/*- * Copyright (c) 2009 Yahoo! Inc. * Copyright (c) 2011-2015 LSI Corp. * Copyright (c) 2013-2016 Avago Technologies * Copyright 2000-2020 Broadcom Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * Broadcom Inc. (LSI) MPT-Fusion Host Adapter FreeBSD * */ #include __FBSDID("$FreeBSD$"); /* Communications core for Avago Technologies (LSI) MPT3 */ /* TODO Move headers to mprvar */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static int mpr_diag_reset(struct mpr_softc *sc, int sleep_flag); static int mpr_init_queues(struct mpr_softc *sc); static void mpr_resize_queues(struct mpr_softc *sc); static int mpr_message_unit_reset(struct mpr_softc *sc, int sleep_flag); static int mpr_transition_operational(struct mpr_softc *sc); static int mpr_iocfacts_allocate(struct mpr_softc *sc, uint8_t attaching); static void mpr_iocfacts_free(struct mpr_softc *sc); static void mpr_startup(void *arg); static int mpr_send_iocinit(struct mpr_softc *sc); static int mpr_alloc_queues(struct mpr_softc *sc); static int mpr_alloc_hw_queues(struct mpr_softc *sc); static int mpr_alloc_replies(struct mpr_softc *sc); static int mpr_alloc_requests(struct mpr_softc *sc); static int mpr_alloc_nvme_prp_pages(struct mpr_softc *sc); static int mpr_attach_log(struct mpr_softc *sc); static __inline void mpr_complete_command(struct mpr_softc *sc, struct mpr_command *cm); static void mpr_dispatch_event(struct mpr_softc *sc, uintptr_t data, MPI2_EVENT_NOTIFICATION_REPLY *reply); static void mpr_config_complete(struct mpr_softc *sc, struct mpr_command *cm); static void mpr_periodic(void *); static int mpr_reregister_events(struct mpr_softc *sc); static void mpr_enqueue_request(struct mpr_softc *sc, struct mpr_command *cm); static int mpr_get_iocfacts(struct mpr_softc *sc, MPI2_IOC_FACTS_REPLY *facts); static int mpr_wait_db_ack(struct mpr_softc *sc, int timeout, int sleep_flag); static int mpr_debug_sysctl(SYSCTL_HANDLER_ARGS); static int mpr_dump_reqs(SYSCTL_HANDLER_ARGS); static void mpr_parse_debug(struct mpr_softc *sc, char *list); SYSCTL_NODE(_hw, OID_AUTO, mpr, CTLFLAG_RD, 0, "MPR Driver Parameters"); MALLOC_DEFINE(M_MPR, "mpr", "mpr driver memory"); /* * Do a "Diagnostic Reset" aka a hard reset. This should get the chip out of * any state and back to its initialization state machine. */ static char mpt2_reset_magic[] = { 0x00, 0x0f, 0x04, 0x0b, 0x02, 0x07, 0x0d }; /* * Added this union to smoothly convert le64toh cm->cm_desc.Words. * Compiler only supports uint64_t to be passed as an argument. * Otherwise it will throw this error: * "aggregate value used where an integer was expected" */ typedef union _reply_descriptor { u64 word; struct { u32 low; u32 high; } u; } reply_descriptor, request_descriptor; /* Rate limit chain-fail messages to 1 per minute */ static struct timeval mpr_chainfail_interval = { 60, 0 }; /* * sleep_flag can be either CAN_SLEEP or NO_SLEEP. * If this function is called from process context, it can sleep * and there is no harm to sleep, in case if this fuction is called * from Interrupt handler, we can not sleep and need NO_SLEEP flag set. * based on sleep flags driver will call either msleep, pause or DELAY. * msleep and pause are of same variant, but pause is used when mpr_mtx * is not hold by driver. */ static int mpr_diag_reset(struct mpr_softc *sc,int sleep_flag) { uint32_t reg; int i, error, tries = 0; uint8_t first_wait_done = FALSE; mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__); /* Clear any pending interrupts */ mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); /* * Force NO_SLEEP for threads prohibited to sleep * e.a Thread from interrupt handler are prohibited to sleep. */ #if __FreeBSD_version >= 1000029 if (curthread->td_no_sleeping) #else //__FreeBSD_version < 1000029 if (curthread->td_pflags & TDP_NOSLEEPING) #endif //__FreeBSD_version >= 1000029 sleep_flag = NO_SLEEP; mpr_dprint(sc, MPR_INIT, "sequence start, sleep_flag=%d\n", sleep_flag); /* Push the magic sequence */ error = ETIMEDOUT; while (tries++ < 20) { for (i = 0; i < sizeof(mpt2_reset_magic); i++) mpr_regwrite(sc, MPI2_WRITE_SEQUENCE_OFFSET, mpt2_reset_magic[i]); /* wait 100 msec */ if (mtx_owned(&sc->mpr_mtx) && sleep_flag == CAN_SLEEP) msleep(&sc->msleep_fake_chan, &sc->mpr_mtx, 0, "mprdiag", hz/10); else if (sleep_flag == CAN_SLEEP) pause("mprdiag", hz/10); else DELAY(100 * 1000); reg = mpr_regread(sc, MPI2_HOST_DIAGNOSTIC_OFFSET); if (reg & MPI2_DIAG_DIAG_WRITE_ENABLE) { error = 0; break; } } if (error) { mpr_dprint(sc, MPR_INIT, "sequence failed, error=%d, exit\n", error); return (error); } /* Send the actual reset. XXX need to refresh the reg? */ reg |= MPI2_DIAG_RESET_ADAPTER; mpr_dprint(sc, MPR_INIT, "sequence success, sending reset, reg= 0x%x\n", reg); mpr_regwrite(sc, MPI2_HOST_DIAGNOSTIC_OFFSET, reg); /* Wait up to 300 seconds in 50ms intervals */ error = ETIMEDOUT; for (i = 0; i < 6000; i++) { /* * Wait 50 msec. If this is the first time through, wait 256 * msec to satisfy Diag Reset timing requirements. */ if (first_wait_done) { if (mtx_owned(&sc->mpr_mtx) && sleep_flag == CAN_SLEEP) msleep(&sc->msleep_fake_chan, &sc->mpr_mtx, 0, "mprdiag", hz/20); else if (sleep_flag == CAN_SLEEP) pause("mprdiag", hz/20); else DELAY(50 * 1000); } else { DELAY(256 * 1000); first_wait_done = TRUE; } /* * Check for the RESET_ADAPTER bit to be cleared first, then * wait for the RESET state to be cleared, which takes a little * longer. */ reg = mpr_regread(sc, MPI2_HOST_DIAGNOSTIC_OFFSET); if (reg & MPI2_DIAG_RESET_ADAPTER) { continue; } reg = mpr_regread(sc, MPI2_DOORBELL_OFFSET); if ((reg & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_RESET) { error = 0; break; } } if (error) { mpr_dprint(sc, MPR_INIT, "reset failed, error= %d, exit\n", error); return (error); } mpr_regwrite(sc, MPI2_WRITE_SEQUENCE_OFFSET, 0x0); mpr_dprint(sc, MPR_INIT, "diag reset success, exit\n"); return (0); } static int mpr_message_unit_reset(struct mpr_softc *sc, int sleep_flag) { int error; MPR_FUNCTRACE(sc); mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__); error = 0; mpr_regwrite(sc, MPI2_DOORBELL_OFFSET, MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET << MPI2_DOORBELL_FUNCTION_SHIFT); if (mpr_wait_db_ack(sc, 5, sleep_flag) != 0) { mpr_dprint(sc, MPR_INIT|MPR_FAULT, "Doorbell handshake failed\n"); error = ETIMEDOUT; } mpr_dprint(sc, MPR_INIT, "%s exit\n", __func__); return (error); } static int mpr_transition_ready(struct mpr_softc *sc) { uint32_t reg, state; int error, tries = 0; int sleep_flags; MPR_FUNCTRACE(sc); /* If we are in attach call, do not sleep */ sleep_flags = (sc->mpr_flags & MPR_FLAGS_ATTACH_DONE) ? CAN_SLEEP : NO_SLEEP; error = 0; mpr_dprint(sc, MPR_INIT, "%s entered, sleep_flags= %d\n", __func__, sleep_flags); while (tries++ < 1200) { reg = mpr_regread(sc, MPI2_DOORBELL_OFFSET); mpr_dprint(sc, MPR_INIT, " Doorbell= 0x%x\n", reg); /* * Ensure the IOC is ready to talk. If it's not, try * resetting it. */ if (reg & MPI2_DOORBELL_USED) { mpr_dprint(sc, MPR_INIT, " Not ready, sending diag " "reset\n"); mpr_diag_reset(sc, sleep_flags); DELAY(50000); continue; } /* Is the adapter owned by another peer? */ if ((reg & MPI2_DOORBELL_WHO_INIT_MASK) == (MPI2_WHOINIT_PCI_PEER << MPI2_DOORBELL_WHO_INIT_SHIFT)) { mpr_dprint(sc, MPR_INIT|MPR_FAULT, "IOC is under the " "control of another peer host, aborting " "initialization.\n"); error = ENXIO; break; } state = reg & MPI2_IOC_STATE_MASK; if (state == MPI2_IOC_STATE_READY) { /* Ready to go! */ error = 0; break; } else if (state == MPI2_IOC_STATE_FAULT) { mpr_dprint(sc, MPR_INIT|MPR_FAULT, "IOC in fault " "state 0x%x, resetting\n", state & MPI2_DOORBELL_FAULT_CODE_MASK); mpr_diag_reset(sc, sleep_flags); } else if (state == MPI2_IOC_STATE_OPERATIONAL) { /* Need to take ownership */ mpr_message_unit_reset(sc, sleep_flags); } else if (state == MPI2_IOC_STATE_RESET) { /* Wait a bit, IOC might be in transition */ mpr_dprint(sc, MPR_INIT|MPR_FAULT, "IOC in unexpected reset state\n"); } else { mpr_dprint(sc, MPR_INIT|MPR_FAULT, "IOC in unknown state 0x%x\n", state); error = EINVAL; break; } /* Wait 50ms for things to settle down. */ DELAY(50000); } if (error) mpr_dprint(sc, MPR_INIT|MPR_FAULT, "Cannot transition IOC to ready\n"); mpr_dprint(sc, MPR_INIT, "%s exit\n", __func__); return (error); } static int mpr_transition_operational(struct mpr_softc *sc) { uint32_t reg, state; int error; MPR_FUNCTRACE(sc); error = 0; reg = mpr_regread(sc, MPI2_DOORBELL_OFFSET); mpr_dprint(sc, MPR_INIT, "%s entered, Doorbell= 0x%x\n", __func__, reg); state = reg & MPI2_IOC_STATE_MASK; if (state != MPI2_IOC_STATE_READY) { mpr_dprint(sc, MPR_INIT, "IOC not ready\n"); if ((error = mpr_transition_ready(sc)) != 0) { mpr_dprint(sc, MPR_INIT|MPR_FAULT, "failed to transition ready, exit\n"); return (error); } } error = mpr_send_iocinit(sc); mpr_dprint(sc, MPR_INIT, "%s exit\n", __func__); return (error); } static void mpr_resize_queues(struct mpr_softc *sc) { u_int reqcr, prireqcr, maxio, sges_per_frame, chain_seg_size; /* * Size the queues. Since the reply queues always need one free * entry, we'll deduct one reply message here. The LSI documents * suggest instead to add a count to the request queue, but I think * that it's better to deduct from reply queue. */ prireqcr = MAX(1, sc->max_prireqframes); prireqcr = MIN(prireqcr, sc->facts->HighPriorityCredit); reqcr = MAX(2, sc->max_reqframes); reqcr = MIN(reqcr, sc->facts->RequestCredit); sc->num_reqs = prireqcr + reqcr; sc->num_prireqs = prireqcr; sc->num_replies = MIN(sc->max_replyframes + sc->max_evtframes, sc->facts->MaxReplyDescriptorPostQueueDepth) - 1; /* Store the request frame size in bytes rather than as 32bit words */ sc->reqframesz = sc->facts->IOCRequestFrameSize * 4; /* * Gen3 and beyond uses the IOCMaxChainSegmentSize from IOC Facts to * get the size of a Chain Frame. Previous versions use the size as a * Request Frame for the Chain Frame size. If IOCMaxChainSegmentSize * is 0, use the default value. The IOCMaxChainSegmentSize is the * number of 16-byte elelements that can fit in a Chain Frame, which is * the size of an IEEE Simple SGE. */ if (sc->facts->MsgVersion >= MPI2_VERSION_02_05) { chain_seg_size = htole16(sc->facts->IOCMaxChainSegmentSize); if (chain_seg_size == 0) chain_seg_size = MPR_DEFAULT_CHAIN_SEG_SIZE; sc->chain_frame_size = chain_seg_size * MPR_MAX_CHAIN_ELEMENT_SIZE; } else { sc->chain_frame_size = sc->reqframesz; } /* * Max IO Size is Page Size * the following: * ((SGEs per frame - 1 for chain element) * Max Chain Depth) * + 1 for no chain needed in last frame * * If user suggests a Max IO size to use, use the smaller of the * user's value and the calculated value as long as the user's * value is larger than 0. The user's value is in pages. */ sges_per_frame = sc->chain_frame_size/sizeof(MPI2_IEEE_SGE_SIMPLE64)-1; maxio = (sges_per_frame * sc->facts->MaxChainDepth + 1) * PAGE_SIZE; /* * If I/O size limitation requested then use it and pass up to CAM. * If not, use MAXPHYS as an optimization hint, but report HW limit. */ if (sc->max_io_pages > 0) { maxio = min(maxio, sc->max_io_pages * PAGE_SIZE); sc->maxio = maxio; } else { sc->maxio = maxio; maxio = min(maxio, MAXPHYS); } sc->num_chains = (maxio / PAGE_SIZE + sges_per_frame - 2) / sges_per_frame * reqcr; if (sc->max_chains > 0 && sc->max_chains < sc->num_chains) sc->num_chains = sc->max_chains; /* * Figure out the number of MSIx-based queues. If the firmware or * user has done something crazy and not allowed enough credit for * the queues to be useful then don't enable multi-queue. */ if (sc->facts->MaxMSIxVectors < 2) sc->msi_msgs = 1; if (sc->msi_msgs > 1) { sc->msi_msgs = MIN(sc->msi_msgs, mp_ncpus); sc->msi_msgs = MIN(sc->msi_msgs, sc->facts->MaxMSIxVectors); if (sc->num_reqs / sc->msi_msgs < 2) sc->msi_msgs = 1; } mpr_dprint(sc, MPR_INIT, "Sized queues to q=%d reqs=%d replies=%d\n", sc->msi_msgs, sc->num_reqs, sc->num_replies); } /* * This is called during attach and when re-initializing due to a Diag Reset. * IOC Facts is used to allocate many of the structures needed by the driver. * If called from attach, de-allocation is not required because the driver has * not allocated any structures yet, but if called from a Diag Reset, previously * allocated structures based on IOC Facts will need to be freed and re- * allocated bases on the latest IOC Facts. */ static int mpr_iocfacts_allocate(struct mpr_softc *sc, uint8_t attaching) { int error; Mpi2IOCFactsReply_t saved_facts; uint8_t saved_mode, reallocating; mpr_dprint(sc, MPR_INIT|MPR_TRACE, "%s entered\n", __func__); /* Save old IOC Facts and then only reallocate if Facts have changed */ if (!attaching) { bcopy(sc->facts, &saved_facts, sizeof(MPI2_IOC_FACTS_REPLY)); } /* * Get IOC Facts. In all cases throughout this function, panic if doing * a re-initialization and only return the error if attaching so the OS * can handle it. */ if ((error = mpr_get_iocfacts(sc, sc->facts)) != 0) { if (attaching) { mpr_dprint(sc, MPR_INIT|MPR_FAULT, "Failed to get " "IOC Facts with error %d, exit\n", error); return (error); } else { panic("%s failed to get IOC Facts with error %d\n", __func__, error); } } MPR_DPRINT_PAGE(sc, MPR_XINFO, iocfacts, sc->facts); snprintf(sc->fw_version, sizeof(sc->fw_version), "%02d.%02d.%02d.%02d", sc->facts->FWVersion.Struct.Major, sc->facts->FWVersion.Struct.Minor, sc->facts->FWVersion.Struct.Unit, sc->facts->FWVersion.Struct.Dev); mpr_dprint(sc, MPR_INFO, "Firmware: %s, Driver: %s\n", sc->fw_version, MPR_DRIVER_VERSION); mpr_dprint(sc, MPR_INFO, "IOCCapabilities: %b\n", sc->facts->IOCCapabilities, "\20" "\3ScsiTaskFull" "\4DiagTrace" "\5SnapBuf" "\6ExtBuf" "\7EEDP" "\10BiDirTarg" "\11Multicast" "\14TransRetry" "\15IR" "\16EventReplay" "\17RaidAccel" "\20MSIXIndex" "\21HostDisc" "\22FastPath" "\23RDPQArray" "\24AtomicReqDesc" "\25PCIeSRIOV"); /* * If the chip doesn't support event replay then a hard reset will be * required to trigger a full discovery. Do the reset here then * retransition to Ready. A hard reset might have already been done, * but it doesn't hurt to do it again. Only do this if attaching, not * for a Diag Reset. */ if (attaching && ((sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY) == 0)) { mpr_dprint(sc, MPR_INIT, "No event replay, resetting\n"); mpr_diag_reset(sc, NO_SLEEP); if ((error = mpr_transition_ready(sc)) != 0) { mpr_dprint(sc, MPR_INIT|MPR_FAULT, "Failed to " "transition to ready with error %d, exit\n", error); return (error); } } /* * Set flag if IR Firmware is loaded. If the RAID Capability has * changed from the previous IOC Facts, log a warning, but only if * checking this after a Diag Reset and not during attach. */ saved_mode = sc->ir_firmware; if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) sc->ir_firmware = 1; if (!attaching) { if (sc->ir_firmware != saved_mode) { mpr_dprint(sc, MPR_INIT|MPR_FAULT, "new IR/IT mode " "in IOC Facts does not match previous mode\n"); } } /* Only deallocate and reallocate if relevant IOC Facts have changed */ reallocating = FALSE; sc->mpr_flags &= ~MPR_FLAGS_REALLOCATED; if ((!attaching) && ((saved_facts.MsgVersion != sc->facts->MsgVersion) || (saved_facts.HeaderVersion != sc->facts->HeaderVersion) || (saved_facts.MaxChainDepth != sc->facts->MaxChainDepth) || (saved_facts.RequestCredit != sc->facts->RequestCredit) || (saved_facts.ProductID != sc->facts->ProductID) || (saved_facts.IOCCapabilities != sc->facts->IOCCapabilities) || (saved_facts.IOCRequestFrameSize != sc->facts->IOCRequestFrameSize) || (saved_facts.IOCMaxChainSegmentSize != sc->facts->IOCMaxChainSegmentSize) || (saved_facts.MaxTargets != sc->facts->MaxTargets) || (saved_facts.MaxSasExpanders != sc->facts->MaxSasExpanders) || (saved_facts.MaxEnclosures != sc->facts->MaxEnclosures) || (saved_facts.HighPriorityCredit != sc->facts->HighPriorityCredit) || (saved_facts.MaxReplyDescriptorPostQueueDepth != sc->facts->MaxReplyDescriptorPostQueueDepth) || (saved_facts.ReplyFrameSize != sc->facts->ReplyFrameSize) || (saved_facts.MaxVolumes != sc->facts->MaxVolumes) || (saved_facts.MaxPersistentEntries != sc->facts->MaxPersistentEntries))) { reallocating = TRUE; /* Record that we reallocated everything */ sc->mpr_flags |= MPR_FLAGS_REALLOCATED; } /* * Some things should be done if attaching or re-allocating after a Diag * Reset, but are not needed after a Diag Reset if the FW has not * changed. */ if (attaching || reallocating) { /* * Check if controller supports FW diag buffers and set flag to * enable each type. */ if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_TRACE]. enabled = TRUE; if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_SNAPSHOT]. enabled = TRUE; if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) sc->fw_diag_buffer_list[MPI2_DIAG_BUF_TYPE_EXTENDED]. enabled = TRUE; /* * Set flags for some supported items. */ if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) sc->eedp_enabled = TRUE; if (sc->facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) sc->control_TLR = TRUE; if ((sc->facts->IOCCapabilities & MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ) && (sc->mpr_flags & MPR_FLAGS_SEA_IOC)) sc->atomic_desc_capable = TRUE; mpr_resize_queues(sc); /* * Initialize all Tail Queues */ TAILQ_INIT(&sc->req_list); TAILQ_INIT(&sc->high_priority_req_list); TAILQ_INIT(&sc->chain_list); TAILQ_INIT(&sc->prp_page_list); TAILQ_INIT(&sc->tm_list); } /* * If doing a Diag Reset and the FW is significantly different * (reallocating will be set above in IOC Facts comparison), then all * buffers based on the IOC Facts will need to be freed before they are * reallocated. */ if (reallocating) { mpr_iocfacts_free(sc); mprsas_realloc_targets(sc, saved_facts.MaxTargets + saved_facts.MaxVolumes); } /* * Any deallocation has been completed. Now start reallocating * if needed. Will only need to reallocate if attaching or if the new * IOC Facts are different from the previous IOC Facts after a Diag * Reset. Targets have already been allocated above if needed. */ error = 0; while (attaching || reallocating) { if ((error = mpr_alloc_hw_queues(sc)) != 0) break; if ((error = mpr_alloc_replies(sc)) != 0) break; if ((error = mpr_alloc_requests(sc)) != 0) break; if ((error = mpr_alloc_queues(sc)) != 0) break; break; } if (error) { mpr_dprint(sc, MPR_INIT|MPR_ERROR, "Failed to alloc queues with error %d\n", error); mpr_free(sc); return (error); } /* Always initialize the queues */ bzero(sc->free_queue, sc->fqdepth * 4); mpr_init_queues(sc); /* * Always get the chip out of the reset state, but only panic if not * attaching. If attaching and there is an error, that is handled by * the OS. */ error = mpr_transition_operational(sc); if (error != 0) { mpr_dprint(sc, MPR_INIT|MPR_FAULT, "Failed to " "transition to operational with error %d\n", error); mpr_free(sc); return (error); } /* * Finish the queue initialization. * These are set here instead of in mpr_init_queues() because the * IOC resets these values during the state transition in * mpr_transition_operational(). The free index is set to 1 * because the corresponding index in the IOC is set to 0, and the * IOC treats the queues as full if both are set to the same value. * Hence the reason that the queue can't hold all of the possible * replies. */ sc->replypostindex = 0; mpr_regwrite(sc, MPI2_REPLY_FREE_HOST_INDEX_OFFSET, sc->replyfreeindex); mpr_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET, 0); /* * Attach the subsystems so they can prepare their event masks. * XXX Should be dynamic so that IM/IR and user modules can attach */ error = 0; while (attaching) { mpr_dprint(sc, MPR_INIT, "Attaching subsystems\n"); if ((error = mpr_attach_log(sc)) != 0) break; if ((error = mpr_attach_sas(sc)) != 0) break; if ((error = mpr_attach_user(sc)) != 0) break; break; } if (error) { mpr_dprint(sc, MPR_INIT|MPR_ERROR, "Failed to attach all subsystems: error %d\n", error); mpr_free(sc); return (error); } /* * XXX If the number of MSI-X vectors changes during re-init, this * won't see it and adjust. */ if (attaching && (error = mpr_pci_setup_interrupts(sc)) != 0) { mpr_dprint(sc, MPR_INIT|MPR_ERROR, "Failed to setup interrupts\n"); mpr_free(sc); return (error); } return (error); } /* * This is called if memory is being free (during detach for example) and when * buffers need to be reallocated due to a Diag Reset. */ static void mpr_iocfacts_free(struct mpr_softc *sc) { struct mpr_command *cm; int i; mpr_dprint(sc, MPR_TRACE, "%s\n", __func__); if (sc->free_busaddr != 0) bus_dmamap_unload(sc->queues_dmat, sc->queues_map); if (sc->free_queue != NULL) bus_dmamem_free(sc->queues_dmat, sc->free_queue, sc->queues_map); if (sc->queues_dmat != NULL) bus_dma_tag_destroy(sc->queues_dmat); if (sc->chain_frames != NULL) { bus_dmamap_unload(sc->chain_dmat, sc->chain_map); bus_dmamem_free(sc->chain_dmat, sc->chain_frames, sc->chain_map); } if (sc->chain_dmat != NULL) bus_dma_tag_destroy(sc->chain_dmat); if (sc->sense_busaddr != 0) bus_dmamap_unload(sc->sense_dmat, sc->sense_map); if (sc->sense_frames != NULL) bus_dmamem_free(sc->sense_dmat, sc->sense_frames, sc->sense_map); if (sc->sense_dmat != NULL) bus_dma_tag_destroy(sc->sense_dmat); if (sc->prp_page_busaddr != 0) bus_dmamap_unload(sc->prp_page_dmat, sc->prp_page_map); if (sc->prp_pages != NULL) bus_dmamem_free(sc->prp_page_dmat, sc->prp_pages, sc->prp_page_map); if (sc->prp_page_dmat != NULL) bus_dma_tag_destroy(sc->prp_page_dmat); if (sc->reply_busaddr != 0) bus_dmamap_unload(sc->reply_dmat, sc->reply_map); if (sc->reply_frames != NULL) bus_dmamem_free(sc->reply_dmat, sc->reply_frames, sc->reply_map); if (sc->reply_dmat != NULL) bus_dma_tag_destroy(sc->reply_dmat); if (sc->req_busaddr != 0) bus_dmamap_unload(sc->req_dmat, sc->req_map); if (sc->req_frames != NULL) bus_dmamem_free(sc->req_dmat, sc->req_frames, sc->req_map); if (sc->req_dmat != NULL) bus_dma_tag_destroy(sc->req_dmat); if (sc->chains != NULL) free(sc->chains, M_MPR); if (sc->prps != NULL) free(sc->prps, M_MPR); if (sc->commands != NULL) { for (i = 1; i < sc->num_reqs; i++) { cm = &sc->commands[i]; bus_dmamap_destroy(sc->buffer_dmat, cm->cm_dmamap); } free(sc->commands, M_MPR); } if (sc->buffer_dmat != NULL) bus_dma_tag_destroy(sc->buffer_dmat); mpr_pci_free_interrupts(sc); free(sc->queues, M_MPR); sc->queues = NULL; } /* * The terms diag reset and hard reset are used interchangeably in the MPI * docs to mean resetting the controller chip. In this code diag reset * cleans everything up, and the hard reset function just sends the reset * sequence to the chip. This should probably be refactored so that every * subsystem gets a reset notification of some sort, and can clean up * appropriately. */ int mpr_reinit(struct mpr_softc *sc) { int error; struct mprsas_softc *sassc; sassc = sc->sassc; MPR_FUNCTRACE(sc); mtx_assert(&sc->mpr_mtx, MA_OWNED); mpr_dprint(sc, MPR_INIT|MPR_INFO, "Reinitializing controller\n"); if (sc->mpr_flags & MPR_FLAGS_DIAGRESET) { mpr_dprint(sc, MPR_INIT, "Reset already in progress\n"); return 0; } /* * Make sure the completion callbacks can recognize they're getting * a NULL cm_reply due to a reset. */ sc->mpr_flags |= MPR_FLAGS_DIAGRESET; /* * Mask interrupts here. */ mpr_dprint(sc, MPR_INIT, "Masking interrupts and resetting\n"); mpr_mask_intr(sc); error = mpr_diag_reset(sc, CAN_SLEEP); if (error != 0) { panic("%s hard reset failed with error %d\n", __func__, error); } /* Restore the PCI state, including the MSI-X registers */ mpr_pci_restore(sc); /* Give the I/O subsystem special priority to get itself prepared */ mprsas_handle_reinit(sc); /* * Get IOC Facts and allocate all structures based on this information. * The attach function will also call mpr_iocfacts_allocate at startup. * If relevant values have changed in IOC Facts, this function will free * all of the memory based on IOC Facts and reallocate that memory. */ if ((error = mpr_iocfacts_allocate(sc, FALSE)) != 0) { panic("%s IOC Facts based allocation failed with error %d\n", __func__, error); } /* * Mapping structures will be re-allocated after getting IOC Page8, so * free these structures here. */ mpr_mapping_exit(sc); /* * The static page function currently read is IOC Page8. Others can be * added in future. It's possible that the values in IOC Page8 have * changed after a Diag Reset due to user modification, so always read * these. Interrupts are masked, so unmask them before getting config * pages. */ mpr_unmask_intr(sc); sc->mpr_flags &= ~MPR_FLAGS_DIAGRESET; mpr_base_static_config_pages(sc); /* * Some mapping info is based in IOC Page8 data, so re-initialize the * mapping tables. */ mpr_mapping_initialize(sc); /* * Restart will reload the event masks clobbered by the reset, and * then enable the port. */ mpr_reregister_events(sc); /* the end of discovery will release the simq, so we're done. */ mpr_dprint(sc, MPR_INIT|MPR_XINFO, "Finished sc %p post %u free %u\n", sc, sc->replypostindex, sc->replyfreeindex); mprsas_release_simq_reinit(sassc); mpr_dprint(sc, MPR_INIT, "%s exit error= %d\n", __func__, error); return 0; } /* Wait for the chip to ACK a word that we've put into its FIFO * Wait for seconds. In single loop wait for busy loop * for 500 microseconds. * Total is [ 0.5 * (2000 * ) ] in miliseconds. * */ static int mpr_wait_db_ack(struct mpr_softc *sc, int timeout, int sleep_flag) { u32 cntdn, count; u32 int_status; u32 doorbell; count = 0; cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout; do { int_status = mpr_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET); if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) { mpr_dprint(sc, MPR_TRACE, "%s: successful count(%d), " "timeout(%d)\n", __func__, count, timeout); return 0; } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) { doorbell = mpr_regread(sc, MPI2_DOORBELL_OFFSET); if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { mpr_dprint(sc, MPR_FAULT, "fault_state(0x%04x)!\n", doorbell); return (EFAULT); } } else if (int_status == 0xFFFFFFFF) goto out; /* * If it can sleep, sleep for 1 milisecond, else busy loop for * 0.5 milisecond */ if (mtx_owned(&sc->mpr_mtx) && sleep_flag == CAN_SLEEP) msleep(&sc->msleep_fake_chan, &sc->mpr_mtx, 0, "mprdba", hz/1000); else if (sleep_flag == CAN_SLEEP) pause("mprdba", hz/1000); else DELAY(500); count++; } while (--cntdn); out: mpr_dprint(sc, MPR_FAULT, "%s: failed due to timeout count(%d), " "int_status(%x)!\n", __func__, count, int_status); return (ETIMEDOUT); } /* Wait for the chip to signal that the next word in its FIFO can be fetched */ static int mpr_wait_db_int(struct mpr_softc *sc) { int retry; for (retry = 0; retry < MPR_DB_MAX_WAIT; retry++) { if ((mpr_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET) & MPI2_HIS_IOC2SYS_DB_STATUS) != 0) return (0); DELAY(2000); } return (ETIMEDOUT); } /* Step through the synchronous command state machine, i.e. "Doorbell mode" */ static int mpr_request_sync(struct mpr_softc *sc, void *req, MPI2_DEFAULT_REPLY *reply, int req_sz, int reply_sz, int timeout) { uint32_t *data32; uint16_t *data16; int i, count, ioc_sz, residual; int sleep_flags = CAN_SLEEP; #if __FreeBSD_version >= 1000029 if (curthread->td_no_sleeping) #else //__FreeBSD_version < 1000029 if (curthread->td_pflags & TDP_NOSLEEPING) #endif //__FreeBSD_version >= 1000029 sleep_flags = NO_SLEEP; /* Step 1 */ mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); /* Step 2 */ if (mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED) return (EBUSY); /* Step 3 * Announce that a message is coming through the doorbell. Messages * are pushed at 32bit words, so round up if needed. */ count = (req_sz + 3) / 4; mpr_regwrite(sc, MPI2_DOORBELL_OFFSET, (MPI2_FUNCTION_HANDSHAKE << MPI2_DOORBELL_FUNCTION_SHIFT) | (count << MPI2_DOORBELL_ADD_DWORDS_SHIFT)); /* Step 4 */ if (mpr_wait_db_int(sc) || (mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED) == 0) { mpr_dprint(sc, MPR_FAULT, "Doorbell failed to activate\n"); return (ENXIO); } mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); if (mpr_wait_db_ack(sc, 5, sleep_flags) != 0) { mpr_dprint(sc, MPR_FAULT, "Doorbell handshake failed\n"); return (ENXIO); } /* Step 5 */ /* Clock out the message data synchronously in 32-bit dwords*/ data32 = (uint32_t *)req; for (i = 0; i < count; i++) { mpr_regwrite(sc, MPI2_DOORBELL_OFFSET, htole32(data32[i])); if (mpr_wait_db_ack(sc, 5, sleep_flags) != 0) { mpr_dprint(sc, MPR_FAULT, "Timeout while writing doorbell\n"); return (ENXIO); } } /* Step 6 */ /* Clock in the reply in 16-bit words. The total length of the * message is always in the 4th byte, so clock out the first 2 words * manually, then loop the rest. */ data16 = (uint16_t *)reply; if (mpr_wait_db_int(sc) != 0) { mpr_dprint(sc, MPR_FAULT, "Timeout reading doorbell 0\n"); return (ENXIO); } data16[0] = mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_DATA_MASK; mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); if (mpr_wait_db_int(sc) != 0) { mpr_dprint(sc, MPR_FAULT, "Timeout reading doorbell 1\n"); return (ENXIO); } data16[1] = mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_DATA_MASK; mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); /* Number of 32bit words in the message */ ioc_sz = reply->MsgLength; /* * Figure out how many 16bit words to clock in without overrunning. * The precision loss with dividing reply_sz can safely be * ignored because the messages can only be multiples of 32bits. */ residual = 0; count = MIN((reply_sz / 4), ioc_sz) * 2; if (count < ioc_sz * 2) { residual = ioc_sz * 2 - count; mpr_dprint(sc, MPR_ERROR, "Driver error, throwing away %d " "residual message words\n", residual); } for (i = 2; i < count; i++) { if (mpr_wait_db_int(sc) != 0) { mpr_dprint(sc, MPR_FAULT, "Timeout reading doorbell %d\n", i); return (ENXIO); } data16[i] = mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_DATA_MASK; mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); } /* * Pull out residual words that won't fit into the provided buffer. * This keeps the chip from hanging due to a driver programming * error. */ while (residual--) { if (mpr_wait_db_int(sc) != 0) { mpr_dprint(sc, MPR_FAULT, "Timeout reading doorbell\n"); return (ENXIO); } (void)mpr_regread(sc, MPI2_DOORBELL_OFFSET); mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); } /* Step 7 */ if (mpr_wait_db_int(sc) != 0) { mpr_dprint(sc, MPR_FAULT, "Timeout waiting to exit doorbell\n"); return (ENXIO); } if (mpr_regread(sc, MPI2_DOORBELL_OFFSET) & MPI2_DOORBELL_USED) mpr_dprint(sc, MPR_FAULT, "Warning, doorbell still active\n"); mpr_regwrite(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET, 0x0); return (0); } static void mpr_enqueue_request(struct mpr_softc *sc, struct mpr_command *cm) { request_descriptor rd; MPR_FUNCTRACE(sc); mpr_dprint(sc, MPR_TRACE, "SMID %u cm %p ccb %p\n", cm->cm_desc.Default.SMID, cm, cm->cm_ccb); if (sc->mpr_flags & MPR_FLAGS_ATTACH_DONE && !(sc->mpr_flags & MPR_FLAGS_SHUTDOWN)) mtx_assert(&sc->mpr_mtx, MA_OWNED); if (++sc->io_cmds_active > sc->io_cmds_highwater) sc->io_cmds_highwater++; KASSERT(cm->cm_state == MPR_CM_STATE_BUSY, ("command not busy\n")); cm->cm_state = MPR_CM_STATE_INQUEUE; if (sc->atomic_desc_capable) { rd.u.low = cm->cm_desc.Words.Low; mpr_regwrite(sc, MPI26_ATOMIC_REQUEST_DESCRIPTOR_POST_OFFSET, rd.u.low); } else { rd.u.low = cm->cm_desc.Words.Low; rd.u.high = cm->cm_desc.Words.High; rd.word = htole64(rd.word); mpr_regwrite(sc, MPI2_REQUEST_DESCRIPTOR_POST_LOW_OFFSET, rd.u.low); mpr_regwrite(sc, MPI2_REQUEST_DESCRIPTOR_POST_HIGH_OFFSET, rd.u.high); } } /* * Just the FACTS, ma'am. */ static int mpr_get_iocfacts(struct mpr_softc *sc, MPI2_IOC_FACTS_REPLY *facts) { MPI2_DEFAULT_REPLY *reply; MPI2_IOC_FACTS_REQUEST request; int error, req_sz, reply_sz; MPR_FUNCTRACE(sc); mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__); req_sz = sizeof(MPI2_IOC_FACTS_REQUEST); reply_sz = sizeof(MPI2_IOC_FACTS_REPLY); reply = (MPI2_DEFAULT_REPLY *)facts; bzero(&request, req_sz); request.Function = MPI2_FUNCTION_IOC_FACTS; error = mpr_request_sync(sc, &request, reply, req_sz, reply_sz, 5); mpr_dprint(sc, MPR_INIT, "%s exit, error= %d\n", __func__, error); return (error); } static int mpr_send_iocinit(struct mpr_softc *sc) { MPI2_IOC_INIT_REQUEST init; MPI2_DEFAULT_REPLY reply; int req_sz, reply_sz, error; struct timeval now; uint64_t time_in_msec; MPR_FUNCTRACE(sc); mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__); /* Do a quick sanity check on proper initialization */ if ((sc->pqdepth == 0) || (sc->fqdepth == 0) || (sc->reqframesz == 0) || (sc->replyframesz == 0)) { mpr_dprint(sc, MPR_INIT|MPR_ERROR, "Driver not fully initialized for IOCInit\n"); return (EINVAL); } req_sz = sizeof(MPI2_IOC_INIT_REQUEST); reply_sz = sizeof(MPI2_IOC_INIT_REPLY); bzero(&init, req_sz); bzero(&reply, reply_sz); /* * Fill in the init block. Note that most addresses are * deliberately in the lower 32bits of memory. This is a micro- * optimzation for PCI/PCIX, though it's not clear if it helps PCIe. */ init.Function = MPI2_FUNCTION_IOC_INIT; init.WhoInit = MPI2_WHOINIT_HOST_DRIVER; init.MsgVersion = htole16(MPI2_VERSION); init.HeaderVersion = htole16(MPI2_HEADER_VERSION); init.SystemRequestFrameSize = htole16((uint16_t)(sc->reqframesz / 4)); init.ReplyDescriptorPostQueueDepth = htole16(sc->pqdepth); init.ReplyFreeQueueDepth = htole16(sc->fqdepth); init.SenseBufferAddressHigh = 0; init.SystemReplyAddressHigh = 0; init.SystemRequestFrameBaseAddress.High = 0; init.SystemRequestFrameBaseAddress.Low = htole32((uint32_t)sc->req_busaddr); init.ReplyDescriptorPostQueueAddress.High = 0; init.ReplyDescriptorPostQueueAddress.Low = htole32((uint32_t)sc->post_busaddr); init.ReplyFreeQueueAddress.High = 0; init.ReplyFreeQueueAddress.Low = htole32((uint32_t)sc->free_busaddr); getmicrotime(&now); time_in_msec = (now.tv_sec * 1000 + now.tv_usec/1000); init.TimeStamp.High = htole32((time_in_msec >> 32) & 0xFFFFFFFF); init.TimeStamp.Low = htole32(time_in_msec & 0xFFFFFFFF); init.HostPageSize = HOST_PAGE_SIZE_4K; error = mpr_request_sync(sc, &init, &reply, req_sz, reply_sz, 5); if ((reply.IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS) error = ENXIO; mpr_dprint(sc, MPR_INIT, "IOCInit status= 0x%x\n", reply.IOCStatus); mpr_dprint(sc, MPR_INIT, "%s exit\n", __func__); return (error); } void mpr_memaddr_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) { bus_addr_t *addr; addr = arg; *addr = segs[0].ds_addr; } void mpr_memaddr_wait_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) { struct mpr_busdma_context *ctx; int need_unload, need_free; ctx = (struct mpr_busdma_context *)arg; need_unload = 0; need_free = 0; mpr_lock(ctx->softc); ctx->error = error; ctx->completed = 1; if ((error == 0) && (ctx->abandoned == 0)) { *ctx->addr = segs[0].ds_addr; } else { if (nsegs != 0) need_unload = 1; if (ctx->abandoned != 0) need_free = 1; } if (need_free == 0) wakeup(ctx); mpr_unlock(ctx->softc); if (need_unload != 0) { bus_dmamap_unload(ctx->buffer_dmat, ctx->buffer_dmamap); *ctx->addr = 0; } if (need_free != 0) free(ctx, M_MPR); } static int mpr_alloc_queues(struct mpr_softc *sc) { struct mpr_queue *q; int nq, i; nq = sc->msi_msgs; mpr_dprint(sc, MPR_INIT|MPR_XINFO, "Allocating %d I/O queues\n", nq); sc->queues = malloc(sizeof(struct mpr_queue) * nq, M_MPR, M_NOWAIT|M_ZERO); if (sc->queues == NULL) return (ENOMEM); for (i = 0; i < nq; i++) { q = &sc->queues[i]; mpr_dprint(sc, MPR_INIT, "Configuring queue %d %p\n", i, q); q->sc = sc; q->qnum = i; } return (0); } static int mpr_alloc_hw_queues(struct mpr_softc *sc) { bus_addr_t queues_busaddr; uint8_t *queues; int qsize, fqsize, pqsize; /* * The reply free queue contains 4 byte entries in multiples of 16 and * aligned on a 16 byte boundary. There must always be an unused entry. * This queue supplies fresh reply frames for the firmware to use. * * The reply descriptor post queue contains 8 byte entries in * multiples of 16 and aligned on a 16 byte boundary. This queue * contains filled-in reply frames sent from the firmware to the host. * * These two queues are allocated together for simplicity. */ sc->fqdepth = roundup2(sc->num_replies + 1, 16); sc->pqdepth = roundup2(sc->num_replies + 1, 16); fqsize= sc->fqdepth * 4; pqsize = sc->pqdepth * 8; qsize = fqsize + pqsize; if (bus_dma_tag_create( sc->mpr_parent_dmat, /* parent */ 16, 0, /* algnmnt, boundary */ BUS_SPACE_MAXADDR_32BIT,/* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ qsize, /* maxsize */ 1, /* nsegments */ qsize, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->queues_dmat)) { mpr_dprint(sc, MPR_ERROR, "Cannot allocate queues DMA tag\n"); return (ENOMEM); } if (bus_dmamem_alloc(sc->queues_dmat, (void **)&queues, BUS_DMA_NOWAIT, &sc->queues_map)) { mpr_dprint(sc, MPR_ERROR, "Cannot allocate queues memory\n"); return (ENOMEM); } bzero(queues, qsize); bus_dmamap_load(sc->queues_dmat, sc->queues_map, queues, qsize, mpr_memaddr_cb, &queues_busaddr, 0); sc->free_queue = (uint32_t *)queues; sc->free_busaddr = queues_busaddr; sc->post_queue = (MPI2_REPLY_DESCRIPTORS_UNION *)(queues + fqsize); sc->post_busaddr = queues_busaddr + fqsize; mpr_dprint(sc, MPR_INIT, "free queue busaddr= %#016jx size= %d\n", (uintmax_t)sc->free_busaddr, fqsize); mpr_dprint(sc, MPR_INIT, "reply queue busaddr= %#016jx size= %d\n", (uintmax_t)sc->post_busaddr, pqsize); return (0); } static int mpr_alloc_replies(struct mpr_softc *sc) { int rsize, num_replies; /* Store the reply frame size in bytes rather than as 32bit words */ sc->replyframesz = sc->facts->ReplyFrameSize * 4; /* * sc->num_replies should be one less than sc->fqdepth. We need to * allocate space for sc->fqdepth replies, but only sc->num_replies * replies can be used at once. */ num_replies = max(sc->fqdepth, sc->num_replies); rsize = sc->replyframesz * num_replies; if (bus_dma_tag_create( sc->mpr_parent_dmat, /* parent */ 4, 0, /* algnmnt, boundary */ BUS_SPACE_MAXADDR_32BIT,/* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ rsize, /* maxsize */ 1, /* nsegments */ rsize, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->reply_dmat)) { mpr_dprint(sc, MPR_ERROR, "Cannot allocate replies DMA tag\n"); return (ENOMEM); } if (bus_dmamem_alloc(sc->reply_dmat, (void **)&sc->reply_frames, BUS_DMA_NOWAIT, &sc->reply_map)) { mpr_dprint(sc, MPR_ERROR, "Cannot allocate replies memory\n"); return (ENOMEM); } bzero(sc->reply_frames, rsize); bus_dmamap_load(sc->reply_dmat, sc->reply_map, sc->reply_frames, rsize, mpr_memaddr_cb, &sc->reply_busaddr, 0); mpr_dprint(sc, MPR_INIT, "reply frames busaddr= %#016jx size= %d\n", (uintmax_t)sc->reply_busaddr, rsize); return (0); } static void mpr_load_chains_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) { struct mpr_softc *sc = arg; struct mpr_chain *chain; bus_size_t bo; int i, o, s; if (error != 0) return; for (i = 0, o = 0, s = 0; s < nsegs; s++) { for (bo = 0; bo + sc->chain_frame_size <= segs[s].ds_len; bo += sc->chain_frame_size) { chain = &sc->chains[i++]; chain->chain =(MPI2_SGE_IO_UNION *)(sc->chain_frames+o); chain->chain_busaddr = segs[s].ds_addr + bo; o += sc->chain_frame_size; mpr_free_chain(sc, chain); } if (bo != segs[s].ds_len) o += segs[s].ds_len - bo; } sc->chain_free_lowwater = i; } static int mpr_alloc_requests(struct mpr_softc *sc) { struct mpr_command *cm; int i, rsize, nsegs; rsize = sc->reqframesz * sc->num_reqs; if (bus_dma_tag_create( sc->mpr_parent_dmat, /* parent */ 16, 0, /* algnmnt, boundary */ BUS_SPACE_MAXADDR_32BIT,/* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ rsize, /* maxsize */ 1, /* nsegments */ rsize, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->req_dmat)) { mpr_dprint(sc, MPR_ERROR, "Cannot allocate request DMA tag\n"); return (ENOMEM); } if (bus_dmamem_alloc(sc->req_dmat, (void **)&sc->req_frames, BUS_DMA_NOWAIT, &sc->req_map)) { mpr_dprint(sc, MPR_ERROR, "Cannot allocate request memory\n"); return (ENOMEM); } bzero(sc->req_frames, rsize); bus_dmamap_load(sc->req_dmat, sc->req_map, sc->req_frames, rsize, mpr_memaddr_cb, &sc->req_busaddr, 0); mpr_dprint(sc, MPR_INIT, "request frames busaddr= %#016jx size= %d\n", (uintmax_t)sc->req_busaddr, rsize); sc->chains = malloc(sizeof(struct mpr_chain) * sc->num_chains, M_MPR, M_NOWAIT | M_ZERO); if (!sc->chains) { mpr_dprint(sc, MPR_ERROR, "Cannot allocate chain memory\n"); return (ENOMEM); } rsize = sc->chain_frame_size * sc->num_chains; if (bus_dma_tag_create( sc->mpr_parent_dmat, /* parent */ 16, 0, /* algnmnt, boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ rsize, /* maxsize */ howmany(rsize, PAGE_SIZE), /* nsegments */ rsize, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->chain_dmat)) { mpr_dprint(sc, MPR_ERROR, "Cannot allocate chain DMA tag\n"); return (ENOMEM); } if (bus_dmamem_alloc(sc->chain_dmat, (void **)&sc->chain_frames, BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->chain_map)) { mpr_dprint(sc, MPR_ERROR, "Cannot allocate chain memory\n"); return (ENOMEM); } if (bus_dmamap_load(sc->chain_dmat, sc->chain_map, sc->chain_frames, rsize, mpr_load_chains_cb, sc, BUS_DMA_NOWAIT)) { mpr_dprint(sc, MPR_ERROR, "Cannot load chain memory\n"); bus_dmamem_free(sc->chain_dmat, sc->chain_frames, sc->chain_map); return (ENOMEM); } rsize = MPR_SENSE_LEN * sc->num_reqs; if (bus_dma_tag_create( sc->mpr_parent_dmat, /* parent */ 1, 0, /* algnmnt, boundary */ BUS_SPACE_MAXADDR_32BIT,/* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ rsize, /* maxsize */ 1, /* nsegments */ rsize, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->sense_dmat)) { mpr_dprint(sc, MPR_ERROR, "Cannot allocate sense DMA tag\n"); return (ENOMEM); } if (bus_dmamem_alloc(sc->sense_dmat, (void **)&sc->sense_frames, BUS_DMA_NOWAIT, &sc->sense_map)) { mpr_dprint(sc, MPR_ERROR, "Cannot allocate sense memory\n"); return (ENOMEM); } bzero(sc->sense_frames, rsize); bus_dmamap_load(sc->sense_dmat, sc->sense_map, sc->sense_frames, rsize, mpr_memaddr_cb, &sc->sense_busaddr, 0); mpr_dprint(sc, MPR_INIT, "sense frames busaddr= %#016jx size= %d\n", (uintmax_t)sc->sense_busaddr, rsize); /* * Allocate NVMe PRP Pages for NVMe SGL support only if the FW supports * these devices. */ if ((sc->facts->MsgVersion >= MPI2_VERSION_02_06) && (sc->facts->ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES)) { if (mpr_alloc_nvme_prp_pages(sc) == ENOMEM) return (ENOMEM); } nsegs = (sc->maxio / PAGE_SIZE) + 1; if (bus_dma_tag_create( sc->mpr_parent_dmat, /* parent */ 1, 0, /* algnmnt, boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ BUS_SPACE_MAXSIZE_32BIT,/* maxsize */ nsegs, /* nsegments */ BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */ BUS_DMA_ALLOCNOW, /* flags */ busdma_lock_mutex, /* lockfunc */ &sc->mpr_mtx, /* lockarg */ &sc->buffer_dmat)) { mpr_dprint(sc, MPR_ERROR, "Cannot allocate buffer DMA tag\n"); return (ENOMEM); } /* * SMID 0 cannot be used as a free command per the firmware spec. * Just drop that command instead of risking accounting bugs. */ sc->commands = malloc(sizeof(struct mpr_command) * sc->num_reqs, M_MPR, M_WAITOK | M_ZERO); if (!sc->commands) { mpr_dprint(sc, MPR_ERROR, "Cannot allocate command memory\n"); return (ENOMEM); } for (i = 1; i < sc->num_reqs; i++) { cm = &sc->commands[i]; cm->cm_req = sc->req_frames + i * sc->reqframesz; cm->cm_req_busaddr = sc->req_busaddr + i * sc->reqframesz; cm->cm_sense = &sc->sense_frames[i]; cm->cm_sense_busaddr = sc->sense_busaddr + i * MPR_SENSE_LEN; cm->cm_desc.Default.SMID = i; cm->cm_sc = sc; cm->cm_state = MPR_CM_STATE_BUSY; TAILQ_INIT(&cm->cm_chain_list); TAILQ_INIT(&cm->cm_prp_page_list); callout_init_mtx(&cm->cm_callout, &sc->mpr_mtx, 0); /* XXX Is a failure here a critical problem? */ if (bus_dmamap_create(sc->buffer_dmat, 0, &cm->cm_dmamap) == 0) { if (i <= sc->num_prireqs) mpr_free_high_priority_command(sc, cm); else mpr_free_command(sc, cm); } else { panic("failed to allocate command %d\n", i); sc->num_reqs = i; break; } } return (0); } /* * Allocate contiguous buffers for PCIe NVMe devices for building native PRPs, * which are scatter/gather lists for NVMe devices. * * This buffer must be contiguous due to the nature of how NVMe PRPs are built * and translated by FW. * * returns ENOMEM if memory could not be allocated, otherwise returns 0. */ static int mpr_alloc_nvme_prp_pages(struct mpr_softc *sc) { int PRPs_per_page, PRPs_required, pages_required; int rsize, i; struct mpr_prp_page *prp_page; /* * Assuming a MAX_IO_SIZE of 1MB and a PAGE_SIZE of 4k, the max number * of PRPs (NVMe's Scatter/Gather Element) needed per I/O is: * MAX_IO_SIZE / PAGE_SIZE = 256 * * 1 PRP entry in main frame for PRP list pointer still leaves 255 PRPs * required for the remainder of the 1MB I/O. 512 PRPs can fit into one * page (4096 / 8 = 512), so only one page is required for each I/O. * * Each of these buffers will need to be contiguous. For simplicity, * only one buffer is allocated here, which has all of the space * required for the NVMe Queue Depth. If there are problems allocating * this one buffer, this function will need to change to allocate * individual, contiguous NVME_QDEPTH buffers. * * The real calculation will use the real max io size. Above is just an * example. * */ PRPs_required = sc->maxio / PAGE_SIZE; PRPs_per_page = (PAGE_SIZE / PRP_ENTRY_SIZE) - 1; pages_required = (PRPs_required / PRPs_per_page) + 1; sc->prp_buffer_size = PAGE_SIZE * pages_required; rsize = sc->prp_buffer_size * NVME_QDEPTH; if (bus_dma_tag_create( sc->mpr_parent_dmat, /* parent */ 4, 0, /* algnmnt, boundary */ BUS_SPACE_MAXADDR_32BIT,/* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ rsize, /* maxsize */ 1, /* nsegments */ rsize, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->prp_page_dmat)) { mpr_dprint(sc, MPR_ERROR, "Cannot allocate NVMe PRP DMA " "tag\n"); return (ENOMEM); } if (bus_dmamem_alloc(sc->prp_page_dmat, (void **)&sc->prp_pages, BUS_DMA_NOWAIT, &sc->prp_page_map)) { mpr_dprint(sc, MPR_ERROR, "Cannot allocate NVMe PRP memory\n"); return (ENOMEM); } bzero(sc->prp_pages, rsize); bus_dmamap_load(sc->prp_page_dmat, sc->prp_page_map, sc->prp_pages, rsize, mpr_memaddr_cb, &sc->prp_page_busaddr, 0); sc->prps = malloc(sizeof(struct mpr_prp_page) * NVME_QDEPTH, M_MPR, M_WAITOK | M_ZERO); for (i = 0; i < NVME_QDEPTH; i++) { prp_page = &sc->prps[i]; prp_page->prp_page = (uint64_t *)(sc->prp_pages + i * sc->prp_buffer_size); prp_page->prp_page_busaddr = (uint64_t)(sc->prp_page_busaddr + i * sc->prp_buffer_size); mpr_free_prp_page(sc, prp_page); sc->prp_pages_free_lowwater++; } return (0); } static int mpr_init_queues(struct mpr_softc *sc) { int i; memset((uint8_t *)sc->post_queue, 0xff, sc->pqdepth * 8); /* * According to the spec, we need to use one less reply than we * have space for on the queue. So sc->num_replies (the number we * use) should be less than sc->fqdepth (allocated size). */ if (sc->num_replies >= sc->fqdepth) return (EINVAL); /* * Initialize all of the free queue entries. */ for (i = 0; i < sc->fqdepth; i++) { sc->free_queue[i] = sc->reply_busaddr + (i * sc->replyframesz); } sc->replyfreeindex = sc->num_replies; return (0); } /* Get the driver parameter tunables. Lowest priority are the driver defaults. * Next are the global settings, if they exist. Highest are the per-unit * settings, if they exist. */ void mpr_get_tunables(struct mpr_softc *sc) { char tmpstr[80], mpr_debug[80]; /* XXX default to some debugging for now */ sc->mpr_debug = MPR_INFO | MPR_FAULT; sc->disable_msix = 0; sc->disable_msi = 0; sc->max_msix = MPR_MSIX_MAX; sc->max_chains = MPR_CHAIN_FRAMES; sc->max_io_pages = MPR_MAXIO_PAGES; sc->enable_ssu = MPR_SSU_ENABLE_SSD_DISABLE_HDD; sc->spinup_wait_time = DEFAULT_SPINUP_WAIT; sc->use_phynum = 1; sc->max_reqframes = MPR_REQ_FRAMES; sc->max_prireqframes = MPR_PRI_REQ_FRAMES; sc->max_replyframes = MPR_REPLY_FRAMES; sc->max_evtframes = MPR_EVT_REPLY_FRAMES; /* * Grab the global variables. */ bzero(mpr_debug, 80); if (TUNABLE_STR_FETCH("hw.mpr.debug_level", mpr_debug, 80) != 0) mpr_parse_debug(sc, mpr_debug); TUNABLE_INT_FETCH("hw.mpr.disable_msix", &sc->disable_msix); TUNABLE_INT_FETCH("hw.mpr.disable_msi", &sc->disable_msi); TUNABLE_INT_FETCH("hw.mpr.max_msix", &sc->max_msix); TUNABLE_INT_FETCH("hw.mpr.max_chains", &sc->max_chains); TUNABLE_INT_FETCH("hw.mpr.max_io_pages", &sc->max_io_pages); TUNABLE_INT_FETCH("hw.mpr.enable_ssu", &sc->enable_ssu); TUNABLE_INT_FETCH("hw.mpr.spinup_wait_time", &sc->spinup_wait_time); TUNABLE_INT_FETCH("hw.mpr.use_phy_num", &sc->use_phynum); TUNABLE_INT_FETCH("hw.mpr.max_reqframes", &sc->max_reqframes); TUNABLE_INT_FETCH("hw.mpr.max_prireqframes", &sc->max_prireqframes); TUNABLE_INT_FETCH("hw.mpr.max_replyframes", &sc->max_replyframes); TUNABLE_INT_FETCH("hw.mpr.max_evtframes", &sc->max_evtframes); /* Grab the unit-instance variables */ snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.debug_level", device_get_unit(sc->mpr_dev)); bzero(mpr_debug, 80); if (TUNABLE_STR_FETCH(tmpstr, mpr_debug, 80) != 0) mpr_parse_debug(sc, mpr_debug); snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.disable_msix", device_get_unit(sc->mpr_dev)); TUNABLE_INT_FETCH(tmpstr, &sc->disable_msix); snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.disable_msi", device_get_unit(sc->mpr_dev)); TUNABLE_INT_FETCH(tmpstr, &sc->disable_msi); snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_msix", device_get_unit(sc->mpr_dev)); TUNABLE_INT_FETCH(tmpstr, &sc->max_msix); snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_chains", device_get_unit(sc->mpr_dev)); TUNABLE_INT_FETCH(tmpstr, &sc->max_chains); snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_io_pages", device_get_unit(sc->mpr_dev)); TUNABLE_INT_FETCH(tmpstr, &sc->max_io_pages); bzero(sc->exclude_ids, sizeof(sc->exclude_ids)); snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.exclude_ids", device_get_unit(sc->mpr_dev)); TUNABLE_STR_FETCH(tmpstr, sc->exclude_ids, sizeof(sc->exclude_ids)); snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.enable_ssu", device_get_unit(sc->mpr_dev)); TUNABLE_INT_FETCH(tmpstr, &sc->enable_ssu); snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.spinup_wait_time", device_get_unit(sc->mpr_dev)); TUNABLE_INT_FETCH(tmpstr, &sc->spinup_wait_time); snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.use_phy_num", device_get_unit(sc->mpr_dev)); TUNABLE_INT_FETCH(tmpstr, &sc->use_phynum); snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_reqframes", device_get_unit(sc->mpr_dev)); TUNABLE_INT_FETCH(tmpstr, &sc->max_reqframes); snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_prireqframes", device_get_unit(sc->mpr_dev)); TUNABLE_INT_FETCH(tmpstr, &sc->max_prireqframes); snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_replyframes", device_get_unit(sc->mpr_dev)); TUNABLE_INT_FETCH(tmpstr, &sc->max_replyframes); snprintf(tmpstr, sizeof(tmpstr), "dev.mpr.%d.max_evtframes", device_get_unit(sc->mpr_dev)); TUNABLE_INT_FETCH(tmpstr, &sc->max_evtframes); } static void mpr_setup_sysctl(struct mpr_softc *sc) { struct sysctl_ctx_list *sysctl_ctx = NULL; struct sysctl_oid *sysctl_tree = NULL; char tmpstr[80], tmpstr2[80]; /* * Setup the sysctl variable so the user can change the debug level * on the fly. */ snprintf(tmpstr, sizeof(tmpstr), "MPR controller %d", device_get_unit(sc->mpr_dev)); snprintf(tmpstr2, sizeof(tmpstr2), "%d", device_get_unit(sc->mpr_dev)); sysctl_ctx = device_get_sysctl_ctx(sc->mpr_dev); if (sysctl_ctx != NULL) sysctl_tree = device_get_sysctl_tree(sc->mpr_dev); if (sysctl_tree == NULL) { sysctl_ctx_init(&sc->sysctl_ctx); sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx, SYSCTL_STATIC_CHILDREN(_hw_mpr), OID_AUTO, tmpstr2, CTLFLAG_RD, 0, tmpstr); if (sc->sysctl_tree == NULL) return; sysctl_ctx = &sc->sysctl_ctx; sysctl_tree = sc->sysctl_tree; } SYSCTL_ADD_PROC(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO, "debug_level", CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, mpr_debug_sysctl, "A", "mpr debug level"); SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO, "disable_msix", CTLFLAG_RD, &sc->disable_msix, 0, "Disable the use of MSI-X interrupts"); SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO, "max_msix", CTLFLAG_RD, &sc->max_msix, 0, "User-defined maximum number of MSIX queues"); SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO, "msix_msgs", CTLFLAG_RD, &sc->msi_msgs, 0, "Negotiated number of MSIX queues"); SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO, "max_reqframes", CTLFLAG_RD, &sc->max_reqframes, 0, "Total number of allocated request frames"); SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO, "max_prireqframes", CTLFLAG_RD, &sc->max_prireqframes, 0, "Total number of allocated high priority request frames"); SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO, "max_replyframes", CTLFLAG_RD, &sc->max_replyframes, 0, "Total number of allocated reply frames"); SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO, "max_evtframes", CTLFLAG_RD, &sc->max_evtframes, 0, "Total number of event frames allocated"); SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO, "firmware_version", CTLFLAG_RW, sc->fw_version, strlen(sc->fw_version), "firmware version"); SYSCTL_ADD_STRING(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO, "driver_version", CTLFLAG_RW, MPR_DRIVER_VERSION, strlen(MPR_DRIVER_VERSION), "driver version"); SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO, "io_cmds_active", CTLFLAG_RD, &sc->io_cmds_active, 0, "number of currently active commands"); SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO, "io_cmds_highwater", CTLFLAG_RD, &sc->io_cmds_highwater, 0, "maximum active commands seen"); SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO, "chain_free", CTLFLAG_RD, &sc->chain_free, 0, "number of free chain elements"); SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO, "chain_free_lowwater", CTLFLAG_RD, &sc->chain_free_lowwater, 0,"lowest number of free chain elements"); SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO, "max_chains", CTLFLAG_RD, &sc->max_chains, 0,"maximum chain frames that will be allocated"); SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO, "max_io_pages", CTLFLAG_RD, &sc->max_io_pages, 0,"maximum pages to allow per I/O (if <1 use " "IOCFacts)"); SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO, "enable_ssu", CTLFLAG_RW, &sc->enable_ssu, 0, "enable SSU to SATA SSD/HDD at shutdown"); SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO, "chain_alloc_fail", CTLFLAG_RD, &sc->chain_alloc_fail, "chain allocation failures"); SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO, "spinup_wait_time", CTLFLAG_RD, &sc->spinup_wait_time, DEFAULT_SPINUP_WAIT, "seconds to wait for " "spinup after SATA ID error"); SYSCTL_ADD_PROC(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO, "dump_reqs", CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_SKIP, sc, 0, mpr_dump_reqs, "I", "Dump Active Requests"); SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO, "use_phy_num", CTLFLAG_RD, &sc->use_phynum, 0, "Use the phy number for enumeration"); SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO, "prp_pages_free", CTLFLAG_RD, &sc->prp_pages_free, 0, "number of free PRP pages"); SYSCTL_ADD_INT(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO, "prp_pages_free_lowwater", CTLFLAG_RD, &sc->prp_pages_free_lowwater, 0,"lowest number of free PRP pages"); SYSCTL_ADD_UQUAD(sysctl_ctx, SYSCTL_CHILDREN(sysctl_tree), OID_AUTO, "prp_page_alloc_fail", CTLFLAG_RD, &sc->prp_page_alloc_fail, "PRP page allocation failures"); } static struct mpr_debug_string { char *name; int flag; } mpr_debug_strings[] = { {"info", MPR_INFO}, {"fault", MPR_FAULT}, {"event", MPR_EVENT}, {"log", MPR_LOG}, {"recovery", MPR_RECOVERY}, {"error", MPR_ERROR}, {"init", MPR_INIT}, {"xinfo", MPR_XINFO}, {"user", MPR_USER}, {"mapping", MPR_MAPPING}, {"trace", MPR_TRACE} }; enum mpr_debug_level_combiner { COMB_NONE, COMB_ADD, COMB_SUB }; static int mpr_debug_sysctl(SYSCTL_HANDLER_ARGS) { struct mpr_softc *sc; struct mpr_debug_string *string; struct sbuf *sbuf; char *buffer; size_t sz; int i, len, debug, error; sc = (struct mpr_softc *)arg1; error = sysctl_wire_old_buffer(req, 0); if (error != 0) return (error); sbuf = sbuf_new_for_sysctl(NULL, NULL, 128, req); debug = sc->mpr_debug; sbuf_printf(sbuf, "%#x", debug); sz = sizeof(mpr_debug_strings) / sizeof(mpr_debug_strings[0]); for (i = 0; i < sz; i++) { string = &mpr_debug_strings[i]; if (debug & string->flag) sbuf_printf(sbuf, ",%s", string->name); } error = sbuf_finish(sbuf); sbuf_delete(sbuf); if (error || req->newptr == NULL) return (error); len = req->newlen - req->newidx; if (len == 0) return (0); buffer = malloc(len, M_MPR, M_ZERO|M_WAITOK); error = SYSCTL_IN(req, buffer, len); mpr_parse_debug(sc, buffer); free(buffer, M_MPR); return (error); } static void mpr_parse_debug(struct mpr_softc *sc, char *list) { struct mpr_debug_string *string; enum mpr_debug_level_combiner op; char *token, *endtoken; size_t sz; int flags, i; if (list == NULL || *list == '\0') return; if (*list == '+') { op = COMB_ADD; list++; } else if (*list == '-') { op = COMB_SUB; list++; } else op = COMB_NONE; if (*list == '\0') return; flags = 0; sz = sizeof(mpr_debug_strings) / sizeof(mpr_debug_strings[0]); while ((token = strsep(&list, ":,")) != NULL) { /* Handle integer flags */ flags |= strtol(token, &endtoken, 0); if (token != endtoken) continue; /* Handle text flags */ for (i = 0; i < sz; i++) { string = &mpr_debug_strings[i]; if (strcasecmp(token, string->name) == 0) { flags |= string->flag; break; } } } switch (op) { case COMB_NONE: sc->mpr_debug = flags; break; case COMB_ADD: sc->mpr_debug |= flags; break; case COMB_SUB: sc->mpr_debug &= (~flags); break; } return; } struct mpr_dumpreq_hdr { uint32_t smid; uint32_t state; uint32_t numframes; uint32_t deschi; uint32_t desclo; }; static int mpr_dump_reqs(SYSCTL_HANDLER_ARGS) { struct mpr_softc *sc; struct mpr_chain *chain, *chain1; struct mpr_command *cm; struct mpr_dumpreq_hdr hdr; struct sbuf *sb; uint32_t smid, state; int i, numreqs, error = 0; sc = (struct mpr_softc *)arg1; if ((error = priv_check(curthread, PRIV_DRIVER)) != 0) { printf("priv check error %d\n", error); return (error); } state = MPR_CM_STATE_INQUEUE; smid = 1; numreqs = sc->num_reqs; if (req->newptr != NULL) return (EINVAL); if (smid == 0 || smid > sc->num_reqs) return (EINVAL); if (numreqs <= 0 || (numreqs + smid > sc->num_reqs)) numreqs = sc->num_reqs; sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); /* Best effort, no locking */ for (i = smid; i < numreqs; i++) { cm = &sc->commands[i]; if (cm->cm_state != state) continue; hdr.smid = i; hdr.state = cm->cm_state; hdr.numframes = 1; hdr.deschi = cm->cm_desc.Words.High; hdr.desclo = cm->cm_desc.Words.Low; TAILQ_FOREACH_SAFE(chain, &cm->cm_chain_list, chain_link, chain1) hdr.numframes++; sbuf_bcat(sb, &hdr, sizeof(hdr)); sbuf_bcat(sb, cm->cm_req, 128); TAILQ_FOREACH_SAFE(chain, &cm->cm_chain_list, chain_link, chain1) sbuf_bcat(sb, chain->chain, 128); } error = sbuf_finish(sb); sbuf_delete(sb); return (error); } int mpr_attach(struct mpr_softc *sc) { int error; MPR_FUNCTRACE(sc); mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__); mtx_init(&sc->mpr_mtx, "MPR lock", NULL, MTX_DEF); callout_init_mtx(&sc->periodic, &sc->mpr_mtx, 0); callout_init_mtx(&sc->device_check_callout, &sc->mpr_mtx, 0); TAILQ_INIT(&sc->event_list); timevalclear(&sc->lastfail); if ((error = mpr_transition_ready(sc)) != 0) { mpr_dprint(sc, MPR_INIT|MPR_FAULT, "Failed to transition ready\n"); return (error); } sc->facts = malloc(sizeof(MPI2_IOC_FACTS_REPLY), M_MPR, M_ZERO|M_NOWAIT); if (!sc->facts) { mpr_dprint(sc, MPR_INIT|MPR_FAULT, "Cannot allocate memory, exit\n"); return (ENOMEM); } /* * Get IOC Facts and allocate all structures based on this information. * A Diag Reset will also call mpr_iocfacts_allocate and re-read the IOC * Facts. If relevant values have changed in IOC Facts, this function * will free all of the memory based on IOC Facts and reallocate that * memory. If this fails, any allocated memory should already be freed. */ if ((error = mpr_iocfacts_allocate(sc, TRUE)) != 0) { mpr_dprint(sc, MPR_INIT|MPR_FAULT, "IOC Facts allocation " "failed with error %d\n", error); return (error); } /* Start the periodic watchdog check on the IOC Doorbell */ mpr_periodic(sc); /* * The portenable will kick off discovery events that will drive the * rest of the initialization process. The CAM/SAS module will * hold up the boot sequence until discovery is complete. */ sc->mpr_ich.ich_func = mpr_startup; sc->mpr_ich.ich_arg = sc; if (config_intrhook_establish(&sc->mpr_ich) != 0) { mpr_dprint(sc, MPR_INIT|MPR_ERROR, "Cannot establish MPR config hook\n"); error = EINVAL; } /* * Allow IR to shutdown gracefully when shutdown occurs. */ sc->shutdown_eh = EVENTHANDLER_REGISTER(shutdown_final, mprsas_ir_shutdown, sc, SHUTDOWN_PRI_DEFAULT); if (sc->shutdown_eh == NULL) mpr_dprint(sc, MPR_INIT|MPR_ERROR, "shutdown event registration failed\n"); mpr_setup_sysctl(sc); sc->mpr_flags |= MPR_FLAGS_ATTACH_DONE; mpr_dprint(sc, MPR_INIT, "%s exit error= %d\n", __func__, error); return (error); } /* Run through any late-start handlers. */ static void mpr_startup(void *arg) { struct mpr_softc *sc; sc = (struct mpr_softc *)arg; mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__); mpr_lock(sc); mpr_unmask_intr(sc); /* initialize device mapping tables */ mpr_base_static_config_pages(sc); mpr_mapping_initialize(sc); mprsas_startup(sc); mpr_unlock(sc); mpr_dprint(sc, MPR_INIT, "disestablish config intrhook\n"); config_intrhook_disestablish(&sc->mpr_ich); sc->mpr_ich.ich_arg = NULL; mpr_dprint(sc, MPR_INIT, "%s exit\n", __func__); } /* Periodic watchdog. Is called with the driver lock already held. */ static void mpr_periodic(void *arg) { struct mpr_softc *sc; uint32_t db; sc = (struct mpr_softc *)arg; if (sc->mpr_flags & MPR_FLAGS_SHUTDOWN) return; db = mpr_regread(sc, MPI2_DOORBELL_OFFSET); if ((db & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { if ((db & MPI2_DOORBELL_FAULT_CODE_MASK) == IFAULT_IOP_OVER_TEMP_THRESHOLD_EXCEEDED) { panic("TEMPERATURE FAULT: STOPPING."); } mpr_dprint(sc, MPR_FAULT, "IOC Fault 0x%08x, Resetting\n", db); mpr_reinit(sc); } callout_reset(&sc->periodic, MPR_PERIODIC_DELAY * hz, mpr_periodic, sc); } static void mpr_log_evt_handler(struct mpr_softc *sc, uintptr_t data, MPI2_EVENT_NOTIFICATION_REPLY *event) { MPI2_EVENT_DATA_LOG_ENTRY_ADDED *entry; MPR_DPRINT_EVENT(sc, generic, event); switch (event->Event) { case MPI2_EVENT_LOG_DATA: mpr_dprint(sc, MPR_EVENT, "MPI2_EVENT_LOG_DATA:\n"); if (sc->mpr_debug & MPR_EVENT) hexdump(event->EventData, event->EventDataLength, NULL, 0); break; case MPI2_EVENT_LOG_ENTRY_ADDED: entry = (MPI2_EVENT_DATA_LOG_ENTRY_ADDED *)event->EventData; mpr_dprint(sc, MPR_EVENT, "MPI2_EVENT_LOG_ENTRY_ADDED event " "0x%x Sequence %d:\n", entry->LogEntryQualifier, entry->LogSequence); break; default: break; } return; } static int mpr_attach_log(struct mpr_softc *sc) { uint8_t events[16]; bzero(events, 16); setbit(events, MPI2_EVENT_LOG_DATA); setbit(events, MPI2_EVENT_LOG_ENTRY_ADDED); mpr_register_events(sc, events, mpr_log_evt_handler, NULL, &sc->mpr_log_eh); return (0); } static int mpr_detach_log(struct mpr_softc *sc) { if (sc->mpr_log_eh != NULL) mpr_deregister_events(sc, sc->mpr_log_eh); return (0); } /* * Free all of the driver resources and detach submodules. Should be called * without the lock held. */ int mpr_free(struct mpr_softc *sc) { int error; mpr_dprint(sc, MPR_INIT, "%s entered\n", __func__); /* Turn off the watchdog */ mpr_lock(sc); sc->mpr_flags |= MPR_FLAGS_SHUTDOWN; mpr_unlock(sc); /* Lock must not be held for this */ callout_drain(&sc->periodic); callout_drain(&sc->device_check_callout); if (((error = mpr_detach_log(sc)) != 0) || ((error = mpr_detach_sas(sc)) != 0)) { mpr_dprint(sc, MPR_INIT|MPR_FAULT, "failed to detach " "subsystems, error= %d, exit\n", error); return (error); } mpr_detach_user(sc); /* Put the IOC back in the READY state. */ mpr_lock(sc); if ((error = mpr_transition_ready(sc)) != 0) { mpr_unlock(sc); return (error); } mpr_unlock(sc); if (sc->facts != NULL) free(sc->facts, M_MPR); /* * Free all buffers that are based on IOC Facts. A Diag Reset may need * to free these buffers too. */ mpr_iocfacts_free(sc); if (sc->sysctl_tree != NULL) sysctl_ctx_free(&sc->sysctl_ctx); /* Deregister the shutdown function */ if (sc->shutdown_eh != NULL) EVENTHANDLER_DEREGISTER(shutdown_final, sc->shutdown_eh); mtx_destroy(&sc->mpr_mtx); mpr_dprint(sc, MPR_INIT, "%s exit\n", __func__); return (0); } static __inline void mpr_complete_command(struct mpr_softc *sc, struct mpr_command *cm) { MPR_FUNCTRACE(sc); if (cm == NULL) { mpr_dprint(sc, MPR_ERROR, "Completing NULL command\n"); return; } if (cm->cm_flags & MPR_CM_FLAGS_POLLED) cm->cm_flags |= MPR_CM_FLAGS_COMPLETE; if (cm->cm_complete != NULL) { mpr_dprint(sc, MPR_TRACE, "%s cm %p calling cm_complete %p data %p reply %p\n", __func__, cm, cm->cm_complete, cm->cm_complete_data, cm->cm_reply); cm->cm_complete(sc, cm); } if (cm->cm_flags & MPR_CM_FLAGS_WAKEUP) { mpr_dprint(sc, MPR_TRACE, "waking up %p\n", cm); wakeup(cm); } if (sc->io_cmds_active != 0) { sc->io_cmds_active--; } else { mpr_dprint(sc, MPR_ERROR, "Warning: io_cmds_active is " "out of sync - resynching to 0\n"); } } static void mpr_sas_log_info(struct mpr_softc *sc , u32 log_info) { union loginfo_type { u32 loginfo; struct { u32 subcode:16; u32 code:8; u32 originator:4; u32 bus_type:4; } dw; }; union loginfo_type sas_loginfo; char *originator_str = NULL; sas_loginfo.loginfo = log_info; if (sas_loginfo.dw.bus_type != 3 /*SAS*/) return; /* each nexus loss loginfo */ if (log_info == 0x31170000) return; /* eat the loginfos associated with task aborts */ if ((log_info == 30050000) || (log_info == 0x31140000) || (log_info == 0x31130000)) return; switch (sas_loginfo.dw.originator) { case 0: originator_str = "IOP"; break; case 1: originator_str = "PL"; break; case 2: originator_str = "IR"; break; } mpr_dprint(sc, MPR_LOG, "log_info(0x%08x): originator(%s), " "code(0x%02x), sub_code(0x%04x)\n", log_info, originator_str, sas_loginfo.dw.code, sas_loginfo.dw.subcode); } static void mpr_display_reply_info(struct mpr_softc *sc, uint8_t *reply) { MPI2DefaultReply_t *mpi_reply; u16 sc_status; mpi_reply = (MPI2DefaultReply_t*)reply; sc_status = le16toh(mpi_reply->IOCStatus); if (sc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) mpr_sas_log_info(sc, le32toh(mpi_reply->IOCLogInfo)); } void mpr_intr(void *data) { struct mpr_softc *sc; uint32_t status; sc = (struct mpr_softc *)data; mpr_dprint(sc, MPR_TRACE, "%s\n", __func__); /* * Check interrupt status register to flush the bus. This is * needed for both INTx interrupts and driver-driven polling */ status = mpr_regread(sc, MPI2_HOST_INTERRUPT_STATUS_OFFSET); if ((status & MPI2_HIS_REPLY_DESCRIPTOR_INTERRUPT) == 0) return; mpr_lock(sc); mpr_intr_locked(data); mpr_unlock(sc); return; } /* * In theory, MSI/MSIX interrupts shouldn't need to read any registers on the * chip. Hopefully this theory is correct. */ void mpr_intr_msi(void *data) { struct mpr_softc *sc; sc = (struct mpr_softc *)data; mpr_dprint(sc, MPR_TRACE, "%s\n", __func__); mpr_lock(sc); mpr_intr_locked(data); mpr_unlock(sc); return; } /* * The locking is overly broad and simplistic, but easy to deal with for now. */ void mpr_intr_locked(void *data) { MPI2_REPLY_DESCRIPTORS_UNION *desc; MPI2_DIAG_RELEASE_REPLY *rel_rep; mpr_fw_diagnostic_buffer_t *pBuffer; struct mpr_softc *sc; uint64_t tdesc; struct mpr_command *cm = NULL; uint8_t flags; u_int pq; sc = (struct mpr_softc *)data; pq = sc->replypostindex; mpr_dprint(sc, MPR_TRACE, "%s sc %p starting with replypostindex %u\n", __func__, sc, sc->replypostindex); for ( ;; ) { cm = NULL; desc = &sc->post_queue[sc->replypostindex]; /* * Copy and clear out the descriptor so that any reentry will * immediately know that this descriptor has already been * looked at. There is unfortunate casting magic because the * MPI API doesn't have a cardinal 64bit type. */ tdesc = 0xffffffffffffffff; tdesc = atomic_swap_64((uint64_t *)desc, tdesc); desc = (MPI2_REPLY_DESCRIPTORS_UNION *)&tdesc; flags = desc->Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK; if ((flags == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) || (le32toh(desc->Words.High) == 0xffffffff)) break; /* increment the replypostindex now, so that event handlers * and cm completion handlers which decide to do a diag * reset can zero it without it getting incremented again * afterwards, and we break out of this loop on the next * iteration since the reply post queue has been cleared to * 0xFF and all descriptors look unused (which they are). */ if (++sc->replypostindex >= sc->pqdepth) sc->replypostindex = 0; switch (flags) { case MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS: case MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS: case MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS: cm = &sc->commands[le16toh(desc->SCSIIOSuccess.SMID)]; KASSERT(cm->cm_state == MPR_CM_STATE_INQUEUE, ("command not inqueue\n")); cm->cm_state = MPR_CM_STATE_BUSY; cm->cm_reply = NULL; break; case MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY: { uint32_t baddr; uint8_t *reply; /* * Re-compose the reply address from the address * sent back from the chip. The ReplyFrameAddress * is the lower 32 bits of the physical address of * particular reply frame. Convert that address to * host format, and then use that to provide the * offset against the virtual address base * (sc->reply_frames). */ baddr = le32toh(desc->AddressReply.ReplyFrameAddress); reply = sc->reply_frames + (baddr - ((uint32_t)sc->reply_busaddr)); /* * Make sure the reply we got back is in a valid * range. If not, go ahead and panic here, since * we'll probably panic as soon as we deference the * reply pointer anyway. */ if ((reply < sc->reply_frames) || (reply > (sc->reply_frames + (sc->fqdepth * sc->replyframesz)))) { printf("%s: WARNING: reply %p out of range!\n", __func__, reply); printf("%s: reply_frames %p, fqdepth %d, " "frame size %d\n", __func__, sc->reply_frames, sc->fqdepth, sc->replyframesz); printf("%s: baddr %#x,\n", __func__, baddr); /* LSI-TODO. See Linux Code for Graceful exit */ panic("Reply address out of range"); } if (le16toh(desc->AddressReply.SMID) == 0) { if (((MPI2_DEFAULT_REPLY *)reply)->Function == MPI2_FUNCTION_DIAG_BUFFER_POST) { /* * If SMID is 0 for Diag Buffer Post, * this implies that the reply is due to * a release function with a status that * the buffer has been released. Set * the buffer flags accordingly. */ rel_rep = (MPI2_DIAG_RELEASE_REPLY *)reply; if ((le16toh(rel_rep->IOCStatus) & MPI2_IOCSTATUS_MASK) == MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED) { pBuffer = &sc->fw_diag_buffer_list[ rel_rep->BufferType]; pBuffer->valid_data = TRUE; pBuffer->owned_by_firmware = FALSE; pBuffer->immediate = FALSE; } } else mpr_dispatch_event(sc, baddr, (MPI2_EVENT_NOTIFICATION_REPLY *) reply); } else { cm = &sc->commands[ le16toh(desc->AddressReply.SMID)]; KASSERT(cm->cm_state == MPR_CM_STATE_INQUEUE, ("command SMID %d not inqueue\n", desc->AddressReply.SMID)); cm->cm_state = MPR_CM_STATE_BUSY; cm->cm_reply = reply; cm->cm_reply_data = le32toh(desc->AddressReply. ReplyFrameAddress); } break; } case MPI2_RPY_DESCRIPT_FLAGS_TARGETASSIST_SUCCESS: case MPI2_RPY_DESCRIPT_FLAGS_TARGET_COMMAND_BUFFER: case MPI2_RPY_DESCRIPT_FLAGS_RAID_ACCELERATOR_SUCCESS: default: /* Unhandled */ mpr_dprint(sc, MPR_ERROR, "Unhandled reply 0x%x\n", desc->Default.ReplyFlags); cm = NULL; break; } if (cm != NULL) { // Print Error reply frame if (cm->cm_reply) mpr_display_reply_info(sc,cm->cm_reply); mpr_complete_command(sc, cm); } } if (pq != sc->replypostindex) { mpr_dprint(sc, MPR_TRACE, "%s sc %p writing postindex %d\n", __func__, sc, sc->replypostindex); mpr_regwrite(sc, MPI2_REPLY_POST_HOST_INDEX_OFFSET, sc->replypostindex); } return; } static void mpr_dispatch_event(struct mpr_softc *sc, uintptr_t data, MPI2_EVENT_NOTIFICATION_REPLY *reply) { struct mpr_event_handle *eh; int event, handled = 0; event = le16toh(reply->Event); TAILQ_FOREACH(eh, &sc->event_list, eh_list) { if (isset(eh->mask, event)) { eh->callback(sc, data, reply); handled++; } } if (handled == 0) mpr_dprint(sc, MPR_EVENT, "Unhandled event 0x%x\n", le16toh(event)); /* * This is the only place that the event/reply should be freed. * Anything wanting to hold onto the event data should have * already copied it into their own storage. */ mpr_free_reply(sc, data); } static void mpr_reregister_events_complete(struct mpr_softc *sc, struct mpr_command *cm) { mpr_dprint(sc, MPR_TRACE, "%s\n", __func__); if (cm->cm_reply) MPR_DPRINT_EVENT(sc, generic, (MPI2_EVENT_NOTIFICATION_REPLY *)cm->cm_reply); mpr_free_command(sc, cm); /* next, send a port enable */ mprsas_startup(sc); } /* * For both register_events and update_events, the caller supplies a bitmap * of events that it _wants_. These functions then turn that into a bitmask * suitable for the controller. */ int mpr_register_events(struct mpr_softc *sc, uint8_t *mask, mpr_evt_callback_t *cb, void *data, struct mpr_event_handle **handle) { struct mpr_event_handle *eh; int error = 0; eh = malloc(sizeof(struct mpr_event_handle), M_MPR, M_WAITOK|M_ZERO); if (!eh) { mpr_dprint(sc, MPR_EVENT|MPR_ERROR, "Cannot allocate event memory\n"); return (ENOMEM); } eh->callback = cb; eh->data = data; TAILQ_INSERT_TAIL(&sc->event_list, eh, eh_list); if (mask != NULL) error = mpr_update_events(sc, eh, mask); *handle = eh; return (error); } int mpr_update_events(struct mpr_softc *sc, struct mpr_event_handle *handle, uint8_t *mask) { MPI2_EVENT_NOTIFICATION_REQUEST *evtreq; MPI2_EVENT_NOTIFICATION_REPLY *reply = NULL; struct mpr_command *cm = NULL; struct mpr_event_handle *eh; int error, i; mpr_dprint(sc, MPR_TRACE, "%s\n", __func__); if ((mask != NULL) && (handle != NULL)) bcopy(mask, &handle->mask[0], 16); memset(sc->event_mask, 0xff, 16); TAILQ_FOREACH(eh, &sc->event_list, eh_list) { for (i = 0; i < 16; i++) sc->event_mask[i] &= ~eh->mask[i]; } if ((cm = mpr_alloc_command(sc)) == NULL) return (EBUSY); evtreq = (MPI2_EVENT_NOTIFICATION_REQUEST *)cm->cm_req; evtreq->Function = MPI2_FUNCTION_EVENT_NOTIFICATION; evtreq->MsgFlags = 0; evtreq->SASBroadcastPrimitiveMasks = 0; #ifdef MPR_DEBUG_ALL_EVENTS { u_char fullmask[16]; memset(fullmask, 0x00, 16); bcopy(fullmask, (uint8_t *)&evtreq->EventMasks, 16); } #else bcopy(sc->event_mask, (uint8_t *)&evtreq->EventMasks, 16); #endif cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; cm->cm_data = NULL; error = mpr_request_polled(sc, &cm); if (cm != NULL) reply = (MPI2_EVENT_NOTIFICATION_REPLY *)cm->cm_reply; if ((reply == NULL) || (reply->IOCStatus & MPI2_IOCSTATUS_MASK) != MPI2_IOCSTATUS_SUCCESS) error = ENXIO; if (reply) MPR_DPRINT_EVENT(sc, generic, reply); mpr_dprint(sc, MPR_TRACE, "%s finished error %d\n", __func__, error); if (cm != NULL) mpr_free_command(sc, cm); return (error); } static int mpr_reregister_events(struct mpr_softc *sc) { MPI2_EVENT_NOTIFICATION_REQUEST *evtreq; struct mpr_command *cm; struct mpr_event_handle *eh; int error, i; mpr_dprint(sc, MPR_TRACE, "%s\n", __func__); /* first, reregister events */ memset(sc->event_mask, 0xff, 16); TAILQ_FOREACH(eh, &sc->event_list, eh_list) { for (i = 0; i < 16; i++) sc->event_mask[i] &= ~eh->mask[i]; } if ((cm = mpr_alloc_command(sc)) == NULL) return (EBUSY); evtreq = (MPI2_EVENT_NOTIFICATION_REQUEST *)cm->cm_req; evtreq->Function = MPI2_FUNCTION_EVENT_NOTIFICATION; evtreq->MsgFlags = 0; evtreq->SASBroadcastPrimitiveMasks = 0; #ifdef MPR_DEBUG_ALL_EVENTS { u_char fullmask[16]; memset(fullmask, 0x00, 16); bcopy(fullmask, (uint8_t *)&evtreq->EventMasks, 16); } #else bcopy(sc->event_mask, (uint8_t *)&evtreq->EventMasks, 16); #endif cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; cm->cm_data = NULL; cm->cm_complete = mpr_reregister_events_complete; error = mpr_map_command(sc, cm); mpr_dprint(sc, MPR_TRACE, "%s finished with error %d\n", __func__, error); return (error); } int mpr_deregister_events(struct mpr_softc *sc, struct mpr_event_handle *handle) { TAILQ_REMOVE(&sc->event_list, handle, eh_list); free(handle, M_MPR); return (mpr_update_events(sc, NULL, NULL)); } /** * mpr_build_nvme_prp - This function is called for NVMe end devices to build a * native SGL (NVMe PRP). The native SGL is built starting in the first PRP entry * of the NVMe message (PRP1). If the data buffer is small enough to be described * entirely using PRP1, then PRP2 is not used. If needed, PRP2 is used to * describe a larger data buffer. If the data buffer is too large to describe * using the two PRP entriess inside the NVMe message, then PRP1 describes the * first data memory segment, and PRP2 contains a pointer to a PRP list located * elsewhere in memory to describe the remaining data memory segments. The PRP * list will be contiguous. * The native SGL for NVMe devices is a Physical Region Page (PRP). A PRP * consists of a list of PRP entries to describe a number of noncontigous * physical memory segments as a single memory buffer, just as a SGL does. Note * however, that this function is only used by the IOCTL call, so the memory * given will be guaranteed to be contiguous. There is no need to translate * non-contiguous SGL into a PRP in this case. All PRPs will describe contiguous * space that is one page size each. * * Each NVMe message contains two PRP entries. The first (PRP1) either contains * a PRP list pointer or a PRP element, depending upon the command. PRP2 contains * the second PRP element if the memory being described fits within 2 PRP * entries, or a PRP list pointer if the PRP spans more than two entries. * * A PRP list pointer contains the address of a PRP list, structured as a linear * array of PRP entries. Each PRP entry in this list describes a segment of * physical memory. * * Each 64-bit PRP entry comprises an address and an offset field. The address * always points to the beginning of a PAGE_SIZE physical memory page, and the * offset describes where within that page the memory segment begins. Only the * first element in a PRP list may contain a non-zero offest, implying that all * memory segments following the first begin at the start of a PAGE_SIZE page. * * Each PRP element normally describes a chunck of PAGE_SIZE physical memory, * with exceptions for the first and last elements in the list. If the memory * being described by the list begins at a non-zero offset within the first page, * then the first PRP element will contain a non-zero offset indicating where the * region begins within the page. The last memory segment may end before the end * of the PAGE_SIZE segment, depending upon the overall size of the memory being * described by the PRP list. * * Since PRP entries lack any indication of size, the overall data buffer length * is used to determine where the end of the data memory buffer is located, and * how many PRP entries are required to describe it. * * Returns nothing. */ void mpr_build_nvme_prp(struct mpr_softc *sc, struct mpr_command *cm, Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request, void *data, uint32_t data_in_sz, uint32_t data_out_sz) { int prp_size = PRP_ENTRY_SIZE; uint64_t *prp_entry, *prp1_entry, *prp2_entry; uint64_t *prp_entry_phys, *prp_page, *prp_page_phys; uint32_t offset, entry_len, page_mask_result, page_mask; bus_addr_t paddr; size_t length; struct mpr_prp_page *prp_page_info = NULL; /* * Not all commands require a data transfer. If no data, just return * without constructing any PRP. */ if (!data_in_sz && !data_out_sz) return; /* * Set pointers to PRP1 and PRP2, which are in the NVMe command. PRP1 is * located at a 24 byte offset from the start of the NVMe command. Then * set the current PRP entry pointer to PRP1. */ prp1_entry = (uint64_t *)(nvme_encap_request->NVMe_Command + NVME_CMD_PRP1_OFFSET); prp2_entry = (uint64_t *)(nvme_encap_request->NVMe_Command + NVME_CMD_PRP2_OFFSET); prp_entry = prp1_entry; /* * For the PRP entries, use the specially allocated buffer of * contiguous memory. PRP Page allocation failures should not happen * because there should be enough PRP page buffers to account for the * possible NVMe QDepth. */ prp_page_info = mpr_alloc_prp_page(sc); KASSERT(prp_page_info != NULL, ("%s: There are no PRP Pages left to be " "used for building a native NVMe SGL.\n", __func__)); prp_page = (uint64_t *)prp_page_info->prp_page; prp_page_phys = (uint64_t *)(uintptr_t)prp_page_info->prp_page_busaddr; /* * Insert the allocated PRP page into the command's PRP page list. This * will be freed when the command is freed. */ TAILQ_INSERT_TAIL(&cm->cm_prp_page_list, prp_page_info, prp_page_link); /* * Check if we are within 1 entry of a page boundary we don't want our * first entry to be a PRP List entry. */ page_mask = PAGE_SIZE - 1; page_mask_result = (uintptr_t)((uint8_t *)prp_page + prp_size) & page_mask; if (!page_mask_result) { /* Bump up to next page boundary. */ prp_page = (uint64_t *)((uint8_t *)prp_page + prp_size); prp_page_phys = (uint64_t *)((uint8_t *)prp_page_phys + prp_size); } /* * Set PRP physical pointer, which initially points to the current PRP * DMA memory page. */ prp_entry_phys = prp_page_phys; /* Get physical address and length of the data buffer. */ paddr = (bus_addr_t)(uintptr_t)data; if (data_in_sz) length = data_in_sz; else length = data_out_sz; /* Loop while the length is not zero. */ while (length) { /* * Check if we need to put a list pointer here if we are at page * boundary - prp_size (8 bytes). */ page_mask_result = (uintptr_t)((uint8_t *)prp_entry_phys + prp_size) & page_mask; if (!page_mask_result) { /* * This is the last entry in a PRP List, so we need to * put a PRP list pointer here. What this does is: * - bump the current memory pointer to the next * address, which will be the next full page. * - set the PRP Entry to point to that page. This is * now the PRP List pointer. * - bump the PRP Entry pointer the start of the next * page. Since all of this PRP memory is contiguous, * no need to get a new page - it's just the next * address. */ prp_entry_phys++; *prp_entry = htole64((uint64_t)(uintptr_t)prp_entry_phys); prp_entry++; } /* Need to handle if entry will be part of a page. */ offset = (uint32_t)paddr & page_mask; entry_len = PAGE_SIZE - offset; if (prp_entry == prp1_entry) { /* * Must fill in the first PRP pointer (PRP1) before * moving on. */ *prp1_entry = htole64((uint64_t)paddr); /* * Now point to the second PRP entry within the * command (PRP2). */ prp_entry = prp2_entry; } else if (prp_entry == prp2_entry) { /* * Should the PRP2 entry be a PRP List pointer or just a * regular PRP pointer? If there is more than one more * page of data, must use a PRP List pointer. */ if (length > PAGE_SIZE) { /* * PRP2 will contain a PRP List pointer because * more PRP's are needed with this command. The * list will start at the beginning of the * contiguous buffer. */ *prp2_entry = htole64( (uint64_t)(uintptr_t)prp_entry_phys); /* * The next PRP Entry will be the start of the * first PRP List. */ prp_entry = prp_page; } else { /* * After this, the PRP Entries are complete. * This command uses 2 PRP's and no PRP list. */ *prp2_entry = htole64((uint64_t)paddr); } } else { /* * Put entry in list and bump the addresses. * * After PRP1 and PRP2 are filled in, this will fill in * all remaining PRP entries in a PRP List, one per each * time through the loop. */ *prp_entry = htole64((uint64_t)paddr); prp_entry++; prp_entry_phys++; } /* * Bump the phys address of the command's data buffer by the * entry_len. */ paddr += entry_len; /* Decrement length accounting for last partial page. */ if (entry_len > length) length = 0; else length -= entry_len; } } /* * mpr_check_pcie_native_sgl - This function is called for PCIe end devices to * determine if the driver needs to build a native SGL. If so, that native SGL * is built in the contiguous buffers allocated especially for PCIe SGL * creation. If the driver will not build a native SGL, return TRUE and a * normal IEEE SGL will be built. Currently this routine supports NVMe devices * only. * * Returns FALSE (0) if native SGL was built, TRUE (1) if no SGL was built. */ static int mpr_check_pcie_native_sgl(struct mpr_softc *sc, struct mpr_command *cm, bus_dma_segment_t *segs, int segs_left) { uint32_t i, sge_dwords, length, offset, entry_len; uint32_t num_entries, buff_len = 0, sges_in_segment; uint32_t page_mask, page_mask_result, *curr_buff; uint32_t *ptr_sgl, *ptr_first_sgl, first_page_offset; uint32_t first_page_data_size, end_residual; uint64_t *msg_phys; bus_addr_t paddr; int build_native_sgl = 0, first_prp_entry; int prp_size = PRP_ENTRY_SIZE; Mpi25IeeeSgeChain64_t *main_chain_element = NULL; struct mpr_prp_page *prp_page_info = NULL; mpr_dprint(sc, MPR_TRACE, "%s\n", __func__); /* * Add up the sizes of each segment length to get the total transfer * size, which will be checked against the Maximum Data Transfer Size. * If the data transfer length exceeds the MDTS for this device, just * return 1 so a normal IEEE SGL will be built. F/W will break the I/O * up into multiple I/O's. [nvme_mdts = 0 means unlimited] */ for (i = 0; i < segs_left; i++) buff_len += htole32(segs[i].ds_len); if ((cm->cm_targ->MDTS > 0) && (buff_len > cm->cm_targ->MDTS)) return 1; /* Create page_mask (to get offset within page) */ page_mask = PAGE_SIZE - 1; /* * Check if the number of elements exceeds the max number that can be * put in the main message frame (H/W can only translate an SGL that * is contained entirely in the main message frame). */ sges_in_segment = (sc->reqframesz - offsetof(Mpi25SCSIIORequest_t, SGL)) / sizeof(MPI25_SGE_IO_UNION); if (segs_left > sges_in_segment) build_native_sgl = 1; else { /* * NVMe uses one PRP for each physical page (or part of physical * page). * if 4 pages or less then IEEE is OK * if > 5 pages then we need to build a native SGL * if > 4 and <= 5 pages, then check the physical address of * the first SG entry, then if this first size in the page * is >= the residual beyond 4 pages then use IEEE, * otherwise use native SGL */ if (buff_len > (PAGE_SIZE * 5)) build_native_sgl = 1; else if ((buff_len > (PAGE_SIZE * 4)) && (buff_len <= (PAGE_SIZE * 5)) ) { msg_phys = (uint64_t *)(uintptr_t)segs[0].ds_addr; first_page_offset = ((uint32_t)(uint64_t)(uintptr_t)msg_phys & page_mask); first_page_data_size = PAGE_SIZE - first_page_offset; end_residual = buff_len % PAGE_SIZE; /* * If offset into first page pushes the end of the data * beyond end of the 5th page, we need the extra PRP * list. */ if (first_page_data_size < end_residual) build_native_sgl = 1; /* * Check if first SG entry size is < residual beyond 4 * pages. */ if (htole32(segs[0].ds_len) < (buff_len - (PAGE_SIZE * 4))) build_native_sgl = 1; } } /* check if native SGL is needed */ if (!build_native_sgl) return 1; /* * Native SGL is needed. * Put a chain element in main message frame that points to the first * chain buffer. * * NOTE: The ChainOffset field must be 0 when using a chain pointer to * a native SGL. */ /* Set main message chain element pointer */ main_chain_element = (pMpi25IeeeSgeChain64_t)cm->cm_sge; /* * For NVMe the chain element needs to be the 2nd SGL entry in the main * message. */ main_chain_element = (Mpi25IeeeSgeChain64_t *) ((uint8_t *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64)); /* * For the PRP entries, use the specially allocated buffer of * contiguous memory. PRP Page allocation failures should not happen * because there should be enough PRP page buffers to account for the * possible NVMe QDepth. */ prp_page_info = mpr_alloc_prp_page(sc); KASSERT(prp_page_info != NULL, ("%s: There are no PRP Pages left to be " "used for building a native NVMe SGL.\n", __func__)); curr_buff = (uint32_t *)prp_page_info->prp_page; msg_phys = (uint64_t *)(uintptr_t)prp_page_info->prp_page_busaddr; /* * Insert the allocated PRP page into the command's PRP page list. This * will be freed when the command is freed. */ TAILQ_INSERT_TAIL(&cm->cm_prp_page_list, prp_page_info, prp_page_link); /* * Check if we are within 1 entry of a page boundary we don't want our * first entry to be a PRP List entry. */ page_mask_result = (uintptr_t)((uint8_t *)curr_buff + prp_size) & page_mask; if (!page_mask_result) { /* Bump up to next page boundary. */ curr_buff = (uint32_t *)((uint8_t *)curr_buff + prp_size); msg_phys = (uint64_t *)((uint8_t *)msg_phys + prp_size); } /* Fill in the chain element and make it an NVMe segment type. */ main_chain_element->Address.High = htole32((uint32_t)((uint64_t)(uintptr_t)msg_phys >> 32)); main_chain_element->Address.Low = htole32((uint32_t)(uintptr_t)msg_phys); main_chain_element->NextChainOffset = 0; main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT | MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR | MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP; /* Set SGL pointer to start of contiguous PCIe buffer. */ ptr_sgl = curr_buff; sge_dwords = 2; num_entries = 0; /* * NVMe has a very convoluted PRP format. One PRP is required for each * page or partial page. We need to split up OS SG entries if they are * longer than one page or cross a page boundary. We also have to insert * a PRP list pointer entry as the last entry in each physical page of * the PRP list. * * NOTE: The first PRP "entry" is actually placed in the first SGL entry * in the main message in IEEE 64 format. The 2nd entry in the main * message is the chain element, and the rest of the PRP entries are * built in the contiguous PCIe buffer. */ first_prp_entry = 1; ptr_first_sgl = (uint32_t *)cm->cm_sge; for (i = 0; i < segs_left; i++) { /* Get physical address and length of this SG entry. */ paddr = segs[i].ds_addr; length = segs[i].ds_len; /* * Check whether a given SGE buffer lies on a non-PAGED * boundary if this is not the first page. If so, this is not * expected so have FW build the SGL. */ if ((i != 0) && (((uint32_t)paddr & page_mask) != 0)) { mpr_dprint(sc, MPR_ERROR, "Unaligned SGE while " "building NVMe PRPs, low address is 0x%x\n", (uint32_t)paddr); return 1; } /* Apart from last SGE, if any other SGE boundary is not page * aligned then it means that hole exists. Existence of hole * leads to data corruption. So fallback to IEEE SGEs. */ if (i != (segs_left - 1)) { if (((uint32_t)paddr + length) & page_mask) { mpr_dprint(sc, MPR_ERROR, "Unaligned SGE " "boundary while building NVMe PRPs, low " "address: 0x%x and length: %u\n", (uint32_t)paddr, length); return 1; } } /* Loop while the length is not zero. */ while (length) { /* * Check if we need to put a list pointer here if we are * at page boundary - prp_size. */ page_mask_result = (uintptr_t)((uint8_t *)ptr_sgl + prp_size) & page_mask; if (!page_mask_result) { /* * Need to put a PRP list pointer here. */ msg_phys = (uint64_t *)((uint8_t *)msg_phys + prp_size); *ptr_sgl = htole32((uintptr_t)msg_phys); *(ptr_sgl+1) = htole32((uint64_t)(uintptr_t) msg_phys >> 32); ptr_sgl += sge_dwords; num_entries++; } /* Need to handle if entry will be part of a page. */ offset = (uint32_t)paddr & page_mask; entry_len = PAGE_SIZE - offset; if (first_prp_entry) { /* * Put IEEE entry in first SGE in main message. * (Simple element, System addr, not end of * list.) */ *ptr_first_sgl = htole32((uint32_t)paddr); *(ptr_first_sgl + 1) = htole32((uint32_t)((uint64_t)paddr >> 32)); *(ptr_first_sgl + 2) = htole32(entry_len); *(ptr_first_sgl + 3) = 0; /* No longer the first PRP entry. */ first_prp_entry = 0; } else { /* Put entry in list. */ *ptr_sgl = htole32((uint32_t)paddr); *(ptr_sgl + 1) = htole32((uint32_t)((uint64_t)paddr >> 32)); /* Bump ptr_sgl, msg_phys, and num_entries. */ ptr_sgl += sge_dwords; msg_phys = (uint64_t *)((uint8_t *)msg_phys + prp_size); num_entries++; } /* Bump the phys address by the entry_len. */ paddr += entry_len; /* Decrement length accounting for last partial page. */ if (entry_len > length) length = 0; else length -= entry_len; } } /* Set chain element Length. */ main_chain_element->Length = htole32(num_entries * prp_size); /* Return 0, indicating we built a native SGL. */ return 0; } /* * Add a chain element as the next SGE for the specified command. * Reset cm_sge and cm_sgesize to indicate all the available space. Chains are * only required for IEEE commands. Therefore there is no code for commands * that have the MPR_CM_FLAGS_SGE_SIMPLE flag set (and those commands * shouldn't be requesting chains). */ static int mpr_add_chain(struct mpr_command *cm, int segsleft) { struct mpr_softc *sc = cm->cm_sc; MPI2_REQUEST_HEADER *req; MPI25_IEEE_SGE_CHAIN64 *ieee_sgc; struct mpr_chain *chain; int sgc_size, current_segs, rem_segs, segs_per_frame; uint8_t next_chain_offset = 0; /* * Fail if a command is requesting a chain for SIMPLE SGE's. For SAS3 * only IEEE commands should be requesting chains. Return some error * code other than 0. */ if (cm->cm_flags & MPR_CM_FLAGS_SGE_SIMPLE) { mpr_dprint(sc, MPR_ERROR, "A chain element cannot be added to " "an MPI SGL.\n"); return(ENOBUFS); } sgc_size = sizeof(MPI25_IEEE_SGE_CHAIN64); if (cm->cm_sglsize < sgc_size) panic("MPR: Need SGE Error Code\n"); chain = mpr_alloc_chain(cm->cm_sc); if (chain == NULL) return (ENOBUFS); /* * Note: a double-linked list is used to make it easier to walk for * debugging. */ TAILQ_INSERT_TAIL(&cm->cm_chain_list, chain, chain_link); /* * Need to know if the number of frames left is more than 1 or not. If * more than 1 frame is required, NextChainOffset will need to be set, * which will just be the last segment of the frame. */ rem_segs = 0; if (cm->cm_sglsize < (sgc_size * segsleft)) { /* * rem_segs is the number of segements remaining after the * segments that will go into the current frame. Since it is * known that at least one more frame is required, account for * the chain element. To know if more than one more frame is * required, just check if there will be a remainder after using * the current frame (with this chain) and the next frame. If * so the NextChainOffset must be the last element of the next * frame. */ current_segs = (cm->cm_sglsize / sgc_size) - 1; rem_segs = segsleft - current_segs; segs_per_frame = sc->chain_frame_size / sgc_size; if (rem_segs > segs_per_frame) { next_chain_offset = segs_per_frame - 1; } } ieee_sgc = &((MPI25_SGE_IO_UNION *)cm->cm_sge)->IeeeChain; ieee_sgc->Length = next_chain_offset ? htole32((uint32_t)sc->chain_frame_size) : htole32((uint32_t)rem_segs * (uint32_t)sgc_size); ieee_sgc->NextChainOffset = next_chain_offset; ieee_sgc->Flags = (MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT | MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR); ieee_sgc->Address.Low = htole32(chain->chain_busaddr); ieee_sgc->Address.High = htole32(chain->chain_busaddr >> 32); cm->cm_sge = &((MPI25_SGE_IO_UNION *)chain->chain)->IeeeSimple; req = (MPI2_REQUEST_HEADER *)cm->cm_req; req->ChainOffset = (sc->chain_frame_size - sgc_size) >> 4; cm->cm_sglsize = sc->chain_frame_size; return (0); } /* * Add one scatter-gather element to the scatter-gather list for a command. * Maintain cm_sglsize and cm_sge as the remaining size and pointer to the * next SGE to fill in, respectively. In Gen3, the MPI SGL does not have a * chain, so don't consider any chain additions. */ int mpr_push_sge(struct mpr_command *cm, MPI2_SGE_SIMPLE64 *sge, size_t len, int segsleft) { uint32_t saved_buf_len, saved_address_low, saved_address_high; u32 sge_flags; /* * case 1: >=1 more segment, no room for anything (error) * case 2: 1 more segment and enough room for it */ if (cm->cm_sglsize < (segsleft * sizeof(MPI2_SGE_SIMPLE64))) { mpr_dprint(cm->cm_sc, MPR_ERROR, "%s: warning: Not enough room for MPI SGL in frame.\n", __func__); return(ENOBUFS); } KASSERT(segsleft == 1, ("segsleft cannot be more than 1 for an MPI SGL; segsleft = %d\n", segsleft)); /* * There is one more segment left to add for the MPI SGL and there is * enough room in the frame to add it. This is the normal case because * MPI SGL's don't have chains, otherwise something is wrong. * * If this is a bi-directional request, need to account for that * here. Save the pre-filled sge values. These will be used * either for the 2nd SGL or for a single direction SGL. If * cm_out_len is non-zero, this is a bi-directional request, so * fill in the OUT SGL first, then the IN SGL, otherwise just * fill in the IN SGL. Note that at this time, when filling in * 2 SGL's for a bi-directional request, they both use the same * DMA buffer (same cm command). */ saved_buf_len = sge->FlagsLength & 0x00FFFFFF; saved_address_low = sge->Address.Low; saved_address_high = sge->Address.High; if (cm->cm_out_len) { sge->FlagsLength = cm->cm_out_len | ((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC | MPI2_SGE_FLAGS_64_BIT_ADDRESSING) << MPI2_SGE_FLAGS_SHIFT); cm->cm_sglsize -= len; /* Endian Safe code */ sge_flags = sge->FlagsLength; sge->FlagsLength = htole32(sge_flags); sge->Address.High = htole32(sge->Address.High); sge->Address.Low = htole32(sge->Address.Low); bcopy(sge, cm->cm_sge, len); cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + len); } sge->FlagsLength = saved_buf_len | ((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_64_BIT_ADDRESSING) << MPI2_SGE_FLAGS_SHIFT); if (cm->cm_flags & MPR_CM_FLAGS_DATAIN) { sge->FlagsLength |= ((uint32_t)(MPI2_SGE_FLAGS_IOC_TO_HOST) << MPI2_SGE_FLAGS_SHIFT); } else { sge->FlagsLength |= ((uint32_t)(MPI2_SGE_FLAGS_HOST_TO_IOC) << MPI2_SGE_FLAGS_SHIFT); } sge->Address.Low = saved_address_low; sge->Address.High = saved_address_high; cm->cm_sglsize -= len; /* Endian Safe code */ sge_flags = sge->FlagsLength; sge->FlagsLength = htole32(sge_flags); sge->Address.High = htole32(sge->Address.High); sge->Address.Low = htole32(sge->Address.Low); bcopy(sge, cm->cm_sge, len); cm->cm_sge = (MPI2_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + len); return (0); } /* * Add one IEEE scatter-gather element (chain or simple) to the IEEE scatter- * gather list for a command. Maintain cm_sglsize and cm_sge as the * remaining size and pointer to the next SGE to fill in, respectively. */ int mpr_push_ieee_sge(struct mpr_command *cm, void *sgep, int segsleft) { MPI2_IEEE_SGE_SIMPLE64 *sge = sgep; int error, ieee_sge_size = sizeof(MPI25_SGE_IO_UNION); uint32_t saved_buf_len, saved_address_low, saved_address_high; uint32_t sge_length; /* * case 1: No room for chain or segment (error). * case 2: Two or more segments left but only room for chain. * case 3: Last segment and room for it, so set flags. */ /* * There should be room for at least one element, or there is a big * problem. */ if (cm->cm_sglsize < ieee_sge_size) panic("MPR: Need SGE Error Code\n"); if ((segsleft >= 2) && (cm->cm_sglsize < (ieee_sge_size * 2))) { if ((error = mpr_add_chain(cm, segsleft)) != 0) return (error); } if (segsleft == 1) { /* * If this is a bi-directional request, need to account for that * here. Save the pre-filled sge values. These will be used * either for the 2nd SGL or for a single direction SGL. If * cm_out_len is non-zero, this is a bi-directional request, so * fill in the OUT SGL first, then the IN SGL, otherwise just * fill in the IN SGL. Note that at this time, when filling in * 2 SGL's for a bi-directional request, they both use the same * DMA buffer (same cm command). */ saved_buf_len = sge->Length; saved_address_low = sge->Address.Low; saved_address_high = sge->Address.High; if (cm->cm_out_len) { sge->Length = cm->cm_out_len; sge->Flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR); cm->cm_sglsize -= ieee_sge_size; /* Endian Safe code */ sge_length = sge->Length; sge->Length = htole32(sge_length); sge->Address.High = htole32(sge->Address.High); sge->Address.Low = htole32(sge->Address.Low); bcopy(sgep, cm->cm_sge, ieee_sge_size); cm->cm_sge = (MPI25_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + ieee_sge_size); } sge->Length = saved_buf_len; sge->Flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR | MPI25_IEEE_SGE_FLAGS_END_OF_LIST); sge->Address.Low = saved_address_low; sge->Address.High = saved_address_high; } cm->cm_sglsize -= ieee_sge_size; /* Endian Safe code */ sge_length = sge->Length; sge->Length = htole32(sge_length); sge->Address.High = htole32(sge->Address.High); sge->Address.Low = htole32(sge->Address.Low); bcopy(sgep, cm->cm_sge, ieee_sge_size); cm->cm_sge = (MPI25_SGE_IO_UNION *)((uintptr_t)cm->cm_sge + ieee_sge_size); return (0); } /* * Add one dma segment to the scatter-gather list for a command. */ int mpr_add_dmaseg(struct mpr_command *cm, vm_paddr_t pa, size_t len, u_int flags, int segsleft) { MPI2_SGE_SIMPLE64 sge; MPI2_IEEE_SGE_SIMPLE64 ieee_sge; if (!(cm->cm_flags & MPR_CM_FLAGS_SGE_SIMPLE)) { ieee_sge.Flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR); ieee_sge.Length = len; mpr_from_u64(pa, &ieee_sge.Address); return (mpr_push_ieee_sge(cm, &ieee_sge, segsleft)); } else { /* * This driver always uses 64-bit address elements for * simplicity. */ flags |= MPI2_SGE_FLAGS_SIMPLE_ELEMENT | MPI2_SGE_FLAGS_64_BIT_ADDRESSING; /* Set Endian safe macro in mpr_push_sge */ sge.FlagsLength = len | (flags << MPI2_SGE_FLAGS_SHIFT); mpr_from_u64(pa, &sge.Address); return (mpr_push_sge(cm, &sge, sizeof sge, segsleft)); } } static void mpr_data_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) { struct mpr_softc *sc; struct mpr_command *cm; u_int i, dir, sflags; cm = (struct mpr_command *)arg; sc = cm->cm_sc; /* * In this case, just print out a warning and let the chip tell the * user they did the wrong thing. */ if ((cm->cm_max_segs != 0) && (nsegs > cm->cm_max_segs)) { mpr_dprint(sc, MPR_ERROR, "%s: warning: busdma returned %d " "segments, more than the %d allowed\n", __func__, nsegs, cm->cm_max_segs); } /* * Set up DMA direction flags. Bi-directional requests are also handled * here. In that case, both direction flags will be set. */ sflags = 0; if (cm->cm_flags & MPR_CM_FLAGS_SMP_PASS) { /* * We have to add a special case for SMP passthrough, there * is no easy way to generically handle it. The first * S/G element is used for the command (therefore the * direction bit needs to be set). The second one is used * for the reply. We'll leave it to the caller to make * sure we only have two buffers. */ /* * Even though the busdma man page says it doesn't make * sense to have both direction flags, it does in this case. * We have one s/g element being accessed in each direction. */ dir = BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD; /* * Set the direction flag on the first buffer in the SMP * passthrough request. We'll clear it for the second one. */ sflags |= MPI2_SGE_FLAGS_DIRECTION | MPI2_SGE_FLAGS_END_OF_BUFFER; } else if (cm->cm_flags & MPR_CM_FLAGS_DATAOUT) { sflags |= MPI2_SGE_FLAGS_HOST_TO_IOC; dir = BUS_DMASYNC_PREWRITE; } else dir = BUS_DMASYNC_PREREAD; /* Check if a native SG list is needed for an NVMe PCIe device. */ if (cm->cm_targ && cm->cm_targ->is_nvme && mpr_check_pcie_native_sgl(sc, cm, segs, nsegs) == 0) { /* A native SG list was built, skip to end. */ goto out; } for (i = 0; i < nsegs; i++) { if ((cm->cm_flags & MPR_CM_FLAGS_SMP_PASS) && (i != 0)) { sflags &= ~MPI2_SGE_FLAGS_DIRECTION; } error = mpr_add_dmaseg(cm, segs[i].ds_addr, segs[i].ds_len, sflags, nsegs - i); if (error != 0) { /* Resource shortage, roll back! */ if (ratecheck(&sc->lastfail, &mpr_chainfail_interval)) mpr_dprint(sc, MPR_INFO, "Out of chain frames, " "consider increasing hw.mpr.max_chains.\n"); cm->cm_flags |= MPR_CM_FLAGS_CHAIN_FAILED; mpr_complete_command(sc, cm); return; } } out: bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, dir); mpr_enqueue_request(sc, cm); return; } static void mpr_data_cb2(void *arg, bus_dma_segment_t *segs, int nsegs, bus_size_t mapsize, int error) { mpr_data_cb(arg, segs, nsegs, error); } /* * This is the routine to enqueue commands ansynchronously. * Note that the only error path here is from bus_dmamap_load(), which can * return EINPROGRESS if it is waiting for resources. Other than this, it's * assumed that if you have a command in-hand, then you have enough credits * to use it. */ int mpr_map_command(struct mpr_softc *sc, struct mpr_command *cm) { int error = 0; if (cm->cm_flags & MPR_CM_FLAGS_USE_UIO) { error = bus_dmamap_load_uio(sc->buffer_dmat, cm->cm_dmamap, &cm->cm_uio, mpr_data_cb2, cm, 0); } else if (cm->cm_flags & MPR_CM_FLAGS_USE_CCB) { error = bus_dmamap_load_ccb(sc->buffer_dmat, cm->cm_dmamap, cm->cm_data, mpr_data_cb, cm, 0); } else if ((cm->cm_data != NULL) && (cm->cm_length != 0)) { error = bus_dmamap_load(sc->buffer_dmat, cm->cm_dmamap, cm->cm_data, cm->cm_length, mpr_data_cb, cm, 0); } else { /* Add a zero-length element as needed */ if (cm->cm_sge != NULL) mpr_add_dmaseg(cm, 0, 0, 0, 1); mpr_enqueue_request(sc, cm); } return (error); } /* * This is the routine to enqueue commands synchronously. An error of * EINPROGRESS from mpr_map_command() is ignored since the command will * be executed and enqueued automatically. Other errors come from msleep(). */ int mpr_wait_command(struct mpr_softc *sc, struct mpr_command **cmp, int timeout, int sleep_flag) { int error, rc; struct timeval cur_time, start_time; struct mpr_command *cm = *cmp; if (sc->mpr_flags & MPR_FLAGS_DIAGRESET) return EBUSY; cm->cm_complete = NULL; cm->cm_flags |= (MPR_CM_FLAGS_WAKEUP + MPR_CM_FLAGS_POLLED); error = mpr_map_command(sc, cm); if ((error != 0) && (error != EINPROGRESS)) return (error); // Check for context and wait for 50 mSec at a time until time has // expired or the command has finished. If msleep can't be used, need // to poll. #if __FreeBSD_version >= 1000029 if (curthread->td_no_sleeping) #else //__FreeBSD_version < 1000029 if (curthread->td_pflags & TDP_NOSLEEPING) #endif //__FreeBSD_version >= 1000029 sleep_flag = NO_SLEEP; getmicrouptime(&start_time); if (mtx_owned(&sc->mpr_mtx) && sleep_flag == CAN_SLEEP) { error = msleep(cm, &sc->mpr_mtx, 0, "mprwait", timeout*hz); if (error == EWOULDBLOCK) { /* * Record the actual elapsed time in the case of a * timeout for the message below. */ getmicrouptime(&cur_time); timevalsub(&cur_time, &start_time); } } else { while ((cm->cm_flags & MPR_CM_FLAGS_COMPLETE) == 0) { mpr_intr_locked(sc); if (sleep_flag == CAN_SLEEP) pause("mprwait", hz/20); else DELAY(50000); getmicrouptime(&cur_time); timevalsub(&cur_time, &start_time); if (cur_time.tv_sec > timeout) { error = EWOULDBLOCK; break; } } } if (error == EWOULDBLOCK) { if (cm->cm_timeout_handler == NULL) { mpr_dprint(sc, MPR_FAULT, "Calling Reinit from %s, timeout=%d," " elapsed=%jd\n", __func__, timeout, (intmax_t)cur_time.tv_sec); rc = mpr_reinit(sc); mpr_dprint(sc, MPR_FAULT, "Reinit %s\n", (rc == 0) ? "success" : "failed"); } else cm->cm_timeout_handler(sc, cm); if (sc->mpr_flags & MPR_FLAGS_REALLOCATED) { /* * Tell the caller that we freed the command in a * reinit. */ *cmp = NULL; } error = ETIMEDOUT; } return (error); } /* * This is the routine to enqueue a command synchonously and poll for * completion. Its use should be rare. */ int mpr_request_polled(struct mpr_softc *sc, struct mpr_command **cmp) { int error, rc; struct timeval cur_time, start_time; struct mpr_command *cm = *cmp; error = 0; cm->cm_flags |= MPR_CM_FLAGS_POLLED; cm->cm_complete = NULL; mpr_map_command(sc, cm); getmicrouptime(&start_time); while ((cm->cm_flags & MPR_CM_FLAGS_COMPLETE) == 0) { mpr_intr_locked(sc); if (mtx_owned(&sc->mpr_mtx)) msleep(&sc->msleep_fake_chan, &sc->mpr_mtx, 0, "mprpoll", hz/20); else pause("mprpoll", hz/20); /* * Check for real-time timeout and fail if more than 60 seconds. */ getmicrouptime(&cur_time); timevalsub(&cur_time, &start_time); if (cur_time.tv_sec > 60) { mpr_dprint(sc, MPR_FAULT, "polling failed\n"); error = ETIMEDOUT; break; } } if (error) { mpr_dprint(sc, MPR_FAULT, "Calling Reinit from %s\n", __func__); rc = mpr_reinit(sc); mpr_dprint(sc, MPR_FAULT, "Reinit %s\n", (rc == 0) ? "success" : "failed"); if (sc->mpr_flags & MPR_FLAGS_REALLOCATED) { /* * Tell the caller that we freed the command in a * reinit. */ *cmp = NULL; } } return (error); } /* * The MPT driver had a verbose interface for config pages. In this driver, * reduce it to much simpler terms, similar to the Linux driver. */ int mpr_read_config_page(struct mpr_softc *sc, struct mpr_config_params *params) { MPI2_CONFIG_REQUEST *req; struct mpr_command *cm; int error; if (sc->mpr_flags & MPR_FLAGS_BUSY) { return (EBUSY); } cm = mpr_alloc_command(sc); if (cm == NULL) { return (EBUSY); } req = (MPI2_CONFIG_REQUEST *)cm->cm_req; req->Function = MPI2_FUNCTION_CONFIG; req->Action = params->action; req->SGLFlags = 0; req->ChainOffset = 0; req->PageAddress = params->page_address; if (params->hdr.Struct.PageType == MPI2_CONFIG_PAGETYPE_EXTENDED) { MPI2_CONFIG_EXTENDED_PAGE_HEADER *hdr; hdr = ¶ms->hdr.Ext; req->ExtPageType = hdr->ExtPageType; req->ExtPageLength = hdr->ExtPageLength; req->Header.PageType = MPI2_CONFIG_PAGETYPE_EXTENDED; req->Header.PageLength = 0; /* Must be set to zero */ req->Header.PageNumber = hdr->PageNumber; req->Header.PageVersion = hdr->PageVersion; } else { MPI2_CONFIG_PAGE_HEADER *hdr; hdr = ¶ms->hdr.Struct; req->Header.PageType = hdr->PageType; req->Header.PageNumber = hdr->PageNumber; req->Header.PageLength = hdr->PageLength; req->Header.PageVersion = hdr->PageVersion; } cm->cm_data = params->buffer; cm->cm_length = params->length; if (cm->cm_data != NULL) { cm->cm_sge = &req->PageBufferSGE; cm->cm_sglsize = sizeof(MPI2_SGE_IO_UNION); cm->cm_flags = MPR_CM_FLAGS_SGE_SIMPLE | MPR_CM_FLAGS_DATAIN; } else cm->cm_sge = NULL; cm->cm_desc.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; cm->cm_complete_data = params; if (params->callback != NULL) { cm->cm_complete = mpr_config_complete; return (mpr_map_command(sc, cm)); } else { error = mpr_wait_command(sc, &cm, 0, CAN_SLEEP); if (error) { mpr_dprint(sc, MPR_FAULT, "Error %d reading config page\n", error); if (cm != NULL) mpr_free_command(sc, cm); return (error); } mpr_config_complete(sc, cm); } return (0); } int mpr_write_config_page(struct mpr_softc *sc, struct mpr_config_params *params) { return (EINVAL); } static void mpr_config_complete(struct mpr_softc *sc, struct mpr_command *cm) { MPI2_CONFIG_REPLY *reply; struct mpr_config_params *params; MPR_FUNCTRACE(sc); params = cm->cm_complete_data; if (cm->cm_data != NULL) { bus_dmamap_sync(sc->buffer_dmat, cm->cm_dmamap, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->buffer_dmat, cm->cm_dmamap); } /* * XXX KDM need to do more error recovery? This results in the * device in question not getting probed. */ if ((cm->cm_flags & MPR_CM_FLAGS_ERROR_MASK) != 0) { params->status = MPI2_IOCSTATUS_BUSY; goto done; } reply = (MPI2_CONFIG_REPLY *)cm->cm_reply; if (reply == NULL) { params->status = MPI2_IOCSTATUS_BUSY; goto done; } params->status = reply->IOCStatus; if (params->hdr.Struct.PageType == MPI2_CONFIG_PAGETYPE_EXTENDED) { params->hdr.Ext.ExtPageType = reply->ExtPageType; params->hdr.Ext.ExtPageLength = reply->ExtPageLength; params->hdr.Ext.PageType = reply->Header.PageType; params->hdr.Ext.PageNumber = reply->Header.PageNumber; params->hdr.Ext.PageVersion = reply->Header.PageVersion; } else { params->hdr.Struct.PageType = reply->Header.PageType; params->hdr.Struct.PageNumber = reply->Header.PageNumber; params->hdr.Struct.PageLength = reply->Header.PageLength; params->hdr.Struct.PageVersion = reply->Header.PageVersion; } done: mpr_free_command(sc, cm); if (params->callback != NULL) params->callback(sc, params); return; }