For strip 0x%llx row is 0x%llx\n", (unsigned long long)strip, (unsigned long long)span_set->data_row_start + (unsigned long long)span_set_Row + (span_offset - 1)); return (span_set->data_row_start + span_set_Row + (span_offset - 1)); } return -1LLU; } /* * * This routine calculates the Start Strip for given row using spanset. * * Inputs: HBA instance * ld: Logical drive number * row: Row number * map: LD map * * Outputs : Strip - Start strip associated with row */ static u_int64_t get_strip_from_row(struct mrsas_softc *sc, u_int32_t ld, u_int64_t row, MR_DRV_RAID_MAP_ALL * map) { MR_LD_RAID *raid = MR_LdRaidGet(ld, map); LD_SPAN_SET *span_set; MR_QUAD_ELEMENT *quad; PLD_SPAN_INFO ldSpanInfo = sc->log_to_span; u_int32_t span, info; u_int64_t strip; for (info = 0; info < MAX_QUAD_DEPTH; info++) { span_set = &(ldSpanInfo[ld].span_set[info]); if (span_set->span_row_data_width == 0) break; if (row > span_set->data_row_end) continue; for (span = 0; span < raid->spanDepth; span++) if (le32toh(map->raidMap.ldSpanMap[ld].spanBlock[span]. block_span_info.noElements) >= info + 1) { quad = &map->raidMap.ldSpanMap[ld]. spanBlock[span].block_span_info.quad[info]; if (le64toh(quad->logStart) <= row && row <= le64toh(quad->logEnd) && mega_mod64((row - le64toh(quad->logStart)), le32toh(quad->diff)) == 0) { strip = mega_div64_32 (((row - span_set->data_row_start) - le64toh(quad->logStart)), le32toh(quad->diff)); strip *= span_set->span_row_data_width; strip += span_set->data_strip_start; strip += span_set->strip_offset[span]; return strip; } } } mrsas_dprint(sc, MRSAS_PRL11, "AVAGO Debug - get_strip_from_row: returns invalid " "strip for ld=%x, row=%lx\n", ld, (long unsigned int)row); return -1; } /* * ***************************************************************************** * * * This routine calculates the Physical Arm for given strip using spanset. * * Inputs : HBA instance * Logical drive number * Strip * LD map * * Outputs : Phys Arm - Phys Arm associated with strip */ static u_int32_t get_arm_from_strip(struct mrsas_softc *sc, u_int32_t ld, u_int64_t strip, MR_DRV_RAID_MAP_ALL * map) { MR_LD_RAID *raid = MR_LdRaidGet(ld, map); LD_SPAN_SET *span_set; PLD_SPAN_INFO ldSpanInfo = sc->log_to_span; u_int32_t info, strip_offset, span, span_offset; for (info = 0; info < MAX_QUAD_DEPTH; info++) { span_set = &(ldSpanInfo[ld].span_set[info]); if (span_set->span_row_data_width == 0) break; if (strip > span_set->data_strip_end) continue; strip_offset = (u_int32_t)mega_mod64 ((strip - span_set->data_strip_start), span_set->span_row_data_width); for (span = 0, span_offset = 0; span < raid->spanDepth; span++) if (le32toh(map->raidMap.ldSpanMap[ld].spanBlock[span]. block_span_info.noElements) >= info + 1) { if (strip_offset >= span_set->strip_offset[span]) span_offset = span_set->strip_offset[span]; else break; } mrsas_dprint(sc, MRSAS_PRL11, "AVAGO PRL11: get_arm_from_strip: " "for ld=0x%x strip=0x%lx arm is 0x%x\n", ld, (long unsigned int)strip, (strip_offset - span_offset)); return (strip_offset - span_offset); } mrsas_dprint(sc, MRSAS_PRL11, "AVAGO Debug: - get_arm_from_strip: returns invalid arm" " for ld=%x strip=%lx\n", ld, (long unsigned int)strip); return -1; } /* This Function will return Phys arm */ u_int8_t get_arm(struct mrsas_softc *sc, u_int32_t ld, u_int8_t span, u_int64_t stripe, MR_DRV_RAID_MAP_ALL * map) { MR_LD_RAID *raid = MR_LdRaidGet(ld, map); /* Need to check correct default value */ u_int32_t arm = 0; switch (raid->level) { case 0: case 5: case 6: arm = mega_mod64(stripe, SPAN_ROW_SIZE(map, ld, span)); break; case 1: /* start with logical arm */ arm = get_arm_from_strip(sc, ld, stripe, map); arm *= 2; break; } return arm; } /* * * This routine calculates the arm, span and block for the specified stripe and * reference in stripe using spanset * * Inputs : * sc - HBA instance * ld - Logical drive number * stripRow: Stripe number * stripRef: Reference in stripe * * Outputs : span - Span number block - Absolute Block * number in the physical disk */ static u_int8_t mr_spanset_get_phy_params(struct mrsas_softc *sc, u_int32_t ld, u_int64_t stripRow, u_int16_t stripRef, struct IO_REQUEST_INFO *io_info, RAID_CONTEXT * pRAID_Context, MR_DRV_RAID_MAP_ALL * map) { MR_LD_RAID *raid = MR_LdRaidGet(ld, map); u_int32_t pd, arRef, r1_alt_pd; u_int8_t physArm, span; u_int64_t row; u_int8_t retval = TRUE; u_int64_t *pdBlock = &io_info->pdBlock; u_int16_t *pDevHandle = &io_info->devHandle; u_int8_t *pPdInterface = &io_info->pdInterface; u_int32_t logArm, rowMod, armQ, arm; /* Get row and span from io_info for Uneven Span IO. */ row = io_info->start_row; span = io_info->start_span; if (raid->level == 6) { logArm = get_arm_from_strip(sc, ld, stripRow, map); rowMod = mega_mod64(row, SPAN_ROW_SIZE(map, ld, span)); armQ = SPAN_ROW_SIZE(map, ld, span) - 1 - rowMod; arm = armQ + 1 + logArm; if (arm >= SPAN_ROW_SIZE(map, ld, span)) arm -= SPAN_ROW_SIZE(map, ld, span); physArm = (u_int8_t)arm; } else /* Calculate the arm */ physArm = get_arm(sc, ld, span, stripRow, map); arRef = MR_LdSpanArrayGet(ld, span, map); pd = MR_ArPdGet(arRef, physArm, map); if (pd != MR_PD_INVALID) { *pDevHandle = MR_PdDevHandleGet(pd, map); *pPdInterface = MR_PdInterfaceTypeGet(pd, map); /* get second pd also for raid 1/10 fast path writes */ if ((raid->level == 1) && !io_info->isRead) { r1_alt_pd = MR_ArPdGet(arRef, physArm + 1, map); if (r1_alt_pd != MR_PD_INVALID) io_info->r1_alt_dev_handle = MR_PdDevHandleGet(r1_alt_pd, map); } } else { *pDevHandle = htole16(MR_DEVHANDLE_INVALID); if ((raid->level >= 5) && ((sc->device_id == MRSAS_TBOLT) || (sc->mrsas_gen3_ctrl && raid->regTypeReqOnRead != REGION_TYPE_UNUSED))) pRAID_Context->regLockFlags = REGION_TYPE_EXCLUSIVE; else if (raid->level == 1) { pd = MR_ArPdGet(arRef, physArm + 1, map); if (pd != MR_PD_INVALID) { *pDevHandle = MR_PdDevHandleGet(pd, map); *pPdInterface = MR_PdInterfaceTypeGet(pd, map); } } } *pdBlock += stripRef + le64toh(MR_LdSpanPtrGet(ld, span, map)->startBlk); if (sc->is_ventura || sc->is_aero) { ((RAID_CONTEXT_G35 *) pRAID_Context)->spanArm = (span << RAID_CTX_SPANARM_SPAN_SHIFT) | physArm; io_info->span_arm = (span << RAID_CTX_SPANARM_SPAN_SHIFT) | physArm; } else { pRAID_Context->spanArm = (span << RAID_CTX_SPANARM_SPAN_SHIFT) | physArm; io_info->span_arm = pRAID_Context->spanArm; } return retval; } /* * MR_BuildRaidContext: Set up Fast path RAID context * * This function will initiate command processing. The start/end row and strip * information is calculated then the lock is acquired. This function will * return 0 if region lock was acquired OR return num strips. */ u_int8_t MR_BuildRaidContext(struct mrsas_softc *sc, struct IO_REQUEST_INFO *io_info, RAID_CONTEXT * pRAID_Context, MR_DRV_RAID_MAP_ALL * map) { MR_LD_RAID *raid; u_int32_t ld, stripSize, stripe_mask; u_int64_t endLba, endStrip, endRow, start_row, start_strip; REGION_KEY regStart; REGION_LEN regSize; u_int8_t num_strips, numRows; u_int16_t ref_in_start_stripe, ref_in_end_stripe; u_int64_t ldStartBlock; u_int32_t numBlocks, ldTgtId; u_int8_t isRead, stripIdx; u_int8_t retval = 0; u_int8_t startlba_span = SPAN_INVALID; u_int64_t *pdBlock = &io_info->pdBlock; int error_code = 0; ldStartBlock = io_info->ldStartBlock; numBlocks = io_info->numBlocks; ldTgtId = io_info->ldTgtId; isRead = io_info->isRead; io_info->IoforUnevenSpan = 0; io_info->start_span = SPAN_INVALID; ld = MR_TargetIdToLdGet(ldTgtId, map); raid = MR_LdRaidGet(ld, map); /* check read ahead bit */ io_info->raCapable = raid->capability.raCapable; if (raid->rowDataSize == 0) { if (MR_LdSpanPtrGet(ld, 0, map)->spanRowDataSize == 0) return FALSE; else if (sc->UnevenSpanSupport) { io_info->IoforUnevenSpan = 1; } else { mrsas_dprint(sc, MRSAS_PRL11, "AVAGO Debug: raid->rowDataSize is 0, but has SPAN[0] rowDataSize = 0x%0x," " but there is _NO_ UnevenSpanSupport\n", MR_LdSpanPtrGet(ld, 0, map)->spanRowDataSize); return FALSE; } } stripSize = 1 << raid->stripeShift; stripe_mask = stripSize - 1; /* * calculate starting row and stripe, and number of strips and rows */ start_strip = ldStartBlock >> raid->stripeShift; ref_in_start_stripe = (u_int16_t)(ldStartBlock & stripe_mask); endLba = ldStartBlock + numBlocks - 1; ref_in_end_stripe = (u_int16_t)(endLba & stripe_mask); endStrip = endLba >> raid->stripeShift; num_strips = (u_int8_t)(endStrip - start_strip + 1); /* End strip */ if (io_info->IoforUnevenSpan) { start_row = get_row_from_strip(sc, ld, start_strip, map); endRow = get_row_from_strip(sc, ld, endStrip, map); if (raid->spanDepth == 1) { startlba_span = 0; *pdBlock = start_row << raid->stripeShift; } else { startlba_span = (u_int8_t)mr_spanset_get_span_block(sc, ld, start_row, pdBlock, map, &error_code); if (error_code == 1) { mrsas_dprint(sc, MRSAS_PRL11, "AVAGO Debug: return from %s %d. Send IO w/o region lock.\n", __func__, __LINE__); return FALSE; } } if (startlba_span == SPAN_INVALID) { mrsas_dprint(sc, MRSAS_PRL11, "AVAGO Debug: return from %s %d for row 0x%llx," "start strip %llx endSrip %llx\n", __func__, __LINE__, (unsigned long long)start_row, (unsigned long long)start_strip, (unsigned long long)endStrip); return FALSE; } io_info->start_span = startlba_span; io_info->start_row = start_row; mrsas_dprint(sc, MRSAS_PRL11, "AVAGO Debug: Check Span number from %s %d for row 0x%llx, " " start strip 0x%llx endSrip 0x%llx span 0x%x\n", __func__, __LINE__, (unsigned long long)start_row, (unsigned long long)start_strip, (unsigned long long)endStrip, startlba_span); mrsas_dprint(sc, MRSAS_PRL11, "AVAGO Debug : 1. start_row 0x%llx endRow 0x%llx Start span 0x%x\n", (unsigned long long)start_row, (unsigned long long)endRow, startlba_span); } else { start_row = mega_div64_32(start_strip, raid->rowDataSize); endRow = mega_div64_32(endStrip, raid->rowDataSize); } numRows = (u_int8_t)(endRow - start_row + 1); /* get the row count */ /* * Calculate region info. (Assume region at start of first row, and * assume this IO needs the full row - will adjust if not true.) */ regStart = start_row << raid->stripeShift; regSize = stripSize; /* Check if we can send this I/O via FastPath */ if (raid->capability.fpCapable) { if (isRead) io_info->fpOkForIo = (raid->capability.fpReadCapable && ((num_strips == 1) || raid->capability.fpReadAcrossStripe)); else io_info->fpOkForIo = (raid->capability.fpWriteCapable && ((num_strips == 1) || raid->capability.fpWriteAcrossStripe)); } else io_info->fpOkForIo = FALSE; if (numRows == 1) { if (num_strips == 1) { regStart += ref_in_start_stripe; regSize = numBlocks; } } else if (io_info->IoforUnevenSpan == 0) { /* * For Even span region lock optimization. If the start strip * is the last in the start row */ if (start_strip == (start_row + 1) * raid->rowDataSize - 1) { regStart += ref_in_start_stripe; /* * initialize count to sectors from startRef to end * of strip */ regSize = stripSize - ref_in_start_stripe; } /* add complete rows in the middle of the transfer */ if (numRows > 2) regSize += (numRows - 2) << raid->stripeShift; /* if IO ends within first strip of last row */ if (endStrip == endRow * raid->rowDataSize) regSize += ref_in_end_stripe + 1; else regSize += stripSize; } else { if (start_strip == (get_strip_from_row(sc, ld, start_row, map) + SPAN_ROW_DATA_SIZE(map, ld, startlba_span) - 1)) { regStart += ref_in_start_stripe; /* * initialize count to sectors from startRef to end * of strip */ regSize = stripSize - ref_in_start_stripe; } /* add complete rows in the middle of the transfer */ if (numRows > 2) regSize += (numRows - 2) << raid->stripeShift; /* if IO ends within first strip of last row */ if (endStrip == get_strip_from_row(sc, ld, endRow, map)) regSize += ref_in_end_stripe + 1; else regSize += stripSize; } pRAID_Context->timeoutValue = htole16(map->raidMap.fpPdIoTimeoutSec); if (sc->mrsas_gen3_ctrl) pRAID_Context->regLockFlags = (isRead) ? raid->regTypeReqOnRead : raid->regTypeReqOnWrite; else if (sc->device_id == MRSAS_TBOLT) pRAID_Context->regLockFlags = (isRead) ? REGION_TYPE_SHARED_READ : raid->regTypeReqOnWrite; pRAID_Context->VirtualDiskTgtId = raid->targetId; pRAID_Context->regLockRowLBA = htole64(regStart); pRAID_Context->regLockLength = htole32(regSize); pRAID_Context->configSeqNum = raid->seqNum; /* * Get Phy Params only if FP capable, or else leave it to MR firmware * to do the calculation. */ if (io_info->fpOkForIo) { retval = io_info->IoforUnevenSpan ? mr_spanset_get_phy_params(sc, ld, start_strip, ref_in_start_stripe, io_info, pRAID_Context, map) : MR_GetPhyParams(sc, ld, start_strip, ref_in_start_stripe, io_info, pRAID_Context, map); /* If IO on an invalid Pd, then FP is not possible */ if (io_info->devHandle == MR_DEVHANDLE_INVALID) io_info->fpOkForIo = FALSE; /* * if FP possible, set the SLUD bit in regLockFlags for * ventura */ else if ((sc->is_ventura || sc->is_aero) && !isRead && (raid->writeMode == MR_RL_WRITE_BACK_MODE) && (raid->level <= 1) && raid->capability.fpCacheBypassCapable) { ((RAID_CONTEXT_G35 *) pRAID_Context)->routingFlags.bits.sld = 1; } return retval; } else if (isRead) { for (stripIdx = 0; stripIdx < num_strips; stripIdx++) { retval = io_info->IoforUnevenSpan ? mr_spanset_get_phy_params(sc, ld, start_strip + stripIdx, ref_in_start_stripe, io_info, pRAID_Context, map) : MR_GetPhyParams(sc, ld, start_strip + stripIdx, ref_in_start_stripe, io_info, pRAID_Context, map); if (!retval) return TRUE; } } #if SPAN_DEBUG /* Just for testing what arm we get for strip. */ get_arm_from_strip(sc, ld, start_strip, map); #endif return TRUE; } /* * * This routine pepare spanset info from Valid Raid map and store it into local * copy of ldSpanInfo per instance data structure. * * Inputs : LD map * ldSpanInfo per HBA instance * */ void mr_update_span_set(MR_DRV_RAID_MAP_ALL * map, PLD_SPAN_INFO ldSpanInfo) { u_int8_t span, count; u_int32_t element, span_row_width; u_int64_t span_row; MR_LD_RAID *raid; LD_SPAN_SET *span_set, *span_set_prev; MR_QUAD_ELEMENT *quad; int ldCount; u_int16_t ld; for (ldCount = 0; ldCount < MAX_LOGICAL_DRIVES; ldCount++) { ld = MR_TargetIdToLdGet(ldCount, map); if (ld >= MAX_LOGICAL_DRIVES) continue; raid = MR_LdRaidGet(ld, map); for (element = 0; element < MAX_QUAD_DEPTH; element++) { for (span = 0; span < raid->spanDepth; span++) { if (le32toh(map->raidMap.ldSpanMap[ld].spanBlock[span]. block_span_info.noElements) < element + 1) continue; /* TO-DO */ span_set = &(ldSpanInfo[ld].span_set[element]); quad = &map->raidMap.ldSpanMap[ld]. spanBlock[span].block_span_info.quad[element]; span_set->diff = le32toh(quad->diff); for (count = 0, span_row_width = 0; count < raid->spanDepth; count++) { if (le32toh(map->raidMap.ldSpanMap[ld].spanBlock[count]. block_span_info.noElements) >= element + 1) { span_set->strip_offset[count] = span_row_width; span_row_width += MR_LdSpanPtrGet(ld, count, map)->spanRowDataSize; #if SPAN_DEBUG printf("AVAGO Debug span %x rowDataSize %x\n", count, MR_LdSpanPtrGet(ld, count, map)->spanRowDataSize); #endif } } span_set->span_row_data_width = span_row_width; span_row = mega_div64_32(((le64toh(quad->logEnd) - le64toh(quad->logStart)) + le32toh(quad->diff)), le32toh(quad->diff)); if (element == 0) { span_set->log_start_lba = 0; span_set->log_end_lba = ((span_row << raid->stripeShift) * span_row_width) - 1; span_set->span_row_start = 0; span_set->span_row_end = span_row - 1; span_set->data_strip_start = 0; span_set->data_strip_end = (span_row * span_row_width) - 1; span_set->data_row_start = 0; span_set->data_row_end = (span_row * le32toh(quad->diff)) - 1; } else { span_set_prev = &(ldSpanInfo[ld].span_set[element - 1]); span_set->log_start_lba = span_set_prev->log_end_lba + 1; span_set->log_end_lba = span_set->log_start_lba + ((span_row << raid->stripeShift) * span_row_width) - 1; span_set->span_row_start = span_set_prev->span_row_end + 1; span_set->span_row_end = span_set->span_row_start + span_row - 1; span_set->data_strip_start = span_set_prev->data_strip_end + 1; span_set->data_strip_end = span_set->data_strip_start + (span_row * span_row_width) - 1; span_set->data_row_start = span_set_prev->data_row_end + 1; span_set->data_row_end = span_set->data_row_start + (span_row * le32toh(quad->diff)) - 1; } break; } if (span == raid->spanDepth) break; /* no quads remain */ } } #if SPAN_DEBUG getSpanInfo(map, ldSpanInfo); /* to get span set info */ #endif } /* * mrsas_update_load_balance_params: Update load balance parmas * Inputs: * sc - driver softc instance * drv_map - driver RAID map * lbInfo - Load balance info * * This function updates the load balance parameters for the LD config of a two * drive optimal RAID-1. */ void mrsas_update_load_balance_params(struct mrsas_softc *sc, MR_DRV_RAID_MAP_ALL * drv_map, PLD_LOAD_BALANCE_INFO lbInfo) { int ldCount; u_int16_t ld; MR_LD_RAID *raid; if (sc->lb_pending_cmds > 128 || sc->lb_pending_cmds < 1) sc->lb_pending_cmds = LB_PENDING_CMDS_DEFAULT; for (ldCount = 0; ldCount < MAX_LOGICAL_DRIVES_EXT; ldCount++) { ld = MR_TargetIdToLdGet(ldCount, drv_map); if (ld >= MAX_LOGICAL_DRIVES_EXT) { lbInfo[ldCount].loadBalanceFlag = 0; continue; } raid = MR_LdRaidGet(ld, drv_map); le32_to_cpus(&raid->capability); if ((raid->level != 1) || (raid->ldState != MR_LD_STATE_OPTIMAL)) { lbInfo[ldCount].loadBalanceFlag = 0; continue; } lbInfo[ldCount].loadBalanceFlag = 1; } } /* * mrsas_set_pd_lba: Sets PD LBA * input: io_request pointer * CDB length * io_info pointer * Pointer to CCB * Local RAID map pointer * Start block of IO Block Size * * Used to set the PD logical block address in CDB for FP IOs. */ void mrsas_set_pd_lba(MRSAS_RAID_SCSI_IO_REQUEST * io_request, u_int8_t cdb_len, struct IO_REQUEST_INFO *io_info, union ccb *ccb, MR_DRV_RAID_MAP_ALL * local_map_ptr, u_int32_t ref_tag, u_int32_t ld_block_size) { MR_LD_RAID *raid; u_int32_t ld; u_int64_t start_blk = io_info->pdBlock; u_int8_t *cdb = io_request->CDB.CDB32; u_int32_t num_blocks = io_info->numBlocks; u_int8_t opcode = 0, flagvals = 0, groupnum = 0, control = 0; struct ccb_hdr *ccb_h = &(ccb->ccb_h); /* Check if T10 PI (DIF) is enabled for this LD */ ld = MR_TargetIdToLdGet(io_info->ldTgtId, local_map_ptr); raid = MR_LdRaidGet(ld, local_map_ptr); if (raid->capability.ldPiMode == MR_PROT_INFO_TYPE_CONTROLLER) { memset(cdb, 0, sizeof(io_request->CDB.CDB32)); cdb[0] = MRSAS_SCSI_VARIABLE_LENGTH_CMD; cdb[7] = MRSAS_SCSI_ADDL_CDB_LEN; if (ccb_h->flags == CAM_DIR_OUT) cdb[9] = MRSAS_SCSI_SERVICE_ACTION_READ32; else cdb[9] = MRSAS_SCSI_SERVICE_ACTION_WRITE32; cdb[10] = MRSAS_RD_WR_PROTECT_CHECK_ALL; /* LBA */ cdb[12] = (u_int8_t)((start_blk >> 56) & 0xff); cdb[13] = (u_int8_t)((start_blk >> 48) & 0xff); cdb[14] = (u_int8_t)((start_blk >> 40) & 0xff); cdb[15] = (u_int8_t)((start_blk >> 32) & 0xff); cdb[16] = (u_int8_t)((start_blk >> 24) & 0xff); cdb[17] = (u_int8_t)((start_blk >> 16) & 0xff); cdb[18] = (u_int8_t)((start_blk >> 8) & 0xff); cdb[19] = (u_int8_t)(start_blk & 0xff); /* Logical block reference tag */ io_request->CDB.EEDP32.PrimaryReferenceTag = htobe32(ref_tag); io_request->CDB.EEDP32.PrimaryApplicationTagMask = htobe16(0xffff); io_request->IoFlags = htole16(32); /* Specify 32-byte cdb */ /* Transfer length */ cdb[28] = (u_int8_t)((num_blocks >> 24) & 0xff); cdb[29] = (u_int8_t)((num_blocks >> 16) & 0xff); cdb[30] = (u_int8_t)((num_blocks >> 8) & 0xff); cdb[31] = (u_int8_t)(num_blocks & 0xff); /* set SCSI IO EEDP Flags */ if (ccb_h->flags == CAM_DIR_OUT) { io_request->EEDPFlags = htole16( MPI2_SCSIIO_EEDPFLAGS_INC_PRI_REFTAG | MPI2_SCSIIO_EEDPFLAGS_CHECK_REFTAG | MPI2_SCSIIO_EEDPFLAGS_CHECK_REMOVE_OP | MPI2_SCSIIO_EEDPFLAGS_CHECK_APPTAG | MPI2_SCSIIO_EEDPFLAGS_CHECK_GUARD); } else { io_request->EEDPFlags = htole16( MPI2_SCSIIO_EEDPFLAGS_INC_PRI_REFTAG | MPI2_SCSIIO_EEDPFLAGS_INSERT_OP); } io_request->Control |= htole32(0x4 << 26); io_request->EEDPBlockSize = htole32(ld_block_size); } else { /* Some drives don't support 16/12 byte CDB's, convert to 10 */ if (((cdb_len == 12) || (cdb_len == 16)) && (start_blk <= 0xffffffff)) { if (cdb_len == 16) { opcode = cdb[0] == READ_16 ? READ_10 : WRITE_10; flagvals = cdb[1]; groupnum = cdb[14]; control = cdb[15]; } else { opcode = cdb[0] == READ_12 ? READ_10 : WRITE_10; flagvals = cdb[1]; groupnum = cdb[10]; control = cdb[11]; } memset(cdb, 0, sizeof(io_request->CDB.CDB32)); cdb[0] = opcode; cdb[1] = flagvals; cdb[6] = groupnum; cdb[9] = control; /* Transfer length */ cdb[8] = (u_int8_t)(num_blocks & 0xff); cdb[7] = (u_int8_t)((num_blocks >> 8) & 0xff); io_request->IoFlags = htole16(10); /* Specify 10-byte cdb */ cdb_len = 10; } else if ((cdb_len < 16) && (start_blk > 0xffffffff)) { /* Convert to 16 byte CDB for large LBA's */ switch (cdb_len) { case 6: opcode = cdb[0] == READ_6 ? READ_16 : WRITE_16; control = cdb[5]; break; case 10: opcode = cdb[0] == READ_10 ? READ_16 : WRITE_16; flagvals = cdb[1]; groupnum = cdb[6]; control = cdb[9]; break; case 12: opcode = cdb[0] == READ_12 ? READ_16 : WRITE_16; flagvals = cdb[1]; groupnum = cdb[10]; control = cdb[11]; break; } memset(cdb, 0, sizeof(io_request->CDB.CDB32)); cdb[0] = opcode; cdb[1] = flagvals; cdb[14] = groupnum; cdb[15] = control; /* Transfer length */ cdb[13] = (u_int8_t)(num_blocks & 0xff); cdb[12] = (u_int8_t)((num_blocks >> 8) & 0xff); cdb[11] = (u_int8_t)((num_blocks >> 16) & 0xff); cdb[10] = (u_int8_t)((num_blocks >> 24) & 0xff); io_request->IoFlags = htole16(16); /* Specify 16-byte cdb */ cdb_len = 16; } else if ((cdb_len == 6) && (start_blk > 0x1fffff)) { /* convert to 10 byte CDB */ opcode = cdb[0] == READ_6 ? READ_10 : WRITE_10; control = cdb[5]; memset(cdb, 0, sizeof(io_request->CDB.CDB32)); cdb[0] = opcode; cdb[9] = control; /* Set transfer length */ cdb[8] = (u_int8_t)(num_blocks & 0xff); cdb[7] = (u_int8_t)((num_blocks >> 8) & 0xff); /* Specify 10-byte cdb */ cdb_len = 10; } /* Fall through normal case, just load LBA here */ u_int8_t val = cdb[1] & 0xE0; switch (cdb_len) { case 6: cdb[3] = (u_int8_t)(start_blk & 0xff); cdb[2] = (u_int8_t)((start_blk >> 8) & 0xff); cdb[1] = val | ((u_int8_t)(start_blk >> 16) & 0x1f); break; case 10: cdb[5] = (u_int8_t)(start_blk & 0xff); cdb[4] = (u_int8_t)((start_blk >> 8) & 0xff); cdb[3] = (u_int8_t)((start_blk >> 16) & 0xff); cdb[2] = (u_int8_t)((start_blk >> 24) & 0xff); break; case 16: cdb[9] = (u_int8_t)(start_blk & 0xff); cdb[8] = (u_int8_t)((start_blk >> 8) & 0xff); cdb[7] = (u_int8_t)((start_blk >> 16) & 0xff); cdb[6] = (u_int8_t)((start_blk >> 24) & 0xff); cdb[5] = (u_int8_t)((start_blk >> 32) & 0xff); cdb[4] = (u_int8_t)((start_blk >> 40) & 0xff); cdb[3] = (u_int8_t)((start_blk >> 48) & 0xff); cdb[2] = (u_int8_t)((start_blk >> 56) & 0xff); break; } } } /* * mrsas_get_best_arm_pd: Determine the best spindle arm * Inputs: * sc - HBA instance * lbInfo - Load balance info * io_info - IO request info * * This function determines and returns the best arm by looking at the * parameters of the last PD access. */ u_int8_t mrsas_get_best_arm_pd(struct mrsas_softc *sc, PLD_LOAD_BALANCE_INFO lbInfo, struct IO_REQUEST_INFO *io_info) { MR_LD_RAID *raid; MR_DRV_RAID_MAP_ALL *drv_map; u_int16_t pd1_devHandle; u_int16_t pend0, pend1, ld; u_int64_t diff0, diff1; u_int8_t bestArm, pd0, pd1, span, arm; u_int32_t arRef, span_row_size; u_int64_t block = io_info->ldStartBlock; u_int32_t count = io_info->numBlocks; span = ((io_info->span_arm & RAID_CTX_SPANARM_SPAN_MASK) >> RAID_CTX_SPANARM_SPAN_SHIFT); arm = (io_info->span_arm & RAID_CTX_SPANARM_ARM_MASK); drv_map = sc->ld_drv_map[(sc->map_id & 1)]; ld = MR_TargetIdToLdGet(io_info->ldTgtId, drv_map); raid = MR_LdRaidGet(ld, drv_map); span_row_size = sc->UnevenSpanSupport ? SPAN_ROW_SIZE(drv_map, ld, span) : raid->rowSize; arRef = MR_LdSpanArrayGet(ld, span, drv_map); pd0 = MR_ArPdGet(arRef, arm, drv_map); pd1 = MR_ArPdGet(arRef, (arm + 1) >= span_row_size ? (arm + 1 - span_row_size) : arm + 1, drv_map); /* Get PD1 Dev Handle */ pd1_devHandle = MR_PdDevHandleGet(pd1, drv_map); if (pd1_devHandle == MR_DEVHANDLE_INVALID) { bestArm = arm; } else { /* get the pending cmds for the data and mirror arms */ pend0 = mrsas_atomic_read(&lbInfo->scsi_pending_cmds[pd0]); pend1 = mrsas_atomic_read(&lbInfo->scsi_pending_cmds[pd1]); /* Determine the disk whose head is nearer to the req. block */ diff0 = ABS_DIFF(block, lbInfo->last_accessed_block[pd0]); diff1 = ABS_DIFF(block, lbInfo->last_accessed_block[pd1]); bestArm = (diff0 <= diff1 ? arm : arm ^ 1); if ((bestArm == arm && pend0 > pend1 + sc->lb_pending_cmds) || (bestArm != arm && pend1 > pend0 + sc->lb_pending_cmds)) bestArm ^= 1; /* Update the last accessed block on the correct pd */ io_info->span_arm = (span << RAID_CTX_SPANARM_SPAN_SHIFT) | bestArm; io_info->pd_after_lb = (bestArm == arm) ? pd0 : pd1; } lbInfo->last_accessed_block[bestArm == arm ? pd0 : pd1] = block + count - 1; #if SPAN_DEBUG if (arm != bestArm) printf("AVAGO Debug R1 Load balance occur - span 0x%x arm 0x%x bestArm 0x%x " "io_info->span_arm 0x%x\n", span, arm, bestArm, io_info->span_arm); #endif return io_info->pd_after_lb; } /* * mrsas_get_updated_dev_handle: Get the update dev handle * Inputs: * sc - Adapter instance soft state * lbInfo - Load balance info * io_info - io_info pointer * * This function determines and returns the updated dev handle. */ u_int16_t mrsas_get_updated_dev_handle(struct mrsas_softc *sc, PLD_LOAD_BALANCE_INFO lbInfo, struct IO_REQUEST_INFO *io_info) { u_int8_t arm_pd; u_int16_t devHandle; MR_DRV_RAID_MAP_ALL *drv_map; drv_map = sc->ld_drv_map[(sc->map_id & 1)]; /* get best new arm */ arm_pd = mrsas_get_best_arm_pd(sc, lbInfo, io_info); devHandle = MR_PdDevHandleGet(arm_pd, drv_map); io_info->pdInterface = MR_PdInterfaceTypeGet(arm_pd, drv_map); mrsas_atomic_inc(&lbInfo->scsi_pending_cmds[arm_pd]); return devHandle; } /* * MR_GetPhyParams: Calculates arm, span, and block * Inputs: Adapter soft state * Logical drive number (LD) * Stripe number(stripRow) * Reference in stripe (stripRef) * * Outputs: Absolute Block number in the physical disk * * This routine calculates the arm, span and block for the specified stripe and * reference in stripe. */ u_int8_t MR_GetPhyParams(struct mrsas_softc *sc, u_int32_t ld, u_int64_t stripRow, u_int16_t stripRef, struct IO_REQUEST_INFO *io_info, RAID_CONTEXT * pRAID_Context, MR_DRV_RAID_MAP_ALL * map) { MR_LD_RAID *raid = MR_LdRaidGet(ld, map); u_int32_t pd, arRef, r1_alt_pd; u_int8_t physArm, span; u_int64_t row; u_int8_t retval = TRUE; int error_code = 0; u_int64_t *pdBlock = &io_info->pdBlock; u_int16_t *pDevHandle = &io_info->devHandle; u_int8_t *pPdInterface = &io_info->pdInterface; u_int32_t rowMod, armQ, arm, logArm; row = mega_div64_32(stripRow, raid->rowDataSize); if (raid->level == 6) { /* logical arm within row */ logArm = mega_mod64(stripRow, raid->rowDataSize); if (raid->rowSize == 0) return FALSE; rowMod = mega_mod64(row, raid->rowSize); /* get logical row mod */ armQ = raid->rowSize - 1 - rowMod; /* index of Q drive */ arm = armQ + 1 + logArm;/* data always logically follows Q */ if (arm >= raid->rowSize) /* handle wrap condition */ arm -= raid->rowSize; physArm = (u_int8_t)arm; } else { if (raid->modFactor == 0) return FALSE; physArm = MR_LdDataArmGet(ld, mega_mod64(stripRow, raid->modFactor), map); } if (raid->spanDepth == 1) { span = 0; *pdBlock = row << raid->stripeShift; } else { span = (u_int8_t)MR_GetSpanBlock(ld, row, pdBlock, map, &error_code); if (error_code == 1) return FALSE; } /* Get the array on which this span is present */ arRef = MR_LdSpanArrayGet(ld, span, map); pd = MR_ArPdGet(arRef, physArm, map); /* Get the Pd. */ if (pd != MR_PD_INVALID) { /* Get dev handle from Pd */ *pDevHandle = MR_PdDevHandleGet(pd, map); *pPdInterface = MR_PdInterfaceTypeGet(pd, map); /* get second pd also for raid 1/10 fast path writes */ if ((raid->level == 1) && !io_info->isRead) { r1_alt_pd = MR_ArPdGet(arRef, physArm + 1, map); if (r1_alt_pd != MR_PD_INVALID) io_info->r1_alt_dev_handle = MR_PdDevHandleGet(r1_alt_pd, map); } } else { *pDevHandle = htole16(MR_DEVHANDLE_INVALID); /* set dev handle as invalid. */ if ((raid->level >= 5) && ((sc->device_id == MRSAS_TBOLT) || (sc->mrsas_gen3_ctrl && raid->regTypeReqOnRead != REGION_TYPE_UNUSED))) pRAID_Context->regLockFlags = REGION_TYPE_EXCLUSIVE; else if (raid->level == 1) { /* Get Alternate Pd. */ pd = MR_ArPdGet(arRef, physArm + 1, map); if (pd != MR_PD_INVALID) { /* Get dev handle from Pd. */ *pDevHandle = MR_PdDevHandleGet(pd, map); *pPdInterface = MR_PdInterfaceTypeGet(pd, map); } } } *pdBlock += stripRef + le64toh(MR_LdSpanPtrGet(ld, span, map)->startBlk); if (sc->is_ventura || sc->is_aero) { ((RAID_CONTEXT_G35 *) pRAID_Context)->spanArm = (span << RAID_CTX_SPANARM_SPAN_SHIFT) | physArm; io_info->span_arm = (span << RAID_CTX_SPANARM_SPAN_SHIFT) | physArm; } else { pRAID_Context->spanArm = (span << RAID_CTX_SPANARM_SPAN_SHIFT) | physArm; io_info->span_arm = pRAID_Context->spanArm; } return retval; } /* * MR_GetSpanBlock: Calculates span block * Inputs: LD * row PD * span block * RAID map pointer * * Outputs: Span number Error code * * This routine calculates the span from the span block info. */ u_int32_t MR_GetSpanBlock(u_int32_t ld, u_int64_t row, u_int64_t *span_blk, MR_DRV_RAID_MAP_ALL * map, int *div_error) { MR_SPAN_BLOCK_INFO *pSpanBlock = MR_LdSpanInfoGet(ld, map); MR_QUAD_ELEMENT *quad; MR_LD_RAID *raid = MR_LdRaidGet(ld, map); u_int32_t span, j; u_int64_t blk; for (span = 0; span < raid->spanDepth; span++, pSpanBlock++) { for (j = 0; j < pSpanBlock->block_span_info.noElements; j++) { quad = &pSpanBlock->block_span_info.quad[j]; if (quad->diff == 0) { *div_error = 1; return span; } if (quad->logStart <= row && row <= quad->logEnd && (mega_mod64(row - quad->logStart, quad->diff)) == 0) { if (span_blk != NULL) { blk = mega_div64_32((row - quad->logStart), quad->diff); blk = (blk + quad->offsetInSpan) << raid->stripeShift; *span_blk = blk; } return span; } } } return span; }