/*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2004, 2005 * Damien Bergamini . All rights reserved. * Copyright (c) 2005-2006 Sam Leffler, Errno Consulting * Copyright (c) 2007 Andrew Thompson * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice unmodified, this list of conditions, and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); /*- * Intel(R) PRO/Wireless 2200BG/2225BG/2915ABG driver * http://www.intel.com/network/connectivity/products/wireless/prowireless_mobile.htm */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define IWI_DEBUG #ifdef IWI_DEBUG #define DPRINTF(x) do { if (iwi_debug > 0) printf x; } while (0) #define DPRINTFN(n, x) do { if (iwi_debug >= (n)) printf x; } while (0) int iwi_debug = 0; SYSCTL_INT(_debug, OID_AUTO, iwi, CTLFLAG_RW, &iwi_debug, 0, "iwi debug level"); static const char *iwi_fw_states[] = { "IDLE", /* IWI_FW_IDLE */ "LOADING", /* IWI_FW_LOADING */ "ASSOCIATING", /* IWI_FW_ASSOCIATING */ "DISASSOCIATING", /* IWI_FW_DISASSOCIATING */ "SCANNING", /* IWI_FW_SCANNING */ }; #else #define DPRINTF(x) #define DPRINTFN(n, x) #endif MODULE_DEPEND(iwi, pci, 1, 1, 1); MODULE_DEPEND(iwi, wlan, 1, 1, 1); MODULE_DEPEND(iwi, firmware, 1, 1, 1); enum { IWI_LED_TX, IWI_LED_RX, IWI_LED_POLL, }; struct iwi_ident { uint16_t vendor; uint16_t device; const char *name; }; static const struct iwi_ident iwi_ident_table[] = { { 0x8086, 0x4220, "Intel(R) PRO/Wireless 2200BG" }, { 0x8086, 0x4221, "Intel(R) PRO/Wireless 2225BG" }, { 0x8086, 0x4223, "Intel(R) PRO/Wireless 2915ABG" }, { 0x8086, 0x4224, "Intel(R) PRO/Wireless 2915ABG" }, { 0, 0, NULL } }; static const uint8_t def_chan_5ghz_band1[] = { 36, 40, 44, 48, 52, 56, 60, 64 }; static const uint8_t def_chan_5ghz_band2[] = { 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140 }; static const uint8_t def_chan_5ghz_band3[] = { 149, 153, 157, 161, 165 }; static struct ieee80211vap *iwi_vap_create(struct ieee80211com *, const char [IFNAMSIZ], int, enum ieee80211_opmode, int, const uint8_t [IEEE80211_ADDR_LEN], const uint8_t [IEEE80211_ADDR_LEN]); static void iwi_vap_delete(struct ieee80211vap *); static void iwi_dma_map_addr(void *, bus_dma_segment_t *, int, int); static int iwi_alloc_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *, int); static void iwi_reset_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *); static void iwi_free_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *); static int iwi_alloc_tx_ring(struct iwi_softc *, struct iwi_tx_ring *, int, bus_addr_t, bus_addr_t); static void iwi_reset_tx_ring(struct iwi_softc *, struct iwi_tx_ring *); static void iwi_free_tx_ring(struct iwi_softc *, struct iwi_tx_ring *); static int iwi_alloc_rx_ring(struct iwi_softc *, struct iwi_rx_ring *, int); static void iwi_reset_rx_ring(struct iwi_softc *, struct iwi_rx_ring *); static void iwi_free_rx_ring(struct iwi_softc *, struct iwi_rx_ring *); static struct ieee80211_node *iwi_node_alloc(struct ieee80211vap *, const uint8_t [IEEE80211_ADDR_LEN]); static void iwi_node_free(struct ieee80211_node *); static void iwi_media_status(if_t, struct ifmediareq *); static int iwi_newstate(struct ieee80211vap *, enum ieee80211_state, int); static void iwi_wme_init(struct iwi_softc *); static int iwi_wme_setparams(struct iwi_softc *); static int iwi_wme_update(struct ieee80211com *); static uint16_t iwi_read_prom_word(struct iwi_softc *, uint8_t); static void iwi_frame_intr(struct iwi_softc *, struct iwi_rx_data *, int, struct iwi_frame *); static void iwi_notification_intr(struct iwi_softc *, struct iwi_notif *); static void iwi_rx_intr(struct iwi_softc *); static void iwi_tx_intr(struct iwi_softc *, struct iwi_tx_ring *); static void iwi_intr(void *); static int iwi_cmd(struct iwi_softc *, uint8_t, void *, uint8_t); static void iwi_write_ibssnode(struct iwi_softc *, const u_int8_t [IEEE80211_ADDR_LEN], int); static int iwi_tx_start(struct iwi_softc *, struct mbuf *, struct ieee80211_node *, int); static int iwi_raw_xmit(struct ieee80211_node *, struct mbuf *, const struct ieee80211_bpf_params *); static void iwi_start(struct iwi_softc *); static int iwi_transmit(struct ieee80211com *, struct mbuf *); static void iwi_watchdog(void *); static int iwi_ioctl(struct ieee80211com *, u_long, void *); static void iwi_parent(struct ieee80211com *); static void iwi_stop_master(struct iwi_softc *); static int iwi_reset(struct iwi_softc *); static int iwi_load_ucode(struct iwi_softc *, const struct iwi_fw *); static int iwi_load_firmware(struct iwi_softc *, const struct iwi_fw *); static void iwi_release_fw_dma(struct iwi_softc *sc); static int iwi_config(struct iwi_softc *); static int iwi_get_firmware(struct iwi_softc *, enum ieee80211_opmode); static void iwi_put_firmware(struct iwi_softc *); static void iwi_monitor_scan(void *, int); static int iwi_scanchan(struct iwi_softc *, unsigned long, int); static void iwi_scan_start(struct ieee80211com *); static void iwi_scan_end(struct ieee80211com *); static void iwi_set_channel(struct ieee80211com *); static void iwi_scan_curchan(struct ieee80211_scan_state *, unsigned long maxdwell); static void iwi_scan_mindwell(struct ieee80211_scan_state *); static int iwi_auth_and_assoc(struct iwi_softc *, struct ieee80211vap *); static void iwi_disassoc(void *, int); static int iwi_disassociate(struct iwi_softc *, int quiet); static void iwi_init_locked(struct iwi_softc *); static void iwi_init(void *); static int iwi_init_fw_dma(struct iwi_softc *, int); static void iwi_stop_locked(void *); static void iwi_stop(struct iwi_softc *); static void iwi_restart(void *, int); static int iwi_getrfkill(struct iwi_softc *); static void iwi_radio_on(void *, int); static void iwi_radio_off(void *, int); static void iwi_sysctlattach(struct iwi_softc *); static void iwi_led_event(struct iwi_softc *, int); static void iwi_ledattach(struct iwi_softc *); static void iwi_collect_bands(struct ieee80211com *, uint8_t [], size_t); static void iwi_getradiocaps(struct ieee80211com *, int, int *, struct ieee80211_channel []); static int iwi_probe(device_t); static int iwi_attach(device_t); static int iwi_detach(device_t); static int iwi_shutdown(device_t); static int iwi_suspend(device_t); static int iwi_resume(device_t); static device_method_t iwi_methods[] = { /* Device interface */ DEVMETHOD(device_probe, iwi_probe), DEVMETHOD(device_attach, iwi_attach), DEVMETHOD(device_detach, iwi_detach), DEVMETHOD(device_shutdown, iwi_shutdown), DEVMETHOD(device_suspend, iwi_suspend), DEVMETHOD(device_resume, iwi_resume), DEVMETHOD_END }; static driver_t iwi_driver = { "iwi", iwi_methods, sizeof (struct iwi_softc) }; DRIVER_MODULE(iwi, pci, iwi_driver, NULL, NULL); MODULE_VERSION(iwi, 1); static __inline uint8_t MEM_READ_1(struct iwi_softc *sc, uint32_t addr) { CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr); return CSR_READ_1(sc, IWI_CSR_INDIRECT_DATA); } static __inline uint32_t MEM_READ_4(struct iwi_softc *sc, uint32_t addr) { CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr); return CSR_READ_4(sc, IWI_CSR_INDIRECT_DATA); } static int iwi_probe(device_t dev) { const struct iwi_ident *ident; for (ident = iwi_ident_table; ident->name != NULL; ident++) { if (pci_get_vendor(dev) == ident->vendor && pci_get_device(dev) == ident->device) { device_set_desc(dev, ident->name); return (BUS_PROBE_DEFAULT); } } return ENXIO; } static int iwi_attach(device_t dev) { struct iwi_softc *sc = device_get_softc(dev); struct ieee80211com *ic = &sc->sc_ic; uint16_t val; int i, error; sc->sc_dev = dev; sc->sc_ledevent = ticks; IWI_LOCK_INIT(sc); mbufq_init(&sc->sc_snd, ifqmaxlen); sc->sc_unr = new_unrhdr(1, IWI_MAX_IBSSNODE-1, &sc->sc_mtx); TASK_INIT(&sc->sc_radiontask, 0, iwi_radio_on, sc); TASK_INIT(&sc->sc_radiofftask, 0, iwi_radio_off, sc); TASK_INIT(&sc->sc_restarttask, 0, iwi_restart, sc); TASK_INIT(&sc->sc_disassoctask, 0, iwi_disassoc, sc); TASK_INIT(&sc->sc_monitortask, 0, iwi_monitor_scan, sc); callout_init_mtx(&sc->sc_wdtimer, &sc->sc_mtx, 0); callout_init_mtx(&sc->sc_rftimer, &sc->sc_mtx, 0); pci_write_config(dev, 0x41, 0, 1); /* enable bus-mastering */ pci_enable_busmaster(dev); i = PCIR_BAR(0); sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &i, RF_ACTIVE); if (sc->mem == NULL) { device_printf(dev, "could not allocate memory resource\n"); goto fail; } sc->sc_st = rman_get_bustag(sc->mem); sc->sc_sh = rman_get_bushandle(sc->mem); i = 0; sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &i, RF_ACTIVE | RF_SHAREABLE); if (sc->irq == NULL) { device_printf(dev, "could not allocate interrupt resource\n"); goto fail; } if (iwi_reset(sc) != 0) { device_printf(dev, "could not reset adapter\n"); goto fail; } /* * Allocate rings. */ if (iwi_alloc_cmd_ring(sc, &sc->cmdq, IWI_CMD_RING_COUNT) != 0) { device_printf(dev, "could not allocate Cmd ring\n"); goto fail; } for (i = 0; i < 4; i++) { error = iwi_alloc_tx_ring(sc, &sc->txq[i], IWI_TX_RING_COUNT, IWI_CSR_TX1_RIDX + i * 4, IWI_CSR_TX1_WIDX + i * 4); if (error != 0) { device_printf(dev, "could not allocate Tx ring %d\n", i+i); goto fail; } } if (iwi_alloc_rx_ring(sc, &sc->rxq, IWI_RX_RING_COUNT) != 0) { device_printf(dev, "could not allocate Rx ring\n"); goto fail; } iwi_wme_init(sc); ic->ic_softc = sc; ic->ic_name = device_get_nameunit(dev); ic->ic_opmode = IEEE80211_M_STA; ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ /* set device capabilities */ ic->ic_caps = IEEE80211_C_STA /* station mode supported */ | IEEE80211_C_IBSS /* IBSS mode supported */ | IEEE80211_C_MONITOR /* monitor mode supported */ | IEEE80211_C_PMGT /* power save supported */ | IEEE80211_C_SHPREAMBLE /* short preamble supported */ | IEEE80211_C_WPA /* 802.11i */ | IEEE80211_C_WME /* 802.11e */ #if 0 | IEEE80211_C_BGSCAN /* capable of bg scanning */ #endif ; /* read MAC address from EEPROM */ val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 0); ic->ic_macaddr[0] = val & 0xff; ic->ic_macaddr[1] = val >> 8; val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 1); ic->ic_macaddr[2] = val & 0xff; ic->ic_macaddr[3] = val >> 8; val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 2); ic->ic_macaddr[4] = val & 0xff; ic->ic_macaddr[5] = val >> 8; iwi_getradiocaps(ic, IEEE80211_CHAN_MAX, &ic->ic_nchans, ic->ic_channels); ieee80211_ifattach(ic); /* override default methods */ ic->ic_node_alloc = iwi_node_alloc; sc->sc_node_free = ic->ic_node_free; ic->ic_node_free = iwi_node_free; ic->ic_raw_xmit = iwi_raw_xmit; ic->ic_scan_start = iwi_scan_start; ic->ic_scan_end = iwi_scan_end; ic->ic_set_channel = iwi_set_channel; ic->ic_scan_curchan = iwi_scan_curchan; ic->ic_scan_mindwell = iwi_scan_mindwell; ic->ic_wme.wme_update = iwi_wme_update; ic->ic_vap_create = iwi_vap_create; ic->ic_vap_delete = iwi_vap_delete; ic->ic_ioctl = iwi_ioctl; ic->ic_transmit = iwi_transmit; ic->ic_parent = iwi_parent; ic->ic_getradiocaps = iwi_getradiocaps; ieee80211_radiotap_attach(ic, &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), IWI_TX_RADIOTAP_PRESENT, &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), IWI_RX_RADIOTAP_PRESENT); iwi_sysctlattach(sc); iwi_ledattach(sc); /* * Hook our interrupt after all initialization is complete. */ error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE, NULL, iwi_intr, sc, &sc->sc_ih); if (error != 0) { device_printf(dev, "could not set up interrupt\n"); goto fail; } if (bootverbose) ieee80211_announce(ic); return 0; fail: /* XXX fix */ iwi_detach(dev); return ENXIO; } static int iwi_detach(device_t dev) { struct iwi_softc *sc = device_get_softc(dev); struct ieee80211com *ic = &sc->sc_ic; bus_teardown_intr(dev, sc->irq, sc->sc_ih); /* NB: do early to drain any pending tasks */ ieee80211_draintask(ic, &sc->sc_radiontask); ieee80211_draintask(ic, &sc->sc_radiofftask); ieee80211_draintask(ic, &sc->sc_restarttask); ieee80211_draintask(ic, &sc->sc_disassoctask); ieee80211_draintask(ic, &sc->sc_monitortask); iwi_stop(sc); ieee80211_ifdetach(ic); iwi_put_firmware(sc); iwi_release_fw_dma(sc); iwi_free_cmd_ring(sc, &sc->cmdq); iwi_free_tx_ring(sc, &sc->txq[0]); iwi_free_tx_ring(sc, &sc->txq[1]); iwi_free_tx_ring(sc, &sc->txq[2]); iwi_free_tx_ring(sc, &sc->txq[3]); iwi_free_rx_ring(sc, &sc->rxq); bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq), sc->irq); bus_release_resource(dev, SYS_RES_MEMORY, rman_get_rid(sc->mem), sc->mem); delete_unrhdr(sc->sc_unr); mbufq_drain(&sc->sc_snd); IWI_LOCK_DESTROY(sc); return 0; } static struct ieee80211vap * iwi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode, int flags, const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t mac[IEEE80211_ADDR_LEN]) { struct iwi_softc *sc = ic->ic_softc; struct iwi_vap *ivp; struct ieee80211vap *vap; int i; if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ return NULL; /* * Get firmware image (and possibly dma memory) on mode change. */ if (iwi_get_firmware(sc, opmode)) return NULL; /* allocate DMA memory for mapping firmware image */ i = sc->fw_fw.size; if (sc->fw_boot.size > i) i = sc->fw_boot.size; /* XXX do we dma the ucode as well ? */ if (sc->fw_uc.size > i) i = sc->fw_uc.size; if (iwi_init_fw_dma(sc, i)) return NULL; ivp = malloc(sizeof(struct iwi_vap), M_80211_VAP, M_WAITOK | M_ZERO); vap = &ivp->iwi_vap; ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid); /* override the default, the setting comes from the linux driver */ vap->iv_bmissthreshold = 24; /* override with driver methods */ ivp->iwi_newstate = vap->iv_newstate; vap->iv_newstate = iwi_newstate; /* complete setup */ ieee80211_vap_attach(vap, ieee80211_media_change, iwi_media_status, mac); ic->ic_opmode = opmode; return vap; } static void iwi_vap_delete(struct ieee80211vap *vap) { struct iwi_vap *ivp = IWI_VAP(vap); ieee80211_vap_detach(vap); free(ivp, M_80211_VAP); } static void iwi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) { if (error != 0) return; KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg)); *(bus_addr_t *)arg = segs[0].ds_addr; } static int iwi_alloc_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring, int count) { int error; ring->count = count; ring->queued = 0; ring->cur = ring->next = 0; error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, count * IWI_CMD_DESC_SIZE, 1, count * IWI_CMD_DESC_SIZE, 0, NULL, NULL, &ring->desc_dmat); if (error != 0) { device_printf(sc->sc_dev, "could not create desc DMA tag\n"); goto fail; } error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc, BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map); if (error != 0) { device_printf(sc->sc_dev, "could not allocate DMA memory\n"); goto fail; } error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc, count * IWI_CMD_DESC_SIZE, iwi_dma_map_addr, &ring->physaddr, 0); if (error != 0) { device_printf(sc->sc_dev, "could not load desc DMA map\n"); goto fail; } return 0; fail: iwi_free_cmd_ring(sc, ring); return error; } static void iwi_reset_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring) { ring->queued = 0; ring->cur = ring->next = 0; } static void iwi_free_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring) { if (ring->desc != NULL) { bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(ring->desc_dmat, ring->desc_map); bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map); } if (ring->desc_dmat != NULL) bus_dma_tag_destroy(ring->desc_dmat); } static int iwi_alloc_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring, int count, bus_addr_t csr_ridx, bus_addr_t csr_widx) { int i, error; ring->count = count; ring->queued = 0; ring->cur = ring->next = 0; ring->csr_ridx = csr_ridx; ring->csr_widx = csr_widx; error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, count * IWI_TX_DESC_SIZE, 1, count * IWI_TX_DESC_SIZE, 0, NULL, NULL, &ring->desc_dmat); if (error != 0) { device_printf(sc->sc_dev, "could not create desc DMA tag\n"); goto fail; } error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc, BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map); if (error != 0) { device_printf(sc->sc_dev, "could not allocate DMA memory\n"); goto fail; } error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc, count * IWI_TX_DESC_SIZE, iwi_dma_map_addr, &ring->physaddr, 0); if (error != 0) { device_printf(sc->sc_dev, "could not load desc DMA map\n"); goto fail; } ring->data = malloc(count * sizeof (struct iwi_tx_data), M_DEVBUF, M_NOWAIT | M_ZERO); if (ring->data == NULL) { device_printf(sc->sc_dev, "could not allocate soft data\n"); error = ENOMEM; goto fail; } error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, IWI_MAX_NSEG, MCLBYTES, 0, NULL, NULL, &ring->data_dmat); if (error != 0) { device_printf(sc->sc_dev, "could not create data DMA tag\n"); goto fail; } for (i = 0; i < count; i++) { error = bus_dmamap_create(ring->data_dmat, 0, &ring->data[i].map); if (error != 0) { device_printf(sc->sc_dev, "could not create DMA map\n"); goto fail; } } return 0; fail: iwi_free_tx_ring(sc, ring); return error; } static void iwi_reset_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring) { struct iwi_tx_data *data; int i; for (i = 0; i < ring->count; i++) { data = &ring->data[i]; if (data->m != NULL) { bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(ring->data_dmat, data->map); m_freem(data->m); data->m = NULL; } if (data->ni != NULL) { ieee80211_free_node(data->ni); data->ni = NULL; } } ring->queued = 0; ring->cur = ring->next = 0; } static void iwi_free_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring) { struct iwi_tx_data *data; int i; if (ring->desc != NULL) { bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(ring->desc_dmat, ring->desc_map); bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map); } if (ring->desc_dmat != NULL) bus_dma_tag_destroy(ring->desc_dmat); if (ring->data != NULL) { for (i = 0; i < ring->count; i++) { data = &ring->data[i]; if (data->m != NULL) { bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(ring->data_dmat, data->map); m_freem(data->m); } if (data->ni != NULL) ieee80211_free_node(data->ni); if (data->map != NULL) bus_dmamap_destroy(ring->data_dmat, data->map); } free(ring->data, M_DEVBUF); } if (ring->data_dmat != NULL) bus_dma_tag_destroy(ring->data_dmat); } static int iwi_alloc_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring, int count) { struct iwi_rx_data *data; int i, error; ring->count = count; ring->cur = 0; ring->data = malloc(count * sizeof (struct iwi_rx_data), M_DEVBUF, M_NOWAIT | M_ZERO); if (ring->data == NULL) { device_printf(sc->sc_dev, "could not allocate soft data\n"); error = ENOMEM; goto fail; } error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat); if (error != 0) { device_printf(sc->sc_dev, "could not create data DMA tag\n"); goto fail; } for (i = 0; i < count; i++) { data = &ring->data[i]; error = bus_dmamap_create(ring->data_dmat, 0, &data->map); if (error != 0) { device_printf(sc->sc_dev, "could not create DMA map\n"); goto fail; } data->m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); if (data->m == NULL) { device_printf(sc->sc_dev, "could not allocate rx mbuf\n"); error = ENOMEM; goto fail; } error = bus_dmamap_load(ring->data_dmat, data->map, mtod(data->m, void *), MCLBYTES, iwi_dma_map_addr, &data->physaddr, 0); if (error != 0) { device_printf(sc->sc_dev, "could not load rx buf DMA map"); goto fail; } data->reg = IWI_CSR_RX_BASE + i * 4; } return 0; fail: iwi_free_rx_ring(sc, ring); return error; } static void iwi_reset_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring) { ring->cur = 0; } static void iwi_free_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring) { struct iwi_rx_data *data; int i; if (ring->data != NULL) { for (i = 0; i < ring->count; i++) { data = &ring->data[i]; if (data->m != NULL) { bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(ring->data_dmat, data->map); m_freem(data->m); } if (data->map != NULL) bus_dmamap_destroy(ring->data_dmat, data->map); } free(ring->data, M_DEVBUF); } if (ring->data_dmat != NULL) bus_dma_tag_destroy(ring->data_dmat); } static int iwi_shutdown(device_t dev) { struct iwi_softc *sc = device_get_softc(dev); iwi_stop(sc); iwi_put_firmware(sc); /* ??? XXX */ return 0; } static int iwi_suspend(device_t dev) { struct iwi_softc *sc = device_get_softc(dev); struct ieee80211com *ic = &sc->sc_ic; ieee80211_suspend_all(ic); return 0; } static int iwi_resume(device_t dev) { struct iwi_softc *sc = device_get_softc(dev); struct ieee80211com *ic = &sc->sc_ic; pci_write_config(dev, 0x41, 0, 1); ieee80211_resume_all(ic); return 0; } static struct ieee80211_node * iwi_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) { struct iwi_node *in; in = malloc(sizeof (struct iwi_node), M_80211_NODE, M_NOWAIT | M_ZERO); if (in == NULL) return NULL; /* XXX assign sta table entry for adhoc */ in->in_station = -1; return &in->in_node; } static void iwi_node_free(struct ieee80211_node *ni) { struct ieee80211com *ic = ni->ni_ic; struct iwi_softc *sc = ic->ic_softc; struct iwi_node *in = (struct iwi_node *)ni; if (in->in_station != -1) { DPRINTF(("%s mac %6D station %u\n", __func__, ni->ni_macaddr, ":", in->in_station)); free_unr(sc->sc_unr, in->in_station); } sc->sc_node_free(ni); } /* * Convert h/w rate code to IEEE rate code. */ static int iwi_cvtrate(int iwirate) { switch (iwirate) { case IWI_RATE_DS1: return 2; case IWI_RATE_DS2: return 4; case IWI_RATE_DS5: return 11; case IWI_RATE_DS11: return 22; case IWI_RATE_OFDM6: return 12; case IWI_RATE_OFDM9: return 18; case IWI_RATE_OFDM12: return 24; case IWI_RATE_OFDM18: return 36; case IWI_RATE_OFDM24: return 48; case IWI_RATE_OFDM36: return 72; case IWI_RATE_OFDM48: return 96; case IWI_RATE_OFDM54: return 108; } return 0; } /* * The firmware automatically adapts the transmit speed. We report its current * value here. */ static void iwi_media_status(if_t ifp, struct ifmediareq *imr) { struct ieee80211vap *vap = if_getsoftc(ifp); struct ieee80211com *ic = vap->iv_ic; struct iwi_softc *sc = ic->ic_softc; struct ieee80211_node *ni; /* read current transmission rate from adapter */ ni = ieee80211_ref_node(vap->iv_bss); ni->ni_txrate = iwi_cvtrate(CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE)); ieee80211_free_node(ni); ieee80211_media_status(ifp, imr); } static int iwi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) { struct iwi_vap *ivp = IWI_VAP(vap); struct ieee80211com *ic = vap->iv_ic; struct iwi_softc *sc = ic->ic_softc; IWI_LOCK_DECL; DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__, ieee80211_state_name[vap->iv_state], ieee80211_state_name[nstate], sc->flags)); IEEE80211_UNLOCK(ic); IWI_LOCK(sc); switch (nstate) { case IEEE80211_S_INIT: /* * NB: don't try to do this if iwi_stop_master has * shutdown the firmware and disabled interrupts. */ if (vap->iv_state == IEEE80211_S_RUN && (sc->flags & IWI_FLAG_FW_INITED)) iwi_disassociate(sc, 0); break; case IEEE80211_S_AUTH: iwi_auth_and_assoc(sc, vap); break; case IEEE80211_S_RUN: if (vap->iv_opmode == IEEE80211_M_IBSS && vap->iv_state == IEEE80211_S_SCAN) { /* * XXX when joining an ibss network we are called * with a SCAN -> RUN transition on scan complete. * Use that to call iwi_auth_and_assoc. On completing * the join we are then called again with an * AUTH -> RUN transition and we want to do nothing. * This is all totally bogus and needs to be redone. */ iwi_auth_and_assoc(sc, vap); } else if (vap->iv_opmode == IEEE80211_M_MONITOR) ieee80211_runtask(ic, &sc->sc_monitortask); break; case IEEE80211_S_ASSOC: /* * If we are transitioning from AUTH then just wait * for the ASSOC status to come back from the firmware. * Otherwise we need to issue the association request. */ if (vap->iv_state == IEEE80211_S_AUTH) break; iwi_auth_and_assoc(sc, vap); break; default: break; } IWI_UNLOCK(sc); IEEE80211_LOCK(ic); return ivp->iwi_newstate(vap, nstate, arg); } /* * WME parameters coming from IEEE 802.11e specification. These values are * already declared in ieee80211_proto.c, but they are static so they can't * be reused here. */ static const struct wmeParams iwi_wme_cck_params[WME_NUM_AC] = { { 0, 3, 5, 7, 0 }, /* WME_AC_BE */ { 0, 3, 5, 10, 0 }, /* WME_AC_BK */ { 0, 2, 4, 5, 188 }, /* WME_AC_VI */ { 0, 2, 3, 4, 102 } /* WME_AC_VO */ }; static const struct wmeParams iwi_wme_ofdm_params[WME_NUM_AC] = { { 0, 3, 4, 6, 0 }, /* WME_AC_BE */ { 0, 3, 4, 10, 0 }, /* WME_AC_BK */ { 0, 2, 3, 4, 94 }, /* WME_AC_VI */ { 0, 2, 2, 3, 47 } /* WME_AC_VO */ }; #define IWI_EXP2(v) htole16((1 << (v)) - 1) #define IWI_USEC(v) htole16(IEEE80211_TXOP_TO_US(v)) static void iwi_wme_init(struct iwi_softc *sc) { const struct wmeParams *wmep; int ac; memset(sc->wme, 0, sizeof sc->wme); for (ac = 0; ac < WME_NUM_AC; ac++) { /* set WME values for CCK modulation */ wmep = &iwi_wme_cck_params[ac]; sc->wme[1].aifsn[ac] = wmep->wmep_aifsn; sc->wme[1].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin); sc->wme[1].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax); sc->wme[1].burst[ac] = IWI_USEC(wmep->wmep_txopLimit); sc->wme[1].acm[ac] = wmep->wmep_acm; /* set WME values for OFDM modulation */ wmep = &iwi_wme_ofdm_params[ac]; sc->wme[2].aifsn[ac] = wmep->wmep_aifsn; sc->wme[2].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin); sc->wme[2].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax); sc->wme[2].burst[ac] = IWI_USEC(wmep->wmep_txopLimit); sc->wme[2].acm[ac] = wmep->wmep_acm; } } static int iwi_wme_setparams(struct iwi_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct chanAccParams chp; const struct wmeParams *wmep; int ac; ieee80211_wme_ic_getparams(ic, &chp); for (ac = 0; ac < WME_NUM_AC; ac++) { /* set WME values for current operating mode */ wmep = &chp.cap_wmeParams[ac]; sc->wme[0].aifsn[ac] = wmep->wmep_aifsn; sc->wme[0].cwmin[ac] = IWI_EXP2(wmep->wmep_logcwmin); sc->wme[0].cwmax[ac] = IWI_EXP2(wmep->wmep_logcwmax); sc->wme[0].burst[ac] = IWI_USEC(wmep->wmep_txopLimit); sc->wme[0].acm[ac] = wmep->wmep_acm; } DPRINTF(("Setting WME parameters\n")); return iwi_cmd(sc, IWI_CMD_SET_WME_PARAMS, sc->wme, sizeof sc->wme); } #undef IWI_USEC #undef IWI_EXP2 static int iwi_wme_update(struct ieee80211com *ic) { struct iwi_softc *sc = ic->ic_softc; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); IWI_LOCK_DECL; /* * We may be called to update the WME parameters in * the adapter at various places. If we're already * associated then initiate the request immediately; * otherwise we assume the params will get sent down * to the adapter as part of the work iwi_auth_and_assoc * does. */ if (vap->iv_state == IEEE80211_S_RUN) { IWI_LOCK(sc); iwi_wme_setparams(sc); IWI_UNLOCK(sc); } return (0); } static int iwi_wme_setie(struct iwi_softc *sc) { struct ieee80211_wme_info wme; memset(&wme, 0, sizeof wme); wme.wme_id = IEEE80211_ELEMID_VENDOR; wme.wme_len = sizeof (struct ieee80211_wme_info) - 2; wme.wme_oui[0] = 0x00; wme.wme_oui[1] = 0x50; wme.wme_oui[2] = 0xf2; wme.wme_type = WME_OUI_TYPE; wme.wme_subtype = WME_INFO_OUI_SUBTYPE; wme.wme_version = WME_VERSION; wme.wme_info = 0; DPRINTF(("Setting WME IE (len=%u)\n", wme.wme_len)); return iwi_cmd(sc, IWI_CMD_SET_WMEIE, &wme, sizeof wme); } /* * Read 16 bits at address 'addr' from the serial EEPROM. */ static uint16_t iwi_read_prom_word(struct iwi_softc *sc, uint8_t addr) { uint32_t tmp; uint16_t val; int n; /* clock C once before the first command */ IWI_EEPROM_CTL(sc, 0); IWI_EEPROM_CTL(sc, IWI_EEPROM_S); IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C); IWI_EEPROM_CTL(sc, IWI_EEPROM_S); /* write start bit (1) */ IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D); IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C); /* write READ opcode (10) */ IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D); IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C); IWI_EEPROM_CTL(sc, IWI_EEPROM_S); IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C); /* write address A7-A0 */ for (n = 7; n >= 0; n--) { IWI_EEPROM_CTL(sc, IWI_EEPROM_S | (((addr >> n) & 1) << IWI_EEPROM_SHIFT_D)); IWI_EEPROM_CTL(sc, IWI_EEPROM_S | (((addr >> n) & 1) << IWI_EEPROM_SHIFT_D) | IWI_EEPROM_C); } IWI_EEPROM_CTL(sc, IWI_EEPROM_S); /* read data Q15-Q0 */ val = 0; for (n = 15; n >= 0; n--) { IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C); IWI_EEPROM_CTL(sc, IWI_EEPROM_S); tmp = MEM_READ_4(sc, IWI_MEM_EEPROM_CTL); val |= ((tmp & IWI_EEPROM_Q) >> IWI_EEPROM_SHIFT_Q) << n; } IWI_EEPROM_CTL(sc, 0); /* clear Chip Select and clock C */ IWI_EEPROM_CTL(sc, IWI_EEPROM_S); IWI_EEPROM_CTL(sc, 0); IWI_EEPROM_CTL(sc, IWI_EEPROM_C); return val; } static void iwi_setcurchan(struct iwi_softc *sc, int chan) { struct ieee80211com *ic = &sc->sc_ic; sc->curchan = chan; ieee80211_radiotap_chan_change(ic); } static void iwi_frame_intr(struct iwi_softc *sc, struct iwi_rx_data *data, int i, struct iwi_frame *frame) { struct epoch_tracker et; struct ieee80211com *ic = &sc->sc_ic; struct mbuf *mnew, *m; struct ieee80211_node *ni; int type, error, framelen; int8_t rssi, nf; IWI_LOCK_DECL; framelen = le16toh(frame->len); if (framelen < IEEE80211_MIN_LEN || framelen > MCLBYTES) { /* * XXX >MCLBYTES is bogus as it means the h/w dma'd * out of bounds; need to figure out how to limit * frame size in the firmware */ /* XXX stat */ DPRINTFN(1, ("drop rx frame len=%u chan=%u rssi=%u rssi_dbm=%u\n", le16toh(frame->len), frame->chan, frame->rssi, frame->rssi_dbm)); return; } DPRINTFN(5, ("received frame len=%u chan=%u rssi=%u rssi_dbm=%u\n", le16toh(frame->len), frame->chan, frame->rssi, frame->rssi_dbm)); if (frame->chan != sc->curchan) iwi_setcurchan(sc, frame->chan); /* * Try to allocate a new mbuf for this ring element and load it before * processing the current mbuf. If the ring element cannot be loaded, * drop the received packet and reuse the old mbuf. In the unlikely * case that the old mbuf can't be reloaded either, explicitly panic. */ mnew = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); if (mnew == NULL) { counter_u64_add(ic->ic_ierrors, 1); return; } bus_dmamap_unload(sc->rxq.data_dmat, data->map); error = bus_dmamap_load(sc->rxq.data_dmat, data->map, mtod(mnew, void *), MCLBYTES, iwi_dma_map_addr, &data->physaddr, 0); if (error != 0) { m_freem(mnew); /* try to reload the old mbuf */ error = bus_dmamap_load(sc->rxq.data_dmat, data->map, mtod(data->m, void *), MCLBYTES, iwi_dma_map_addr, &data->physaddr, 0); if (error != 0) { /* very unlikely that it will fail... */ panic("%s: could not load old rx mbuf", device_get_name(sc->sc_dev)); } counter_u64_add(ic->ic_ierrors, 1); return; } /* * New mbuf successfully loaded, update Rx ring and continue * processing. */ m = data->m; data->m = mnew; CSR_WRITE_4(sc, data->reg, data->physaddr); /* finalize mbuf */ m->m_pkthdr.len = m->m_len = sizeof (struct iwi_hdr) + sizeof (struct iwi_frame) + framelen; m_adj(m, sizeof (struct iwi_hdr) + sizeof (struct iwi_frame)); rssi = frame->rssi_dbm; nf = -95; if (ieee80211_radiotap_active(ic)) { struct iwi_rx_radiotap_header *tap = &sc->sc_rxtap; tap->wr_flags = 0; tap->wr_antsignal = rssi; tap->wr_antnoise = nf; tap->wr_rate = iwi_cvtrate(frame->rate); tap->wr_antenna = frame->antenna; } IWI_UNLOCK(sc); ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *)); NET_EPOCH_ENTER(et); if (ni != NULL) { type = ieee80211_input(ni, m, rssi, nf); ieee80211_free_node(ni); } else type = ieee80211_input_all(ic, m, rssi, nf); NET_EPOCH_EXIT(et); IWI_LOCK(sc); if (sc->sc_softled) { /* * Blink for any data frame. Otherwise do a * heartbeat-style blink when idle. The latter * is mainly for station mode where we depend on * periodic beacon frames to trigger the poll event. */ if (type == IEEE80211_FC0_TYPE_DATA) { sc->sc_rxrate = frame->rate; iwi_led_event(sc, IWI_LED_RX); } else if (ticks - sc->sc_ledevent >= sc->sc_ledidle) iwi_led_event(sc, IWI_LED_POLL); } } /* * Check for an association response frame to see if QoS * has been negotiated. We parse just enough to figure * out if we're supposed to use QoS. The proper solution * is to pass the frame up so ieee80211_input can do the * work but that's made hard by how things currently are * done in the driver. */ static void iwi_checkforqos(struct ieee80211vap *vap, const struct ieee80211_frame *wh, int len) { #define SUBTYPE(wh) ((wh)->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) const uint8_t *frm, *efrm, *wme; struct ieee80211_node *ni; uint16_t capinfo, associd; /* NB: +8 for capinfo, status, associd, and first ie */ if (!(sizeof(*wh)+8 < len && len < IEEE80211_MAX_LEN) || SUBTYPE(wh) != IEEE80211_FC0_SUBTYPE_ASSOC_RESP) return; /* * asresp frame format * [2] capability information * [2] status * [2] association ID * [tlv] supported rates * [tlv] extended supported rates * [tlv] WME */ frm = (const uint8_t *)&wh[1]; efrm = ((const uint8_t *) wh) + len; capinfo = le16toh(*(const uint16_t *)frm); frm += 2; /* status */ frm += 2; associd = le16toh(*(const uint16_t *)frm); frm += 2; wme = NULL; while (efrm - frm > 1) { IEEE80211_VERIFY_LENGTH(efrm - frm, frm[1] + 2, return); switch (*frm) { case IEEE80211_ELEMID_VENDOR: if (iswmeoui(frm)) wme = frm; break; } frm += frm[1] + 2; } ni = ieee80211_ref_node(vap->iv_bss); ni->ni_capinfo = capinfo; ni->ni_associd = associd & 0x3fff; if (wme != NULL) ni->ni_flags |= IEEE80211_NODE_QOS; else ni->ni_flags &= ~IEEE80211_NODE_QOS; ieee80211_free_node(ni); #undef SUBTYPE } static void iwi_notif_link_quality(struct iwi_softc *sc, struct iwi_notif *notif) { struct iwi_notif_link_quality *lq; int len; len = le16toh(notif->len); DPRINTFN(5, ("Notification (%u) - len=%d, sizeof=%zu\n", notif->type, len, sizeof(struct iwi_notif_link_quality) )); /* enforce length */ if (len != sizeof(struct iwi_notif_link_quality)) { DPRINTFN(5, ("Notification: (%u) too short (%d)\n", notif->type, len)); return; } lq = (struct iwi_notif_link_quality *)(notif + 1); memcpy(&sc->sc_linkqual, lq, sizeof(sc->sc_linkqual)); sc->sc_linkqual_valid = 1; } /* * Task queue callbacks for iwi_notification_intr used to avoid LOR's. */ static void iwi_notification_intr(struct iwi_softc *sc, struct iwi_notif *notif) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); struct iwi_notif_scan_channel *chan; struct iwi_notif_scan_complete *scan; struct iwi_notif_authentication *auth; struct iwi_notif_association *assoc; struct iwi_notif_beacon_state *beacon; switch (notif->type) { case IWI_NOTIF_TYPE_SCAN_CHANNEL: chan = (struct iwi_notif_scan_channel *)(notif + 1); DPRINTFN(3, ("Scan of channel %u complete (%u)\n", ieee80211_ieee2mhz(chan->nchan, 0), chan->nchan)); /* Reset the timer, the scan is still going */ sc->sc_state_timer = 3; break; case IWI_NOTIF_TYPE_SCAN_COMPLETE: scan = (struct iwi_notif_scan_complete *)(notif + 1); DPRINTFN(2, ("Scan completed (%u, %u)\n", scan->nchan, scan->status)); IWI_STATE_END(sc, IWI_FW_SCANNING); /* * Monitor mode works by doing a passive scan to set * the channel and enable rx. Because we don't want * to abort a scan lest the firmware crash we scan * for a short period of time and automatically restart * the scan when notified the sweep has completed. */ if (vap->iv_opmode == IEEE80211_M_MONITOR) { ieee80211_runtask(ic, &sc->sc_monitortask); break; } if (scan->status == IWI_SCAN_COMPLETED) { /* NB: don't need to defer, net80211 does it for us */ ieee80211_scan_next(vap); } break; case IWI_NOTIF_TYPE_AUTHENTICATION: auth = (struct iwi_notif_authentication *)(notif + 1); switch (auth->state) { case IWI_AUTH_SUCCESS: DPRINTFN(2, ("Authentication succeeeded\n")); ieee80211_new_state(vap, IEEE80211_S_ASSOC, -1); break; case IWI_AUTH_FAIL: /* * These are delivered as an unsolicited deauth * (e.g. due to inactivity) or in response to an * associate request. */ sc->flags &= ~IWI_FLAG_ASSOCIATED; if (vap->iv_state != IEEE80211_S_RUN) { DPRINTFN(2, ("Authentication failed\n")); vap->iv_stats.is_rx_auth_fail++; IWI_STATE_END(sc, IWI_FW_ASSOCIATING); } else { DPRINTFN(2, ("Deauthenticated\n")); vap->iv_stats.is_rx_deauth++; } ieee80211_new_state(vap, IEEE80211_S_SCAN, -1); break; case IWI_AUTH_SENT_1: case IWI_AUTH_RECV_2: case IWI_AUTH_SEQ1_PASS: break; case IWI_AUTH_SEQ1_FAIL: DPRINTFN(2, ("Initial authentication handshake failed; " "you probably need shared key\n")); vap->iv_stats.is_rx_auth_fail++; IWI_STATE_END(sc, IWI_FW_ASSOCIATING); /* XXX retry shared key when in auto */ break; default: device_printf(sc->sc_dev, "unknown authentication state %u\n", auth->state); break; } break; case IWI_NOTIF_TYPE_ASSOCIATION: assoc = (struct iwi_notif_association *)(notif + 1); switch (assoc->state) { case IWI_AUTH_SUCCESS: /* re-association, do nothing */ break; case IWI_ASSOC_SUCCESS: DPRINTFN(2, ("Association succeeded\n")); sc->flags |= IWI_FLAG_ASSOCIATED; IWI_STATE_END(sc, IWI_FW_ASSOCIATING); iwi_checkforqos(vap, (const struct ieee80211_frame *)(assoc+1), le16toh(notif->len) - sizeof(*assoc) - 1); ieee80211_new_state(vap, IEEE80211_S_RUN, -1); break; case IWI_ASSOC_INIT: sc->flags &= ~IWI_FLAG_ASSOCIATED; switch (sc->fw_state) { case IWI_FW_ASSOCIATING: DPRINTFN(2, ("Association failed\n")); IWI_STATE_END(sc, IWI_FW_ASSOCIATING); ieee80211_new_state(vap, IEEE80211_S_SCAN, -1); break; case IWI_FW_DISASSOCIATING: DPRINTFN(2, ("Dissassociated\n")); IWI_STATE_END(sc, IWI_FW_DISASSOCIATING); vap->iv_stats.is_rx_disassoc++; ieee80211_new_state(vap, IEEE80211_S_SCAN, -1); break; } break; default: device_printf(sc->sc_dev, "unknown association state %u\n", assoc->state); break; } break; case IWI_NOTIF_TYPE_BEACON: /* XXX check struct length */ beacon = (struct iwi_notif_beacon_state *)(notif + 1); DPRINTFN(5, ("Beacon state (%u, %u)\n", beacon->state, le32toh(beacon->number))); if (beacon->state == IWI_BEACON_MISS) { /* * The firmware notifies us of every beacon miss * so we need to track the count against the * configured threshold before notifying the * 802.11 layer. * XXX try to roam, drop assoc only on much higher count */ if (le32toh(beacon->number) >= vap->iv_bmissthreshold) { DPRINTF(("Beacon miss: %u >= %u\n", le32toh(beacon->number), vap->iv_bmissthreshold)); vap->iv_stats.is_beacon_miss++; /* * It's pointless to notify the 802.11 layer * as it'll try to send a probe request (which * we'll discard) and then timeout and drop us * into scan state. Instead tell the firmware * to disassociate and then on completion we'll * kick the state machine to scan. */ ieee80211_runtask(ic, &sc->sc_disassoctask); } } break; case IWI_NOTIF_TYPE_CALIBRATION: case IWI_NOTIF_TYPE_NOISE: /* XXX handle? */ DPRINTFN(5, ("Notification (%u)\n", notif->type)); break; case IWI_NOTIF_TYPE_LINK_QUALITY: iwi_notif_link_quality(sc, notif); break; default: DPRINTF(("unknown notification type %u flags 0x%x len %u\n", notif->type, notif->flags, le16toh(notif->len))); break; } } static void iwi_rx_intr(struct iwi_softc *sc) { struct iwi_rx_data *data; struct iwi_hdr *hdr; uint32_t hw; hw = CSR_READ_4(sc, IWI_CSR_RX_RIDX); for (; sc->rxq.cur != hw;) { data = &sc->rxq.data[sc->rxq.cur]; bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD); hdr = mtod(data->m, struct iwi_hdr *); switch (hdr->type) { case IWI_HDR_TYPE_FRAME: iwi_frame_intr(sc, data, sc->rxq.cur, (struct iwi_frame *)(hdr + 1)); break; case IWI_HDR_TYPE_NOTIF: iwi_notification_intr(sc, (struct iwi_notif *)(hdr + 1)); break; default: device_printf(sc->sc_dev, "unknown hdr type %u\n", hdr->type); } DPRINTFN(15, ("rx done idx=%u\n", sc->rxq.cur)); sc->rxq.cur = (sc->rxq.cur + 1) % IWI_RX_RING_COUNT; } /* tell the firmware what we have processed */ hw = (hw == 0) ? IWI_RX_RING_COUNT - 1 : hw - 1; CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, hw); } static void iwi_tx_intr(struct iwi_softc *sc, struct iwi_tx_ring *txq) { struct iwi_tx_data *data; uint32_t hw; hw = CSR_READ_4(sc, txq->csr_ridx); while (txq->next != hw) { data = &txq->data[txq->next]; DPRINTFN(15, ("tx done idx=%u\n", txq->next)); bus_dmamap_sync(txq->data_dmat, data->map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(txq->data_dmat, data->map); ieee80211_tx_complete(data->ni, data->m, 0); data->ni = NULL; data->m = NULL; txq->queued--; txq->next = (txq->next + 1) % IWI_TX_RING_COUNT; } sc->sc_tx_timer = 0; if (sc->sc_softled) iwi_led_event(sc, IWI_LED_TX); iwi_start(sc); } static void iwi_fatal_error_intr(struct iwi_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); device_printf(sc->sc_dev, "firmware error\n"); if (vap != NULL) ieee80211_cancel_scan(vap); ieee80211_runtask(ic, &sc->sc_restarttask); sc->flags &= ~IWI_FLAG_BUSY; sc->sc_busy_timer = 0; wakeup(sc); } static void iwi_radio_off_intr(struct iwi_softc *sc) { ieee80211_runtask(&sc->sc_ic, &sc->sc_radiofftask); } static void iwi_intr(void *arg) { struct iwi_softc *sc = arg; uint32_t r; IWI_LOCK_DECL; IWI_LOCK(sc); if ((r = CSR_READ_4(sc, IWI_CSR_INTR)) == 0 || r == 0xffffffff) { IWI_UNLOCK(sc); return; } /* acknowledge interrupts */ CSR_WRITE_4(sc, IWI_CSR_INTR, r); if (r & IWI_INTR_FATAL_ERROR) { iwi_fatal_error_intr(sc); goto done; } if (r & IWI_INTR_FW_INITED) { if (!(r & (IWI_INTR_FATAL_ERROR | IWI_INTR_PARITY_ERROR))) wakeup(sc); } if (r & IWI_INTR_RADIO_OFF) iwi_radio_off_intr(sc); if (r & IWI_INTR_CMD_DONE) { sc->flags &= ~IWI_FLAG_BUSY; sc->sc_busy_timer = 0; wakeup(sc); } if (r & IWI_INTR_TX1_DONE) iwi_tx_intr(sc, &sc->txq[0]); if (r & IWI_INTR_TX2_DONE) iwi_tx_intr(sc, &sc->txq[1]); if (r & IWI_INTR_TX3_DONE) iwi_tx_intr(sc, &sc->txq[2]); if (r & IWI_INTR_TX4_DONE) iwi_tx_intr(sc, &sc->txq[3]); if (r & IWI_INTR_RX_DONE) iwi_rx_intr(sc); if (r & IWI_INTR_PARITY_ERROR) { /* XXX rate-limit */ device_printf(sc->sc_dev, "parity error\n"); } done: IWI_UNLOCK(sc); } static int iwi_cmd(struct iwi_softc *sc, uint8_t type, void *data, uint8_t len) { struct iwi_cmd_desc *desc; IWI_LOCK_ASSERT(sc); if (sc->flags & IWI_FLAG_BUSY) { device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n", __func__, type); return EAGAIN; } sc->flags |= IWI_FLAG_BUSY; sc->sc_busy_timer = 2; desc = &sc->cmdq.desc[sc->cmdq.cur]; desc->hdr.type = IWI_HDR_TYPE_COMMAND; desc->hdr.flags = IWI_HDR_FLAG_IRQ; desc->type = type; desc->len = len; memcpy(desc->data, data, len); bus_dmamap_sync(sc->cmdq.desc_dmat, sc->cmdq.desc_map, BUS_DMASYNC_PREWRITE); DPRINTFN(2, ("sending command idx=%u type=%u len=%u\n", sc->cmdq.cur, type, len)); sc->cmdq.cur = (sc->cmdq.cur + 1) % IWI_CMD_RING_COUNT; CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur); return msleep(sc, &sc->sc_mtx, 0, "iwicmd", hz); } static void iwi_write_ibssnode(struct iwi_softc *sc, const u_int8_t addr[IEEE80211_ADDR_LEN], int entry) { struct iwi_ibssnode node; /* write node information into NIC memory */ memset(&node, 0, sizeof node); IEEE80211_ADDR_COPY(node.bssid, addr); DPRINTF(("%s mac %6D station %u\n", __func__, node.bssid, ":", entry)); CSR_WRITE_REGION_1(sc, IWI_CSR_NODE_BASE + entry * sizeof node, (uint8_t *)&node, sizeof node); } static int iwi_tx_start(struct iwi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni, int ac) { struct ieee80211vap *vap = ni->ni_vap; struct iwi_node *in = (struct iwi_node *)ni; const struct ieee80211_frame *wh; struct ieee80211_key *k; struct iwi_tx_ring *txq = &sc->txq[ac]; struct iwi_tx_data *data; struct iwi_tx_desc *desc; struct mbuf *mnew; bus_dma_segment_t segs[IWI_MAX_NSEG]; int error, nsegs, hdrlen, i; int ismcast, flags, xflags, staid; IWI_LOCK_ASSERT(sc); wh = mtod(m0, const struct ieee80211_frame *); /* NB: only data frames use this path */ hdrlen = ieee80211_hdrsize(wh); ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); flags = xflags = 0; if (!ismcast) flags |= IWI_DATA_FLAG_NEED_ACK; if (vap->iv_flags & IEEE80211_F_SHPREAMBLE) flags |= IWI_DATA_FLAG_SHPREAMBLE; if (IEEE80211_QOS_HAS_SEQ(wh)) { xflags |= IWI_DATA_XFLAG_QOS; if (ieee80211_wme_vap_ac_is_noack(vap, ac)) flags &= ~IWI_DATA_FLAG_NEED_ACK; } /* * This is only used in IBSS mode where the firmware expect an index * in a h/w table instead of a destination address. */ if (vap->iv_opmode == IEEE80211_M_IBSS) { if (!ismcast) { if (in->in_station == -1) { in->in_station = alloc_unr(sc->sc_unr); if (in->in_station == -1) { /* h/w table is full */ if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1); m_freem(m0); ieee80211_free_node(ni); return 0; } iwi_write_ibssnode(sc, ni->ni_macaddr, in->in_station); } staid = in->in_station; } else { /* * Multicast addresses have no associated node * so there will be no station entry. We reserve * entry 0 for one mcast address and use that. * If there are many being used this will be * expensive and we'll need to do a better job * but for now this handles the broadcast case. */ if (!IEEE80211_ADDR_EQ(wh->i_addr1, sc->sc_mcast)) { IEEE80211_ADDR_COPY(sc->sc_mcast, wh->i_addr1); iwi_write_ibssnode(sc, sc->sc_mcast, 0); } staid = 0; } } else staid = 0; if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { k = ieee80211_crypto_encap(ni, m0); if (k == NULL) { m_freem(m0); return ENOBUFS; } /* packet header may have moved, reset our local pointer */ wh = mtod(m0, struct ieee80211_frame *); } if (ieee80211_radiotap_active_vap(vap)) { struct iwi_tx_radiotap_header *tap = &sc->sc_txtap; tap->wt_flags = 0; ieee80211_radiotap_tx(vap, m0); } data = &txq->data[txq->cur]; desc = &txq->desc[txq->cur]; /* save and trim IEEE802.11 header */ m_copydata(m0, 0, hdrlen, (caddr_t)&desc->wh); m_adj(m0, hdrlen); error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map, m0, segs, &nsegs, 0); if (error != 0 && error != EFBIG) { device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", error); m_freem(m0); return error; } if (error != 0) { mnew = m_defrag(m0, M_NOWAIT); if (mnew == NULL) { device_printf(sc->sc_dev, "could not defragment mbuf\n"); m_freem(m0); return ENOBUFS; } m0 = mnew; error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map, m0, segs, &nsegs, 0); if (error != 0) { device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", error); m_freem(m0); return error; } } data->m = m0; data->ni = ni; desc->hdr.type = IWI_HDR_TYPE_DATA; desc->hdr.flags = IWI_HDR_FLAG_IRQ; desc->station = staid; desc->cmd = IWI_DATA_CMD_TX; desc->len = htole16(m0->m_pkthdr.len); desc->flags = flags; desc->xflags = xflags; #if 0 if (vap->iv_flags & IEEE80211_F_PRIVACY) desc->wep_txkey = vap->iv_def_txkey; else #endif desc->flags |= IWI_DATA_FLAG_NO_WEP; desc->nseg = htole32(nsegs); for (i = 0; i < nsegs; i++) { desc->seg_addr[i] = htole32(segs[i].ds_addr); desc->seg_len[i] = htole16(segs[i].ds_len); } bus_dmamap_sync(txq->data_dmat, data->map, BUS_DMASYNC_PREWRITE); bus_dmamap_sync(txq->desc_dmat, txq->desc_map, BUS_DMASYNC_PREWRITE); DPRINTFN(5, ("sending data frame txq=%u idx=%u len=%u nseg=%u\n", ac, txq->cur, le16toh(desc->len), nsegs)); txq->queued++; txq->cur = (txq->cur + 1) % IWI_TX_RING_COUNT; CSR_WRITE_4(sc, txq->csr_widx, txq->cur); return 0; } static int iwi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, const struct ieee80211_bpf_params *params) { /* no support; just discard */ m_freem(m); ieee80211_free_node(ni); return 0; } static int iwi_transmit(struct ieee80211com *ic, struct mbuf *m) { struct iwi_softc *sc = ic->ic_softc; int error; IWI_LOCK_DECL; IWI_LOCK(sc); if (!sc->sc_running) { IWI_UNLOCK(sc); return (ENXIO); } error = mbufq_enqueue(&sc->sc_snd, m); if (error) { IWI_UNLOCK(sc); return (error); } iwi_start(sc); IWI_UNLOCK(sc); return (0); } static void iwi_start(struct iwi_softc *sc) { struct mbuf *m; struct ieee80211_node *ni; int ac; IWI_LOCK_ASSERT(sc); while ((m = mbufq_dequeue(&sc->sc_snd)) != NULL) { ac = M_WME_GETAC(m); if (sc->txq[ac].queued > IWI_TX_RING_COUNT - 8) { /* there is no place left in this ring; tail drop */ /* XXX tail drop */ mbufq_prepend(&sc->sc_snd, m); break; } ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; if (iwi_tx_start(sc, m, ni, ac) != 0) { if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1); ieee80211_free_node(ni); break; } sc->sc_tx_timer = 5; } } static void iwi_watchdog(void *arg) { struct iwi_softc *sc = arg; struct ieee80211com *ic = &sc->sc_ic; IWI_LOCK_ASSERT(sc); if (sc->sc_tx_timer > 0) { if (--sc->sc_tx_timer == 0) { device_printf(sc->sc_dev, "device timeout\n"); counter_u64_add(ic->ic_oerrors, 1); ieee80211_runtask(ic, &sc->sc_restarttask); } } if (sc->sc_state_timer > 0) { if (--sc->sc_state_timer == 0) { device_printf(sc->sc_dev, "firmware stuck in state %d, resetting\n", sc->fw_state); if (sc->fw_state == IWI_FW_SCANNING) ieee80211_cancel_scan(TAILQ_FIRST(&ic->ic_vaps)); ieee80211_runtask(ic, &sc->sc_restarttask); sc->sc_state_timer = 3; } } if (sc->sc_busy_timer > 0) { if (--sc->sc_busy_timer == 0) { device_printf(sc->sc_dev, "firmware command timeout, resetting\n"); ieee80211_runtask(ic, &sc->sc_restarttask); } } callout_reset(&sc->sc_wdtimer, hz, iwi_watchdog, sc); } static void iwi_parent(struct ieee80211com *ic) { struct iwi_softc *sc = ic->ic_softc; int startall = 0; IWI_LOCK_DECL; IWI_LOCK(sc); if (ic->ic_nrunning > 0) { if (!sc->sc_running) { iwi_init_locked(sc); startall = 1; } } else if (sc->sc_running) iwi_stop_locked(sc); IWI_UNLOCK(sc); if (startall) ieee80211_start_all(ic); } static int iwi_ioctl(struct ieee80211com *ic, u_long cmd, void *data) { struct ifreq *ifr = data; struct iwi_softc *sc = ic->ic_softc; int error; IWI_LOCK_DECL; IWI_LOCK(sc); switch (cmd) { case SIOCGIWISTATS: /* XXX validate permissions/memory/etc? */ error = copyout(&sc->sc_linkqual, ifr_data_get_ptr(ifr), sizeof(struct iwi_notif_link_quality)); break; case SIOCZIWISTATS: memset(&sc->sc_linkqual, 0, sizeof(struct iwi_notif_link_quality)); error = 0; break; default: error = ENOTTY; break; } IWI_UNLOCK(sc); return (error); } static void iwi_stop_master(struct iwi_softc *sc) { uint32_t tmp; int ntries; /* disable interrupts */ CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, 0); CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_STOP_MASTER); for (ntries = 0; ntries < 5; ntries++) { if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED) break; DELAY(10); } if (ntries == 5) device_printf(sc->sc_dev, "timeout waiting for master\n"); tmp = CSR_READ_4(sc, IWI_CSR_RST); CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_PRINCETON_RESET); sc->flags &= ~IWI_FLAG_FW_INITED; } static int iwi_reset(struct iwi_softc *sc) { uint32_t tmp; int i, ntries; iwi_stop_master(sc); tmp = CSR_READ_4(sc, IWI_CSR_CTL); CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_INIT); CSR_WRITE_4(sc, IWI_CSR_READ_INT, IWI_READ_INT_INIT_HOST); /* wait for clock stabilization */ for (ntries = 0; ntries < 1000; ntries++) { if (CSR_READ_4(sc, IWI_CSR_CTL) & IWI_CTL_CLOCK_READY) break; DELAY(200); } if (ntries == 1000) { device_printf(sc->sc_dev, "timeout waiting for clock stabilization\n"); return EIO; } tmp = CSR_READ_4(sc, IWI_CSR_RST); CSR_WRITE_4(sc, IWI_CSR_RST, tmp | IWI_RST_SOFT_RESET); DELAY(10); tmp = CSR_READ_4(sc, IWI_CSR_CTL); CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_INIT); /* clear NIC memory */ CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0); for (i = 0; i < 0xc000; i++) CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0); return 0; } static const struct iwi_firmware_ohdr * iwi_setup_ofw(struct iwi_softc *sc, struct iwi_fw *fw) { const struct firmware *fp = fw->fp; const struct iwi_firmware_ohdr *hdr; if (fp->datasize < sizeof (struct iwi_firmware_ohdr)) { device_printf(sc->sc_dev, "image '%s' too small\n", fp->name); return NULL; } hdr = (const struct iwi_firmware_ohdr *)fp->data; if ((IWI_FW_GET_MAJOR(le32toh(hdr->version)) != IWI_FW_REQ_MAJOR) || (IWI_FW_GET_MINOR(le32toh(hdr->version)) != IWI_FW_REQ_MINOR)) { device_printf(sc->sc_dev, "version for '%s' %d.%d != %d.%d\n", fp->name, IWI_FW_GET_MAJOR(le32toh(hdr->version)), IWI_FW_GET_MINOR(le32toh(hdr->version)), IWI_FW_REQ_MAJOR, IWI_FW_REQ_MINOR); return NULL; } fw->data = ((const char *) fp->data) + sizeof(struct iwi_firmware_ohdr); fw->size = fp->datasize - sizeof(struct iwi_firmware_ohdr); fw->name = fp->name; return hdr; } static const struct iwi_firmware_ohdr * iwi_setup_oucode(struct iwi_softc *sc, struct iwi_fw *fw) { const struct iwi_firmware_ohdr *hdr; hdr = iwi_setup_ofw(sc, fw); if (hdr != NULL && le32toh(hdr->mode) != IWI_FW_MODE_UCODE) { device_printf(sc->sc_dev, "%s is not a ucode image\n", fw->name); hdr = NULL; } return hdr; } static void iwi_getfw(struct iwi_fw *fw, const char *fwname, struct iwi_fw *uc, const char *ucname) { if (fw->fp == NULL) fw->fp = firmware_get(fwname); /* NB: pre-3.0 ucode is packaged separately */ if (uc->fp == NULL && fw->fp != NULL && fw->fp->version < 300) uc->fp = firmware_get(ucname); } /* * Get the required firmware images if not already loaded. * Note that we hold firmware images so long as the device * is marked up in case we need to reload them on device init. * This is necessary because we re-init the device sometimes * from a context where we cannot read from the filesystem * (e.g. from the taskqueue thread when rfkill is re-enabled). * XXX return 0 on success, 1 on error. * * NB: the order of get'ing and put'ing images here is * intentional to support handling firmware images bundled * by operating mode and/or all together in one file with * the boot firmware as "master". */ static int iwi_get_firmware(struct iwi_softc *sc, enum ieee80211_opmode opmode) { const struct iwi_firmware_hdr *hdr; const struct firmware *fp; /* invalidate cached firmware on mode change */ if (sc->fw_mode != opmode) iwi_put_firmware(sc); switch (opmode) { case IEEE80211_M_STA: iwi_getfw(&sc->fw_fw, "iwi_bss", &sc->fw_uc, "iwi_ucode_bss"); break; case IEEE80211_M_IBSS: iwi_getfw(&sc->fw_fw, "iwi_ibss", &sc->fw_uc, "iwi_ucode_ibss"); break; case IEEE80211_M_MONITOR: iwi_getfw(&sc->fw_fw, "iwi_monitor", &sc->fw_uc, "iwi_ucode_monitor"); break; default: device_printf(sc->sc_dev, "unknown opmode %d\n", opmode); return EINVAL; } fp = sc->fw_fw.fp; if (fp == NULL) { device_printf(sc->sc_dev, "could not load firmware\n"); goto bad; } if (fp->version < 300) { /* * Firmware prior to 3.0 was packaged as separate * boot, firmware, and ucode images. Verify the * ucode image was read in, retrieve the boot image * if needed, and check version stamps for consistency. * The version stamps in the data are also checked * above; this is a bit paranoid but is a cheap * safeguard against mis-packaging. */ if (sc->fw_uc.fp == NULL) { device_printf(sc->sc_dev, "could not load ucode\n"); goto bad; } if (sc->fw_boot.fp == NULL) { sc->fw_boot.fp = firmware_get("iwi_boot"); if (sc->fw_boot.fp == NULL) { device_printf(sc->sc_dev, "could not load boot firmware\n"); goto bad; } } if (sc->fw_boot.fp->version != sc->fw_fw.fp->version || sc->fw_boot.fp->version != sc->fw_uc.fp->version) { device_printf(sc->sc_dev, "firmware version mismatch: " "'%s' is %d, '%s' is %d, '%s' is %d\n", sc->fw_boot.fp->name, sc->fw_boot.fp->version, sc->fw_uc.fp->name, sc->fw_uc.fp->version, sc->fw_fw.fp->name, sc->fw_fw.fp->version ); goto bad; } /* * Check and setup each image. */ if (iwi_setup_oucode(sc, &sc->fw_uc) == NULL || iwi_setup_ofw(sc, &sc->fw_boot) == NULL || iwi_setup_ofw(sc, &sc->fw_fw) == NULL) goto bad; } else { /* * Check and setup combined image. */ if (fp->datasize < sizeof(struct iwi_firmware_hdr)) { device_printf(sc->sc_dev, "image '%s' too small\n", fp->name); goto bad; } hdr = (const struct iwi_firmware_hdr *)fp->data; if (fp->datasize < sizeof(*hdr) + le32toh(hdr->bsize) + le32toh(hdr->usize) + le32toh(hdr->fsize)) { device_printf(sc->sc_dev, "image '%s' too small (2)\n", fp->name); goto bad; } sc->fw_boot.data = ((const char *) fp->data) + sizeof(*hdr); sc->fw_boot.size = le32toh(hdr->bsize); sc->fw_boot.name = fp->name; sc->fw_uc.data = sc->fw_boot.data + sc->fw_boot.size; sc->fw_uc.size = le32toh(hdr->usize); sc->fw_uc.name = fp->name; sc->fw_fw.data = sc->fw_uc.data + sc->fw_uc.size; sc->fw_fw.size = le32toh(hdr->fsize); sc->fw_fw.name = fp->name; } #if 0 device_printf(sc->sc_dev, "boot %d ucode %d fw %d bytes\n", sc->fw_boot.size, sc->fw_uc.size, sc->fw_fw.size); #endif sc->fw_mode = opmode; return 0; bad: iwi_put_firmware(sc); return 1; } static void iwi_put_fw(struct iwi_fw *fw) { if (fw->fp != NULL) { firmware_put(fw->fp, FIRMWARE_UNLOAD); fw->fp = NULL; } fw->data = NULL; fw->size = 0; fw->name = NULL; } /* * Release any cached firmware images. */ static void iwi_put_firmware(struct iwi_softc *sc) { iwi_put_fw(&sc->fw_uc); iwi_put_fw(&sc->fw_fw); iwi_put_fw(&sc->fw_boot); } static int iwi_load_ucode(struct iwi_softc *sc, const struct iwi_fw *fw) { uint32_t tmp; const uint16_t *w; const char *uc = fw->data; size_t size = fw->size; int i, ntries, error; IWI_LOCK_ASSERT(sc); error = 0; CSR_WRITE_4(sc, IWI_CSR_RST, CSR_READ_4(sc, IWI_CSR_RST) | IWI_RST_STOP_MASTER); for (ntries = 0; ntries < 5; ntries++) { if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED) break; DELAY(10); } if (ntries == 5) { device_printf(sc->sc_dev, "timeout waiting for master\n"); error = EIO; goto fail; } MEM_WRITE_4(sc, 0x3000e0, 0x80000000); DELAY(5000); tmp = CSR_READ_4(sc, IWI_CSR_RST); tmp &= ~IWI_RST_PRINCETON_RESET; CSR_WRITE_4(sc, IWI_CSR_RST, tmp); DELAY(5000); MEM_WRITE_4(sc, 0x3000e0, 0); DELAY(1000); MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, 1); DELAY(1000); MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, 0); DELAY(1000); MEM_WRITE_1(sc, 0x200000, 0x00); MEM_WRITE_1(sc, 0x200000, 0x40); DELAY(1000); /* write microcode into adapter memory */ for (w = (const uint16_t *)uc; size > 0; w++, size -= 2) MEM_WRITE_2(sc, 0x200010, htole16(*w)); MEM_WRITE_1(sc, 0x200000, 0x00); MEM_WRITE_1(sc, 0x200000, 0x80); /* wait until we get an answer */ for (ntries = 0; ntries < 100; ntries++) { if (MEM_READ_1(sc, 0x200000) & 1) break; DELAY(100); } if (ntries == 100) { device_printf(sc->sc_dev, "timeout waiting for ucode to initialize\n"); error = EIO; goto fail; } /* read the answer or the firmware will not initialize properly */ for (i = 0; i < 7; i++) MEM_READ_4(sc, 0x200004); MEM_WRITE_1(sc, 0x200000, 0x00); fail: return error; } /* macro to handle unaligned little endian data in firmware image */ #define GETLE32(p) ((p)[0] | (p)[1] << 8 | (p)[2] << 16 | (p)[3] << 24) static int iwi_load_firmware(struct iwi_softc *sc, const struct iwi_fw *fw) { u_char *p, *end; uint32_t sentinel, ctl, src, dst, sum, len, mlen, tmp; int ntries, error; IWI_LOCK_ASSERT(sc); /* copy firmware image to DMA memory */ memcpy(sc->fw_virtaddr, fw->data, fw->size); /* make sure the adapter will get up-to-date values */ bus_dmamap_sync(sc->fw_dmat, sc->fw_map, BUS_DMASYNC_PREWRITE); /* tell the adapter where the command blocks are stored */ MEM_WRITE_4(sc, 0x3000a0, 0x27000); /* * Store command blocks into adapter's internal memory using register * indirections. The adapter will read the firmware image through DMA * using information stored in command blocks. */ src = sc->fw_physaddr; p = sc->fw_virtaddr; end = p + fw->size; CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0x27000); while (p < end) { dst = GETLE32(p); p += 4; src += 4; len = GETLE32(p); p += 4; src += 4; p += len; while (len > 0) { mlen = min(len, IWI_CB_MAXDATALEN); ctl = IWI_CB_DEFAULT_CTL | mlen; sum = ctl ^ src ^ dst; /* write a command block */ CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, ctl); CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, src); CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, dst); CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, sum); src += mlen; dst += mlen; len -= mlen; } } /* write a fictive final command block (sentinel) */ sentinel = CSR_READ_4(sc, IWI_CSR_AUTOINC_ADDR); CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0); tmp = CSR_READ_4(sc, IWI_CSR_RST); tmp &= ~(IWI_RST_MASTER_DISABLED | IWI_RST_STOP_MASTER); CSR_WRITE_4(sc, IWI_CSR_RST, tmp); /* tell the adapter to start processing command blocks */ MEM_WRITE_4(sc, 0x3000a4, 0x540100); /* wait until the adapter reaches the sentinel */ for (ntries = 0; ntries < 400; ntries++) { if (MEM_READ_4(sc, 0x3000d0) >= sentinel) break; DELAY(100); } /* sync dma, just in case */ bus_dmamap_sync(sc->fw_dmat, sc->fw_map, BUS_DMASYNC_POSTWRITE); if (ntries == 400) { device_printf(sc->sc_dev, "timeout processing command blocks for %s firmware\n", fw->name); return EIO; } /* we're done with command blocks processing */ MEM_WRITE_4(sc, 0x3000a4, 0x540c00); /* allow interrupts so we know when the firmware is ready */ CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, IWI_INTR_MASK); /* tell the adapter to initialize the firmware */ CSR_WRITE_4(sc, IWI_CSR_RST, 0); tmp = CSR_READ_4(sc, IWI_CSR_CTL); CSR_WRITE_4(sc, IWI_CSR_CTL, tmp | IWI_CTL_ALLOW_STANDBY); /* wait at most one second for firmware initialization to complete */ if ((error = msleep(sc, &sc->sc_mtx, 0, "iwiinit", hz)) != 0) { device_printf(sc->sc_dev, "timeout waiting for %s firmware " "initialization to complete\n", fw->name); } return error; } static int iwi_setpowermode(struct iwi_softc *sc, struct ieee80211vap *vap) { uint32_t data; if (vap->iv_flags & IEEE80211_F_PMGTON) { /* XXX set more fine-grained operation */ data = htole32(IWI_POWER_MODE_MAX); } else data = htole32(IWI_POWER_MODE_CAM); DPRINTF(("Setting power mode to %u\n", le32toh(data))); return iwi_cmd(sc, IWI_CMD_SET_POWER_MODE, &data, sizeof data); } static int iwi_setwepkeys(struct iwi_softc *sc, struct ieee80211vap *vap) { struct iwi_wep_key wepkey; struct ieee80211_key *wk; int error, i; for (i = 0; i < IEEE80211_WEP_NKID; i++) { wk = &vap->iv_nw_keys[i]; wepkey.cmd = IWI_WEP_KEY_CMD_SETKEY; wepkey.idx = i; wepkey.len = wk->wk_keylen; memset(wepkey.key, 0, sizeof wepkey.key); memcpy(wepkey.key, wk->wk_key, wk->wk_keylen); DPRINTF(("Setting wep key index %u len %u\n", wepkey.idx, wepkey.len)); error = iwi_cmd(sc, IWI_CMD_SET_WEP_KEY, &wepkey, sizeof wepkey); if (error != 0) return error; } return 0; } static int iwi_set_rateset(struct iwi_softc *sc, const struct ieee80211_rateset *net_rs, int mode, int type) { struct iwi_rateset rs; memset(&rs, 0, sizeof(rs)); rs.mode = mode; rs.type = type; rs.nrates = net_rs->rs_nrates; if (rs.nrates > nitems(rs.rates)) { DPRINTF(("Truncating negotiated rate set from %u\n", rs.nrates)); rs.nrates = nitems(rs.rates); } memcpy(rs.rates, net_rs->rs_rates, rs.nrates); DPRINTF(("Setting .11%c%s %s rates (%u)\n", mode == IWI_MODE_11A ? 'a' : 'b', mode == IWI_MODE_11G ? "g" : "", type == IWI_RATESET_TYPE_SUPPORTED ? "supported" : "negotiated", rs.nrates)); return (iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof(rs))); } static int iwi_config(struct iwi_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); struct iwi_configuration config; struct iwi_txpower power; uint8_t *macaddr; uint32_t data; int error, i; IWI_LOCK_ASSERT(sc); macaddr = vap ? vap->iv_myaddr : ic->ic_macaddr; DPRINTF(("Setting MAC address to %6D\n", macaddr, ":")); error = iwi_cmd(sc, IWI_CMD_SET_MAC_ADDRESS, macaddr, IEEE80211_ADDR_LEN); if (error != 0) return error; memset(&config, 0, sizeof config); config.bluetooth_coexistence = sc->bluetooth; config.silence_threshold = 0x1e; config.antenna = sc->antenna; config.multicast_enabled = 1; config.answer_pbreq = (ic->ic_opmode == IEEE80211_M_IBSS) ? 1 : 0; config.disable_unicast_decryption = 1; config.disable_multicast_decryption = 1; if (ic->ic_opmode == IEEE80211_M_MONITOR) { config.allow_invalid_frames = 1; config.allow_beacon_and_probe_resp = 1; config.allow_mgt = 1; } DPRINTF(("Configuring adapter\n")); error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config); if (error != 0) return error; if (ic->ic_opmode == IEEE80211_M_IBSS) { power.mode = IWI_MODE_11B; power.nchan = 11; for (i = 0; i < 11; i++) { power.chan[i].chan = i + 1; power.chan[i].power = IWI_TXPOWER_MAX; } DPRINTF(("Setting .11b channels tx power\n")); error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power); if (error != 0) return error; power.mode = IWI_MODE_11G; DPRINTF(("Setting .11g channels tx power\n")); error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power); if (error != 0) return error; } error = iwi_set_rateset(sc, &ic->ic_sup_rates[IEEE80211_MODE_11G], IWI_MODE_11G, IWI_RATESET_TYPE_SUPPORTED); if (error != 0) return error; error = iwi_set_rateset(sc, &ic->ic_sup_rates[IEEE80211_MODE_11A], IWI_MODE_11A, IWI_RATESET_TYPE_SUPPORTED); if (error != 0) return error; data = htole32(arc4random()); DPRINTF(("Setting initialization vector to %u\n", le32toh(data))); error = iwi_cmd(sc, IWI_CMD_SET_IV, &data, sizeof data); if (error != 0) return error; /* enable adapter */ DPRINTF(("Enabling adapter\n")); return iwi_cmd(sc, IWI_CMD_ENABLE, NULL, 0); } static __inline void set_scan_type(struct iwi_scan_ext *scan, int ix, int scan_type) { uint8_t *st = &scan->scan_type[ix / 2]; if (ix % 2) *st = (*st & 0xf0) | ((scan_type & 0xf) << 0); else *st = (*st & 0x0f) | ((scan_type & 0xf) << 4); } static int scan_type(const struct ieee80211_scan_state *ss, const struct ieee80211_channel *chan) { /* We can only set one essid for a directed scan */ if (ss->ss_nssid != 0) return IWI_SCAN_TYPE_BDIRECTED; if ((ss->ss_flags & IEEE80211_SCAN_ACTIVE) && (chan->ic_flags & IEEE80211_CHAN_PASSIVE) == 0) return IWI_SCAN_TYPE_BROADCAST; return IWI_SCAN_TYPE_PASSIVE; } static __inline int scan_band(const struct ieee80211_channel *c) { return IEEE80211_IS_CHAN_5GHZ(c) ? IWI_CHAN_5GHZ : IWI_CHAN_2GHZ; } static void iwi_monitor_scan(void *arg, int npending) { struct iwi_softc *sc = arg; IWI_LOCK_DECL; IWI_LOCK(sc); (void) iwi_scanchan(sc, 2000, 0); IWI_UNLOCK(sc); } /* * Start a scan on the current channel or all channels. */ static int iwi_scanchan(struct iwi_softc *sc, unsigned long maxdwell, int allchan) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_channel *chan; struct ieee80211_scan_state *ss; struct iwi_scan_ext scan; int error = 0; IWI_LOCK_ASSERT(sc); if (sc->fw_state == IWI_FW_SCANNING) { /* * This should not happen as we only trigger scan_next after * completion */ DPRINTF(("%s: called too early - still scanning\n", __func__)); return (EBUSY); } IWI_STATE_BEGIN(sc, IWI_FW_SCANNING); ss = ic->ic_scan; memset(&scan, 0, sizeof scan); scan.full_scan_index = htole32(++sc->sc_scangen); scan.dwell_time[IWI_SCAN_TYPE_PASSIVE] = htole16(maxdwell); if (ic->ic_flags_ext & IEEE80211_FEXT_BGSCAN) { /* * Use very short dwell times for when we send probe request * frames. Without this bg scans hang. Ideally this should * be handled with early-termination as done by net80211 but * that's not feasible (aborting a scan is problematic). */ scan.dwell_time[IWI_SCAN_TYPE_BROADCAST] = htole16(30); scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED] = htole16(30); } else { scan.dwell_time[IWI_SCAN_TYPE_BROADCAST] = htole16(maxdwell); scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED] = htole16(maxdwell); } /* We can only set one essid for a directed scan */ if (ss->ss_nssid != 0) { error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ss->ss_ssid[0].ssid, ss->ss_ssid[0].len); if (error) return (error); } if (allchan) { int i, next, band, b, bstart; /* * Convert scan list to run-length encoded channel list * the firmware requires (preserving the order setup by * net80211). The first entry in each run specifies the * band and the count of items in the run. */ next = 0; /* next open slot */ bstart = 0; /* NB: not needed, silence compiler */ band = -1; /* NB: impossible value */ KASSERT(ss->ss_last > 0, ("no channels")); for (i = 0; i < ss->ss_last; i++) { chan = ss->ss_chans[i]; b = scan_band(chan); if (b != band) { if (band != -1) scan.channels[bstart] = (next - bstart) | band; /* NB: this allocates a slot for the run-len */ band = b, bstart = next++; } if (next >= IWI_SCAN_CHANNELS) { DPRINTF(("truncating scan list\n")); break; } scan.channels[next] = ieee80211_chan2ieee(ic, chan); set_scan_type(&scan, next, scan_type(ss, chan)); next++; } scan.channels[bstart] = (next - bstart) | band; } else { /* Scan the current channel only */ chan = ic->ic_curchan; scan.channels[0] = 1 | scan_band(chan); scan.channels[1] = ieee80211_chan2ieee(ic, chan); set_scan_type(&scan, 1, scan_type(ss, chan)); } #ifdef IWI_DEBUG if (iwi_debug > 0) { static const char *scantype[8] = { "PSTOP", "PASV", "DIR", "BCAST", "BDIR", "5", "6", "7" }; int i; printf("Scan request: index %u dwell %d/%d/%d\n" , le32toh(scan.full_scan_index) , le16toh(scan.dwell_time[IWI_SCAN_TYPE_PASSIVE]) , le16toh(scan.dwell_time[IWI_SCAN_TYPE_BROADCAST]) , le16toh(scan.dwell_time[IWI_SCAN_TYPE_BDIRECTED]) ); i = 0; do { int run = scan.channels[i]; if (run == 0) break; printf("Scan %d %s channels:", run & 0x3f, run & IWI_CHAN_2GHZ ? "2.4GHz" : "5GHz"); for (run &= 0x3f, i++; run > 0; run--, i++) { uint8_t type = scan.scan_type[i/2]; printf(" %u/%s", scan.channels[i], scantype[(i & 1 ? type : type>>4) & 7]); } printf("\n"); } while (i < IWI_SCAN_CHANNELS); } #endif return (iwi_cmd(sc, IWI_CMD_SCAN_EXT, &scan, sizeof scan)); } static int iwi_set_sensitivity(struct iwi_softc *sc, int8_t rssi_dbm) { struct iwi_sensitivity sens; DPRINTF(("Setting sensitivity to %d\n", rssi_dbm)); memset(&sens, 0, sizeof sens); sens.rssi = htole16(rssi_dbm); return iwi_cmd(sc, IWI_CMD_SET_SENSITIVITY, &sens, sizeof sens); } static int iwi_auth_and_assoc(struct iwi_softc *sc, struct ieee80211vap *vap) { struct ieee80211com *ic = vap->iv_ic; if_t ifp = vap->iv_ifp; struct ieee80211_node *ni; struct iwi_configuration config; struct iwi_associate *assoc = &sc->assoc; uint16_t capinfo; uint32_t data; int error, mode; IWI_LOCK_ASSERT(sc); if (sc->flags & IWI_FLAG_ASSOCIATED) { DPRINTF(("Already associated\n")); return (-1); } ni = ieee80211_ref_node(vap->iv_bss); IWI_STATE_BEGIN(sc, IWI_FW_ASSOCIATING); error = 0; mode = 0; if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) mode = IWI_MODE_11A; else if (IEEE80211_IS_CHAN_G(ic->ic_curchan)) mode = IWI_MODE_11G; if (IEEE80211_IS_CHAN_B(ic->ic_curchan)) mode = IWI_MODE_11B; if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) { memset(&config, 0, sizeof config); config.bluetooth_coexistence = sc->bluetooth; config.antenna = sc->antenna; config.multicast_enabled = 1; if (mode == IWI_MODE_11G) config.use_protection = 1; config.answer_pbreq = (vap->iv_opmode == IEEE80211_M_IBSS) ? 1 : 0; config.disable_unicast_decryption = 1; config.disable_multicast_decryption = 1; DPRINTF(("Configuring adapter\n")); error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config); if (error != 0) goto done; } #ifdef IWI_DEBUG if (iwi_debug > 0) { printf("Setting ESSID to "); ieee80211_print_essid(ni->ni_essid, ni->ni_esslen); printf("\n"); } #endif error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ni->ni_essid, ni->ni_esslen); if (error != 0) goto done; error = iwi_setpowermode(sc, vap); if (error != 0) goto done; data = htole32(vap->iv_rtsthreshold); DPRINTF(("Setting RTS threshold to %u\n", le32toh(data))); error = iwi_cmd(sc, IWI_CMD_SET_RTS_THRESHOLD, &data, sizeof data); if (error != 0) goto done; data = htole32(vap->iv_fragthreshold); DPRINTF(("Setting fragmentation threshold to %u\n", le32toh(data))); error = iwi_cmd(sc, IWI_CMD_SET_FRAG_THRESHOLD, &data, sizeof data); if (error != 0) goto done; /* the rate set has already been "negotiated" */ error = iwi_set_rateset(sc, &ni->ni_rates, mode, IWI_RATESET_TYPE_NEGOTIATED); if (error != 0) goto done; memset(assoc, 0, sizeof *assoc); if ((vap->iv_flags & IEEE80211_F_WME) && ni->ni_ies.wme_ie != NULL) { /* NB: don't treat WME setup as failure */ if (iwi_wme_setparams(sc) == 0 && iwi_wme_setie(sc) == 0) assoc->policy |= htole16(IWI_POLICY_WME); /* XXX complain on failure? */ } if (vap->iv_appie_wpa != NULL) { struct ieee80211_appie *ie = vap->iv_appie_wpa; DPRINTF(("Setting optional IE (len=%u)\n", ie->ie_len)); error = iwi_cmd(sc, IWI_CMD_SET_OPTIE, ie->ie_data, ie->ie_len); if (error != 0) goto done; } error = iwi_set_sensitivity(sc, ic->ic_node_getrssi(ni)); if (error != 0) goto done; assoc->mode = mode; assoc->chan = ic->ic_curchan->ic_ieee; /* * NB: do not arrange for shared key auth w/o privacy * (i.e. a wep key); it causes a firmware error. */ if ((vap->iv_flags & IEEE80211_F_PRIVACY) && ni->ni_authmode == IEEE80211_AUTH_SHARED) { assoc->auth = IWI_AUTH_SHARED; /* * It's possible to have privacy marked but no default * key setup. This typically is due to a user app bug * but if we blindly grab the key the firmware will * barf so avoid it for now. */ if (vap->iv_def_txkey != IEEE80211_KEYIX_NONE) assoc->auth |= vap->iv_def_txkey << 4; error = iwi_setwepkeys(sc, vap); if (error != 0) goto done; } if (vap->iv_flags & IEEE80211_F_WPA) assoc->policy |= htole16(IWI_POLICY_WPA); if (vap->iv_opmode == IEEE80211_M_IBSS && ni->ni_tstamp.tsf == 0) assoc->type = IWI_HC_IBSS_START; else assoc->type = IWI_HC_ASSOC; memcpy(assoc->tstamp, ni->ni_tstamp.data, 8); if (vap->iv_opmode == IEEE80211_M_IBSS) capinfo = IEEE80211_CAPINFO_IBSS; else capinfo = IEEE80211_CAPINFO_ESS; if (vap->iv_flags & IEEE80211_F_PRIVACY) capinfo |= IEEE80211_CAPINFO_PRIVACY; if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; if (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_SLOTTIME) capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; assoc->capinfo = htole16(capinfo); assoc->lintval = htole16(ic->ic_lintval); assoc->intval = htole16(ni->ni_intval); IEEE80211_ADDR_COPY(assoc->bssid, ni->ni_bssid); if (vap->iv_opmode == IEEE80211_M_IBSS) IEEE80211_ADDR_COPY(assoc->dst, if_getbroadcastaddr(ifp)); else IEEE80211_ADDR_COPY(assoc->dst, ni->ni_bssid); DPRINTF(("%s bssid %6D dst %6D channel %u policy 0x%x " "auth %u capinfo 0x%x lintval %u bintval %u\n", assoc->type == IWI_HC_IBSS_START ? "Start" : "Join", assoc->bssid, ":", assoc->dst, ":", assoc->chan, le16toh(assoc->policy), assoc->auth, le16toh(assoc->capinfo), le16toh(assoc->lintval), le16toh(assoc->intval))); error = iwi_cmd(sc, IWI_CMD_ASSOCIATE, assoc, sizeof *assoc); done: ieee80211_free_node(ni); if (error) IWI_STATE_END(sc, IWI_FW_ASSOCIATING); return (error); } static void iwi_disassoc(void *arg, int pending) { struct iwi_softc *sc = arg; IWI_LOCK_DECL; IWI_LOCK(sc); iwi_disassociate(sc, 0); IWI_UNLOCK(sc); } static int iwi_disassociate(struct iwi_softc *sc, int quiet) { struct iwi_associate *assoc = &sc->assoc; if ((sc->flags & IWI_FLAG_ASSOCIATED) == 0) { DPRINTF(("Not associated\n")); return (-1); } IWI_STATE_BEGIN(sc, IWI_FW_DISASSOCIATING); if (quiet) assoc->type = IWI_HC_DISASSOC_QUIET; else assoc->type = IWI_HC_DISASSOC; DPRINTF(("Trying to disassociate from %6D channel %u\n", assoc->bssid, ":", assoc->chan)); return iwi_cmd(sc, IWI_CMD_ASSOCIATE, assoc, sizeof *assoc); } /* * release dma resources for the firmware */ static void iwi_release_fw_dma(struct iwi_softc *sc) { if (sc->fw_flags & IWI_FW_HAVE_PHY) bus_dmamap_unload(sc->fw_dmat, sc->fw_map); if (sc->fw_flags & IWI_FW_HAVE_MAP) bus_dmamem_free(sc->fw_dmat, sc->fw_virtaddr, sc->fw_map); if (sc->fw_flags & IWI_FW_HAVE_DMAT) bus_dma_tag_destroy(sc->fw_dmat); sc->fw_flags = 0; sc->fw_dma_size = 0; sc->fw_dmat = NULL; sc->fw_map = NULL; sc->fw_physaddr = 0; sc->fw_virtaddr = NULL; } /* * allocate the dma descriptor for the firmware. * Return 0 on success, 1 on error. * Must be called unlocked, protected by IWI_FLAG_FW_LOADING. */ static int iwi_init_fw_dma(struct iwi_softc *sc, int size) { if (sc->fw_dma_size >= size) return 0; if (bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size, 1, size, 0, NULL, NULL, &sc->fw_dmat) != 0) { device_printf(sc->sc_dev, "could not create firmware DMA tag\n"); goto error; } sc->fw_flags |= IWI_FW_HAVE_DMAT; if (bus_dmamem_alloc(sc->fw_dmat, &sc->fw_virtaddr, 0, &sc->fw_map) != 0) { device_printf(sc->sc_dev, "could not allocate firmware DMA memory\n"); goto error; } sc->fw_flags |= IWI_FW_HAVE_MAP; if (bus_dmamap_load(sc->fw_dmat, sc->fw_map, sc->fw_virtaddr, size, iwi_dma_map_addr, &sc->fw_physaddr, 0) != 0) { device_printf(sc->sc_dev, "could not load firmware DMA map\n"); goto error; } sc->fw_flags |= IWI_FW_HAVE_PHY; sc->fw_dma_size = size; return 0; error: iwi_release_fw_dma(sc); return 1; } static void iwi_init_locked(struct iwi_softc *sc) { struct iwi_rx_data *data; int i; IWI_LOCK_ASSERT(sc); if (sc->fw_state == IWI_FW_LOADING) { device_printf(sc->sc_dev, "%s: already loading\n", __func__); return; /* XXX: condvar? */ } iwi_stop_locked(sc); IWI_STATE_BEGIN(sc, IWI_FW_LOADING); if (iwi_reset(sc) != 0) { device_printf(sc->sc_dev, "could not reset adapter\n"); goto fail; } if (iwi_load_firmware(sc, &sc->fw_boot) != 0) { device_printf(sc->sc_dev, "could not load boot firmware %s\n", sc->fw_boot.name); goto fail; } if (iwi_load_ucode(sc, &sc->fw_uc) != 0) { device_printf(sc->sc_dev, "could not load microcode %s\n", sc->fw_uc.name); goto fail; } iwi_stop_master(sc); CSR_WRITE_4(sc, IWI_CSR_CMD_BASE, sc->cmdq.physaddr); CSR_WRITE_4(sc, IWI_CSR_CMD_SIZE, sc->cmdq.count); CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur); CSR_WRITE_4(sc, IWI_CSR_TX1_BASE, sc->txq[0].physaddr); CSR_WRITE_4(sc, IWI_CSR_TX1_SIZE, sc->txq[0].count); CSR_WRITE_4(sc, IWI_CSR_TX1_WIDX, sc->txq[0].cur); CSR_WRITE_4(sc, IWI_CSR_TX2_BASE, sc->txq[1].physaddr); CSR_WRITE_4(sc, IWI_CSR_TX2_SIZE, sc->txq[1].count); CSR_WRITE_4(sc, IWI_CSR_TX2_WIDX, sc->txq[1].cur); CSR_WRITE_4(sc, IWI_CSR_TX3_BASE, sc->txq[2].physaddr); CSR_WRITE_4(sc, IWI_CSR_TX3_SIZE, sc->txq[2].count); CSR_WRITE_4(sc, IWI_CSR_TX3_WIDX, sc->txq[2].cur); CSR_WRITE_4(sc, IWI_CSR_TX4_BASE, sc->txq[3].physaddr); CSR_WRITE_4(sc, IWI_CSR_TX4_SIZE, sc->txq[3].count); CSR_WRITE_4(sc, IWI_CSR_TX4_WIDX, sc->txq[3].cur); for (i = 0; i < sc->rxq.count; i++) { data = &sc->rxq.data[i]; CSR_WRITE_4(sc, data->reg, data->physaddr); } CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, sc->rxq.count - 1); if (iwi_load_firmware(sc, &sc->fw_fw) != 0) { device_printf(sc->sc_dev, "could not load main firmware %s\n", sc->fw_fw.name); goto fail; } sc->flags |= IWI_FLAG_FW_INITED; IWI_STATE_END(sc, IWI_FW_LOADING); if (iwi_config(sc) != 0) { device_printf(sc->sc_dev, "unable to enable adapter\n"); goto fail2; } callout_reset(&sc->sc_wdtimer, hz, iwi_watchdog, sc); sc->sc_running = 1; return; fail: IWI_STATE_END(sc, IWI_FW_LOADING); fail2: iwi_stop_locked(sc); } static void iwi_init(void *priv) { struct iwi_softc *sc = priv; struct ieee80211com *ic = &sc->sc_ic; IWI_LOCK_DECL; IWI_LOCK(sc); iwi_init_locked(sc); IWI_UNLOCK(sc); if (sc->sc_running) ieee80211_start_all(ic); } static void iwi_stop_locked(void *priv) { struct iwi_softc *sc = priv; IWI_LOCK_ASSERT(sc); sc->sc_running = 0; if (sc->sc_softled) { callout_stop(&sc->sc_ledtimer); sc->sc_blinking = 0; } callout_stop(&sc->sc_wdtimer); callout_stop(&sc->sc_rftimer); iwi_stop_master(sc); CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_SOFT_RESET); /* reset rings */ iwi_reset_cmd_ring(sc, &sc->cmdq); iwi_reset_tx_ring(sc, &sc->txq[0]); iwi_reset_tx_ring(sc, &sc->txq[1]); iwi_reset_tx_ring(sc, &sc->txq[2]); iwi_reset_tx_ring(sc, &sc->txq[3]); iwi_reset_rx_ring(sc, &sc->rxq); sc->sc_tx_timer = 0; sc->sc_state_timer = 0; sc->sc_busy_timer = 0; sc->flags &= ~(IWI_FLAG_BUSY | IWI_FLAG_ASSOCIATED); sc->fw_state = IWI_FW_IDLE; wakeup(sc); } static void iwi_stop(struct iwi_softc *sc) { IWI_LOCK_DECL; IWI_LOCK(sc); iwi_stop_locked(sc); IWI_UNLOCK(sc); } static void iwi_restart(void *arg, int npending) { struct iwi_softc *sc = arg; iwi_init(sc); } /* * Return whether or not the radio is enabled in hardware * (i.e. the rfkill switch is "off"). */ static int iwi_getrfkill(struct iwi_softc *sc) { return (CSR_READ_4(sc, IWI_CSR_IO) & IWI_IO_RADIO_ENABLED) == 0; } static void iwi_radio_on(void *arg, int pending) { struct iwi_softc *sc = arg; struct ieee80211com *ic = &sc->sc_ic; device_printf(sc->sc_dev, "radio turned on\n"); iwi_init(sc); ieee80211_notify_radio(ic, 1); } static void iwi_rfkill_poll(void *arg) { struct iwi_softc *sc = arg; IWI_LOCK_ASSERT(sc); /* * Check for a change in rfkill state. We get an * interrupt when a radio is disabled but not when * it is enabled so we must poll for the latter. */ if (!iwi_getrfkill(sc)) { ieee80211_runtask(&sc->sc_ic, &sc->sc_radiontask); return; } callout_reset(&sc->sc_rftimer, 2*hz, iwi_rfkill_poll, sc); } static void iwi_radio_off(void *arg, int pending) { struct iwi_softc *sc = arg; struct ieee80211com *ic = &sc->sc_ic; IWI_LOCK_DECL; device_printf(sc->sc_dev, "radio turned off\n"); ieee80211_notify_radio(ic, 0); IWI_LOCK(sc); iwi_stop_locked(sc); iwi_rfkill_poll(sc); IWI_UNLOCK(sc); } static int iwi_sysctl_stats(SYSCTL_HANDLER_ARGS) { struct iwi_softc *sc = arg1; uint32_t size, buf[128]; memset(buf, 0, sizeof buf); if (!(sc->flags & IWI_FLAG_FW_INITED)) return SYSCTL_OUT(req, buf, sizeof buf); size = min(CSR_READ_4(sc, IWI_CSR_TABLE0_SIZE), 128 - 1); CSR_READ_REGION_4(sc, IWI_CSR_TABLE0_BASE, &buf[1], size); return SYSCTL_OUT(req, buf, size); } static int iwi_sysctl_radio(SYSCTL_HANDLER_ARGS) { struct iwi_softc *sc = arg1; int val = !iwi_getrfkill(sc); return SYSCTL_OUT(req, &val, sizeof val); } /* * Add sysctl knobs. */ static void iwi_sysctlattach(struct iwi_softc *sc) { struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev); struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev); SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "radio", CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, 0, iwi_sysctl_radio, "I", "radio transmitter switch state (0=off, 1=on)"); SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "stats", CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, 0, iwi_sysctl_stats, "S", "statistics"); sc->bluetooth = 0; SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "bluetooth", CTLFLAG_RW, &sc->bluetooth, 0, "bluetooth coexistence"); sc->antenna = IWI_ANTENNA_AUTO; SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "antenna", CTLFLAG_RW, &sc->antenna, 0, "antenna (0=auto)"); } /* * LED support. * * Different cards have different capabilities. Some have three * led's while others have only one. The linux ipw driver defines * led's for link state (associated or not), band (11a, 11g, 11b), * and for link activity. We use one led and vary the blink rate * according to the tx/rx traffic a la the ath driver. */ static __inline uint32_t iwi_toggle_event(uint32_t r) { return r &~ (IWI_RST_STANDBY | IWI_RST_GATE_ODMA | IWI_RST_GATE_IDMA | IWI_RST_GATE_ADMA); } static uint32_t iwi_read_event(struct iwi_softc *sc) { return MEM_READ_4(sc, IWI_MEM_EEPROM_EVENT); } static void iwi_write_event(struct iwi_softc *sc, uint32_t v) { MEM_WRITE_4(sc, IWI_MEM_EEPROM_EVENT, v); } static void iwi_led_done(void *arg) { struct iwi_softc *sc = arg; sc->sc_blinking = 0; } /* * Turn the activity LED off: flip the pin and then set a timer so no * update will happen for the specified duration. */ static void iwi_led_off(void *arg) { struct iwi_softc *sc = arg; uint32_t v; v = iwi_read_event(sc); v &= ~sc->sc_ledpin; iwi_write_event(sc, iwi_toggle_event(v)); callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, iwi_led_done, sc); } /* * Blink the LED according to the specified on/off times. */ static void iwi_led_blink(struct iwi_softc *sc, int on, int off) { uint32_t v; v = iwi_read_event(sc); v |= sc->sc_ledpin; iwi_write_event(sc, iwi_toggle_event(v)); sc->sc_blinking = 1; sc->sc_ledoff = off; callout_reset(&sc->sc_ledtimer, on, iwi_led_off, sc); } static void iwi_led_event(struct iwi_softc *sc, int event) { /* NB: on/off times from the Atheros NDIS driver, w/ permission */ static const struct { u_int rate; /* tx/rx iwi rate */ u_int16_t timeOn; /* LED on time (ms) */ u_int16_t timeOff; /* LED off time (ms) */ } blinkrates[] = { { IWI_RATE_OFDM54, 40, 10 }, { IWI_RATE_OFDM48, 44, 11 }, { IWI_RATE_OFDM36, 50, 13 }, { IWI_RATE_OFDM24, 57, 14 }, { IWI_RATE_OFDM18, 67, 16 }, { IWI_RATE_OFDM12, 80, 20 }, { IWI_RATE_DS11, 100, 25 }, { IWI_RATE_OFDM9, 133, 34 }, { IWI_RATE_OFDM6, 160, 40 }, { IWI_RATE_DS5, 200, 50 }, { 6, 240, 58 }, /* XXX 3Mb/s if it existed */ { IWI_RATE_DS2, 267, 66 }, { IWI_RATE_DS1, 400, 100 }, { 0, 500, 130 }, /* unknown rate/polling */ }; uint32_t txrate; int j = 0; /* XXX silence compiler */ sc->sc_ledevent = ticks; /* time of last event */ if (sc->sc_blinking) /* don't interrupt active blink */ return; switch (event) { case IWI_LED_POLL: j = nitems(blinkrates)-1; break; case IWI_LED_TX: /* read current transmission rate from adapter */ txrate = CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE); if (blinkrates[sc->sc_txrix].rate != txrate) { for (j = 0; j < nitems(blinkrates)-1; j++) if (blinkrates[j].rate == txrate) break; sc->sc_txrix = j; } else j = sc->sc_txrix; break; case IWI_LED_RX: if (blinkrates[sc->sc_rxrix].rate != sc->sc_rxrate) { for (j = 0; j < nitems(blinkrates)-1; j++) if (blinkrates[j].rate == sc->sc_rxrate) break; sc->sc_rxrix = j; } else j = sc->sc_rxrix; break; } /* XXX beware of overflow */ iwi_led_blink(sc, (blinkrates[j].timeOn * hz) / 1000, (blinkrates[j].timeOff * hz) / 1000); } static int iwi_sysctl_softled(SYSCTL_HANDLER_ARGS) { struct iwi_softc *sc = arg1; int softled = sc->sc_softled; int error; error = sysctl_handle_int(oidp, &softled, 0, req); if (error || !req->newptr) return error; softled = (softled != 0); if (softled != sc->sc_softled) { if (softled) { uint32_t v = iwi_read_event(sc); v &= ~sc->sc_ledpin; iwi_write_event(sc, iwi_toggle_event(v)); } sc->sc_softled = softled; } return 0; } static void iwi_ledattach(struct iwi_softc *sc) { struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev); struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev); sc->sc_blinking = 0; sc->sc_ledstate = 1; sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */ callout_init_mtx(&sc->sc_ledtimer, &sc->sc_mtx, 0); SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "softled", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0, iwi_sysctl_softled, "I", "enable/disable software LED support"); SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "ledpin", CTLFLAG_RW, &sc->sc_ledpin, 0, "pin setting to turn activity LED on"); SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0, "idle time for inactivity LED (ticks)"); /* XXX for debugging */ SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, "nictype", CTLFLAG_RD, &sc->sc_nictype, 0, "NIC type from EEPROM"); sc->sc_ledpin = IWI_RST_LED_ACTIVITY; sc->sc_softled = 1; sc->sc_nictype = (iwi_read_prom_word(sc, IWI_EEPROM_NIC) >> 8) & 0xff; if (sc->sc_nictype == 1) { /* * NB: led's are reversed. */ sc->sc_ledpin = IWI_RST_LED_ASSOCIATED; } } static void iwi_scan_start(struct ieee80211com *ic) { /* ignore */ } static void iwi_set_channel(struct ieee80211com *ic) { struct iwi_softc *sc = ic->ic_softc; if (sc->fw_state == IWI_FW_IDLE) iwi_setcurchan(sc, ic->ic_curchan->ic_ieee); } static void iwi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell) { struct ieee80211vap *vap = ss->ss_vap; struct iwi_softc *sc = vap->iv_ic->ic_softc; IWI_LOCK_DECL; IWI_LOCK(sc); if (iwi_scanchan(sc, maxdwell, 0)) ieee80211_cancel_scan(vap); IWI_UNLOCK(sc); } static void iwi_scan_mindwell(struct ieee80211_scan_state *ss) { /* NB: don't try to abort scan; wait for firmware to finish */ } static void iwi_scan_end(struct ieee80211com *ic) { struct iwi_softc *sc = ic->ic_softc; IWI_LOCK_DECL; IWI_LOCK(sc); sc->flags &= ~IWI_FLAG_CHANNEL_SCAN; /* NB: make sure we're still scanning */ if (sc->fw_state == IWI_FW_SCANNING) iwi_cmd(sc, IWI_CMD_ABORT_SCAN, NULL, 0); IWI_UNLOCK(sc); } static void iwi_collect_bands(struct ieee80211com *ic, uint8_t bands[], size_t bands_sz) { struct iwi_softc *sc = ic->ic_softc; device_t dev = sc->sc_dev; memset(bands, 0, bands_sz); setbit(bands, IEEE80211_MODE_11B); setbit(bands, IEEE80211_MODE_11G); if (pci_get_device(dev) >= 0x4223) setbit(bands, IEEE80211_MODE_11A); } static void iwi_getradiocaps(struct ieee80211com *ic, int maxchans, int *nchans, struct ieee80211_channel chans[]) { uint8_t bands[IEEE80211_MODE_BYTES]; iwi_collect_bands(ic, bands, sizeof(bands)); *nchans = 0; if (isset(bands, IEEE80211_MODE_11B) || isset(bands, IEEE80211_MODE_11G)) ieee80211_add_channels_default_2ghz(chans, maxchans, nchans, bands, 0); if (isset(bands, IEEE80211_MODE_11A)) { ieee80211_add_channel_list_5ghz(chans, maxchans, nchans, def_chan_5ghz_band1, nitems(def_chan_5ghz_band1), bands, 0); ieee80211_add_channel_list_5ghz(chans, maxchans, nchans, def_chan_5ghz_band2, nitems(def_chan_5ghz_band2), bands, 0); ieee80211_add_channel_list_5ghz(chans, maxchans, nchans, def_chan_5ghz_band3, nitems(def_chan_5ghz_band3), bands, 0); } }