/*-
* Copyright (c) 2014-2019 Ruslan Bukin
* All rights reserved.
*
* This software was developed by SRI International and the University of
* Cambridge Computer Laboratory under DARPA/AFRL contract (FA8750-10-C-0237)
* ("CTSRD"), as part of the DARPA CRASH research programme.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* Synopsys DesignWare Mobile Storage Host Controller
* Chapter 14, Altera Cyclone V Device Handbook (CV-5V2 2014.07.22)
*/
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "opt_mmccam.h"
#ifdef MMCCAM
#include
#include
#include
#include
#include
#include "mmc_sim_if.h"
#endif
#include "mmcbr_if.h"
#ifdef DEBUG
#define dprintf(fmt, args...) printf(fmt, ##args)
#else
#define dprintf(x, arg...)
#endif
#define READ4(_sc, _reg) \
bus_read_4((_sc)->res[0], _reg)
#define WRITE4(_sc, _reg, _val) \
bus_write_4((_sc)->res[0], _reg, _val)
#define DIV_ROUND_UP(n, d) howmany(n, d)
#define DWMMC_LOCK(_sc) mtx_lock(&(_sc)->sc_mtx)
#define DWMMC_UNLOCK(_sc) mtx_unlock(&(_sc)->sc_mtx)
#define DWMMC_LOCK_INIT(_sc) \
mtx_init(&_sc->sc_mtx, device_get_nameunit(_sc->dev), \
"dwmmc", MTX_DEF)
#define DWMMC_LOCK_DESTROY(_sc) mtx_destroy(&_sc->sc_mtx);
#define DWMMC_ASSERT_LOCKED(_sc) mtx_assert(&_sc->sc_mtx, MA_OWNED);
#define DWMMC_ASSERT_UNLOCKED(_sc) mtx_assert(&_sc->sc_mtx, MA_NOTOWNED);
#define PENDING_CMD 0x01
#define PENDING_STOP 0x02
#define CARD_INIT_DONE 0x04
#define DWMMC_DATA_ERR_FLAGS (SDMMC_INTMASK_DRT | SDMMC_INTMASK_DCRC \
|SDMMC_INTMASK_SBE | SDMMC_INTMASK_EBE)
#define DWMMC_CMD_ERR_FLAGS (SDMMC_INTMASK_RTO | SDMMC_INTMASK_RCRC \
|SDMMC_INTMASK_RE)
#define DWMMC_ERR_FLAGS (DWMMC_DATA_ERR_FLAGS | DWMMC_CMD_ERR_FLAGS \
|SDMMC_INTMASK_HLE)
#define DES0_DIC (1 << 1) /* Disable Interrupt on Completion */
#define DES0_LD (1 << 2) /* Last Descriptor */
#define DES0_FS (1 << 3) /* First Descriptor */
#define DES0_CH (1 << 4) /* second address CHained */
#define DES0_ER (1 << 5) /* End of Ring */
#define DES0_CES (1 << 30) /* Card Error Summary */
#define DES0_OWN (1 << 31) /* OWN */
#define DES1_BS1_MASK 0x1fff
struct idmac_desc {
uint32_t des0; /* control */
uint32_t des1; /* bufsize */
uint32_t des2; /* buf1 phys addr */
uint32_t des3; /* buf2 phys addr or next descr */
};
#define IDMAC_DESC_SEGS (PAGE_SIZE / (sizeof(struct idmac_desc)))
#define IDMAC_DESC_SIZE (sizeof(struct idmac_desc) * IDMAC_DESC_SEGS)
#define DEF_MSIZE 0x2 /* Burst size of multiple transaction */
/*
* Size field in DMA descriptor is 13 bits long (up to 4095 bytes),
* but must be a multiple of the data bus size.Additionally, we must ensure
* that bus_dmamap_load() doesn't additionally fragments buffer (because it
* is processed with page size granularity). Thus limit fragment size to half
* of page.
* XXX switch descriptor format to array and use second buffer pointer for
* second half of page
*/
#define IDMAC_MAX_SIZE 2048
/*
* Busdma may bounce buffers, so we must reserve 2 descriptors
* (on start and on end) for bounced fragments.
*/
#define DWMMC_MAX_DATA (IDMAC_MAX_SIZE * (IDMAC_DESC_SEGS - 2)) / MMC_SECTOR_SIZE
static void dwmmc_next_operation(struct dwmmc_softc *);
static int dwmmc_setup_bus(struct dwmmc_softc *, int);
static int dma_done(struct dwmmc_softc *, struct mmc_command *);
static int dma_stop(struct dwmmc_softc *);
static void pio_read(struct dwmmc_softc *, struct mmc_command *);
static void pio_write(struct dwmmc_softc *, struct mmc_command *);
static void dwmmc_handle_card_present(struct dwmmc_softc *sc, bool is_present);
static struct resource_spec dwmmc_spec[] = {
{ SYS_RES_MEMORY, 0, RF_ACTIVE },
{ SYS_RES_IRQ, 0, RF_ACTIVE },
{ -1, 0 }
};
#define HWTYPE_MASK (0x0000ffff)
#define HWFLAG_MASK (0xffff << 16)
static void
dwmmc_get1paddr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
{
if (nsegs != 1)
panic("%s: nsegs != 1 (%d)\n", __func__, nsegs);
if (error != 0)
panic("%s: error != 0 (%d)\n", __func__, error);
*(bus_addr_t *)arg = segs[0].ds_addr;
}
static void
dwmmc_ring_setup(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
{
struct dwmmc_softc *sc;
int idx;
sc = arg;
dprintf("nsegs %d seg0len %lu\n", nsegs, segs[0].ds_len);
if (error != 0)
panic("%s: error != 0 (%d)\n", __func__, error);
for (idx = 0; idx < nsegs; idx++) {
sc->desc_ring[idx].des0 = DES0_DIC | DES0_CH;
sc->desc_ring[idx].des1 = segs[idx].ds_len & DES1_BS1_MASK;
sc->desc_ring[idx].des2 = segs[idx].ds_addr;
if (idx == 0)
sc->desc_ring[idx].des0 |= DES0_FS;
if (idx == (nsegs - 1)) {
sc->desc_ring[idx].des0 &= ~(DES0_DIC | DES0_CH);
sc->desc_ring[idx].des0 |= DES0_LD;
}
wmb();
sc->desc_ring[idx].des0 |= DES0_OWN;
}
}
static int
dwmmc_ctrl_reset(struct dwmmc_softc *sc, int reset_bits)
{
int reg;
int i;
reg = READ4(sc, SDMMC_CTRL);
reg |= (reset_bits);
WRITE4(sc, SDMMC_CTRL, reg);
/* Wait reset done */
for (i = 0; i < 100; i++) {
if (!(READ4(sc, SDMMC_CTRL) & reset_bits))
return (0);
DELAY(10);
}
device_printf(sc->dev, "Reset failed\n");
return (1);
}
static int
dma_setup(struct dwmmc_softc *sc)
{
int error;
int nidx;
int idx;
/*
* Set up TX descriptor ring, descriptors, and dma maps.
*/
error = bus_dma_tag_create(
bus_get_dma_tag(sc->dev), /* Parent tag. */
4096, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
IDMAC_DESC_SIZE, 1, /* maxsize, nsegments */
IDMAC_DESC_SIZE, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->desc_tag);
if (error != 0) {
device_printf(sc->dev,
"could not create ring DMA tag.\n");
return (1);
}
error = bus_dmamem_alloc(sc->desc_tag, (void**)&sc->desc_ring,
BUS_DMA_COHERENT | BUS_DMA_WAITOK | BUS_DMA_ZERO,
&sc->desc_map);
if (error != 0) {
device_printf(sc->dev,
"could not allocate descriptor ring.\n");
return (1);
}
error = bus_dmamap_load(sc->desc_tag, sc->desc_map,
sc->desc_ring, IDMAC_DESC_SIZE, dwmmc_get1paddr,
&sc->desc_ring_paddr, 0);
if (error != 0) {
device_printf(sc->dev,
"could not load descriptor ring map.\n");
return (1);
}
for (idx = 0; idx < IDMAC_DESC_SEGS; idx++) {
sc->desc_ring[idx].des0 = DES0_CH;
sc->desc_ring[idx].des1 = 0;
nidx = (idx + 1) % IDMAC_DESC_SEGS;
sc->desc_ring[idx].des3 = sc->desc_ring_paddr + \
(nidx * sizeof(struct idmac_desc));
}
sc->desc_ring[idx - 1].des3 = sc->desc_ring_paddr;
sc->desc_ring[idx - 1].des0 |= DES0_ER;
error = bus_dma_tag_create(
bus_get_dma_tag(sc->dev), /* Parent tag. */
8, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
IDMAC_MAX_SIZE * IDMAC_DESC_SEGS, /* maxsize */
IDMAC_DESC_SEGS, /* nsegments */
IDMAC_MAX_SIZE, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->buf_tag);
if (error != 0) {
device_printf(sc->dev,
"could not create ring DMA tag.\n");
return (1);
}
error = bus_dmamap_create(sc->buf_tag, 0,
&sc->buf_map);
if (error != 0) {
device_printf(sc->dev,
"could not create TX buffer DMA map.\n");
return (1);
}
return (0);
}
static void
dwmmc_cmd_done(struct dwmmc_softc *sc)
{
struct mmc_command *cmd;
#ifdef MMCCAM
union ccb *ccb;
#endif
#ifdef MMCCAM
ccb = sc->ccb;
if (ccb == NULL)
return;
cmd = &ccb->mmcio.cmd;
#else
cmd = sc->curcmd;
#endif
if (cmd == NULL)
return;
if (cmd->flags & MMC_RSP_PRESENT) {
if (cmd->flags & MMC_RSP_136) {
cmd->resp[3] = READ4(sc, SDMMC_RESP0);
cmd->resp[2] = READ4(sc, SDMMC_RESP1);
cmd->resp[1] = READ4(sc, SDMMC_RESP2);
cmd->resp[0] = READ4(sc, SDMMC_RESP3);
} else {
cmd->resp[3] = 0;
cmd->resp[2] = 0;
cmd->resp[1] = 0;
cmd->resp[0] = READ4(sc, SDMMC_RESP0);
}
}
}
static void
dwmmc_tasklet(struct dwmmc_softc *sc)
{
struct mmc_command *cmd;
cmd = sc->curcmd;
if (cmd == NULL)
return;
if (!sc->cmd_done)
return;
if (cmd->error != MMC_ERR_NONE || !cmd->data) {
dwmmc_next_operation(sc);
} else if (cmd->data && sc->dto_rcvd) {
if ((cmd->opcode == MMC_WRITE_MULTIPLE_BLOCK ||
cmd->opcode == MMC_READ_MULTIPLE_BLOCK) &&
sc->use_auto_stop) {
if (sc->acd_rcvd)
dwmmc_next_operation(sc);
} else {
dwmmc_next_operation(sc);
}
}
}
static void
dwmmc_intr(void *arg)
{
struct mmc_command *cmd;
struct dwmmc_softc *sc;
uint32_t reg;
sc = arg;
DWMMC_LOCK(sc);
cmd = sc->curcmd;
/* First handle SDMMC controller interrupts */
reg = READ4(sc, SDMMC_MINTSTS);
if (reg) {
dprintf("%s 0x%08x\n", __func__, reg);
if (reg & DWMMC_CMD_ERR_FLAGS) {
dprintf("cmd err 0x%08x cmd 0x%08x\n",
reg, cmd->opcode);
cmd->error = MMC_ERR_TIMEOUT;
}
if (reg & DWMMC_DATA_ERR_FLAGS) {
dprintf("data err 0x%08x cmd 0x%08x\n",
reg, cmd->opcode);
cmd->error = MMC_ERR_FAILED;
if (!sc->use_pio) {
dma_done(sc, cmd);
dma_stop(sc);
}
}
if (reg & SDMMC_INTMASK_CMD_DONE) {
dwmmc_cmd_done(sc);
sc->cmd_done = 1;
}
if (reg & SDMMC_INTMASK_ACD)
sc->acd_rcvd = 1;
if (reg & SDMMC_INTMASK_DTO)
sc->dto_rcvd = 1;
if (reg & SDMMC_INTMASK_CD) {
dwmmc_handle_card_present(sc,
READ4(sc, SDMMC_CDETECT) == 0 ? true : false);
}
}
/* Ack interrupts */
WRITE4(sc, SDMMC_RINTSTS, reg);
if (sc->use_pio) {
if (reg & (SDMMC_INTMASK_RXDR|SDMMC_INTMASK_DTO)) {
pio_read(sc, cmd);
}
if (reg & (SDMMC_INTMASK_TXDR|SDMMC_INTMASK_DTO)) {
pio_write(sc, cmd);
}
} else {
/* Now handle DMA interrupts */
reg = READ4(sc, SDMMC_IDSTS);
if (reg) {
dprintf("dma intr 0x%08x\n", reg);
if (reg & (SDMMC_IDINTEN_TI | SDMMC_IDINTEN_RI)) {
WRITE4(sc, SDMMC_IDSTS, (SDMMC_IDINTEN_TI |
SDMMC_IDINTEN_RI));
WRITE4(sc, SDMMC_IDSTS, SDMMC_IDINTEN_NI);
dma_done(sc, cmd);
}
}
}
dwmmc_tasklet(sc);
DWMMC_UNLOCK(sc);
}
static void
dwmmc_handle_card_present(struct dwmmc_softc *sc, bool is_present)
{
bool was_present;
if (dumping || SCHEDULER_STOPPED())
return;
was_present = sc->child != NULL;
if (!was_present && is_present) {
taskqueue_enqueue_timeout(taskqueue_swi_giant,
&sc->card_delayed_task, -(hz / 2));
} else if (was_present && !is_present) {
taskqueue_enqueue(taskqueue_swi_giant, &sc->card_task);
}
}
static void
dwmmc_card_task(void *arg, int pending __unused)
{
struct dwmmc_softc *sc = arg;
#ifdef MMCCAM
mmc_cam_sim_discover(&sc->mmc_sim);
#else
DWMMC_LOCK(sc);
if (READ4(sc, SDMMC_CDETECT) == 0 ||
(sc->mmc_helper.props & MMC_PROP_BROKEN_CD)) {
if (sc->child == NULL) {
if (bootverbose)
device_printf(sc->dev, "Card inserted\n");
sc->child = device_add_child(sc->dev, "mmc", DEVICE_UNIT_ANY);
DWMMC_UNLOCK(sc);
if (sc->child) {
device_set_ivars(sc->child, sc);
(void)device_probe_and_attach(sc->child);
}
} else
DWMMC_UNLOCK(sc);
} else {
/* Card isn't present, detach if necessary */
if (sc->child != NULL) {
if (bootverbose)
device_printf(sc->dev, "Card removed\n");
DWMMC_UNLOCK(sc);
device_delete_child(sc->dev, sc->child);
sc->child = NULL;
} else
DWMMC_UNLOCK(sc);
}
#endif /* MMCCAM */
}
static int
parse_fdt(struct dwmmc_softc *sc)
{
pcell_t dts_value[3];
phandle_t node;
uint32_t bus_hz = 0;
int len;
int error;
if ((node = ofw_bus_get_node(sc->dev)) == -1)
return (ENXIO);
/* Set some defaults for freq and supported mode */
sc->host.f_min = 400000;
sc->host.f_max = 200000000;
sc->host.host_ocr = MMC_OCR_320_330 | MMC_OCR_330_340;
sc->host.caps = MMC_CAP_HSPEED | MMC_CAP_SIGNALING_330;
mmc_fdt_parse(sc->dev, node, &sc->mmc_helper, &sc->host);
/* fifo-depth */
if ((len = OF_getproplen(node, "fifo-depth")) > 0) {
OF_getencprop(node, "fifo-depth", dts_value, len);
sc->fifo_depth = dts_value[0];
}
/* num-slots (Deprecated) */
sc->num_slots = 1;
if ((len = OF_getproplen(node, "num-slots")) > 0) {
device_printf(sc->dev, "num-slots property is deprecated\n");
OF_getencprop(node, "num-slots", dts_value, len);
sc->num_slots = dts_value[0];
}
/* clock-frequency */
if ((len = OF_getproplen(node, "clock-frequency")) > 0) {
OF_getencprop(node, "clock-frequency", dts_value, len);
bus_hz = dts_value[0];
}
/* IP block reset is optional */
error = hwreset_get_by_ofw_name(sc->dev, 0, "reset", &sc->hwreset);
if (error != 0 &&
error != ENOENT &&
error != ENODEV) {
device_printf(sc->dev, "Cannot get reset\n");
goto fail;
}
/* vmmc regulator is optional */
error = regulator_get_by_ofw_property(sc->dev, 0, "vmmc-supply",
&sc->vmmc);
if (error != 0 &&
error != ENOENT &&
error != ENODEV) {
device_printf(sc->dev, "Cannot get regulator 'vmmc-supply'\n");
goto fail;
}
/* vqmmc regulator is optional */
error = regulator_get_by_ofw_property(sc->dev, 0, "vqmmc-supply",
&sc->vqmmc);
if (error != 0 &&
error != ENOENT &&
error != ENODEV) {
device_printf(sc->dev, "Cannot get regulator 'vqmmc-supply'\n");
goto fail;
}
/* Assert reset first */
if (sc->hwreset != NULL) {
error = hwreset_assert(sc->hwreset);
if (error != 0) {
device_printf(sc->dev, "Cannot assert reset\n");
goto fail;
}
}
/* BIU (Bus Interface Unit clock) is optional */
error = clk_get_by_ofw_name(sc->dev, 0, "biu", &sc->biu);
if (error != 0 &&
error != ENOENT &&
error != ENODEV) {
device_printf(sc->dev, "Cannot get 'biu' clock\n");
goto fail;
}
if (sc->biu) {
error = clk_enable(sc->biu);
if (error != 0) {
device_printf(sc->dev, "cannot enable biu clock\n");
goto fail;
}
}
/*
* CIU (Controller Interface Unit clock) is mandatory
* if no clock-frequency property is given
*/
error = clk_get_by_ofw_name(sc->dev, 0, "ciu", &sc->ciu);
if (error != 0 &&
error != ENOENT &&
error != ENODEV) {
device_printf(sc->dev, "Cannot get 'ciu' clock\n");
goto fail;
}
if (sc->ciu) {
if (bus_hz != 0) {
error = clk_set_freq(sc->ciu, bus_hz, 0);
if (error != 0)
device_printf(sc->dev,
"cannot set ciu clock to %u\n", bus_hz);
}
error = clk_enable(sc->ciu);
if (error != 0) {
device_printf(sc->dev, "cannot enable ciu clock\n");
goto fail;
}
clk_get_freq(sc->ciu, &sc->bus_hz);
}
/* Enable regulators */
if (sc->vmmc != NULL) {
error = regulator_enable(sc->vmmc);
if (error != 0) {
device_printf(sc->dev, "Cannot enable vmmc regulator\n");
goto fail;
}
}
if (sc->vqmmc != NULL) {
error = regulator_enable(sc->vqmmc);
if (error != 0) {
device_printf(sc->dev, "Cannot enable vqmmc regulator\n");
goto fail;
}
}
/* Take dwmmc out of reset */
if (sc->hwreset != NULL) {
error = hwreset_deassert(sc->hwreset);
if (error != 0) {
device_printf(sc->dev, "Cannot deassert reset\n");
goto fail;
}
}
if (sc->bus_hz == 0) {
device_printf(sc->dev, "No bus speed provided\n");
goto fail;
}
return (0);
fail:
return (ENXIO);
}
int
dwmmc_attach(device_t dev)
{
struct dwmmc_softc *sc;
int error;
sc = device_get_softc(dev);
sc->dev = dev;
/* Why not to use Auto Stop? It save a hundred of irq per second */
sc->use_auto_stop = 1;
error = parse_fdt(sc);
if (error != 0) {
device_printf(dev, "Can't get FDT property.\n");
return (ENXIO);
}
DWMMC_LOCK_INIT(sc);
if (bus_alloc_resources(dev, dwmmc_spec, sc->res)) {
device_printf(dev, "could not allocate resources\n");
return (ENXIO);
}
/* Setup interrupt handler. */
error = bus_setup_intr(dev, sc->res[1], INTR_TYPE_NET | INTR_MPSAFE,
NULL, dwmmc_intr, sc, &sc->intr_cookie);
if (error != 0) {
device_printf(dev, "could not setup interrupt handler.\n");
return (ENXIO);
}
device_printf(dev, "Hardware version ID is %04x\n",
READ4(sc, SDMMC_VERID) & 0xffff);
/* Reset all */
if (dwmmc_ctrl_reset(sc, (SDMMC_CTRL_RESET |
SDMMC_CTRL_FIFO_RESET |
SDMMC_CTRL_DMA_RESET)))
return (ENXIO);
dwmmc_setup_bus(sc, sc->host.f_min);
if (sc->fifo_depth == 0) {
sc->fifo_depth = 1 +
((READ4(sc, SDMMC_FIFOTH) >> SDMMC_FIFOTH_RXWMARK_S) & 0xfff);
device_printf(dev, "No fifo-depth, using FIFOTH %x\n",
sc->fifo_depth);
}
if (!sc->use_pio) {
dma_stop(sc);
if (dma_setup(sc))
return (ENXIO);
/* Install desc base */
WRITE4(sc, SDMMC_DBADDR, sc->desc_ring_paddr);
/* Enable DMA interrupts */
WRITE4(sc, SDMMC_IDSTS, SDMMC_IDINTEN_MASK);
WRITE4(sc, SDMMC_IDINTEN, (SDMMC_IDINTEN_NI |
SDMMC_IDINTEN_RI |
SDMMC_IDINTEN_TI));
}
/* Clear and disable interrups for a while */
WRITE4(sc, SDMMC_RINTSTS, 0xffffffff);
WRITE4(sc, SDMMC_INTMASK, 0);
/* Maximum timeout */
WRITE4(sc, SDMMC_TMOUT, 0xffffffff);
/* Enable interrupts */
WRITE4(sc, SDMMC_RINTSTS, 0xffffffff);
WRITE4(sc, SDMMC_INTMASK, (SDMMC_INTMASK_CMD_DONE |
SDMMC_INTMASK_DTO |
SDMMC_INTMASK_ACD |
SDMMC_INTMASK_TXDR |
SDMMC_INTMASK_RXDR |
DWMMC_ERR_FLAGS |
SDMMC_INTMASK_CD));
WRITE4(sc, SDMMC_CTRL, SDMMC_CTRL_INT_ENABLE);
TASK_INIT(&sc->card_task, 0, dwmmc_card_task, sc);
TIMEOUT_TASK_INIT(taskqueue_swi_giant, &sc->card_delayed_task, 0,
dwmmc_card_task, sc);
#ifdef MMCCAM
sc->ccb = NULL;
if (mmc_cam_sim_alloc(dev, "dw_mmc", &sc->mmc_sim) != 0) {
device_printf(dev, "cannot alloc cam sim\n");
dwmmc_detach(dev);
return (ENXIO);
}
#endif
/*
* Schedule a card detection as we won't get an interrupt
* if the card is inserted when we attach
*/
dwmmc_card_task(sc, 0);
return (0);
}
int
dwmmc_detach(device_t dev)
{
struct dwmmc_softc *sc;
int ret;
sc = device_get_softc(dev);
ret = device_delete_children(dev);
if (ret != 0)
return (ret);
taskqueue_drain(taskqueue_swi_giant, &sc->card_task);
taskqueue_drain_timeout(taskqueue_swi_giant, &sc->card_delayed_task);
if (sc->intr_cookie != NULL) {
ret = bus_teardown_intr(dev, sc->res[1], sc->intr_cookie);
if (ret != 0)
return (ret);
}
bus_release_resources(dev, dwmmc_spec, sc->res);
DWMMC_LOCK_DESTROY(sc);
if (sc->hwreset != NULL && hwreset_deassert(sc->hwreset) != 0)
device_printf(sc->dev, "cannot deassert reset\n");
if (sc->biu != NULL && clk_disable(sc->biu) != 0)
device_printf(sc->dev, "cannot disable biu clock\n");
if (sc->ciu != NULL && clk_disable(sc->ciu) != 0)
device_printf(sc->dev, "cannot disable ciu clock\n");
if (sc->vmmc && regulator_disable(sc->vmmc) != 0)
device_printf(sc->dev, "Cannot disable vmmc regulator\n");
if (sc->vqmmc && regulator_disable(sc->vqmmc) != 0)
device_printf(sc->dev, "Cannot disable vqmmc regulator\n");
#ifdef MMCCAM
mmc_cam_sim_free(&sc->mmc_sim);
#endif
return (0);
}
static int
dwmmc_setup_bus(struct dwmmc_softc *sc, int freq)
{
int tout;
int div;
if (freq == 0) {
WRITE4(sc, SDMMC_CLKENA, 0);
WRITE4(sc, SDMMC_CMD, (SDMMC_CMD_WAIT_PRVDATA |
SDMMC_CMD_UPD_CLK_ONLY | SDMMC_CMD_START));
tout = 1000;
do {
if (tout-- < 0) {
device_printf(sc->dev, "Failed update clk\n");
return (1);
}
} while (READ4(sc, SDMMC_CMD) & SDMMC_CMD_START);
return (0);
}
WRITE4(sc, SDMMC_CLKENA, 0);
WRITE4(sc, SDMMC_CLKSRC, 0);
div = (sc->bus_hz != freq) ? DIV_ROUND_UP(sc->bus_hz, 2 * freq) : 0;
WRITE4(sc, SDMMC_CLKDIV, div);
WRITE4(sc, SDMMC_CMD, (SDMMC_CMD_WAIT_PRVDATA |
SDMMC_CMD_UPD_CLK_ONLY | SDMMC_CMD_START));
tout = 1000;
do {
if (tout-- < 0) {
device_printf(sc->dev, "Failed to update clk\n");
return (1);
}
} while (READ4(sc, SDMMC_CMD) & SDMMC_CMD_START);
WRITE4(sc, SDMMC_CLKENA, (SDMMC_CLKENA_CCLK_EN | SDMMC_CLKENA_LP));
WRITE4(sc, SDMMC_CMD, SDMMC_CMD_WAIT_PRVDATA |
SDMMC_CMD_UPD_CLK_ONLY | SDMMC_CMD_START);
tout = 1000;
do {
if (tout-- < 0) {
device_printf(sc->dev, "Failed to enable clk\n");
return (1);
}
} while (READ4(sc, SDMMC_CMD) & SDMMC_CMD_START);
return (0);
}
static int
dwmmc_update_ios(device_t brdev, device_t reqdev)
{
struct dwmmc_softc *sc;
struct mmc_ios *ios;
uint32_t reg;
int ret = 0;
sc = device_get_softc(brdev);
ios = &sc->host.ios;
dprintf("Setting up clk %u bus_width %d, timing: %d\n",
ios->clock, ios->bus_width, ios->timing);
switch (ios->power_mode) {
case power_on:
break;
case power_off:
WRITE4(sc, SDMMC_PWREN, 0);
break;
case power_up:
WRITE4(sc, SDMMC_PWREN, 1);
break;
}
mmc_fdt_set_power(&sc->mmc_helper, ios->power_mode);
if (ios->bus_width == bus_width_8)
WRITE4(sc, SDMMC_CTYPE, SDMMC_CTYPE_8BIT);
else if (ios->bus_width == bus_width_4)
WRITE4(sc, SDMMC_CTYPE, SDMMC_CTYPE_4BIT);
else
WRITE4(sc, SDMMC_CTYPE, 0);
if ((sc->hwtype & HWTYPE_MASK) == HWTYPE_EXYNOS) {
/* XXX: take care about DDR or SDR use here */
WRITE4(sc, SDMMC_CLKSEL, sc->sdr_timing);
}
/* Set DDR mode */
reg = READ4(sc, SDMMC_UHS_REG);
if (ios->timing == bus_timing_uhs_ddr50 ||
ios->timing == bus_timing_mmc_ddr52 ||
ios->timing == bus_timing_mmc_hs400)
reg |= (SDMMC_UHS_REG_DDR);
else
reg &= ~(SDMMC_UHS_REG_DDR);
WRITE4(sc, SDMMC_UHS_REG, reg);
if (sc->update_ios)
ret = sc->update_ios(sc, ios);
dwmmc_setup_bus(sc, ios->clock);
return (ret);
}
static int
dma_done(struct dwmmc_softc *sc, struct mmc_command *cmd)
{
struct mmc_data *data;
data = cmd->data;
if (data->flags & MMC_DATA_WRITE)
bus_dmamap_sync(sc->buf_tag, sc->buf_map,
BUS_DMASYNC_POSTWRITE);
else
bus_dmamap_sync(sc->buf_tag, sc->buf_map,
BUS_DMASYNC_POSTREAD);
bus_dmamap_sync(sc->desc_tag, sc->desc_map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->buf_tag, sc->buf_map);
return (0);
}
static int
dma_stop(struct dwmmc_softc *sc)
{
int reg;
reg = READ4(sc, SDMMC_CTRL);
reg &= ~(SDMMC_CTRL_USE_IDMAC);
reg |= (SDMMC_CTRL_DMA_RESET);
WRITE4(sc, SDMMC_CTRL, reg);
reg = READ4(sc, SDMMC_BMOD);
reg &= ~(SDMMC_BMOD_DE | SDMMC_BMOD_FB);
reg |= (SDMMC_BMOD_SWR);
WRITE4(sc, SDMMC_BMOD, reg);
return (0);
}
static int
dma_prepare(struct dwmmc_softc *sc, struct mmc_command *cmd)
{
struct mmc_data *data;
int err;
int reg;
data = cmd->data;
reg = READ4(sc, SDMMC_INTMASK);
reg &= ~(SDMMC_INTMASK_TXDR | SDMMC_INTMASK_RXDR);
WRITE4(sc, SDMMC_INTMASK, reg);
dprintf("%s: bus_dmamap_load size: %zu\n", __func__, data->len);
err = bus_dmamap_load(sc->buf_tag, sc->buf_map,
data->data, data->len, dwmmc_ring_setup,
sc, BUS_DMA_NOWAIT);
if (err != 0)
panic("dmamap_load failed\n");
/* Ensure the device can see the desc */
bus_dmamap_sync(sc->desc_tag, sc->desc_map,
BUS_DMASYNC_PREWRITE);
if (data->flags & MMC_DATA_WRITE)
bus_dmamap_sync(sc->buf_tag, sc->buf_map,
BUS_DMASYNC_PREWRITE);
else
bus_dmamap_sync(sc->buf_tag, sc->buf_map,
BUS_DMASYNC_PREREAD);
reg = (DEF_MSIZE << SDMMC_FIFOTH_MSIZE_S);
reg |= ((sc->fifo_depth / 2) - 1) << SDMMC_FIFOTH_RXWMARK_S;
reg |= (sc->fifo_depth / 2) << SDMMC_FIFOTH_TXWMARK_S;
WRITE4(sc, SDMMC_FIFOTH, reg);
wmb();
reg = READ4(sc, SDMMC_CTRL);
reg |= (SDMMC_CTRL_USE_IDMAC | SDMMC_CTRL_DMA_ENABLE);
WRITE4(sc, SDMMC_CTRL, reg);
wmb();
reg = READ4(sc, SDMMC_BMOD);
reg |= (SDMMC_BMOD_DE | SDMMC_BMOD_FB);
WRITE4(sc, SDMMC_BMOD, reg);
/* Start */
WRITE4(sc, SDMMC_PLDMND, 1);
return (0);
}
static int
pio_prepare(struct dwmmc_softc *sc, struct mmc_command *cmd)
{
struct mmc_data *data;
int reg;
data = cmd->data;
data->xfer_len = 0;
reg = (DEF_MSIZE << SDMMC_FIFOTH_MSIZE_S);
reg |= ((sc->fifo_depth / 2) - 1) << SDMMC_FIFOTH_RXWMARK_S;
reg |= (sc->fifo_depth / 2) << SDMMC_FIFOTH_TXWMARK_S;
WRITE4(sc, SDMMC_FIFOTH, reg);
wmb();
return (0);
}
static void
pio_read(struct dwmmc_softc *sc, struct mmc_command *cmd)
{
struct mmc_data *data;
uint32_t *p, status;
if (cmd == NULL || cmd->data == NULL)
return;
data = cmd->data;
if ((data->flags & MMC_DATA_READ) == 0)
return;
KASSERT((data->xfer_len & 3) == 0, ("xfer_len not aligned"));
p = (uint32_t *)data->data + (data->xfer_len >> 2);
while (data->xfer_len < data->len) {
status = READ4(sc, SDMMC_STATUS);
if (status & SDMMC_STATUS_FIFO_EMPTY)
break;
*p++ = READ4(sc, SDMMC_DATA);
data->xfer_len += 4;
}
WRITE4(sc, SDMMC_RINTSTS, SDMMC_INTMASK_RXDR);
}
static void
pio_write(struct dwmmc_softc *sc, struct mmc_command *cmd)
{
struct mmc_data *data;
uint32_t *p, status;
if (cmd == NULL || cmd->data == NULL)
return;
data = cmd->data;
if ((data->flags & MMC_DATA_WRITE) == 0)
return;
KASSERT((data->xfer_len & 3) == 0, ("xfer_len not aligned"));
p = (uint32_t *)data->data + (data->xfer_len >> 2);
while (data->xfer_len < data->len) {
status = READ4(sc, SDMMC_STATUS);
if (status & SDMMC_STATUS_FIFO_FULL)
break;
WRITE4(sc, SDMMC_DATA, *p++);
data->xfer_len += 4;
}
WRITE4(sc, SDMMC_RINTSTS, SDMMC_INTMASK_TXDR);
}
static void
dwmmc_start_cmd(struct dwmmc_softc *sc, struct mmc_command *cmd)
{
struct mmc_data *data;
uint32_t blksz;
uint32_t cmdr;
dprintf("%s\n", __func__);
sc->curcmd = cmd;
data = cmd->data;
#ifndef MMCCAM
/* XXX Upper layers don't always set this */
cmd->mrq = sc->req;
#endif
/* Begin setting up command register. */
cmdr = cmd->opcode;
dprintf("cmd->opcode 0x%08x\n", cmd->opcode);
if (cmd->opcode == MMC_STOP_TRANSMISSION ||
cmd->opcode == MMC_GO_IDLE_STATE ||
cmd->opcode == MMC_GO_INACTIVE_STATE)
cmdr |= SDMMC_CMD_STOP_ABORT;
else if (cmd->opcode != MMC_SEND_STATUS && data)
cmdr |= SDMMC_CMD_WAIT_PRVDATA;
/* Set up response handling. */
if (MMC_RSP(cmd->flags) != MMC_RSP_NONE) {
cmdr |= SDMMC_CMD_RESP_EXP;
if (cmd->flags & MMC_RSP_136)
cmdr |= SDMMC_CMD_RESP_LONG;
}
if (cmd->flags & MMC_RSP_CRC)
cmdr |= SDMMC_CMD_RESP_CRC;
/*
* XXX: Not all platforms want this.
*/
cmdr |= SDMMC_CMD_USE_HOLD_REG;
if ((sc->flags & CARD_INIT_DONE) == 0) {
sc->flags |= (CARD_INIT_DONE);
cmdr |= SDMMC_CMD_SEND_INIT;
}
if (data) {
if ((cmd->opcode == MMC_WRITE_MULTIPLE_BLOCK ||
cmd->opcode == MMC_READ_MULTIPLE_BLOCK) &&
sc->use_auto_stop)
cmdr |= SDMMC_CMD_SEND_ASTOP;
cmdr |= SDMMC_CMD_DATA_EXP;
if (data->flags & MMC_DATA_STREAM)
cmdr |= SDMMC_CMD_MODE_STREAM;
if (data->flags & MMC_DATA_WRITE)
cmdr |= SDMMC_CMD_DATA_WRITE;
WRITE4(sc, SDMMC_TMOUT, 0xffffffff);
#ifdef MMCCAM
if (cmd->data->flags & MMC_DATA_BLOCK_SIZE) {
WRITE4(sc, SDMMC_BLKSIZ, cmd->data->block_size);
WRITE4(sc, SDMMC_BYTCNT, cmd->data->len);
} else
#endif
{
WRITE4(sc, SDMMC_BYTCNT, data->len);
blksz = (data->len < MMC_SECTOR_SIZE) ? \
data->len : MMC_SECTOR_SIZE;
WRITE4(sc, SDMMC_BLKSIZ, blksz);
}
if (sc->use_pio) {
pio_prepare(sc, cmd);
} else {
dma_prepare(sc, cmd);
}
wmb();
}
dprintf("cmdr 0x%08x\n", cmdr);
WRITE4(sc, SDMMC_CMDARG, cmd->arg);
wmb();
WRITE4(sc, SDMMC_CMD, cmdr | SDMMC_CMD_START);
};
static void
dwmmc_next_operation(struct dwmmc_softc *sc)
{
struct mmc_command *cmd;
dprintf("%s\n", __func__);
#ifdef MMCCAM
union ccb *ccb;
ccb = sc->ccb;
if (ccb == NULL)
return;
cmd = &ccb->mmcio.cmd;
#else
struct mmc_request *req;
req = sc->req;
if (req == NULL)
return;
cmd = req->cmd;
#endif
sc->acd_rcvd = 0;
sc->dto_rcvd = 0;
sc->cmd_done = 0;
/*
* XXX: Wait until card is still busy.
* We do need this to prevent data timeouts,
* mostly caused by multi-block write command
* followed by single-read.
*/
while(READ4(sc, SDMMC_STATUS) & (SDMMC_STATUS_DATA_BUSY))
continue;
if (sc->flags & PENDING_CMD) {
sc->flags &= ~PENDING_CMD;
dwmmc_start_cmd(sc, cmd);
return;
} else if (sc->flags & PENDING_STOP && !sc->use_auto_stop) {
sc->flags &= ~PENDING_STOP;
/// XXX: What to do with this?
//dwmmc_start_cmd(sc, req->stop);
return;
}
#ifdef MMCCAM
sc->ccb = NULL;
sc->curcmd = NULL;
ccb->ccb_h.status =
(ccb->mmcio.cmd.error == 0 ? CAM_REQ_CMP : CAM_REQ_CMP_ERR);
xpt_done(ccb);
#else
sc->req = NULL;
sc->curcmd = NULL;
req->done(req);
#endif
}
static int
dwmmc_request(device_t brdev, device_t reqdev, struct mmc_request *req)
{
struct dwmmc_softc *sc;
sc = device_get_softc(brdev);
dprintf("%s\n", __func__);
DWMMC_LOCK(sc);
#ifdef MMCCAM
sc->flags |= PENDING_CMD;
#else
if (sc->req != NULL) {
DWMMC_UNLOCK(sc);
return (EBUSY);
}
sc->req = req;
sc->flags |= PENDING_CMD;
if (sc->req->stop)
sc->flags |= PENDING_STOP;
#endif
dwmmc_next_operation(sc);
DWMMC_UNLOCK(sc);
return (0);
}
#ifndef MMCCAM
static int
dwmmc_get_ro(device_t brdev, device_t reqdev)
{
dprintf("%s\n", __func__);
return (0);
}
static int
dwmmc_acquire_host(device_t brdev, device_t reqdev)
{
struct dwmmc_softc *sc;
sc = device_get_softc(brdev);
DWMMC_LOCK(sc);
while (sc->bus_busy)
msleep(sc, &sc->sc_mtx, PZERO, "dwmmcah", hz / 5);
sc->bus_busy++;
DWMMC_UNLOCK(sc);
return (0);
}
static int
dwmmc_release_host(device_t brdev, device_t reqdev)
{
struct dwmmc_softc *sc;
sc = device_get_softc(brdev);
DWMMC_LOCK(sc);
sc->bus_busy--;
wakeup(sc);
DWMMC_UNLOCK(sc);
return (0);
}
#endif /* !MMCCAM */
static int
dwmmc_read_ivar(device_t bus, device_t child, int which, uintptr_t *result)
{
struct dwmmc_softc *sc;
sc = device_get_softc(bus);
switch (which) {
default:
return (EINVAL);
case MMCBR_IVAR_BUS_MODE:
*(int *)result = sc->host.ios.bus_mode;
break;
case MMCBR_IVAR_BUS_WIDTH:
*(int *)result = sc->host.ios.bus_width;
break;
case MMCBR_IVAR_CHIP_SELECT:
*(int *)result = sc->host.ios.chip_select;
break;
case MMCBR_IVAR_CLOCK:
*(int *)result = sc->host.ios.clock;
break;
case MMCBR_IVAR_F_MIN:
*(int *)result = sc->host.f_min;
break;
case MMCBR_IVAR_F_MAX:
*(int *)result = sc->host.f_max;
break;
case MMCBR_IVAR_HOST_OCR:
*(int *)result = sc->host.host_ocr;
break;
case MMCBR_IVAR_MODE:
*(int *)result = sc->host.mode;
break;
case MMCBR_IVAR_OCR:
*(int *)result = sc->host.ocr;
break;
case MMCBR_IVAR_POWER_MODE:
*(int *)result = sc->host.ios.power_mode;
break;
case MMCBR_IVAR_VDD:
*(int *)result = sc->host.ios.vdd;
break;
case MMCBR_IVAR_VCCQ:
*(int *)result = sc->host.ios.vccq;
break;
case MMCBR_IVAR_CAPS:
*(int *)result = sc->host.caps;
break;
case MMCBR_IVAR_MAX_DATA:
*(int *)result = DWMMC_MAX_DATA;
break;
case MMCBR_IVAR_TIMING:
*(int *)result = sc->host.ios.timing;
break;
}
return (0);
}
static int
dwmmc_write_ivar(device_t bus, device_t child, int which, uintptr_t value)
{
struct dwmmc_softc *sc;
sc = device_get_softc(bus);
switch (which) {
default:
return (EINVAL);
case MMCBR_IVAR_BUS_MODE:
sc->host.ios.bus_mode = value;
break;
case MMCBR_IVAR_BUS_WIDTH:
sc->host.ios.bus_width = value;
break;
case MMCBR_IVAR_CHIP_SELECT:
sc->host.ios.chip_select = value;
break;
case MMCBR_IVAR_CLOCK:
sc->host.ios.clock = value;
break;
case MMCBR_IVAR_MODE:
sc->host.mode = value;
break;
case MMCBR_IVAR_OCR:
sc->host.ocr = value;
break;
case MMCBR_IVAR_POWER_MODE:
sc->host.ios.power_mode = value;
break;
case MMCBR_IVAR_VDD:
sc->host.ios.vdd = value;
break;
case MMCBR_IVAR_TIMING:
sc->host.ios.timing = value;
break;
case MMCBR_IVAR_VCCQ:
sc->host.ios.vccq = value;
break;
/* These are read-only */
case MMCBR_IVAR_CAPS:
case MMCBR_IVAR_HOST_OCR:
case MMCBR_IVAR_F_MIN:
case MMCBR_IVAR_F_MAX:
case MMCBR_IVAR_MAX_DATA:
return (EINVAL);
}
return (0);
}
#ifdef MMCCAM
/* Note: this function likely belongs to the specific driver impl */
static int
dwmmc_switch_vccq(device_t dev, device_t child)
{
device_printf(dev, "This is a default impl of switch_vccq() that always fails\n");
return EINVAL;
}
static int
dwmmc_get_tran_settings(device_t dev, struct ccb_trans_settings_mmc *cts)
{
struct dwmmc_softc *sc;
sc = device_get_softc(dev);
cts->host_ocr = sc->host.host_ocr;
cts->host_f_min = sc->host.f_min;
cts->host_f_max = sc->host.f_max;
cts->host_caps = sc->host.caps;
cts->host_max_data = DWMMC_MAX_DATA;
memcpy(&cts->ios, &sc->host.ios, sizeof(struct mmc_ios));
return (0);
}
static int
dwmmc_set_tran_settings(device_t dev, struct ccb_trans_settings_mmc *cts)
{
struct dwmmc_softc *sc;
struct mmc_ios *ios;
struct mmc_ios *new_ios;
int res;
sc = device_get_softc(dev);
ios = &sc->host.ios;
new_ios = &cts->ios;
/* Update only requested fields */
if (cts->ios_valid & MMC_CLK) {
ios->clock = new_ios->clock;
if (bootverbose)
device_printf(sc->dev, "Clock => %d\n", ios->clock);
}
if (cts->ios_valid & MMC_VDD) {
ios->vdd = new_ios->vdd;
if (bootverbose)
device_printf(sc->dev, "VDD => %d\n", ios->vdd);
}
if (cts->ios_valid & MMC_CS) {
ios->chip_select = new_ios->chip_select;
if (bootverbose)
device_printf(sc->dev, "CS => %d\n", ios->chip_select);
}
if (cts->ios_valid & MMC_BW) {
ios->bus_width = new_ios->bus_width;
if (bootverbose)
device_printf(sc->dev, "Bus width => %d\n", ios->bus_width);
}
if (cts->ios_valid & MMC_PM) {
ios->power_mode = new_ios->power_mode;
if (bootverbose)
device_printf(sc->dev, "Power mode => %d\n", ios->power_mode);
}
if (cts->ios_valid & MMC_BT) {
ios->timing = new_ios->timing;
if (bootverbose)
device_printf(sc->dev, "Timing => %d\n", ios->timing);
}
if (cts->ios_valid & MMC_BM) {
ios->bus_mode = new_ios->bus_mode;
if (bootverbose)
device_printf(sc->dev, "Bus mode => %d\n", ios->bus_mode);
}
if (cts->ios_valid & MMC_VCCQ) {
ios->vccq = new_ios->vccq;
if (bootverbose)
device_printf(sc->dev, "VCCQ => %d\n", ios->vccq);
res = dwmmc_switch_vccq(sc->dev, NULL);
device_printf(sc->dev, "VCCQ switch result: %d\n", res);
}
return (dwmmc_update_ios(sc->dev, NULL));
}
static int
dwmmc_cam_request(device_t dev, union ccb *ccb)
{
struct dwmmc_softc *sc;
struct ccb_mmcio *mmcio;
sc = device_get_softc(dev);
mmcio = &ccb->mmcio;
DWMMC_LOCK(sc);
#ifdef DEBUG
if (__predict_false(bootverbose)) {
device_printf(sc->dev, "CMD%u arg %#x flags %#x dlen %u dflags %#x\n",
mmcio->cmd.opcode, mmcio->cmd.arg, mmcio->cmd.flags,
mmcio->cmd.data != NULL ? (unsigned int) mmcio->cmd.data->len : 0,
mmcio->cmd.data != NULL ? mmcio->cmd.data->flags: 0);
}
#endif
if (mmcio->cmd.data != NULL) {
if (mmcio->cmd.data->len == 0 || mmcio->cmd.data->flags == 0)
panic("data->len = %d, data->flags = %d -- something is b0rked",
(int)mmcio->cmd.data->len, mmcio->cmd.data->flags);
}
if (sc->ccb != NULL) {
device_printf(sc->dev, "Controller still has an active command\n");
return (EBUSY);
}
sc->ccb = ccb;
DWMMC_UNLOCK(sc);
dwmmc_request(sc->dev, NULL, NULL);
return (0);
}
static void
dwmmc_cam_poll(device_t dev)
{
struct dwmmc_softc *sc;
sc = device_get_softc(dev);
dwmmc_intr(sc);
}
#endif /* MMCCAM */
static device_method_t dwmmc_methods[] = {
/* Bus interface */
DEVMETHOD(bus_read_ivar, dwmmc_read_ivar),
DEVMETHOD(bus_write_ivar, dwmmc_write_ivar),
#ifndef MMCCAM
/* mmcbr_if */
DEVMETHOD(mmcbr_update_ios, dwmmc_update_ios),
DEVMETHOD(mmcbr_request, dwmmc_request),
DEVMETHOD(mmcbr_get_ro, dwmmc_get_ro),
DEVMETHOD(mmcbr_acquire_host, dwmmc_acquire_host),
DEVMETHOD(mmcbr_release_host, dwmmc_release_host),
#endif
#ifdef MMCCAM
/* MMCCAM interface */
DEVMETHOD(mmc_sim_get_tran_settings, dwmmc_get_tran_settings),
DEVMETHOD(mmc_sim_set_tran_settings, dwmmc_set_tran_settings),
DEVMETHOD(mmc_sim_cam_request, dwmmc_cam_request),
DEVMETHOD(mmc_sim_cam_poll, dwmmc_cam_poll),
DEVMETHOD(bus_add_child, bus_generic_add_child),
#endif
DEVMETHOD_END
};
DEFINE_CLASS_0(dwmmc, dwmmc_driver, dwmmc_methods,
sizeof(struct dwmmc_softc));