/* * Copyright (c) 2007 Cisco Systems, Inc. All rights reserved. * Copyright (c) 2007, 2008 Mellanox Technologies. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include #include #include #include "mlx4_ib.h" static u32 convert_access(int acc) { return (acc & IB_ACCESS_REMOTE_ATOMIC ? MLX4_PERM_ATOMIC : 0) | (acc & IB_ACCESS_REMOTE_WRITE ? MLX4_PERM_REMOTE_WRITE : 0) | (acc & IB_ACCESS_REMOTE_READ ? MLX4_PERM_REMOTE_READ : 0) | (acc & IB_ACCESS_LOCAL_WRITE ? MLX4_PERM_LOCAL_WRITE : 0) | (acc & IB_ACCESS_MW_BIND ? MLX4_PERM_BIND_MW : 0) | MLX4_PERM_LOCAL_READ; } /* No suuport for Shared MR feature */ #if 0 static ssize_t shared_mr_proc_read(struct file *file, char __user *buffer, size_t len, loff_t *offset) { return -ENOSYS; } static ssize_t shared_mr_proc_write(struct file *file, const char __user *buffer, size_t len, loff_t *offset) { return -ENOSYS; } static int shared_mr_mmap(struct file *filep, struct vm_area_struct *vma) { struct proc_dir_entry *pde = PDE(filep->f_path.dentry->d_inode); struct mlx4_shared_mr_info *smr_info = (struct mlx4_shared_mr_info *)pde->data; /* Prevent any mapping not on start of area */ if (vma->vm_pgoff != 0) return -EINVAL; return ib_umem_map_to_vma(smr_info->umem, vma); } static const struct file_operations shared_mr_proc_ops = { .owner = THIS_MODULE, .read = shared_mr_proc_read, .write = shared_mr_proc_write, .mmap = shared_mr_mmap }; static mode_t convert_shared_access(int acc) { return (acc & IB_ACCESS_SHARED_MR_USER_READ ? S_IRUSR : 0) | (acc & IB_ACCESS_SHARED_MR_USER_WRITE ? S_IWUSR : 0) | (acc & IB_ACCESS_SHARED_MR_GROUP_READ ? S_IRGRP : 0) | (acc & IB_ACCESS_SHARED_MR_GROUP_WRITE ? S_IWGRP : 0) | (acc & IB_ACCESS_SHARED_MR_OTHER_READ ? S_IROTH : 0) | (acc & IB_ACCESS_SHARED_MR_OTHER_WRITE ? S_IWOTH : 0); } #endif struct ib_mr *mlx4_ib_get_dma_mr(struct ib_pd *pd, int acc) { struct mlx4_ib_mr *mr; int err; mr = kzalloc(sizeof *mr, GFP_KERNEL); if (!mr) return ERR_PTR(-ENOMEM); err = mlx4_mr_alloc(to_mdev(pd->device)->dev, to_mpd(pd)->pdn, 0, ~0ull, convert_access(acc), 0, 0, &mr->mmr); if (err) goto err_free; err = mlx4_mr_enable(to_mdev(pd->device)->dev, &mr->mmr); if (err) goto err_mr; mr->ibmr.rkey = mr->ibmr.lkey = mr->mmr.key; mr->umem = NULL; return &mr->ibmr; err_mr: (void) mlx4_mr_free(to_mdev(pd->device)->dev, &mr->mmr); err_free: kfree(mr); return ERR_PTR(err); } static int mlx4_ib_umem_write_mtt_block(struct mlx4_ib_dev *dev, struct mlx4_mtt *mtt, u64 mtt_size, u64 mtt_shift, u64 len, u64 cur_start_addr, u64 *pages, int *start_index, int *npages) { int k; int err = 0; u64 mtt_entries; u64 cur_end_addr = cur_start_addr + len; u64 cur_end_addr_aligned = 0; len += (cur_start_addr & (mtt_size-1ULL)); cur_end_addr_aligned = round_up(cur_end_addr, mtt_size); len += (cur_end_addr_aligned - cur_end_addr); if (len & (mtt_size-1ULL)) { WARN(1 , "write_block: len %llx is not aligned to mtt_size %llx\n", (unsigned long long)len, (unsigned long long)mtt_size); return -EINVAL; } mtt_entries = (len >> mtt_shift); /* Align the MTT start address to the mtt_size. Required to handle cases when the MR starts in the middle of an MTT record. Was not required in old code since the physical addresses provided by the dma subsystem were page aligned, which was also the MTT size. */ cur_start_addr = round_down(cur_start_addr, mtt_size); /* A new block is started ...*/ for (k = 0; k < mtt_entries; ++k) { pages[*npages] = cur_start_addr + (mtt_size * k); (*npages)++; /* * Be friendly to mlx4_write_mtt() and * pass it chunks of appropriate size. */ if (*npages == PAGE_SIZE / sizeof(u64)) { err = mlx4_write_mtt(dev->dev, mtt, *start_index, *npages, pages); if (err) return err; (*start_index) += *npages; *npages = 0; } } return 0; } int mlx4_ib_umem_write_mtt(struct mlx4_ib_dev *dev, struct mlx4_mtt *mtt, struct ib_umem *umem) { u64 *pages; u64 len = 0; int err = 0; u64 mtt_size; u64 cur_start_addr = 0; u64 mtt_shift; int start_index = 0; int npages = 0; struct scatterlist *sg; int i; pages = (u64 *) __get_free_page(GFP_KERNEL); if (!pages) return -ENOMEM; mtt_shift = mtt->page_shift; mtt_size = 1ULL << mtt_shift; for_each_sg(umem->sg_head.sgl, sg, umem->nmap, i) { if (cur_start_addr + len == sg_dma_address(sg)) { /* still the same block */ len += sg_dma_len(sg); continue; } /* A new block is started ...*/ /* If len is malaligned, write an extra mtt entry to cover the misaligned area (round up the division) */ err = mlx4_ib_umem_write_mtt_block(dev, mtt, mtt_size, mtt_shift, len, cur_start_addr, pages, &start_index, &npages); if (err) goto out; cur_start_addr = sg_dma_address(sg); len = sg_dma_len(sg); } /* Handle the last block */ if (len > 0) { /* If len is malaligned, write an extra mtt entry to cover the misaligned area (round up the division) */ err = mlx4_ib_umem_write_mtt_block(dev, mtt, mtt_size, mtt_shift, len, cur_start_addr, pages, &start_index, &npages); if (err) goto out; } if (npages) err = mlx4_write_mtt(dev->dev, mtt, start_index, npages, pages); out: free_page((unsigned long) pages); return err; } static inline u64 alignment_of(u64 ptr) { return ilog2(ptr & (~(ptr-1))); } static int mlx4_ib_umem_calc_block_mtt(u64 next_block_start, u64 current_block_end, u64 block_shift) { /* Check whether the alignment of the new block is aligned as well as the previous block. Block address must start with zeros till size of entity_size. */ if ((next_block_start & ((1ULL << block_shift) - 1ULL)) != 0) /* It is not as well aligned as the previous block-reduce the mtt size accordingly. Here we take the last right bit which is 1. */ block_shift = alignment_of(next_block_start); /* Check whether the alignment of the end of previous block - is it aligned as well as the start of the block */ if (((current_block_end) & ((1ULL << block_shift) - 1ULL)) != 0) /* It is not as well aligned as the start of the block - reduce the mtt size accordingly. */ block_shift = alignment_of(current_block_end); return block_shift; } /* Calculate optimal mtt size based on contiguous pages. * Function will return also the number of pages that are not aligned to the calculated mtt_size to be added to total number of pages. For that we should check the first chunk length & last chunk length and if not aligned to mtt_size we should increment the non_aligned_pages number. All chunks in the middle already handled as part of mtt shift calculation for both their start & end addresses. */ int mlx4_ib_umem_calc_optimal_mtt_size(struct ib_umem *umem, u64 start_va, int *num_of_mtts) { u64 block_shift = MLX4_MAX_MTT_SHIFT; u64 current_block_len = 0; u64 current_block_start = 0; u64 misalignment_bits; u64 first_block_start = 0; u64 last_block_end = 0; u64 total_len = 0; u64 last_block_aligned_end = 0; u64 min_shift = ilog2(umem->page_size); struct scatterlist *sg; int i; u64 next_block_start; u64 current_block_end; for_each_sg(umem->sg_head.sgl, sg, umem->nmap, i) { /* Initialization - save the first chunk start as the current_block_start - block means contiguous pages. */ if (current_block_len == 0 && current_block_start == 0) { first_block_start = current_block_start = sg_dma_address(sg); /* Find the bits that are different between the physical address and the virtual address for the start of the MR. */ /* umem_get aligned the start_va to a page boundary. Therefore, we need to align the start va to the same boundary */ /* misalignment_bits is needed to handle the case of a single memory region. In this case, the rest of the logic will not reduce the block size. If we use a block size which is bigger than the alignment of the misalignment bits, we might use the virtual page number instead of the physical page number, resulting in access to the wrong data. */ misalignment_bits = (start_va & (~(((u64)(umem->page_size))-1ULL))) ^ current_block_start; block_shift = min(alignment_of(misalignment_bits) , block_shift); } /* Go over the scatter entries and check if they continue the previous scatter entry. */ next_block_start = sg_dma_address(sg); current_block_end = current_block_start + current_block_len; /* If we have a split (non-contig.) between two block*/ if (current_block_end != next_block_start) { block_shift = mlx4_ib_umem_calc_block_mtt( next_block_start, current_block_end, block_shift); /* If we reached the minimum shift for 4k page we stop the loop. */ if (block_shift <= min_shift) goto end; /* If not saved yet we are in first block - we save the length of first block to calculate the non_aligned_pages number at * the end. */ total_len += current_block_len; /* Start a new block */ current_block_start = next_block_start; current_block_len = sg_dma_len(sg); continue; } /* The scatter entry is another part of the current block, increase the block size * An entry in the scatter can be larger than 4k (page) as of dma mapping which merge some blocks together. */ current_block_len += sg_dma_len(sg); } /* Account for the last block in the total len */ total_len += current_block_len; /* Add to the first block the misalignment that it suffers from.*/ total_len += (first_block_start & ((1ULL<> block_shift; end: if (block_shift < min_shift) { /* If shift is less than the min we set a WARN and return the min shift. */ WARN(1, "mlx4_ib_umem_calc_optimal_mtt_size - unexpected shift %lld\n", (unsigned long long)block_shift); block_shift = min_shift; } return block_shift; } /* No suuport for Shared MR */ #if 0 static int prepare_shared_mr(struct mlx4_ib_mr *mr, int access_flags, int mr_id) { struct proc_dir_entry *mr_proc_entry; mode_t mode = S_IFREG; char name_buff[16]; mode |= convert_shared_access(access_flags); sprintf(name_buff, "%X", mr_id); mr->smr_info = kmalloc(sizeof(struct mlx4_shared_mr_info), GFP_KERNEL); mr->smr_info->mr_id = mr_id; mr->smr_info->umem = mr->umem; mr_proc_entry = proc_create_data(name_buff, mode, mlx4_mrs_dir_entry, &shared_mr_proc_ops, mr->smr_info); if (!mr_proc_entry) { pr_err("prepare_shared_mr failed via proc\n"); kfree(mr->smr_info); return -ENODEV; } current_uid_gid(&(mr_proc_entry->uid), &(mr_proc_entry->gid)); mr_proc_entry->size = mr->umem->length; return 0; } static int is_shared_mr(int access_flags) { /* We should check whether IB_ACCESS_SHARED_MR_USER_READ or other shared bits were turned on. */ return !!(access_flags & (IB_ACCESS_SHARED_MR_USER_READ | IB_ACCESS_SHARED_MR_USER_WRITE | IB_ACCESS_SHARED_MR_GROUP_READ | IB_ACCESS_SHARED_MR_GROUP_WRITE | IB_ACCESS_SHARED_MR_OTHER_READ | IB_ACCESS_SHARED_MR_OTHER_WRITE)); } static void free_smr_info(struct mlx4_ib_mr *mr) { /* When master/parent shared mr is dereged there is no ability to share this mr any more - its mr_id will be returned to the kernel as part of ib_uverbs_dereg_mr and may be allocated again as part of other reg_mr. */ char name_buff[16]; sprintf(name_buff, "%X", mr->smr_info->mr_id); /* Remove proc entry is checking internally that no operation was strated on that proc fs file and if in the middle current process will wait till end of operation. That's why no sync mechanism is needed when we release below the shared umem. */ remove_proc_entry(name_buff, mlx4_mrs_dir_entry); kfree(mr->smr_info); mr->smr_info = NULL; } #endif static void mlx4_invalidate_umem(void *invalidation_cookie, struct ib_umem *umem, unsigned long addr, size_t size) { struct mlx4_ib_mr *mr = (struct mlx4_ib_mr *)invalidation_cookie; /* This function is called under client peer lock so its resources are race protected */ if (atomic_inc_return(&mr->invalidated) > 1) { umem->invalidation_ctx->inflight_invalidation = 1; goto end; } umem->invalidation_ctx->peer_callback = 1; mlx4_mr_free(to_mdev(mr->ibmr.device)->dev, &mr->mmr); ib_umem_release(umem); complete(&mr->invalidation_comp); end: return; } struct ib_mr *mlx4_ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length, u64 virt_addr, int access_flags, struct ib_udata *udata, int mr_id) { struct mlx4_ib_dev *dev = to_mdev(pd->device); struct mlx4_ib_mr *mr; int shift; int err; int n; struct ib_peer_memory_client *ib_peer_mem; mr = kzalloc(sizeof *mr, GFP_KERNEL); if (!mr) return ERR_PTR(-ENOMEM); mr->umem = ib_umem_get_ex(pd->uobject->context, start, length, access_flags, 0, 1); if (IS_ERR(mr->umem)) { err = PTR_ERR(mr->umem); goto err_free; } ib_peer_mem = mr->umem->ib_peer_mem; n = ib_umem_page_count(mr->umem); shift = mlx4_ib_umem_calc_optimal_mtt_size(mr->umem, start, &n); err = mlx4_mr_alloc(dev->dev, to_mpd(pd)->pdn, virt_addr, length, convert_access(access_flags), n, shift, &mr->mmr); if (err) goto err_umem; err = mlx4_ib_umem_write_mtt(dev, &mr->mmr.mtt, mr->umem); if (err) goto err_mr; err = mlx4_mr_enable(dev->dev, &mr->mmr); if (err) goto err_mr; mr->ibmr.rkey = mr->ibmr.lkey = mr->mmr.key; /* No suuport for Shared MR */ #if 0 /* Check whether MR should be shared */ if (is_shared_mr(access_flags)) { /* start address and length must be aligned to page size in order to map a full page and preventing leakage of data */ if (mr->umem->offset || (length & ~PAGE_MASK)) { err = -EINVAL; goto err_mr; } err = prepare_shared_mr(mr, access_flags, mr_id); if (err) goto err_mr; } #endif if (ib_peer_mem) { if (access_flags & IB_ACCESS_MW_BIND) { /* Prevent binding MW on peer clients. * mlx4_invalidate_umem must be void, * therefore, mlx4_mr_free should not fail * when using peer clients. */ err = -ENOSYS; pr_err("MW is not supported with peer memory client"); goto err_smr; } init_completion(&mr->invalidation_comp); ib_umem_activate_invalidation_notifier(mr->umem, mlx4_invalidate_umem, mr); } atomic_set(&mr->invalidated, 0); return &mr->ibmr; err_smr: /* No suuport for Shared MR */ #if 0 if (mr->smr_info) free_smr_info(mr); #endif err_mr: (void) mlx4_mr_free(to_mdev(pd->device)->dev, &mr->mmr); err_umem: ib_umem_release(mr->umem); err_free: kfree(mr); return ERR_PTR(err); } int mlx4_ib_dereg_mr(struct ib_mr *ibmr) { struct mlx4_ib_mr *mr = to_mmr(ibmr); struct ib_umem *umem = mr->umem; int ret; /* No suuport for Shared MR */ #if 0 if (mr->smr_info) free_smr_info(mr); #endif if (atomic_inc_return(&mr->invalidated) > 1) { wait_for_completion(&mr->invalidation_comp); goto end; } ret = mlx4_mr_free(to_mdev(ibmr->device)->dev, &mr->mmr); if (ret) { /* Error is not expected here, except when memory windows * are bound to MR which is not supported with * peer memory clients */ atomic_set(&mr->invalidated, 0); return ret; } if (!umem) goto end; ib_umem_release(mr->umem); end: kfree(mr); return 0; } struct ib_mw *mlx4_ib_alloc_mw(struct ib_pd *pd, enum ib_mw_type type) { struct mlx4_ib_dev *dev = to_mdev(pd->device); struct mlx4_ib_mw *mw; int err; mw = kmalloc(sizeof(*mw), GFP_KERNEL); if (!mw) return ERR_PTR(-ENOMEM); err = mlx4_mw_alloc(dev->dev, to_mpd(pd)->pdn, (enum mlx4_mw_type)type, &mw->mmw); if (err) goto err_free; err = mlx4_mw_enable(dev->dev, &mw->mmw); if (err) goto err_mw; mw->ibmw.rkey = mw->mmw.key; return &mw->ibmw; err_mw: mlx4_mw_free(dev->dev, &mw->mmw); err_free: kfree(mw); return ERR_PTR(err); } int mlx4_ib_bind_mw(struct ib_qp *qp, struct ib_mw *mw, struct ib_mw_bind *mw_bind) { struct ib_send_wr wr; struct ib_send_wr *bad_wr; int ret; memset(&wr, 0, sizeof(wr)); wr.opcode = IB_WR_BIND_MW; wr.wr_id = mw_bind->wr_id; wr.send_flags = mw_bind->send_flags; wr.wr.bind_mw.mw = mw; wr.wr.bind_mw.bind_info = mw_bind->bind_info; wr.wr.bind_mw.rkey = ib_inc_rkey(mw->rkey); ret = mlx4_ib_post_send(qp, &wr, &bad_wr); if (!ret) mw->rkey = wr.wr.bind_mw.rkey; return ret; } int mlx4_ib_dealloc_mw(struct ib_mw *ibmw) { struct mlx4_ib_mw *mw = to_mmw(ibmw); mlx4_mw_free(to_mdev(ibmw->device)->dev, &mw->mmw); kfree(mw); return 0; } struct ib_mr *mlx4_ib_alloc_fast_reg_mr(struct ib_pd *pd, int max_page_list_len) { struct mlx4_ib_dev *dev = to_mdev(pd->device); struct mlx4_ib_mr *mr; int err; mr = kzalloc(sizeof *mr, GFP_KERNEL); if (!mr) return ERR_PTR(-ENOMEM); err = mlx4_mr_alloc(dev->dev, to_mpd(pd)->pdn, 0, 0, 0, max_page_list_len, 0, &mr->mmr); if (err) goto err_free; err = mlx4_mr_enable(dev->dev, &mr->mmr); if (err) goto err_mr; mr->ibmr.rkey = mr->ibmr.lkey = mr->mmr.key; mr->umem = NULL; return &mr->ibmr; err_mr: (void) mlx4_mr_free(dev->dev, &mr->mmr); err_free: kfree(mr); return ERR_PTR(err); } struct ib_fast_reg_page_list *mlx4_ib_alloc_fast_reg_page_list(struct ib_device *ibdev, int page_list_len) { struct mlx4_ib_dev *dev = to_mdev(ibdev); struct mlx4_ib_fast_reg_page_list *mfrpl; int size = page_list_len * sizeof (u64); if (page_list_len > MLX4_MAX_FAST_REG_PAGES) return ERR_PTR(-EINVAL); mfrpl = kmalloc(sizeof *mfrpl, GFP_KERNEL); if (!mfrpl) return ERR_PTR(-ENOMEM); mfrpl->ibfrpl.page_list = kmalloc(size, GFP_KERNEL); if (!mfrpl->ibfrpl.page_list) goto err_free; mfrpl->mapped_page_list = dma_alloc_coherent(&dev->dev->pdev->dev, size, &mfrpl->map, GFP_KERNEL); if (!mfrpl->mapped_page_list) goto err_free; WARN_ON(mfrpl->map & 0x3f); return &mfrpl->ibfrpl; err_free: kfree(mfrpl->ibfrpl.page_list); kfree(mfrpl); return ERR_PTR(-ENOMEM); } void mlx4_ib_free_fast_reg_page_list(struct ib_fast_reg_page_list *page_list) { struct mlx4_ib_dev *dev = to_mdev(page_list->device); struct mlx4_ib_fast_reg_page_list *mfrpl = to_mfrpl(page_list); int size = page_list->max_page_list_len * sizeof (u64); dma_free_coherent(&dev->dev->pdev->dev, size, mfrpl->mapped_page_list, mfrpl->map); kfree(mfrpl->ibfrpl.page_list); kfree(mfrpl); } struct ib_fmr *mlx4_ib_fmr_alloc(struct ib_pd *pd, int acc, struct ib_fmr_attr *fmr_attr) { struct mlx4_ib_dev *dev = to_mdev(pd->device); struct mlx4_ib_fmr *fmr; int err = -ENOMEM; fmr = kmalloc(sizeof *fmr, GFP_KERNEL); if (!fmr) return ERR_PTR(-ENOMEM); err = mlx4_fmr_alloc(dev->dev, to_mpd(pd)->pdn, convert_access(acc), fmr_attr->max_pages, fmr_attr->max_maps, fmr_attr->page_shift, &fmr->mfmr); if (err) goto err_free; err = mlx4_fmr_enable(to_mdev(pd->device)->dev, &fmr->mfmr); if (err) goto err_mr; fmr->ibfmr.rkey = fmr->ibfmr.lkey = fmr->mfmr.mr.key; return &fmr->ibfmr; err_mr: (void) mlx4_mr_free(to_mdev(pd->device)->dev, &fmr->mfmr.mr); err_free: kfree(fmr); return ERR_PTR(err); } int mlx4_ib_map_phys_fmr(struct ib_fmr *ibfmr, u64 *page_list, int npages, u64 iova) { struct mlx4_ib_fmr *ifmr = to_mfmr(ibfmr); struct mlx4_ib_dev *dev = to_mdev(ifmr->ibfmr.device); return mlx4_map_phys_fmr(dev->dev, &ifmr->mfmr, page_list, npages, iova, &ifmr->ibfmr.lkey, &ifmr->ibfmr.rkey); } int mlx4_ib_unmap_fmr(struct list_head *fmr_list) { struct ib_fmr *ibfmr; int err; struct mlx4_dev *mdev = NULL; list_for_each_entry(ibfmr, fmr_list, list) { if (mdev && to_mdev(ibfmr->device)->dev != mdev) return -EINVAL; mdev = to_mdev(ibfmr->device)->dev; } if (!mdev) return 0; list_for_each_entry(ibfmr, fmr_list, list) { struct mlx4_ib_fmr *ifmr = to_mfmr(ibfmr); mlx4_fmr_unmap(mdev, &ifmr->mfmr, &ifmr->ibfmr.lkey, &ifmr->ibfmr.rkey); } /* * Make sure all MPT status updates are visible before issuing * SYNC_TPT firmware command. */ wmb(); err = mlx4_SYNC_TPT(mdev); if (err) pr_warn("SYNC_TPT error %d when " "unmapping FMRs\n", err); return 0; } int mlx4_ib_fmr_dealloc(struct ib_fmr *ibfmr) { struct mlx4_ib_fmr *ifmr = to_mfmr(ibfmr); struct mlx4_ib_dev *dev = to_mdev(ibfmr->device); int err; err = mlx4_fmr_free(dev->dev, &ifmr->mfmr); if (!err) kfree(ifmr); return err; }