/* * Copyright (c) 2007 Cisco Systems, Inc. All rights reserved. * Copyright (c) 2007, 2008 Mellanox Technologies. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include #include #include #include #include "mlx4_ib.h" static u32 convert_access(int acc) { return (acc & IB_ACCESS_REMOTE_ATOMIC ? MLX4_PERM_ATOMIC : 0) | (acc & IB_ACCESS_REMOTE_WRITE ? MLX4_PERM_REMOTE_WRITE : 0) | (acc & IB_ACCESS_REMOTE_READ ? MLX4_PERM_REMOTE_READ : 0) | (acc & IB_ACCESS_LOCAL_WRITE ? MLX4_PERM_LOCAL_WRITE : 0) | (acc & IB_ACCESS_MW_BIND ? MLX4_PERM_BIND_MW : 0) | MLX4_PERM_LOCAL_READ; } static enum mlx4_mw_type to_mlx4_type(enum ib_mw_type type) { switch (type) { case IB_MW_TYPE_1: return MLX4_MW_TYPE_1; case IB_MW_TYPE_2: return MLX4_MW_TYPE_2; default: return -1; } } struct ib_mr *mlx4_ib_get_dma_mr(struct ib_pd *pd, int acc) { struct mlx4_ib_mr *mr; int err; mr = kzalloc(sizeof(*mr), GFP_KERNEL); if (!mr) return ERR_PTR(-ENOMEM); err = mlx4_mr_alloc(to_mdev(pd->device)->dev, to_mpd(pd)->pdn, 0, ~0ull, convert_access(acc), 0, 0, &mr->mmr); if (err) goto err_free; err = mlx4_mr_enable(to_mdev(pd->device)->dev, &mr->mmr); if (err) goto err_mr; mr->ibmr.rkey = mr->ibmr.lkey = mr->mmr.key; mr->umem = NULL; return &mr->ibmr; err_mr: (void) mlx4_mr_free(to_mdev(pd->device)->dev, &mr->mmr); err_free: kfree(mr); return ERR_PTR(err); } int mlx4_ib_umem_write_mtt(struct mlx4_ib_dev *dev, struct mlx4_mtt *mtt, struct ib_umem *umem) { u64 *pages; int i, k, entry; int n; int len; int err = 0; struct scatterlist *sg; pages = (u64 *) __get_free_page(GFP_KERNEL); if (!pages) return -ENOMEM; i = n = 0; for_each_sg(umem->sg_head.sgl, sg, umem->nmap, entry) { len = sg_dma_len(sg) >> mtt->page_shift; for (k = 0; k < len; ++k) { pages[i++] = sg_dma_address(sg) + umem->page_size * k; /* * Be friendly to mlx4_write_mtt() and * pass it chunks of appropriate size. */ if (i == PAGE_SIZE / sizeof (u64)) { err = mlx4_write_mtt(dev->dev, mtt, n, i, pages); if (err) goto out; n += i; i = 0; } } } if (i) err = mlx4_write_mtt(dev->dev, mtt, n, i, pages); out: free_page((unsigned long) pages); return err; } struct ib_mr *mlx4_ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length, u64 virt_addr, int access_flags, struct ib_udata *udata) { struct mlx4_ib_dev *dev = to_mdev(pd->device); struct mlx4_ib_mr *mr; int shift; int err; int n; mr = kzalloc(sizeof(*mr), GFP_KERNEL); if (!mr) return ERR_PTR(-ENOMEM); /* Force registering the memory as writable. */ /* Used for memory re-registeration. HCA protects the access */ mr->umem = ib_umem_get(pd->uobject->context, start, length, access_flags | IB_ACCESS_LOCAL_WRITE, 0); if (IS_ERR(mr->umem)) { err = PTR_ERR(mr->umem); goto err_free; } n = ib_umem_page_count(mr->umem); shift = ilog2(mr->umem->page_size); err = mlx4_mr_alloc(dev->dev, to_mpd(pd)->pdn, virt_addr, length, convert_access(access_flags), n, shift, &mr->mmr); if (err) goto err_umem; err = mlx4_ib_umem_write_mtt(dev, &mr->mmr.mtt, mr->umem); if (err) goto err_mr; err = mlx4_mr_enable(dev->dev, &mr->mmr); if (err) goto err_mr; mr->ibmr.rkey = mr->ibmr.lkey = mr->mmr.key; return &mr->ibmr; err_mr: (void) mlx4_mr_free(to_mdev(pd->device)->dev, &mr->mmr); err_umem: ib_umem_release(mr->umem); err_free: kfree(mr); return ERR_PTR(err); } int mlx4_ib_rereg_user_mr(struct ib_mr *mr, int flags, u64 start, u64 length, u64 virt_addr, int mr_access_flags, struct ib_pd *pd, struct ib_udata *udata) { struct mlx4_ib_dev *dev = to_mdev(mr->device); struct mlx4_ib_mr *mmr = to_mmr(mr); struct mlx4_mpt_entry *mpt_entry; struct mlx4_mpt_entry **pmpt_entry = &mpt_entry; int err; /* Since we synchronize this call and mlx4_ib_dereg_mr via uverbs, * we assume that the calls can't run concurrently. Otherwise, a * race exists. */ err = mlx4_mr_hw_get_mpt(dev->dev, &mmr->mmr, &pmpt_entry); if (err) return err; if (flags & IB_MR_REREG_PD) { err = mlx4_mr_hw_change_pd(dev->dev, *pmpt_entry, to_mpd(pd)->pdn); if (err) goto release_mpt_entry; } if (flags & IB_MR_REREG_ACCESS) { err = mlx4_mr_hw_change_access(dev->dev, *pmpt_entry, convert_access(mr_access_flags)); if (err) goto release_mpt_entry; } if (flags & IB_MR_REREG_TRANS) { int shift; int n; mlx4_mr_rereg_mem_cleanup(dev->dev, &mmr->mmr); ib_umem_release(mmr->umem); mmr->umem = ib_umem_get(mr->uobject->context, start, length, mr_access_flags | IB_ACCESS_LOCAL_WRITE, 0); if (IS_ERR(mmr->umem)) { err = PTR_ERR(mmr->umem); /* Prevent mlx4_ib_dereg_mr from free'ing invalid pointer */ mmr->umem = NULL; goto release_mpt_entry; } n = ib_umem_page_count(mmr->umem); shift = ilog2(mmr->umem->page_size); err = mlx4_mr_rereg_mem_write(dev->dev, &mmr->mmr, virt_addr, length, n, shift, *pmpt_entry); if (err) { ib_umem_release(mmr->umem); goto release_mpt_entry; } mmr->mmr.iova = virt_addr; mmr->mmr.size = length; err = mlx4_ib_umem_write_mtt(dev, &mmr->mmr.mtt, mmr->umem); if (err) { mlx4_mr_rereg_mem_cleanup(dev->dev, &mmr->mmr); ib_umem_release(mmr->umem); goto release_mpt_entry; } } /* If we couldn't transfer the MR to the HCA, just remember to * return a failure. But dereg_mr will free the resources. */ err = mlx4_mr_hw_write_mpt(dev->dev, &mmr->mmr, pmpt_entry); if (!err && flags & IB_MR_REREG_ACCESS) mmr->mmr.access = mr_access_flags; release_mpt_entry: mlx4_mr_hw_put_mpt(dev->dev, pmpt_entry); return err; } static int mlx4_alloc_priv_pages(struct ib_device *device, struct mlx4_ib_mr *mr, int max_pages) { int ret; /* Ensure that size is aligned to DMA cacheline * requirements. * max_pages is limited to MLX4_MAX_FAST_REG_PAGES * so page_map_size will never cross PAGE_SIZE. */ mr->page_map_size = roundup(max_pages * sizeof(u64), MLX4_MR_PAGES_ALIGN); /* Prevent cross page boundary allocation. */ mr->pages = (__be64 *)get_zeroed_page(GFP_KERNEL); if (!mr->pages) return -ENOMEM; mr->page_map = dma_map_single(device->dma_device, mr->pages, mr->page_map_size, DMA_TO_DEVICE); if (dma_mapping_error(device->dma_device, mr->page_map)) { ret = -ENOMEM; goto err; } return 0; err: free_page((unsigned long)mr->pages); return ret; } static void mlx4_free_priv_pages(struct mlx4_ib_mr *mr) { if (mr->pages) { struct ib_device *device = mr->ibmr.device; dma_unmap_single(device->dma_device, mr->page_map, mr->page_map_size, DMA_TO_DEVICE); free_page((unsigned long)mr->pages); mr->pages = NULL; } } int mlx4_ib_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata) { struct mlx4_ib_mr *mr = to_mmr(ibmr); int ret; mlx4_free_priv_pages(mr); ret = mlx4_mr_free(to_mdev(ibmr->device)->dev, &mr->mmr); if (ret) return ret; if (mr->umem) ib_umem_release(mr->umem); kfree(mr); return 0; } struct ib_mw *mlx4_ib_alloc_mw(struct ib_pd *pd, enum ib_mw_type type, struct ib_udata *udata) { struct mlx4_ib_dev *dev = to_mdev(pd->device); struct mlx4_ib_mw *mw; int err; mw = kmalloc(sizeof(*mw), GFP_KERNEL); if (!mw) return ERR_PTR(-ENOMEM); err = mlx4_mw_alloc(dev->dev, to_mpd(pd)->pdn, to_mlx4_type(type), &mw->mmw); if (err) goto err_free; err = mlx4_mw_enable(dev->dev, &mw->mmw); if (err) goto err_mw; mw->ibmw.rkey = mw->mmw.key; return &mw->ibmw; err_mw: mlx4_mw_free(dev->dev, &mw->mmw); err_free: kfree(mw); return ERR_PTR(err); } int mlx4_ib_dealloc_mw(struct ib_mw *ibmw) { struct mlx4_ib_mw *mw = to_mmw(ibmw); mlx4_mw_free(to_mdev(ibmw->device)->dev, &mw->mmw); kfree(mw); return 0; } struct ib_mr *mlx4_ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type, u32 max_num_sg, struct ib_udata *udata) { struct mlx4_ib_dev *dev = to_mdev(pd->device); struct mlx4_ib_mr *mr; int err; if (mr_type != IB_MR_TYPE_MEM_REG || max_num_sg > MLX4_MAX_FAST_REG_PAGES) return ERR_PTR(-EINVAL); mr = kzalloc(sizeof(*mr), GFP_KERNEL); if (!mr) return ERR_PTR(-ENOMEM); err = mlx4_mr_alloc(dev->dev, to_mpd(pd)->pdn, 0, 0, 0, max_num_sg, 0, &mr->mmr); if (err) goto err_free; err = mlx4_alloc_priv_pages(pd->device, mr, max_num_sg); if (err) goto err_free_mr; mr->max_pages = max_num_sg; err = mlx4_mr_enable(dev->dev, &mr->mmr); if (err) goto err_free_pl; mr->ibmr.rkey = mr->ibmr.lkey = mr->mmr.key; mr->umem = NULL; return &mr->ibmr; err_free_pl: mr->ibmr.device = pd->device; mlx4_free_priv_pages(mr); err_free_mr: (void) mlx4_mr_free(dev->dev, &mr->mmr); err_free: kfree(mr); return ERR_PTR(err); } struct ib_fmr *mlx4_ib_fmr_alloc(struct ib_pd *pd, int acc, struct ib_fmr_attr *fmr_attr) { struct mlx4_ib_dev *dev = to_mdev(pd->device); struct mlx4_ib_fmr *fmr; int err = -ENOMEM; fmr = kmalloc(sizeof *fmr, GFP_KERNEL); if (!fmr) return ERR_PTR(-ENOMEM); err = mlx4_fmr_alloc(dev->dev, to_mpd(pd)->pdn, convert_access(acc), fmr_attr->max_pages, fmr_attr->max_maps, fmr_attr->page_shift, &fmr->mfmr); if (err) goto err_free; err = mlx4_fmr_enable(to_mdev(pd->device)->dev, &fmr->mfmr); if (err) goto err_mr; fmr->ibfmr.rkey = fmr->ibfmr.lkey = fmr->mfmr.mr.key; return &fmr->ibfmr; err_mr: (void) mlx4_mr_free(to_mdev(pd->device)->dev, &fmr->mfmr.mr); err_free: kfree(fmr); return ERR_PTR(err); } int mlx4_ib_map_phys_fmr(struct ib_fmr *ibfmr, u64 *page_list, int npages, u64 iova) { struct mlx4_ib_fmr *ifmr = to_mfmr(ibfmr); struct mlx4_ib_dev *dev = to_mdev(ifmr->ibfmr.device); return mlx4_map_phys_fmr(dev->dev, &ifmr->mfmr, page_list, npages, iova, &ifmr->ibfmr.lkey, &ifmr->ibfmr.rkey); } int mlx4_ib_unmap_fmr(struct list_head *fmr_list) { struct ib_fmr *ibfmr; int err; struct mlx4_dev *mdev = NULL; list_for_each_entry(ibfmr, fmr_list, list) { if (mdev && to_mdev(ibfmr->device)->dev != mdev) return -EINVAL; mdev = to_mdev(ibfmr->device)->dev; } if (!mdev) return 0; list_for_each_entry(ibfmr, fmr_list, list) { struct mlx4_ib_fmr *ifmr = to_mfmr(ibfmr); mlx4_fmr_unmap(mdev, &ifmr->mfmr, &ifmr->ibfmr.lkey, &ifmr->ibfmr.rkey); } /* * Make sure all MPT status updates are visible before issuing * SYNC_TPT firmware command. */ wmb(); err = mlx4_SYNC_TPT(mdev); if (err) pr_warn("SYNC_TPT error %d when " "unmapping FMRs\n", err); return 0; } int mlx4_ib_fmr_dealloc(struct ib_fmr *ibfmr) { struct mlx4_ib_fmr *ifmr = to_mfmr(ibfmr); struct mlx4_ib_dev *dev = to_mdev(ibfmr->device); int err; err = mlx4_fmr_free(dev->dev, &ifmr->mfmr); if (!err) kfree(ifmr); return err; } static int mlx4_set_page(struct ib_mr *ibmr, u64 addr) { struct mlx4_ib_mr *mr = to_mmr(ibmr); if (unlikely(mr->npages == mr->max_pages)) return -ENOMEM; mr->pages[mr->npages++] = cpu_to_be64(addr | MLX4_MTT_FLAG_PRESENT); return 0; } int mlx4_ib_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents, unsigned int *sg_offset) { struct mlx4_ib_mr *mr = to_mmr(ibmr); int rc; mr->npages = 0; ib_dma_sync_single_for_cpu(ibmr->device, mr->page_map, mr->page_map_size, DMA_TO_DEVICE); rc = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset, mlx4_set_page); ib_dma_sync_single_for_device(ibmr->device, mr->page_map, mr->page_map_size, DMA_TO_DEVICE); return rc; }