/*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2021 Microsoft Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "gdma_util.h" #include "mana.h" static mana_vendor_id_t mana_id_table[] = { { PCI_VENDOR_ID_MICROSOFT, PCI_DEV_ID_MANA_VF}, /* Last entry */ { 0, 0} }; static inline uint32_t mana_gd_r32(struct gdma_context *g, uint64_t offset) { uint32_t v = bus_space_read_4(g->gd_bus.bar0_t, g->gd_bus.bar0_h, offset); rmb(); return (v); } #if defined(__amd64__) static inline uint64_t mana_gd_r64(struct gdma_context *g, uint64_t offset) { uint64_t v = bus_space_read_8(g->gd_bus.bar0_t, g->gd_bus.bar0_h, offset); rmb(); return (v); } #else static inline uint64_t mana_gd_r64(struct gdma_context *g, uint64_t offset) { uint64_t v; uint32_t *vp = (uint32_t *)&v; *vp = mana_gd_r32(g, offset); *(vp + 1) = mana_gd_r32(g, offset + 4); rmb(); return (v); } #endif static int mana_gd_query_max_resources(device_t dev) { struct gdma_context *gc = device_get_softc(dev); struct gdma_query_max_resources_resp resp = {}; struct gdma_general_req req = {}; int err; mana_gd_init_req_hdr(&req.hdr, GDMA_QUERY_MAX_RESOURCES, sizeof(req), sizeof(resp)); err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp); if (err || resp.hdr.status) { device_printf(gc->dev, "Failed to query resource info: %d, 0x%x\n", err, resp.hdr.status); return err ? err : EPROTO; } mana_dbg(NULL, "max_msix %u, max_eq %u, max_cq %u, " "max_sq %u, max_rq %u\n", resp.max_msix, resp.max_eq, resp.max_cq, resp.max_sq, resp.max_rq); if (gc->num_msix_usable > resp.max_msix) gc->num_msix_usable = resp.max_msix; if (gc->num_msix_usable <= 1) return ENOSPC; gc->max_num_queues = mp_ncpus; if (gc->max_num_queues > MANA_MAX_NUM_QUEUES) gc->max_num_queues = MANA_MAX_NUM_QUEUES; if (gc->max_num_queues > resp.max_eq) gc->max_num_queues = resp.max_eq; if (gc->max_num_queues > resp.max_cq) gc->max_num_queues = resp.max_cq; if (gc->max_num_queues > resp.max_sq) gc->max_num_queues = resp.max_sq; if (gc->max_num_queues > resp.max_rq) gc->max_num_queues = resp.max_rq; return 0; } static int mana_gd_detect_devices(device_t dev) { struct gdma_context *gc = device_get_softc(dev); struct gdma_list_devices_resp resp = {}; struct gdma_general_req req = {}; struct gdma_dev_id gd_dev; uint32_t i, max_num_devs; uint16_t dev_type; int err; mana_gd_init_req_hdr(&req.hdr, GDMA_LIST_DEVICES, sizeof(req), sizeof(resp)); err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp); if (err || resp.hdr.status) { device_printf(gc->dev, "Failed to detect devices: %d, 0x%x\n", err, resp.hdr.status); return err ? err : EPROTO; } max_num_devs = min_t(uint32_t, MAX_NUM_GDMA_DEVICES, resp.num_of_devs); for (i = 0; i < max_num_devs; i++) { gd_dev = resp.devs[i]; dev_type = gd_dev.type; mana_dbg(NULL, "gdma dev %d, type %u\n", i, dev_type); /* HWC is already detected in mana_hwc_create_channel(). */ if (dev_type == GDMA_DEVICE_HWC) continue; if (dev_type == GDMA_DEVICE_MANA) { gc->mana.gdma_context = gc; gc->mana.dev_id = gd_dev; } } return gc->mana.dev_id.type == 0 ? ENODEV : 0; } int mana_gd_send_request(struct gdma_context *gc, uint32_t req_len, const void *req, uint32_t resp_len, void *resp) { struct hw_channel_context *hwc = gc->hwc.driver_data; return mana_hwc_send_request(hwc, req_len, req, resp_len, resp); } void mana_gd_dma_map_paddr(void *arg, bus_dma_segment_t *segs, int nseg, int error) { bus_addr_t *paddr = arg; if (error) return; KASSERT(nseg == 1, ("too many segments %d!", nseg)); *paddr = segs->ds_addr; } int mana_gd_alloc_memory(struct gdma_context *gc, unsigned int length, struct gdma_mem_info *gmi) { bus_addr_t dma_handle; void *buf; int err; if (!gc || !gmi) return EINVAL; if (length < PAGE_SIZE || (length != roundup_pow_of_two(length))) return EINVAL; err = bus_dma_tag_create(bus_get_dma_tag(gc->dev), /* parent */ PAGE_SIZE, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ length, /* maxsize */ 1, /* nsegments */ length, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockfuncarg*/ &gmi->dma_tag); if (err) { device_printf(gc->dev, "failed to create dma tag, err: %d\n", err); return (err); } /* * Must have BUS_DMA_ZERO flag to clear the dma memory. * Otherwise the queue overflow detection mechanism does * not work. */ err = bus_dmamem_alloc(gmi->dma_tag, &buf, BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &gmi->dma_map); if (err) { device_printf(gc->dev, "failed to alloc dma mem, err: %d\n", err); bus_dma_tag_destroy(gmi->dma_tag); return (err); } err = bus_dmamap_load(gmi->dma_tag, gmi->dma_map, buf, length, mana_gd_dma_map_paddr, &dma_handle, BUS_DMA_NOWAIT); if (err) { device_printf(gc->dev, "failed to load dma mem, err: %d\n", err); bus_dmamem_free(gmi->dma_tag, buf, gmi->dma_map); bus_dma_tag_destroy(gmi->dma_tag); return (err); } gmi->dev = gc->dev; gmi->dma_handle = dma_handle; gmi->virt_addr = buf; gmi->length = length; return 0; } void mana_gd_free_memory(struct gdma_mem_info *gmi) { bus_dmamap_unload(gmi->dma_tag, gmi->dma_map); bus_dmamem_free(gmi->dma_tag, gmi->virt_addr, gmi->dma_map); bus_dma_tag_destroy(gmi->dma_tag); } int mana_gd_destroy_doorbell_page(struct gdma_context *gc, int doorbell_page) { struct gdma_destroy_resource_range_req req = {}; struct gdma_resp_hdr resp = {}; int err; mana_gd_init_req_hdr(&req.hdr, GDMA_DESTROY_RESOURCE_RANGE, sizeof(req), sizeof(resp)); req.resource_type = GDMA_RESOURCE_DOORBELL_PAGE; req.num_resources = 1; req.allocated_resources = doorbell_page; err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp); if (err || resp.status) { device_printf(gc->dev, "Failed to destroy doorbell page: ret %d, 0x%x\n", err, resp.status); return err ? err : EPROTO; } return 0; } int mana_gd_allocate_doorbell_page(struct gdma_context *gc, int *doorbell_page) { struct gdma_allocate_resource_range_req req = {}; struct gdma_allocate_resource_range_resp resp = {}; int err; mana_gd_init_req_hdr(&req.hdr, GDMA_ALLOCATE_RESOURCE_RANGE, sizeof(req), sizeof(resp)); req.resource_type = GDMA_RESOURCE_DOORBELL_PAGE; req.num_resources = 1; req.alignment = 1; /* Have GDMA start searching from 0 */ req.allocated_resources = 0; err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp); if (err || resp.hdr.status) { device_printf(gc->dev, "Failed to allocate doorbell page: ret %d, 0x%x\n", err, resp.hdr.status); return err ? err : EPROTO; } *doorbell_page = resp.allocated_resources; return 0; } static int mana_gd_create_hw_eq(struct gdma_context *gc, struct gdma_queue *queue) { struct gdma_create_queue_resp resp = {}; struct gdma_create_queue_req req = {}; int err; if (queue->type != GDMA_EQ) return EINVAL; mana_gd_init_req_hdr(&req.hdr, GDMA_CREATE_QUEUE, sizeof(req), sizeof(resp)); req.hdr.dev_id = queue->gdma_dev->dev_id; req.type = queue->type; req.pdid = queue->gdma_dev->pdid; req.doolbell_id = queue->gdma_dev->doorbell; req.gdma_region = queue->mem_info.dma_region_handle; req.queue_size = queue->queue_size; req.log2_throttle_limit = queue->eq.log2_throttle_limit; req.eq_pci_msix_index = queue->eq.msix_index; err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp); if (err || resp.hdr.status) { device_printf(gc->dev, "Failed to create queue: %d, 0x%x\n", err, resp.hdr.status); return err ? err : EPROTO; } queue->id = resp.queue_index; queue->eq.disable_needed = true; queue->mem_info.dma_region_handle = GDMA_INVALID_DMA_REGION; return 0; } static int mana_gd_disable_queue(struct gdma_queue *queue) { struct gdma_context *gc = queue->gdma_dev->gdma_context; struct gdma_disable_queue_req req = {}; struct gdma_general_resp resp = {}; int err; if (queue->type != GDMA_EQ) mana_warn(NULL, "Not event queue type 0x%x\n", queue->type); mana_gd_init_req_hdr(&req.hdr, GDMA_DISABLE_QUEUE, sizeof(req), sizeof(resp)); req.hdr.dev_id = queue->gdma_dev->dev_id; req.type = queue->type; req.queue_index = queue->id; req.alloc_res_id_on_creation = 1; err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp); if (err || resp.hdr.status) { device_printf(gc->dev, "Failed to disable queue: %d, 0x%x\n", err, resp.hdr.status); return err ? err : EPROTO; } return 0; } #define DOORBELL_OFFSET_SQ 0x0 #define DOORBELL_OFFSET_RQ 0x400 #define DOORBELL_OFFSET_CQ 0x800 #define DOORBELL_OFFSET_EQ 0xFF8 static void mana_gd_ring_doorbell(struct gdma_context *gc, uint32_t db_index, enum gdma_queue_type q_type, uint32_t qid, uint32_t tail_ptr, uint8_t num_req) { union gdma_doorbell_entry e = {}; void __iomem *addr; addr = (char *)gc->db_page_base + gc->db_page_size * db_index; switch (q_type) { case GDMA_EQ: e.eq.id = qid; e.eq.tail_ptr = tail_ptr; e.eq.arm = num_req; addr = (char *)addr + DOORBELL_OFFSET_EQ; break; case GDMA_CQ: e.cq.id = qid; e.cq.tail_ptr = tail_ptr; e.cq.arm = num_req; addr = (char *)addr + DOORBELL_OFFSET_CQ; break; case GDMA_RQ: e.rq.id = qid; e.rq.tail_ptr = tail_ptr; e.rq.wqe_cnt = num_req; addr = (char *)addr + DOORBELL_OFFSET_RQ; break; case GDMA_SQ: e.sq.id = qid; e.sq.tail_ptr = tail_ptr; addr = (char *)addr + DOORBELL_OFFSET_SQ; break; default: mana_warn(NULL, "Invalid queue type 0x%x\n", q_type); return; } /* Ensure all writes are done before ring doorbell */ wmb(); #if defined(__amd64__) writeq(addr, e.as_uint64); #else uint32_t *p = (uint32_t *)&e.as_uint64; writel(addr, *p); writel((char *)addr + 4, *(p + 1)); #endif } void mana_gd_wq_ring_doorbell(struct gdma_context *gc, struct gdma_queue *queue) { mana_gd_ring_doorbell(gc, queue->gdma_dev->doorbell, queue->type, queue->id, queue->head * GDMA_WQE_BU_SIZE, 0); } void mana_gd_ring_cq(struct gdma_queue *cq, uint8_t arm_bit) { struct gdma_context *gc = cq->gdma_dev->gdma_context; uint32_t num_cqe = cq->queue_size / GDMA_CQE_SIZE; uint32_t head = cq->head % (num_cqe << GDMA_CQE_OWNER_BITS); mana_gd_ring_doorbell(gc, cq->gdma_dev->doorbell, cq->type, cq->id, head, arm_bit); } static void mana_gd_process_eqe(struct gdma_queue *eq) { uint32_t head = eq->head % (eq->queue_size / GDMA_EQE_SIZE); struct gdma_context *gc = eq->gdma_dev->gdma_context; struct gdma_eqe *eq_eqe_ptr = eq->queue_mem_ptr; union gdma_eqe_info eqe_info; enum gdma_eqe_type type; struct gdma_event event; struct gdma_queue *cq; struct gdma_eqe *eqe; uint32_t cq_id; eqe = &eq_eqe_ptr[head]; eqe_info.as_uint32 = eqe->eqe_info; type = eqe_info.type; switch (type) { case GDMA_EQE_COMPLETION: cq_id = eqe->details[0] & 0xFFFFFF; if (cq_id >= gc->max_num_cqs) { mana_warn(NULL, "failed: cq_id %u > max_num_cqs %u\n", cq_id, gc->max_num_cqs); break; } cq = gc->cq_table[cq_id]; if (!cq || cq->type != GDMA_CQ || cq->id != cq_id) { mana_warn(NULL, "failed: invalid cq_id %u\n", cq_id); break; } if (cq->cq.callback) cq->cq.callback(cq->cq.context, cq); break; case GDMA_EQE_TEST_EVENT: gc->test_event_eq_id = eq->id; mana_dbg(NULL, "EQE TEST EVENT received for EQ %u\n", eq->id); complete(&gc->eq_test_event); break; case GDMA_EQE_HWC_INIT_EQ_ID_DB: case GDMA_EQE_HWC_INIT_DATA: case GDMA_EQE_HWC_INIT_DONE: if (!eq->eq.callback) break; event.type = type; memcpy(&event.details, &eqe->details, GDMA_EVENT_DATA_SIZE); eq->eq.callback(eq->eq.context, eq, &event); break; default: break; } } static void mana_gd_process_eq_events(void *arg) { uint32_t owner_bits, new_bits, old_bits; union gdma_eqe_info eqe_info; struct gdma_eqe *eq_eqe_ptr; struct gdma_queue *eq = arg; struct gdma_context *gc; uint32_t head, num_eqe; struct gdma_eqe *eqe; int i, j; gc = eq->gdma_dev->gdma_context; num_eqe = eq->queue_size / GDMA_EQE_SIZE; eq_eqe_ptr = eq->queue_mem_ptr; bus_dmamap_sync(eq->mem_info.dma_tag, eq->mem_info.dma_map, BUS_DMASYNC_POSTREAD); /* Process up to 5 EQEs at a time, and update the HW head. */ for (i = 0; i < 5; i++) { eqe = &eq_eqe_ptr[eq->head % num_eqe]; eqe_info.as_uint32 = eqe->eqe_info; owner_bits = eqe_info.owner_bits; old_bits = (eq->head / num_eqe - 1) & GDMA_EQE_OWNER_MASK; /* No more entries */ if (owner_bits == old_bits) break; new_bits = (eq->head / num_eqe) & GDMA_EQE_OWNER_MASK; if (owner_bits != new_bits) { /* Something wrong. Log for debugging purpose */ device_printf(gc->dev, "EQ %d: overflow detected, " "i = %d, eq->head = %u " "got owner_bits = %u, new_bits = %u " "eqe addr %p, eqe->eqe_info 0x%x, " "eqe type = %x, reserved1 = %x, client_id = %x, " "reserved2 = %x, owner_bits = %x\n", eq->id, i, eq->head, owner_bits, new_bits, eqe, eqe->eqe_info, eqe_info.type, eqe_info.reserved1, eqe_info.client_id, eqe_info.reserved2, eqe_info.owner_bits); uint32_t *eqe_dump = (uint32_t *) eq_eqe_ptr; for (j = 0; j < 20; j++) { device_printf(gc->dev, "%p: %x\t%x\t%x\t%x\n", &eqe_dump[j * 4], eqe_dump[j * 4], eqe_dump[j * 4 + 1], eqe_dump[j * 4 + 2], eqe_dump[j * 4 + 3]); } break; } rmb(); mana_gd_process_eqe(eq); eq->head++; } bus_dmamap_sync(eq->mem_info.dma_tag, eq->mem_info.dma_map, BUS_DMASYNC_PREREAD); head = eq->head % (num_eqe << GDMA_EQE_OWNER_BITS); mana_gd_ring_doorbell(gc, eq->gdma_dev->doorbell, eq->type, eq->id, head, SET_ARM_BIT); } static int mana_gd_register_irq(struct gdma_queue *queue, const struct gdma_queue_spec *spec) { struct gdma_dev *gd = queue->gdma_dev; struct gdma_irq_context *gic; struct gdma_context *gc; struct gdma_resource *r; unsigned int msi_index; int err; gc = gd->gdma_context; r = &gc->msix_resource; mtx_lock_spin(&r->lock_spin); msi_index = find_first_zero_bit(r->map, r->size); if (msi_index >= r->size) { err = ENOSPC; } else { bitmap_set(r->map, msi_index, 1); queue->eq.msix_index = msi_index; err = 0; } mtx_unlock_spin(&r->lock_spin); if (err) return err; if (unlikely(msi_index >= gc->num_msix_usable)) { device_printf(gc->dev, "chose an invalid msix index %d, usable %d\n", msi_index, gc->num_msix_usable); return ENOSPC; } gic = &gc->irq_contexts[msi_index]; if (unlikely(gic->handler || gic->arg)) { device_printf(gc->dev, "interrupt handler or arg already assigned, " "msix index: %d\n", msi_index); } gic->arg = queue; gic->handler = mana_gd_process_eq_events; mana_dbg(NULL, "registered msix index %d vector %d irq %ju\n", msi_index, gic->msix_e.vector, rman_get_start(gic->res)); return 0; } static void mana_gd_deregiser_irq(struct gdma_queue *queue) { struct gdma_dev *gd = queue->gdma_dev; struct gdma_irq_context *gic; struct gdma_context *gc; struct gdma_resource *r; unsigned int msix_index; gc = gd->gdma_context; r = &gc->msix_resource; /* At most num_online_cpus() + 1 interrupts are used. */ msix_index = queue->eq.msix_index; if (unlikely(msix_index >= gc->num_msix_usable)) return; gic = &gc->irq_contexts[msix_index]; gic->handler = NULL; gic->arg = NULL; mtx_lock_spin(&r->lock_spin); bitmap_clear(r->map, msix_index, 1); mtx_unlock_spin(&r->lock_spin); queue->eq.msix_index = INVALID_PCI_MSIX_INDEX; mana_dbg(NULL, "deregistered msix index %d vector %d irq %ju\n", msix_index, gic->msix_e.vector, rman_get_start(gic->res)); } int mana_gd_test_eq(struct gdma_context *gc, struct gdma_queue *eq) { struct gdma_generate_test_event_req req = {}; struct gdma_general_resp resp = {}; device_t dev = gc->dev; int err; sx_xlock(&gc->eq_test_event_sx); init_completion(&gc->eq_test_event); gc->test_event_eq_id = INVALID_QUEUE_ID; mana_gd_init_req_hdr(&req.hdr, GDMA_GENERATE_TEST_EQE, sizeof(req), sizeof(resp)); req.hdr.dev_id = eq->gdma_dev->dev_id; req.queue_index = eq->id; err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp); if (err) { device_printf(dev, "test_eq failed: %d\n", err); goto out; } err = EPROTO; if (resp.hdr.status) { device_printf(dev, "test_eq failed: 0x%x\n", resp.hdr.status); goto out; } if (wait_for_completion_timeout(&gc->eq_test_event, 30 * hz)) { device_printf(dev, "test_eq timed out on queue %d\n", eq->id); goto out; } if (eq->id != gc->test_event_eq_id) { device_printf(dev, "test_eq got an event on wrong queue %d (%d)\n", gc->test_event_eq_id, eq->id); goto out; } err = 0; out: sx_xunlock(&gc->eq_test_event_sx); return err; } static void mana_gd_destroy_eq(struct gdma_context *gc, bool flush_evenets, struct gdma_queue *queue) { int err; if (flush_evenets) { err = mana_gd_test_eq(gc, queue); if (err) device_printf(gc->dev, "Failed to flush EQ: %d\n", err); } mana_gd_deregiser_irq(queue); if (queue->eq.disable_needed) mana_gd_disable_queue(queue); } static int mana_gd_create_eq(struct gdma_dev *gd, const struct gdma_queue_spec *spec, bool create_hwq, struct gdma_queue *queue) { struct gdma_context *gc = gd->gdma_context; device_t dev = gc->dev; uint32_t log2_num_entries; int err; queue->eq.msix_index = INVALID_PCI_MSIX_INDEX; log2_num_entries = ilog2(queue->queue_size / GDMA_EQE_SIZE); if (spec->eq.log2_throttle_limit > log2_num_entries) { device_printf(dev, "EQ throttling limit (%lu) > maximum EQE (%u)\n", spec->eq.log2_throttle_limit, log2_num_entries); return EINVAL; } err = mana_gd_register_irq(queue, spec); if (err) { device_printf(dev, "Failed to register irq: %d\n", err); return err; } queue->eq.callback = spec->eq.callback; queue->eq.context = spec->eq.context; queue->head |= INITIALIZED_OWNER_BIT(log2_num_entries); queue->eq.log2_throttle_limit = spec->eq.log2_throttle_limit ?: 1; if (create_hwq) { err = mana_gd_create_hw_eq(gc, queue); if (err) goto out; err = mana_gd_test_eq(gc, queue); if (err) goto out; } return 0; out: device_printf(dev, "Failed to create EQ: %d\n", err); mana_gd_destroy_eq(gc, false, queue); return err; } static void mana_gd_create_cq(const struct gdma_queue_spec *spec, struct gdma_queue *queue) { uint32_t log2_num_entries = ilog2(spec->queue_size / GDMA_CQE_SIZE); queue->head |= INITIALIZED_OWNER_BIT(log2_num_entries); queue->cq.parent = spec->cq.parent_eq; queue->cq.context = spec->cq.context; queue->cq.callback = spec->cq.callback; } static void mana_gd_destroy_cq(struct gdma_context *gc, struct gdma_queue *queue) { uint32_t id = queue->id; if (id >= gc->max_num_cqs) return; if (!gc->cq_table[id]) return; gc->cq_table[id] = NULL; } int mana_gd_create_hwc_queue(struct gdma_dev *gd, const struct gdma_queue_spec *spec, struct gdma_queue **queue_ptr) { struct gdma_context *gc = gd->gdma_context; struct gdma_mem_info *gmi; struct gdma_queue *queue; int err; queue = malloc(sizeof(*queue), M_DEVBUF, M_WAITOK | M_ZERO); if (!queue) return ENOMEM; gmi = &queue->mem_info; err = mana_gd_alloc_memory(gc, spec->queue_size, gmi); if (err) goto free_q; queue->head = 0; queue->tail = 0; queue->queue_mem_ptr = gmi->virt_addr; queue->queue_size = spec->queue_size; queue->monitor_avl_buf = spec->monitor_avl_buf; queue->type = spec->type; queue->gdma_dev = gd; if (spec->type == GDMA_EQ) err = mana_gd_create_eq(gd, spec, false, queue); else if (spec->type == GDMA_CQ) mana_gd_create_cq(spec, queue); if (err) goto out; *queue_ptr = queue; return 0; out: mana_gd_free_memory(gmi); free_q: free(queue, M_DEVBUF); return err; } int mana_gd_destroy_dma_region(struct gdma_context *gc, gdma_obj_handle_t dma_region_handle) { struct gdma_destroy_dma_region_req req = {}; struct gdma_general_resp resp = {}; int err; if (dma_region_handle == GDMA_INVALID_DMA_REGION) return 0; mana_gd_init_req_hdr(&req.hdr, GDMA_DESTROY_DMA_REGION, sizeof(req), sizeof(resp)); req.dma_region_handle = dma_region_handle; err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp); if (err || resp.hdr.status) { device_printf(gc->dev, "Failed to destroy DMA region: %d, 0x%x\n", err, resp.hdr.status); return EPROTO; } return 0; } static int mana_gd_create_dma_region(struct gdma_dev *gd, struct gdma_mem_info *gmi) { unsigned int num_page = gmi->length / PAGE_SIZE; struct gdma_create_dma_region_req *req = NULL; struct gdma_create_dma_region_resp resp = {}; struct gdma_context *gc = gd->gdma_context; struct hw_channel_context *hwc; uint32_t length = gmi->length; uint32_t req_msg_size; int err; int i; if (length < PAGE_SIZE || !powerof2(length)) { mana_err(NULL, "gmi size incorrect: %u\n", length); return EINVAL; } if (offset_in_page((uintptr_t)gmi->virt_addr) != 0) { mana_err(NULL, "gmi not page aligned: %p\n", gmi->virt_addr); return EINVAL; } hwc = gc->hwc.driver_data; req_msg_size = sizeof(*req) + num_page * sizeof(uint64_t); if (req_msg_size > hwc->max_req_msg_size) { mana_err(NULL, "req msg size too large: %u, %u\n", req_msg_size, hwc->max_req_msg_size); return EINVAL; } req = malloc(req_msg_size, M_DEVBUF, M_WAITOK | M_ZERO); if (!req) return ENOMEM; mana_gd_init_req_hdr(&req->hdr, GDMA_CREATE_DMA_REGION, req_msg_size, sizeof(resp)); req->length = length; req->offset_in_page = 0; req->gdma_page_type = GDMA_PAGE_TYPE_4K; req->page_count = num_page; req->page_addr_list_len = num_page; for (i = 0; i < num_page; i++) req->page_addr_list[i] = gmi->dma_handle + i * PAGE_SIZE; err = mana_gd_send_request(gc, req_msg_size, req, sizeof(resp), &resp); if (err) goto out; if (resp.hdr.status || resp.dma_region_handle == GDMA_INVALID_DMA_REGION) { device_printf(gc->dev, "Failed to create DMA region: 0x%x\n", resp.hdr.status); err = EPROTO; goto out; } gmi->dma_region_handle = resp.dma_region_handle; out: free(req, M_DEVBUF); return err; } int mana_gd_create_mana_eq(struct gdma_dev *gd, const struct gdma_queue_spec *spec, struct gdma_queue **queue_ptr) { struct gdma_context *gc = gd->gdma_context; struct gdma_mem_info *gmi; struct gdma_queue *queue; int err; if (spec->type != GDMA_EQ) return EINVAL; queue = malloc(sizeof(*queue), M_DEVBUF, M_WAITOK | M_ZERO); if (!queue) return ENOMEM; gmi = &queue->mem_info; err = mana_gd_alloc_memory(gc, spec->queue_size, gmi); if (err) goto free_q; err = mana_gd_create_dma_region(gd, gmi); if (err) goto out; queue->head = 0; queue->tail = 0; queue->queue_mem_ptr = gmi->virt_addr; queue->queue_size = spec->queue_size; queue->monitor_avl_buf = spec->monitor_avl_buf; queue->type = spec->type; queue->gdma_dev = gd; err = mana_gd_create_eq(gd, spec, true, queue); if (err) goto out; *queue_ptr = queue; return 0; out: mana_gd_free_memory(gmi); free_q: free(queue, M_DEVBUF); return err; } int mana_gd_create_mana_wq_cq(struct gdma_dev *gd, const struct gdma_queue_spec *spec, struct gdma_queue **queue_ptr) { struct gdma_context *gc = gd->gdma_context; struct gdma_mem_info *gmi; struct gdma_queue *queue; int err; if (spec->type != GDMA_CQ && spec->type != GDMA_SQ && spec->type != GDMA_RQ) return EINVAL; queue = malloc(sizeof(*queue), M_DEVBUF, M_WAITOK | M_ZERO); if (!queue) return ENOMEM; gmi = &queue->mem_info; err = mana_gd_alloc_memory(gc, spec->queue_size, gmi); if (err) goto free_q; err = mana_gd_create_dma_region(gd, gmi); if (err) goto out; queue->head = 0; queue->tail = 0; queue->queue_mem_ptr = gmi->virt_addr; queue->queue_size = spec->queue_size; queue->monitor_avl_buf = spec->monitor_avl_buf; queue->type = spec->type; queue->gdma_dev = gd; if (spec->type == GDMA_CQ) mana_gd_create_cq(spec, queue); *queue_ptr = queue; return 0; out: mana_gd_free_memory(gmi); free_q: free(queue, M_DEVBUF); return err; } void mana_gd_destroy_queue(struct gdma_context *gc, struct gdma_queue *queue) { struct gdma_mem_info *gmi = &queue->mem_info; switch (queue->type) { case GDMA_EQ: mana_gd_destroy_eq(gc, queue->eq.disable_needed, queue); break; case GDMA_CQ: mana_gd_destroy_cq(gc, queue); break; case GDMA_RQ: break; case GDMA_SQ: break; default: device_printf(gc->dev, "Can't destroy unknown queue: type = %d\n", queue->type); return; } mana_gd_destroy_dma_region(gc, gmi->dma_region_handle); mana_gd_free_memory(gmi); free(queue, M_DEVBUF); } #define OS_MAJOR_DIV 100000 #define OS_BUILD_MOD 1000 int mana_gd_verify_vf_version(device_t dev) { struct gdma_context *gc = device_get_softc(dev); struct gdma_verify_ver_resp resp = {}; struct gdma_verify_ver_req req = {}; int err; mana_gd_init_req_hdr(&req.hdr, GDMA_VERIFY_VF_DRIVER_VERSION, sizeof(req), sizeof(resp)); req.protocol_ver_min = GDMA_PROTOCOL_FIRST; req.protocol_ver_max = GDMA_PROTOCOL_LAST; req.drv_ver = 0; /* Unused */ req.os_type = 0x30; /* Other */ req.os_ver_major = osreldate / OS_MAJOR_DIV; req.os_ver_minor = (osreldate % OS_MAJOR_DIV) / OS_BUILD_MOD; req.os_ver_build = osreldate % OS_BUILD_MOD; strncpy(req.os_ver_str1, ostype, sizeof(req.os_ver_str1) - 1); strncpy(req.os_ver_str2, osrelease, sizeof(req.os_ver_str2) - 1); err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp); if (err || resp.hdr.status) { device_printf(gc->dev, "VfVerifyVersionOutput: %d, status=0x%x\n", err, resp.hdr.status); return err ? err : EPROTO; } return 0; } int mana_gd_register_device(struct gdma_dev *gd) { struct gdma_context *gc = gd->gdma_context; struct gdma_register_device_resp resp = {}; struct gdma_general_req req = {}; int err; gd->pdid = INVALID_PDID; gd->doorbell = INVALID_DOORBELL; gd->gpa_mkey = INVALID_MEM_KEY; mana_gd_init_req_hdr(&req.hdr, GDMA_REGISTER_DEVICE, sizeof(req), sizeof(resp)); req.hdr.dev_id = gd->dev_id; err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp); if (err || resp.hdr.status) { device_printf(gc->dev, "gdma_register_device_resp failed: %d, 0x%x\n", err, resp.hdr.status); return err ? err : -EPROTO; } gd->pdid = resp.pdid; gd->gpa_mkey = resp.gpa_mkey; gd->doorbell = resp.db_id; mana_dbg(NULL, "mana device pdid %u, gpa_mkey %u, doorbell %u \n", gd->pdid, gd->gpa_mkey, gd->doorbell); return 0; } int mana_gd_deregister_device(struct gdma_dev *gd) { struct gdma_context *gc = gd->gdma_context; struct gdma_general_resp resp = {}; struct gdma_general_req req = {}; int err; if (gd->pdid == INVALID_PDID) return EINVAL; mana_gd_init_req_hdr(&req.hdr, GDMA_DEREGISTER_DEVICE, sizeof(req), sizeof(resp)); req.hdr.dev_id = gd->dev_id; err = mana_gd_send_request(gc, sizeof(req), &req, sizeof(resp), &resp); if (err || resp.hdr.status) { device_printf(gc->dev, "Failed to deregister device: %d, 0x%x\n", err, resp.hdr.status); if (!err) err = EPROTO; } gd->pdid = INVALID_PDID; gd->doorbell = INVALID_DOORBELL; gd->gpa_mkey = INVALID_MEM_KEY; return err; } uint32_t mana_gd_wq_avail_space(struct gdma_queue *wq) { uint32_t used_space = (wq->head - wq->tail) * GDMA_WQE_BU_SIZE; uint32_t wq_size = wq->queue_size; if (used_space > wq_size) { mana_warn(NULL, "failed: used space %u > queue size %u\n", used_space, wq_size); } return wq_size - used_space; } uint8_t * mana_gd_get_wqe_ptr(const struct gdma_queue *wq, uint32_t wqe_offset) { uint32_t offset = (wqe_offset * GDMA_WQE_BU_SIZE) & (wq->queue_size - 1); if ((offset + GDMA_WQE_BU_SIZE) > wq->queue_size) { mana_warn(NULL, "failed: write end out of queue bound %u, " "queue size %u\n", offset + GDMA_WQE_BU_SIZE, wq->queue_size); } return (uint8_t *)wq->queue_mem_ptr + offset; } static uint32_t mana_gd_write_client_oob(const struct gdma_wqe_request *wqe_req, enum gdma_queue_type q_type, uint32_t client_oob_size, uint32_t sgl_data_size, uint8_t *wqe_ptr) { bool oob_in_sgl = !!(wqe_req->flags & GDMA_WR_OOB_IN_SGL); bool pad_data = !!(wqe_req->flags & GDMA_WR_PAD_BY_SGE0); struct gdma_wqe *header = (struct gdma_wqe *)wqe_ptr; uint8_t *ptr; memset(header, 0, sizeof(struct gdma_wqe)); header->num_sge = wqe_req->num_sge; header->inline_oob_size_div4 = client_oob_size / sizeof(uint32_t); if (oob_in_sgl) { if (!pad_data || wqe_req->num_sge < 2) { mana_warn(NULL, "no pad_data or num_sge < 2\n"); } header->client_oob_in_sgl = 1; if (pad_data) header->last_vbytes = wqe_req->sgl[0].size; } if (q_type == GDMA_SQ) header->client_data_unit = wqe_req->client_data_unit; /* * The size of gdma_wqe + client_oob_size must be less than or equal * to one Basic Unit (i.e. 32 bytes), so the pointer can't go beyond * the queue memory buffer boundary. */ ptr = wqe_ptr + sizeof(header); if (wqe_req->inline_oob_data && wqe_req->inline_oob_size > 0) { memcpy(ptr, wqe_req->inline_oob_data, wqe_req->inline_oob_size); if (client_oob_size > wqe_req->inline_oob_size) memset(ptr + wqe_req->inline_oob_size, 0, client_oob_size - wqe_req->inline_oob_size); } return sizeof(header) + client_oob_size; } static void mana_gd_write_sgl(struct gdma_queue *wq, uint8_t *wqe_ptr, const struct gdma_wqe_request *wqe_req) { uint32_t sgl_size = sizeof(struct gdma_sge) * wqe_req->num_sge; const uint8_t *address = (uint8_t *)wqe_req->sgl; uint8_t *base_ptr, *end_ptr; uint32_t size_to_end; base_ptr = wq->queue_mem_ptr; end_ptr = base_ptr + wq->queue_size; size_to_end = (uint32_t)(end_ptr - wqe_ptr); if (size_to_end < sgl_size) { memcpy(wqe_ptr, address, size_to_end); wqe_ptr = base_ptr; address += size_to_end; sgl_size -= size_to_end; } memcpy(wqe_ptr, address, sgl_size); } int mana_gd_post_work_request(struct gdma_queue *wq, const struct gdma_wqe_request *wqe_req, struct gdma_posted_wqe_info *wqe_info) { uint32_t client_oob_size = wqe_req->inline_oob_size; struct gdma_context *gc; uint32_t sgl_data_size; uint32_t max_wqe_size; uint32_t wqe_size; uint8_t *wqe_ptr; if (wqe_req->num_sge == 0) return EINVAL; if (wq->type == GDMA_RQ) { if (client_oob_size != 0) return EINVAL; client_oob_size = INLINE_OOB_SMALL_SIZE; max_wqe_size = GDMA_MAX_RQE_SIZE; } else { if (client_oob_size != INLINE_OOB_SMALL_SIZE && client_oob_size != INLINE_OOB_LARGE_SIZE) return EINVAL; max_wqe_size = GDMA_MAX_SQE_SIZE; } sgl_data_size = sizeof(struct gdma_sge) * wqe_req->num_sge; wqe_size = ALIGN(sizeof(struct gdma_wqe) + client_oob_size + sgl_data_size, GDMA_WQE_BU_SIZE); if (wqe_size > max_wqe_size) return EINVAL; if (wq->monitor_avl_buf && wqe_size > mana_gd_wq_avail_space(wq)) { gc = wq->gdma_dev->gdma_context; device_printf(gc->dev, "unsuccessful flow control!\n"); return ENOSPC; } if (wqe_info) wqe_info->wqe_size_in_bu = wqe_size / GDMA_WQE_BU_SIZE; wqe_ptr = mana_gd_get_wqe_ptr(wq, wq->head); wqe_ptr += mana_gd_write_client_oob(wqe_req, wq->type, client_oob_size, sgl_data_size, wqe_ptr); if (wqe_ptr >= (uint8_t *)wq->queue_mem_ptr + wq->queue_size) wqe_ptr -= wq->queue_size; mana_gd_write_sgl(wq, wqe_ptr, wqe_req); wq->head += wqe_size / GDMA_WQE_BU_SIZE; bus_dmamap_sync(wq->mem_info.dma_tag, wq->mem_info.dma_map, BUS_DMASYNC_PREWRITE); return 0; } int mana_gd_post_and_ring(struct gdma_queue *queue, const struct gdma_wqe_request *wqe_req, struct gdma_posted_wqe_info *wqe_info) { struct gdma_context *gc = queue->gdma_dev->gdma_context; int err; err = mana_gd_post_work_request(queue, wqe_req, wqe_info); if (err) return err; mana_gd_wq_ring_doorbell(gc, queue); return 0; } static int mana_gd_read_cqe(struct gdma_queue *cq, struct gdma_comp *comp) { unsigned int num_cqe = cq->queue_size / sizeof(struct gdma_cqe); struct gdma_cqe *cq_cqe = cq->queue_mem_ptr; uint32_t owner_bits, new_bits, old_bits; struct gdma_cqe *cqe; cqe = &cq_cqe[cq->head % num_cqe]; owner_bits = cqe->cqe_info.owner_bits; old_bits = (cq->head / num_cqe - 1) & GDMA_CQE_OWNER_MASK; /* Return 0 if no more entries. */ if (owner_bits == old_bits) return 0; new_bits = (cq->head / num_cqe) & GDMA_CQE_OWNER_MASK; /* Return -1 if overflow detected. */ if (owner_bits != new_bits) { mana_warn(NULL, "overflow detected! owner_bits %u != new_bits %u\n", owner_bits, new_bits); return -1; } rmb(); comp->wq_num = cqe->cqe_info.wq_num; comp->is_sq = cqe->cqe_info.is_sq; memcpy(comp->cqe_data, cqe->cqe_data, GDMA_COMP_DATA_SIZE); return 1; } int mana_gd_poll_cq(struct gdma_queue *cq, struct gdma_comp *comp, int num_cqe) { int cqe_idx; int ret; bus_dmamap_sync(cq->mem_info.dma_tag, cq->mem_info.dma_map, BUS_DMASYNC_POSTREAD); for (cqe_idx = 0; cqe_idx < num_cqe; cqe_idx++) { ret = mana_gd_read_cqe(cq, &comp[cqe_idx]); if (ret < 0) { cq->head -= cqe_idx; return ret; } if (ret == 0) break; cq->head++; } return cqe_idx; } static void mana_gd_intr(void *arg) { struct gdma_irq_context *gic = arg; if (gic->handler) { gic->handler(gic->arg); } } int mana_gd_alloc_res_map(uint32_t res_avail, struct gdma_resource *r, const char *lock_name) { int n = howmany(res_avail, BITS_PER_LONG); r->map = malloc(n * sizeof(unsigned long), M_DEVBUF, M_WAITOK | M_ZERO); if (!r->map) return ENOMEM; r->size = res_avail; mtx_init(&r->lock_spin, lock_name, NULL, MTX_SPIN); mana_dbg(NULL, "total res %u, total number of unsigned longs %u\n", r->size, n); return (0); } void mana_gd_free_res_map(struct gdma_resource *r) { if (!r || !r->map) return; free(r->map, M_DEVBUF); r->map = NULL; r->size = 0; } static void mana_gd_init_registers(struct gdma_context *gc) { uintptr_t bar0_va = rman_get_bushandle(gc->bar0); vm_paddr_t bar0_pa = rman_get_start(gc->bar0); gc->db_page_size = mana_gd_r32(gc, GDMA_REG_DB_PAGE_SIZE) & 0xFFFF; gc->db_page_base = (void *)(bar0_va + (size_t)mana_gd_r64(gc, GDMA_REG_DB_PAGE_OFFSET)); gc->phys_db_page_base = bar0_pa + mana_gd_r64(gc, GDMA_REG_DB_PAGE_OFFSET); gc->shm_base = (void *)(bar0_va + (size_t)mana_gd_r64(gc, GDMA_REG_SHM_OFFSET)); mana_dbg(NULL, "db_page_size 0x%xx, db_page_base %p," " shm_base %p\n", gc->db_page_size, gc->db_page_base, gc->shm_base); } static struct resource * mana_gd_alloc_bar(device_t dev, int bar) { struct resource *res = NULL; struct pci_map *pm; int rid, type; if (bar < 0 || bar > PCIR_MAX_BAR_0) goto alloc_bar_out; pm = pci_find_bar(dev, PCIR_BAR(bar)); if (!pm) goto alloc_bar_out; if (PCI_BAR_IO(pm->pm_value)) type = SYS_RES_IOPORT; else type = SYS_RES_MEMORY; if (type < 0) goto alloc_bar_out; rid = PCIR_BAR(bar); res = bus_alloc_resource_any(dev, type, &rid, RF_ACTIVE); #if defined(__amd64__) if (res) mana_dbg(NULL, "bar %d: rid 0x%x, type 0x%jx," " handle 0x%jx\n", bar, rid, res->r_bustag, res->r_bushandle); #endif alloc_bar_out: return (res); } static void mana_gd_free_pci_res(struct gdma_context *gc) { if (!gc || !gc->dev) return; if (gc->bar0 != NULL) { bus_release_resource(gc->dev, SYS_RES_MEMORY, PCIR_BAR(GDMA_BAR0), gc->bar0); } if (gc->msix != NULL) { bus_release_resource(gc->dev, SYS_RES_MEMORY, gc->msix_rid, gc->msix); } } static int mana_gd_setup_irqs(device_t dev) { unsigned int max_queues_per_port = mp_ncpus; struct gdma_context *gc = device_get_softc(dev); struct gdma_irq_context *gic; unsigned int max_irqs; int nvec; int rc, rcc, i; if (max_queues_per_port > MANA_MAX_NUM_QUEUES) max_queues_per_port = MANA_MAX_NUM_QUEUES; /* Need 1 interrupt for the Hardware communication Channel (HWC) */ max_irqs = max_queues_per_port + 1; nvec = max_irqs; rc = pci_alloc_msix(dev, &nvec); if (unlikely(rc != 0)) { device_printf(dev, "Failed to allocate MSIX, vectors %d, error: %d\n", nvec, rc); rc = ENOSPC; goto err_setup_irq_alloc; } if (nvec != max_irqs) { if (nvec == 1) { device_printf(dev, "Not enough number of MSI-x allocated: %d\n", nvec); rc = ENOSPC; goto err_setup_irq_release; } device_printf(dev, "Allocated only %d MSI-x (%d requested)\n", nvec, max_irqs); } gc->irq_contexts = malloc(nvec * sizeof(struct gdma_irq_context), M_DEVBUF, M_WAITOK | M_ZERO); if (!gc->irq_contexts) { rc = ENOMEM; goto err_setup_irq_release; } for (i = 0; i < nvec; i++) { gic = &gc->irq_contexts[i]; gic->msix_e.entry = i; /* Vector starts from 1. */ gic->msix_e.vector = i + 1; gic->handler = NULL; gic->arg = NULL; gic->res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &gic->msix_e.vector, RF_ACTIVE | RF_SHAREABLE); if (unlikely(gic->res == NULL)) { rc = ENOMEM; device_printf(dev, "could not allocate resource " "for irq vector %d\n", gic->msix_e.vector); goto err_setup_irq; } rc = bus_setup_intr(dev, gic->res, INTR_TYPE_NET | INTR_MPSAFE, NULL, mana_gd_intr, gic, &gic->cookie); if (unlikely(rc != 0)) { device_printf(dev, "failed to register interrupt " "handler for irq %ju vector %d: error %d\n", rman_get_start(gic->res), gic->msix_e.vector, rc); goto err_setup_irq; } gic->requested = true; mana_dbg(NULL, "added msix vector %d irq %ju\n", gic->msix_e.vector, rman_get_start(gic->res)); } rc = mana_gd_alloc_res_map(nvec, &gc->msix_resource, "gdma msix res lock"); if (rc != 0) { device_printf(dev, "failed to allocate memory " "for msix bitmap\n"); goto err_setup_irq; } gc->max_num_msix = nvec; gc->num_msix_usable = nvec; mana_dbg(NULL, "setup %d msix interrupts\n", nvec); return (0); err_setup_irq: for (; i >= 0; i--) { gic = &gc->irq_contexts[i]; rcc = 0; /* * If gic->requested is true, we need to free both intr and * resources. */ if (gic->requested) rcc = bus_teardown_intr(dev, gic->res, gic->cookie); if (unlikely(rcc != 0)) device_printf(dev, "could not release " "irq vector %d, error: %d\n", gic->msix_e.vector, rcc); rcc = 0; if (gic->res != NULL) { rcc = bus_release_resource(dev, SYS_RES_IRQ, gic->msix_e.vector, gic->res); } if (unlikely(rcc != 0)) device_printf(dev, "dev has no parent while " "releasing resource for irq vector %d\n", gic->msix_e.vector); gic->requested = false; gic->res = NULL; } free(gc->irq_contexts, M_DEVBUF); gc->irq_contexts = NULL; err_setup_irq_release: pci_release_msi(dev); err_setup_irq_alloc: return (rc); } static void mana_gd_remove_irqs(device_t dev) { struct gdma_context *gc = device_get_softc(dev); struct gdma_irq_context *gic; int rc, i; mana_gd_free_res_map(&gc->msix_resource); for (i = 0; i < gc->max_num_msix; i++) { gic = &gc->irq_contexts[i]; if (gic->requested) { rc = bus_teardown_intr(dev, gic->res, gic->cookie); if (unlikely(rc != 0)) { device_printf(dev, "failed to tear down " "irq vector %d, error: %d\n", gic->msix_e.vector, rc); } gic->requested = false; } if (gic->res != NULL) { rc = bus_release_resource(dev, SYS_RES_IRQ, gic->msix_e.vector, gic->res); if (unlikely(rc != 0)) { device_printf(dev, "dev has no parent while " "releasing resource for irq vector %d\n", gic->msix_e.vector); } gic->res = NULL; } } gc->max_num_msix = 0; gc->num_msix_usable = 0; free(gc->irq_contexts, M_DEVBUF); gc->irq_contexts = NULL; pci_release_msi(dev); } static int mana_gd_probe(device_t dev) { mana_vendor_id_t *ent; uint16_t pci_vendor_id = 0; uint16_t pci_device_id = 0; pci_vendor_id = pci_get_vendor(dev); pci_device_id = pci_get_device(dev); ent = mana_id_table; while (ent->vendor_id != 0) { if ((pci_vendor_id == ent->vendor_id) && (pci_device_id == ent->device_id)) { mana_dbg(NULL, "vendor=%x device=%x\n", pci_vendor_id, pci_device_id); device_set_desc(dev, DEVICE_DESC); return (BUS_PROBE_DEFAULT); } ent++; } return (ENXIO); } /** * mana_attach - Device Initialization Routine * @dev: device information struct * * Returns 0 on success, otherwise on failure. * * mana_attach initializes a GDMA adapter identified by a device structure. **/ static int mana_gd_attach(device_t dev) { struct gdma_context *gc; int msix_rid; int rc; gc = device_get_softc(dev); gc->dev = dev; pci_enable_io(dev, SYS_RES_IOPORT); pci_enable_io(dev, SYS_RES_MEMORY); pci_enable_busmaster(dev); gc->bar0 = mana_gd_alloc_bar(dev, GDMA_BAR0); if (unlikely(gc->bar0 == NULL)) { device_printf(dev, "unable to allocate bus resource for bar0!\n"); rc = ENOMEM; goto err_disable_dev; } /* Store bar0 tage and handle for quick access */ gc->gd_bus.bar0_t = rman_get_bustag(gc->bar0); gc->gd_bus.bar0_h = rman_get_bushandle(gc->bar0); /* Map MSI-x vector table */ msix_rid = pci_msix_table_bar(dev); mana_dbg(NULL, "msix_rid 0x%x\n", msix_rid); gc->msix = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &msix_rid, RF_ACTIVE); if (unlikely(gc->msix == NULL)) { device_printf(dev, "unable to allocate bus resource for msix!\n"); rc = ENOMEM; goto err_free_pci_res; } gc->msix_rid = msix_rid; if (unlikely(gc->gd_bus.bar0_h == 0)) { device_printf(dev, "failed to map bar0!\n"); rc = ENXIO; goto err_free_pci_res; } mana_gd_init_registers(gc); mana_smc_init(&gc->shm_channel, gc->dev, gc->shm_base); rc = mana_gd_setup_irqs(dev); if (rc) { goto err_free_pci_res; } sx_init(&gc->eq_test_event_sx, "gdma test event sx"); rc = mana_hwc_create_channel(gc); if (rc) { mana_dbg(NULL, "Failed to create hwc channel\n"); if (rc == EIO) goto err_clean_up_gdma; else goto err_remove_irq; } rc = mana_gd_verify_vf_version(dev); if (rc) { mana_dbg(NULL, "Failed to verify vf\n"); goto err_clean_up_gdma; } rc = mana_gd_query_max_resources(dev); if (rc) { mana_dbg(NULL, "Failed to query max resources\n"); goto err_clean_up_gdma; } rc = mana_gd_detect_devices(dev); if (rc) { mana_dbg(NULL, "Failed to detect mana device\n"); goto err_clean_up_gdma; } rc = mana_probe(&gc->mana); if (rc) { mana_dbg(NULL, "Failed to probe mana device\n"); goto err_clean_up_gdma; } return (0); err_clean_up_gdma: mana_hwc_destroy_channel(gc); err_remove_irq: mana_gd_remove_irqs(dev); err_free_pci_res: mana_gd_free_pci_res(gc); err_disable_dev: pci_disable_busmaster(dev); return(rc); } /** * mana_detach - Device Removal Routine * @pdev: device information struct * * mana_detach is called by the device subsystem to alert the driver * that it should release a PCI device. **/ static int mana_gd_detach(device_t dev) { struct gdma_context *gc = device_get_softc(dev); mana_remove(&gc->mana); mana_hwc_destroy_channel(gc); mana_gd_remove_irqs(dev); mana_gd_free_pci_res(gc); pci_disable_busmaster(dev); return (bus_generic_detach(dev)); } /********************************************************************* * FreeBSD Device Interface Entry Points *********************************************************************/ static device_method_t mana_methods[] = { /* Device interface */ DEVMETHOD(device_probe, mana_gd_probe), DEVMETHOD(device_attach, mana_gd_attach), DEVMETHOD(device_detach, mana_gd_detach), DEVMETHOD_END }; static driver_t mana_driver = { "mana", mana_methods, sizeof(struct gdma_context), }; DRIVER_MODULE(mana, pci, mana_driver, 0, 0); MODULE_PNP_INFO("U16:vendor;U16:device", pci, mana, mana_id_table, nitems(mana_id_table) - 1); MODULE_DEPEND(mana, pci, 1, 1, 1); MODULE_DEPEND(mana, ether, 1, 1, 1); /*********************************************************************/