/*- * SPDX-License-Identifier: BSD-2-Clause OR GPL-2.0 * * This file is provided under a dual BSD/GPLv2 license. When using or * redistributing this file, you may do so under either license. * * GPL LICENSE SUMMARY * * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. * The full GNU General Public License is included in this distribution * in the file called LICENSE.GPL. * * BSD LICENSE * * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include /** * @file * * @brief This file contains the implementation of the SCIC_SDS_PHY public and * protected methods. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define SCIC_SDS_PHY_MIN_TIMER_COUNT (SCI_MAX_PHYS) #define SCIC_SDS_PHY_MAX_TIMER_COUNT (SCI_MAX_PHYS) // Maximum arbitration wait time in micro-seconds #define SCIC_SDS_PHY_MAX_ARBITRATION_WAIT_TIME (700) #define AFE_REGISTER_WRITE_DELAY 10 //***************************************************************************** //* SCIC SDS PHY Internal Methods //***************************************************************************** /** * @brief This method will initialize the phy transport layer registers * * @param[in] this_phy * @param[in] transport_layer_registers * * @return SCI_STATUS */ static SCI_STATUS scic_sds_phy_transport_layer_initialization( SCIC_SDS_PHY_T *this_phy, SCU_TRANSPORT_LAYER_REGISTERS_T *transport_layer_registers ) { U32 tl_control; SCIC_LOG_TRACE(( sci_base_object_get_logger(this_phy), SCIC_LOG_OBJECT_PHY, "scic_sds_phy_link_layer_initialization(this_phy:0x%x, link_layer_registers:0x%x)\n", this_phy, transport_layer_registers )); this_phy->transport_layer_registers = transport_layer_registers; SCU_STPTLDARNI_WRITE(this_phy, SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX); // Hardware team recommends that we enable the STP prefetch for all transports tl_control = SCU_TLCR_READ(this_phy); tl_control |= SCU_TLCR_GEN_BIT(STP_WRITE_DATA_PREFETCH); SCU_TLCR_WRITE(this_phy, tl_control); return SCI_SUCCESS; } /** * @brief This method will initialize the phy link layer registers * * @param[in] this_phy * @param[in] link_layer_registers * * @return SCI_STATUS */ static SCI_STATUS scic_sds_phy_link_layer_initialization( SCIC_SDS_PHY_T *this_phy, SCU_LINK_LAYER_REGISTERS_T *link_layer_registers ) { U32 phy_configuration; SAS_CAPABILITIES_T phy_capabilities; U32 parity_check = 0; U32 parity_count = 0; U32 link_layer_control; U32 phy_timer_timeout_values; U32 clksm_value = 0; SCIC_LOG_TRACE(( sci_base_object_get_logger(this_phy), SCIC_LOG_OBJECT_PHY, "scic_sds_phy_link_layer_initialization(this_phy:0x%x, link_layer_registers:0x%x)\n", this_phy, link_layer_registers )); this_phy->link_layer_registers = link_layer_registers; // Set our IDENTIFY frame data #define SCI_END_DEVICE 0x01 SCU_SAS_TIID_WRITE( this_phy, ( SCU_SAS_TIID_GEN_BIT(SMP_INITIATOR) | SCU_SAS_TIID_GEN_BIT(SSP_INITIATOR) | SCU_SAS_TIID_GEN_BIT(STP_INITIATOR) | SCU_SAS_TIID_GEN_BIT(DA_SATA_HOST) | SCU_SAS_TIID_GEN_VAL(DEVICE_TYPE, SCI_END_DEVICE) ) ); // Write the device SAS Address SCU_SAS_TIDNH_WRITE(this_phy, 0xFEDCBA98); SCU_SAS_TIDNL_WRITE(this_phy, this_phy->phy_index); // Write the source SAS Address SCU_SAS_TISSAH_WRITE( this_phy, this_phy->owning_port->owning_controller->oem_parameters.sds1.phys[ this_phy->phy_index].sas_address.sci_format.high ); SCU_SAS_TISSAL_WRITE( this_phy, this_phy->owning_port->owning_controller->oem_parameters.sds1.phys[ this_phy->phy_index].sas_address.sci_format.low ); // Clear and Set the PHY Identifier SCU_SAS_TIPID_WRITE(this_phy, 0x00000000); SCU_SAS_TIPID_WRITE(this_phy, SCU_SAS_TIPID_GEN_VALUE(ID, this_phy->phy_index)); // Change the initial state of the phy configuration register phy_configuration = SCU_SAS_PCFG_READ(this_phy); // Hold OOB state machine in reset phy_configuration |= SCU_SAS_PCFG_GEN_BIT(OOB_RESET); SCU_SAS_PCFG_WRITE(this_phy, phy_configuration); // Configure the SNW capabilities phy_capabilities.u.all = 0; phy_capabilities.u.bits.start = 1; phy_capabilities.u.bits.gen3_without_ssc_supported = 1; phy_capabilities.u.bits.gen2_without_ssc_supported = 1; phy_capabilities.u.bits.gen1_without_ssc_supported = 1; /* * Set up SSC settings according to version of OEM Parameters. */ { U8 header_version, enable_sata, enable_sas, sata_spread, sas_type, sas_spread; OEM_SSC_PARAMETERS_T ssc; header_version = this_phy->owning_port->owning_controller-> oem_parameters_version; ssc.bf.ssc_sata_tx_spread_level = this_phy->owning_port->owning_controller->oem_parameters.sds1.controller.ssc_sata_tx_spread_level; ssc.bf.ssc_sas_tx_spread_level = this_phy->owning_port->owning_controller->oem_parameters.sds1.controller.ssc_sas_tx_spread_level; ssc.bf.ssc_sas_tx_type = this_phy->owning_port->owning_controller->oem_parameters.sds1.controller.ssc_sas_tx_type; enable_sata = enable_sas = sata_spread = sas_type = sas_spread = 0; if (header_version == SCI_OEM_PARAM_VER_1_0) { /* * Version 1.0 is merely turning SSC on to default values.; */ if (ssc.do_enable_ssc != 0) { enable_sas = enable_sata = TRUE; sas_type = 0x0; // Downspreading sata_spread = 0x2; // +0 to -1419 PPM sas_spread = 0x2; // +0 to -1419 PPM } } else // header_version >= SCI_OEM_PARAM_VER_1_1 { /* * Version 1.1 can turn on SAS and SATA independently and * specify spread levels. Also can specify spread type for SAS. */ if ((sata_spread = ssc.bf.ssc_sata_tx_spread_level) != 0) enable_sata = TRUE; // Downspreading only if ((sas_spread = ssc.bf.ssc_sas_tx_spread_level) != 0) { enable_sas = TRUE; sas_type = ssc.bf.ssc_sas_tx_type; } } if (enable_sas == TRUE) { U32 reg_val = scu_afe_register_read( this_phy->owning_port->owning_controller, scu_afe_xcvr[this_phy->phy_index]. afe_xcvr_control0); reg_val |= (0x00100000 | (((U32)sas_type) << 19)); scu_afe_register_write( this_phy->owning_port->owning_controller, scu_afe_xcvr[this_phy->phy_index].afe_xcvr_control0, reg_val); reg_val = scu_afe_register_read( this_phy->owning_port->owning_controller, scu_afe_xcvr[this_phy->phy_index]. afe_tx_ssc_control); reg_val |= (((U32)(sas_spread)) << 8); scu_afe_register_write( this_phy->owning_port->owning_controller, scu_afe_xcvr[this_phy->phy_index].afe_tx_ssc_control, reg_val); phy_capabilities.u.bits.gen3_with_ssc_supported = 1; phy_capabilities.u.bits.gen2_with_ssc_supported = 1; phy_capabilities.u.bits.gen1_with_ssc_supported = 1; } if (enable_sata == TRUE) { U32 reg_val = scu_afe_register_read( this_phy->owning_port->owning_controller, scu_afe_xcvr[this_phy->phy_index]. afe_tx_ssc_control); reg_val |= (U32)sata_spread; scu_afe_register_write( this_phy->owning_port->owning_controller, scu_afe_xcvr[this_phy->phy_index].afe_tx_ssc_control, reg_val); reg_val = scu_link_layer_register_read( this_phy, stp_control); reg_val |= (U32)(1 << 12); scu_link_layer_register_write( this_phy, stp_control, reg_val); } } // The SAS specification indicates that the phy_capabilities that // are transmitted shall have an even parity. Calculate the parity. parity_check = phy_capabilities.u.all; while (parity_check != 0) { if (parity_check & 0x1) parity_count++; parity_check >>= 1; } // If parity indicates there are an odd number of bits set, then // set the parity bit to 1 in the phy capabilities. if ((parity_count % 2) != 0) phy_capabilities.u.bits.parity = 1; SCU_SAS_PHYCAP_WRITE(this_phy, phy_capabilities.u.all); // Set the enable spinup period but disable the ability to send notify enable spinup SCU_SAS_ENSPINUP_WRITE( this_phy, SCU_ENSPINUP_GEN_VAL( COUNT, this_phy->owning_port->owning_controller->user_parameters.sds1. phys[this_phy->phy_index].notify_enable_spin_up_insertion_frequency ) ); // Write the ALIGN Insertion Ferequency for connected phy and inpendent of connected state clksm_value = SCU_ALIGN_INSERTION_FREQUENCY_GEN_VAL ( CONNECTED, this_phy->owning_port->owning_controller->user_parameters.sds1. phys[this_phy->phy_index].in_connection_align_insertion_frequency ); clksm_value |= SCU_ALIGN_INSERTION_FREQUENCY_GEN_VAL ( GENERAL, this_phy->owning_port->owning_controller->user_parameters.sds1. phys[this_phy->phy_index].align_insertion_frequency ); SCU_SAS_CLKSM_WRITE ( this_phy, clksm_value); #if defined(PBG_HBA_A0_BUILD) || defined(PBG_HBA_A2_BUILD) || defined(PBG_HBA_BETA_BUILD) /// @todo Provide a way to write this register correctly scu_link_layer_register_write(this_phy, afe_lookup_table_control, 0x02108421); #elif defined(PBG_BUILD) if ( (this_phy->owning_port->owning_controller->pci_revision == SCIC_SDS_PCI_REVISION_C0) || (this_phy->owning_port->owning_controller->pci_revision == SCIC_SDS_PCI_REVISION_C1) ) { scu_link_layer_register_write(this_phy, afe_lookup_table_control, 0x04210400); scu_link_layer_register_write(this_phy, sas_primitive_timeout, 0x20A7C05); } else { scu_link_layer_register_write(this_phy, afe_lookup_table_control, 0x02108421); } #else /// @todo Provide a way to write this register correctly scu_link_layer_register_write(this_phy, afe_lookup_table_control, 0x0e739ce7); #endif link_layer_control = SCU_SAS_LLCTL_GEN_VAL( NO_OUTBOUND_TASK_TIMEOUT, (U8) this_phy->owning_port->owning_controller-> user_parameters.sds1.no_outbound_task_timeout ); #if PHY_MAX_LINK_SPEED_GENERATION == SCIC_SDS_PARM_GEN1_SPEED #define COMPILED_MAX_LINK_RATE SCU_SAS_LINK_LAYER_CONTROL_MAX_LINK_RATE_GEN1 #elif PHY_MAX_LINK_SPEED_GENERATION == SCIC_SDS_PARM_GEN2_SPEED #define COMPILED_MAX_LINK_RATE SCU_SAS_LINK_LAYER_CONTROL_MAX_LINK_RATE_GEN2 #else #define COMPILED_MAX_LINK_RATE SCU_SAS_LINK_LAYER_CONTROL_MAX_LINK_RATE_GEN3 #endif // PHY_MAX_LINK_SPEED_GENERATION if (this_phy->owning_port->owning_controller->user_parameters.sds1. phys[this_phy->phy_index].max_speed_generation == SCIC_SDS_PARM_GEN3_SPEED) { link_layer_control |= SCU_SAS_LLCTL_GEN_VAL( MAX_LINK_RATE, COMPILED_MAX_LINK_RATE ); } else if (this_phy->owning_port->owning_controller->user_parameters.sds1. phys[this_phy->phy_index].max_speed_generation == SCIC_SDS_PARM_GEN2_SPEED) { link_layer_control |= SCU_SAS_LLCTL_GEN_VAL( MAX_LINK_RATE, MIN( SCU_SAS_LINK_LAYER_CONTROL_MAX_LINK_RATE_GEN2, COMPILED_MAX_LINK_RATE) ); } else { link_layer_control |= SCU_SAS_LLCTL_GEN_VAL( MAX_LINK_RATE, MIN( SCU_SAS_LINK_LAYER_CONTROL_MAX_LINK_RATE_GEN1, COMPILED_MAX_LINK_RATE) ); } scu_link_layer_register_write( this_phy, link_layer_control, link_layer_control ); phy_timer_timeout_values = scu_link_layer_register_read( this_phy, phy_timer_timeout_values ); // Clear the default 0x36 (54us) RATE_CHANGE timeout value. phy_timer_timeout_values &= ~SCU_SAS_PHYTOV_GEN_VAL(RATE_CHANGE, 0xFF); // Set RATE_CHANGE timeout value to 0x3B (59us). This ensures SCU can // lock with 3Gb drive when SCU max rate is set to 1.5Gb. phy_timer_timeout_values |= SCU_SAS_PHYTOV_GEN_VAL(RATE_CHANGE, 0x3B); scu_link_layer_register_write( this_phy, phy_timer_timeout_values, phy_timer_timeout_values ); // Program the max ARB time for the PHY to 700us so we inter-operate with // the PMC expander which shuts down PHYs if the expander PHY generates too // many breaks. This time value will guarantee that the initiator PHY will // generate the break. #if defined(PBG_HBA_A0_BUILD) || defined(PBG_HBA_A2_BUILD) scu_link_layer_register_write( this_phy, maximum_arbitration_wait_timer_timeout, SCIC_SDS_PHY_MAX_ARBITRATION_WAIT_TIME ); #endif // defined(PBG_HBA_A0_BUILD) || defined(PBG_HBA_A2_BUILD) // Disable the link layer hang detection timer scu_link_layer_register_write( this_phy, link_layer_hang_detection_timeout, 0x00000000 ); // We can exit the initial state to the stopped state sci_base_state_machine_change_state( scic_sds_phy_get_base_state_machine(this_phy), SCI_BASE_PHY_STATE_STOPPED ); return SCI_SUCCESS; } /** * This function will handle the sata SIGNATURE FIS timeout condition. It * will restart the starting substate machine since we dont know what has * actually happening. * * @param[in] cookie This object is cast to the SCIC_SDS_PHY_T object. * * @return none */ void scic_sds_phy_sata_timeout( SCI_OBJECT_HANDLE_T cookie) { SCIC_SDS_PHY_T * this_phy = (SCIC_SDS_PHY_T *)cookie; SCIC_LOG_INFO(( sci_base_object_get_logger(this_phy), SCIC_LOG_OBJECT_PHY, "SCIC SDS Phy 0x%x did not receive signature fis before timeout.\n", this_phy )); sci_base_state_machine_stop( scic_sds_phy_get_starting_substate_machine(this_phy)); sci_base_state_machine_change_state( scic_sds_phy_get_base_state_machine(this_phy), SCI_BASE_PHY_STATE_STARTING ); } //***************************************************************************** //* SCIC SDS PHY External Methods //***************************************************************************** /** * @brief This method returns the object size for a phy object. * * @return U32 */ U32 scic_sds_phy_get_object_size(void) { return sizeof(SCIC_SDS_PHY_T); } /** * @brief This method returns the minimum number of timers required for a * phy object. * * @return U32 */ U32 scic_sds_phy_get_min_timer_count(void) { return SCIC_SDS_PHY_MIN_TIMER_COUNT; } /** * @brief This method returns the maximum number of timers required for a * phy object. * * @return U32 */ U32 scic_sds_phy_get_max_timer_count(void) { return SCIC_SDS_PHY_MAX_TIMER_COUNT; } #ifdef SCI_LOGGING static void scic_sds_phy_initialize_state_logging( SCIC_SDS_PHY_T *this_phy ) { sci_base_state_machine_logger_initialize( &this_phy->parent.state_machine_logger, &this_phy->parent.state_machine, &this_phy->parent.parent, scic_cb_logger_log_states, "SCIC_SDS_PHY_T", "base state machine", SCIC_LOG_OBJECT_PHY ); sci_base_state_machine_logger_initialize( &this_phy->starting_substate_machine_logger, &this_phy->starting_substate_machine, &this_phy->parent.parent, scic_cb_logger_log_states, "SCIC_SDS_PHY_T", "starting substate machine", SCIC_LOG_OBJECT_PHY ); } #endif // SCI_LOGGING #ifdef SCIC_DEBUG_ENABLED /** * Debug code to record the state transitions in the phy * * @param our_observer * @param the_state_machine */ void scic_sds_phy_observe_state_change( SCI_BASE_OBSERVER_T * our_observer, SCI_BASE_SUBJECT_T * the_subject ) { SCIC_SDS_PHY_T *this_phy; SCI_BASE_STATE_MACHINE_T *the_state_machine; U8 transition_requestor; U32 base_state_id; U32 starting_substate_id; the_state_machine = (SCI_BASE_STATE_MACHINE_T *)the_subject; this_phy = (SCIC_SDS_PHY_T *)the_state_machine->state_machine_owner; if (the_state_machine == &this_phy->parent.state_machine) { transition_requestor = 0x01; } else if (the_state_machine == &this_phy->starting_substate_machine) { transition_requestor = 0x02; } else { transition_requestor = 0xFF; } base_state_id = sci_base_state_machine_get_state(&this_phy->parent.state_machine); starting_substate_id = sci_base_state_machine_get_state(&this_phy->starting_substate_machine); this_phy->state_record.state_transition_table[ this_phy->state_record.index++] = ( (transition_requestor << 24) | ((U8)base_state_id << 8) | ((U8)starting_substate_id)); this_phy->state_record.index = this_phy->state_record.index & (MAX_STATE_TRANSITION_RECORD - 1); } #endif // SCIC_DEBUG_ENABLED #ifdef SCIC_DEBUG_ENABLED /** * This method initializes the state record debug information for the phy * object. * * @pre The state machines for the phy object must be constructed before this * function is called. * * @param this_phy The phy which is being initialized. */ void scic_sds_phy_initialize_state_recording( SCIC_SDS_PHY_T *this_phy ) { this_phy->state_record.index = 0; sci_base_observer_initialize( &this_phy->state_record.base_state_observer, scic_sds_phy_observe_state_change, &this_phy->parent.state_machine.parent ); sci_base_observer_initialize( &this_phy->state_record.starting_state_observer, scic_sds_phy_observe_state_change, &this_phy->starting_substate_machine.parent ); } #endif // SCIC_DEBUG_ENABLED /** * @brief This method will construct the SCIC_SDS_PHY object * * @param[in] this_phy * @param[in] owning_port * @param[in] phy_index * * @return none */ void scic_sds_phy_construct( SCIC_SDS_PHY_T *this_phy, SCIC_SDS_PORT_T *owning_port, U8 phy_index ) { // Call the base constructor first // Copy the logger from the port (this could be the dummy port) sci_base_phy_construct( &this_phy->parent, sci_base_object_get_logger(owning_port), scic_sds_phy_state_table ); // Copy the rest of the input data to our locals this_phy->owning_port = owning_port; this_phy->phy_index = phy_index; this_phy->bcn_received_while_port_unassigned = FALSE; this_phy->protocol = SCIC_SDS_PHY_PROTOCOL_UNKNOWN; this_phy->link_layer_registers = NULL; this_phy->max_negotiated_speed = SCI_SAS_NO_LINK_RATE; this_phy->sata_timeout_timer = NULL; // Clear out the identification buffer data memset(&this_phy->phy_type, 0, sizeof(this_phy->phy_type)); // Clear out the error counter data memset(this_phy->error_counter, 0, sizeof(this_phy->error_counter)); // Initialize the substate machines sci_base_state_machine_construct( &this_phy->starting_substate_machine, &this_phy->parent.parent, scic_sds_phy_starting_substates, SCIC_SDS_PHY_STARTING_SUBSTATE_INITIAL ); #ifdef SCI_LOGGING scic_sds_phy_initialize_state_logging(this_phy); #endif // SCI_LOGGING #ifdef SCIC_DEBUG_ENABLED scic_sds_phy_initialize_state_recording(this_phy); #endif // SCIC_DEBUG_ENABLED } /** * @brief This method returns the port currently containing this phy. * If the phy is currently contained by the dummy port, then * the phy is considered to not be part of a port. * * @param[in] this_phy This parameter specifies the phy for which to * retrieve the containing port. * * @return This method returns a handle to a port that contains * the supplied phy. * @retval SCI_INVALID_HANDLE This value is returned if the phy is not * part of a real port (i.e. it's contained in the dummy port). * @retval !SCI_INVALID_HANDLE All other values indicate a handle/pointer * to the port containing the phy. */ SCI_PORT_HANDLE_T scic_sds_phy_get_port( SCIC_SDS_PHY_T *this_phy ) { SCIC_LOG_TRACE(( sci_base_object_get_logger(this_phy), SCIC_LOG_OBJECT_PHY, "scic_phy_get_port(0x%x) enter\n", this_phy )); if (scic_sds_port_get_index(this_phy->owning_port) == SCIC_SDS_DUMMY_PORT) return SCI_INVALID_HANDLE; return this_phy->owning_port; } /** * @brief This method will assign a port to the phy object. * * @param[in, out] this_phy This parameter specifies the phy for which * to assign a port object. * @param[in] the_port This parameter is the port to assing to the phy. */ void scic_sds_phy_set_port( SCIC_SDS_PHY_T * this_phy, SCIC_SDS_PORT_T * the_port ) { this_phy->owning_port = the_port; if (this_phy->bcn_received_while_port_unassigned) { this_phy->bcn_received_while_port_unassigned = FALSE; scic_sds_port_broadcast_change_received(this_phy->owning_port, this_phy); } } /** * @brief This method will initialize the constructed phy * * @param[in] this_phy * @param[in] link_layer_registers * * @return SCI_STATUS */ SCI_STATUS scic_sds_phy_initialize( SCIC_SDS_PHY_T *this_phy, void *transport_layer_registers, SCU_LINK_LAYER_REGISTERS_T *link_layer_registers ) { SCIC_LOG_TRACE(( sci_base_object_get_logger(this_phy), SCIC_LOG_OBJECT_PHY, "scic_sds_phy_initialize(this_phy:0x%x, link_layer_registers:0x%x)\n", this_phy, link_layer_registers )); // Perform the initialization of the TL hardware scic_sds_phy_transport_layer_initialization(this_phy, transport_layer_registers); // Perofrm the initialization of the PE hardware scic_sds_phy_link_layer_initialization(this_phy, link_layer_registers); // There is nothing that needs to be done in this state just // transition to the stopped state. sci_base_state_machine_change_state( scic_sds_phy_get_base_state_machine(this_phy), SCI_BASE_PHY_STATE_STOPPED ); return SCI_SUCCESS; } /** * This method assigns the direct attached device ID for this phy. * * @param[in] this_phy The phy for which the direct attached device id is to * be assigned. * @param[in] device_id The direct attached device ID to assign to the phy. * This will either be the RNi for the device or an invalid RNi if there * is no current device assigned to the phy. */ void scic_sds_phy_setup_transport( SCIC_SDS_PHY_T * this_phy, U32 device_id ) { U32 tl_control; SCU_STPTLDARNI_WRITE(this_phy, device_id); // The read should guarntee that the first write gets posted // before the next write tl_control = SCU_TLCR_READ(this_phy); tl_control |= SCU_TLCR_GEN_BIT(CLEAR_TCI_NCQ_MAPPING_TABLE); SCU_TLCR_WRITE(this_phy, tl_control); } /** * This function will perform the register reads/writes to suspend the SCU * hardware protocol engine. * * @param[in,out] this_phy The phy object to be suspended. * * @return none */ void scic_sds_phy_suspend( SCIC_SDS_PHY_T * this_phy ) { U32 scu_sas_pcfg_value; scu_sas_pcfg_value = SCU_SAS_PCFG_READ(this_phy); scu_sas_pcfg_value |= SCU_SAS_PCFG_GEN_BIT(SUSPEND_PROTOCOL_ENGINE); SCU_SAS_PCFG_WRITE(this_phy, scu_sas_pcfg_value); scic_sds_phy_setup_transport( this_phy, SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX ); } /** * This function will perform the register reads/writes required to resume the * SCU hardware protocol engine. * * @param[in,out] this_phy The phy object to resume. * * @return none */ void scic_sds_phy_resume( SCIC_SDS_PHY_T * this_phy ) { U32 scu_sas_pcfg_value; scu_sas_pcfg_value = SCU_SAS_PCFG_READ(this_phy); scu_sas_pcfg_value &= ~SCU_SAS_PCFG_GEN_BIT(SUSPEND_PROTOCOL_ENGINE); SCU_SAS_PCFG_WRITE(this_phy, scu_sas_pcfg_value); } /** * @brief This method returns the local sas address assigned to this phy. * * @param[in] this_phy This parameter specifies the phy for which * to retrieve the local SAS address. * @param[out] sas_address This parameter specifies the location into * which to copy the local SAS address. * * @return none */ void scic_sds_phy_get_sas_address( SCIC_SDS_PHY_T *this_phy, SCI_SAS_ADDRESS_T *sas_address ) { SCIC_LOG_TRACE(( sci_base_object_get_logger(this_phy), SCIC_LOG_OBJECT_PHY, "scic_sds_phy_get_sas_address(this_phy:0x%x, sas_address:0x%x)\n", this_phy, sas_address )); sas_address->high = SCU_SAS_TISSAH_READ(this_phy); sas_address->low = SCU_SAS_TISSAL_READ(this_phy); } /** * @brief This method returns the remote end-point (i.e. attached) * sas address assigned to this phy. * * @param[in] this_phy This parameter specifies the phy for which * to retrieve the remote end-point SAS address. * @param[out] sas_address This parameter specifies the location into * which to copy the remote end-point SAS address. * * @return none */ void scic_sds_phy_get_attached_sas_address( SCIC_SDS_PHY_T *this_phy, SCI_SAS_ADDRESS_T *sas_address ) { SCIC_LOG_TRACE(( sci_base_object_get_logger(this_phy), SCIC_LOG_OBJECT_PHY, "scic_sds_phy_get_attached_sas_address(0x%x, 0x%x) enter\n", this_phy, sas_address )); sas_address->high = this_phy->phy_type.sas.identify_address_frame_buffer.sas_address.high; sas_address->low = this_phy->phy_type.sas.identify_address_frame_buffer.sas_address.low; } /** * @brief This method returns the supported protocols assigned to * this phy * * @param[in] this_phy * @param[out] protocols */ void scic_sds_phy_get_protocols( SCIC_SDS_PHY_T *this_phy, SCI_SAS_IDENTIFY_ADDRESS_FRAME_PROTOCOLS_T * protocols ) { U32 tiid_value = SCU_SAS_TIID_READ(this_phy); //Check each bit of this register. please refer to //SAS Transmit Identification Register (SAS_TIID). if (tiid_value & 0x2) protocols->u.bits.smp_target = 1; if (tiid_value & 0x4) protocols->u.bits.stp_target = 1; if (tiid_value & 0x8) protocols->u.bits.ssp_target = 1; if (tiid_value & 0x200) protocols->u.bits.smp_initiator = 1; if ((tiid_value & 0x400)) protocols->u.bits.stp_initiator = 1; if (tiid_value & 0x800) protocols->u.bits.ssp_initiator = 1; SCIC_LOG_TRACE(( sci_base_object_get_logger(this_phy), SCIC_LOG_OBJECT_PHY, "scic_sds_phy_get_protocols(this_phy:0x%x, protocols:0x%x)\n", this_phy, protocols->u.all )); } /** * This method returns the supported protocols for the attached phy. If this * is a SAS phy the protocols are returned from the identify address frame. * If this is a SATA phy then protocols are made up and the target phy is an * STP target phy. * * @note The caller will get the entire set of bits for the protocol value. * * @param[in] this_phy The parameter is the phy object for which the attached * phy protcols are to be returned. * @param[out] protocols The parameter is the returned protocols for the * attached phy. */ void scic_sds_phy_get_attached_phy_protocols( SCIC_SDS_PHY_T *this_phy, SCI_SAS_IDENTIFY_ADDRESS_FRAME_PROTOCOLS_T * protocols ) { SCIC_LOG_TRACE(( sci_base_object_get_logger(this_phy), SCIC_LOG_OBJECT_PHY, "scic_sds_phy_get_attached_phy_protocols(this_phy:0x%x, protocols:0x%x[0x%x])\n", this_phy, protocols, protocols->u.all )); protocols->u.all = 0; if (this_phy->protocol == SCIC_SDS_PHY_PROTOCOL_SAS) { protocols->u.all = this_phy->phy_type.sas.identify_address_frame_buffer.protocols.u.all; } else if (this_phy->protocol == SCIC_SDS_PHY_PROTOCOL_SATA) { protocols->u.bits.stp_target = 1; } } /** * @brief This method release resources in for a scic phy. * * @param[in] controller This parameter specifies the core controller, one of * its phy's resources are to be released. * @param[in] this_phy This parameter specifies the phy whose resource is to * be released. */ void scic_sds_phy_release_resource( SCIC_SDS_CONTROLLER_T * controller, SCIC_SDS_PHY_T * this_phy ) { SCIC_LOG_TRACE(( sci_base_object_get_logger(this_phy), SCIC_LOG_OBJECT_PHY, "scic_sds_phy_release_resource(0x%x, 0x%x)\n", controller, this_phy )); //Currently, the only resource to be released is a timer. if (this_phy->sata_timeout_timer != NULL) { scic_cb_timer_destroy(controller, this_phy->sata_timeout_timer); this_phy->sata_timeout_timer = NULL; } } //***************************************************************************** //* SCIC SDS PHY Handler Redirects //***************************************************************************** /** * @brief This method will attempt to reset the phy. This * request is only valid when the phy is in an ready * state * * @param[in] this_phy * * @return SCI_STATUS */ SCI_STATUS scic_sds_phy_reset( SCIC_SDS_PHY_T * this_phy ) { SCIC_LOG_TRACE(( sci_base_object_get_logger(this_phy), SCIC_LOG_OBJECT_PHY, "scic_sds_phy_reset(this_phy:0x%08x)\n", this_phy )); return this_phy->state_handlers->parent.reset_handler( &this_phy->parent ); } /** * @brief This method will process the event code received. * * @param[in] this_phy * @param[in] event_code * * @return SCI_STATUS */ SCI_STATUS scic_sds_phy_event_handler( SCIC_SDS_PHY_T *this_phy, U32 event_code ) { SCIC_LOG_TRACE(( sci_base_object_get_logger(this_phy), SCIC_LOG_OBJECT_PHY, "scic_sds_phy_event_handler(this_phy:0x%08x, event_code:%x)\n", this_phy, event_code )); return this_phy->state_handlers->event_handler(this_phy, event_code); } /** * @brief This method will process the frame index received. * * @param[in] this_phy * @param[in] frame_index * * @return SCI_STATUS */ SCI_STATUS scic_sds_phy_frame_handler( SCIC_SDS_PHY_T *this_phy, U32 frame_index ) { SCIC_LOG_TRACE(( sci_base_object_get_logger(this_phy), SCIC_LOG_OBJECT_PHY, "scic_sds_phy_frame_handler(this_phy:0x%08x, frame_index:%d)\n", this_phy, frame_index )); return this_phy->state_handlers->frame_handler(this_phy, frame_index); } /** * @brief This method will give the phy permission to consume power * * @param[in] this_phy * * @return SCI_STATUS */ SCI_STATUS scic_sds_phy_consume_power_handler( SCIC_SDS_PHY_T *this_phy ) { SCIC_LOG_TRACE(( sci_base_object_get_logger(this_phy), SCIC_LOG_OBJECT_PHY, "scic_sds_phy_consume_power_handler(this_phy:0x%08x)\n", this_phy )); return this_phy->state_handlers->consume_power_handler(this_phy); } //***************************************************************************** //* SCIC PHY Public Methods //***************************************************************************** SCI_STATUS scic_phy_get_properties( SCI_PHY_HANDLE_T phy, SCIC_PHY_PROPERTIES_T * properties ) { SCIC_SDS_PHY_T *this_phy; U8 max_speed_generation; this_phy = (SCIC_SDS_PHY_T *)phy; SCIC_LOG_TRACE(( sci_base_object_get_logger(this_phy), SCIC_LOG_OBJECT_PHY, "scic_phy_get_properties(0x%x, 0x%x) enter\n", this_phy, properties )); if (phy == SCI_INVALID_HANDLE) { return SCI_FAILURE_INVALID_PHY; } memset(properties, 0, sizeof(SCIC_PHY_PROPERTIES_T)); //get max link rate of this phy set by user. max_speed_generation = this_phy->owning_port->owning_controller->user_parameters.sds1. phys[this_phy->phy_index].max_speed_generation; properties->negotiated_link_rate = this_phy->max_negotiated_speed; if (max_speed_generation == SCIC_SDS_PARM_GEN3_SPEED) properties->max_link_rate = SCI_SAS_600_GB; else if (max_speed_generation == SCIC_SDS_PARM_GEN2_SPEED) properties->max_link_rate = SCI_SAS_300_GB; else properties->max_link_rate = SCI_SAS_150_GB; properties->index = this_phy->phy_index; properties->owning_port = scic_sds_phy_get_port(this_phy); scic_sds_phy_get_protocols(this_phy, &properties->transmit_iaf.protocols); properties->transmit_iaf.sas_address.high = this_phy->owning_port->owning_controller->oem_parameters.sds1. phys[this_phy->phy_index].sas_address.sci_format.high; properties->transmit_iaf.sas_address.low = this_phy->owning_port->owning_controller->oem_parameters.sds1. phys[this_phy->phy_index].sas_address.sci_format.low; return SCI_SUCCESS; } // --------------------------------------------------------------------------- SCI_STATUS scic_sas_phy_get_properties( SCI_PHY_HANDLE_T phy, SCIC_SAS_PHY_PROPERTIES_T * properties ) { SCIC_SDS_PHY_T *this_phy; this_phy = (SCIC_SDS_PHY_T *)phy; SCIC_LOG_TRACE(( sci_base_object_get_logger(this_phy), SCIC_LOG_OBJECT_PHY, "scic_sas_phy_get_properties(0x%x, 0x%x) enter\n", this_phy, properties )); if (this_phy->protocol == SCIC_SDS_PHY_PROTOCOL_SAS) { memcpy( &properties->received_iaf, &this_phy->phy_type.sas.identify_address_frame_buffer, sizeof(SCI_SAS_IDENTIFY_ADDRESS_FRAME_T) ); properties->received_capabilities.u.all = SCU_SAS_RECPHYCAP_READ(this_phy); return SCI_SUCCESS; } return SCI_FAILURE; } // --------------------------------------------------------------------------- SCI_STATUS scic_sata_phy_get_properties( SCI_PHY_HANDLE_T phy, SCIC_SATA_PHY_PROPERTIES_T * properties ) { SCIC_SDS_PHY_T *this_phy; this_phy = (SCIC_SDS_PHY_T *)phy; SCIC_LOG_TRACE(( sci_base_object_get_logger(this_phy), SCIC_LOG_OBJECT_PHY, "scic_sata_phy_get_properties(0x%x, 0x%x) enter\n", this_phy, properties )); if (this_phy->protocol == SCIC_SDS_PHY_PROTOCOL_SATA) { memcpy( &properties->signature_fis, &this_phy->phy_type.sata.signature_fis_buffer, sizeof(SATA_FIS_REG_D2H_T) ); /// @todo add support for port selectors. properties->is_port_selector_present = FALSE; return SCI_SUCCESS; } return SCI_FAILURE; } // --------------------------------------------------------------------------- #if !defined(DISABLE_PORT_SELECTORS) SCI_STATUS scic_sata_phy_send_port_selection_signal( SCI_PHY_HANDLE_T phy ) { SCIC_SDS_PHY_T *this_phy; this_phy = (SCIC_SDS_PHY_T *)phy; SCIC_LOG_TRACE(( sci_base_object_get_logger(this_phy), SCIC_LOG_OBJECT_PHY, "scic_sata_phy_send_port_selection_signals(0x%x) enter\n", this_phy )); /// @todo To be implemented ASSERT(FALSE); return SCI_FAILURE; } #endif // !defined(DISABLE_PORT_SELECTORS) // --------------------------------------------------------------------------- #if !defined(DISABLE_PHY_COUNTERS) SCI_STATUS scic_phy_enable_counter( SCI_PHY_HANDLE_T phy, SCIC_PHY_COUNTER_ID_T counter_id ) { SCIC_SDS_PHY_T *this_phy; SCI_STATUS status = SCI_SUCCESS; this_phy = (SCIC_SDS_PHY_T *)phy; SCIC_LOG_TRACE(( sci_base_object_get_logger(this_phy), SCIC_LOG_OBJECT_PHY, "scic_phy_enable_counter(0x%x, 0x%x) enter\n", this_phy, counter_id )); switch(counter_id) { case SCIC_PHY_COUNTER_RECEIVED_DONE_ACK_NAK_TIMEOUT: { U32 control = SCU_SAS_ECENCR_READ(this_phy); control |= (1 << SCU_ERR_CNT_RX_DONE_ACK_NAK_TIMEOUT_INDEX); SCU_SAS_ECENCR_WRITE(this_phy, control); } break; case SCIC_PHY_COUNTER_TRANSMITTED_DONE_ACK_NAK_TIMEOUT: { U32 control = SCU_SAS_ECENCR_READ(this_phy); control |= (1 << SCU_ERR_CNT_TX_DONE_ACK_NAK_TIMEOUT_INDEX); SCU_SAS_ECENCR_WRITE(this_phy, control); } break; case SCIC_PHY_COUNTER_INACTIVITY_TIMER_EXPIRED: { U32 control = SCU_SAS_ECENCR_READ(this_phy); control |= (1 << SCU_ERR_CNT_INACTIVITY_TIMER_EXPIRED_INDEX); SCU_SAS_ECENCR_WRITE(this_phy, control); } break; case SCIC_PHY_COUNTER_RECEIVED_DONE_CREDIT_TIMEOUT: { U32 control = SCU_SAS_ECENCR_READ(this_phy); control |= (1 << SCU_ERR_CNT_RX_DONE_CREDIT_TIMEOUT_INDEX); SCU_SAS_ECENCR_WRITE(this_phy, control); } break; case SCIC_PHY_COUNTER_TRANSMITTED_DONE_CREDIT_TIMEOUT: { U32 control = SCU_SAS_ECENCR_READ(this_phy); control |= (1 << SCU_ERR_CNT_TX_DONE_CREDIT_TIMEOUT_INDEX); SCU_SAS_ECENCR_WRITE(this_phy, control); } break; case SCIC_PHY_COUNTER_RECEIVED_CREDIT_BLOCKED: { U32 control = SCU_SAS_ECENCR_READ(this_phy); control |= (1 << SCU_ERR_CNT_RX_CREDIT_BLOCKED_RECEIVED_INDEX); SCU_SAS_ECENCR_WRITE(this_phy, control); } break; // These error counters are enabled by default, and cannot be // disabled. Return SCI_SUCCESS to denote that they are // enabled, hiding the fact that enabling the counter is // a no-op. case SCIC_PHY_COUNTER_RECEIVED_FRAME: case SCIC_PHY_COUNTER_TRANSMITTED_FRAME: case SCIC_PHY_COUNTER_RECEIVED_FRAME_DWORD: case SCIC_PHY_COUNTER_TRANSMITTED_FRAME_DWORD: case SCIC_PHY_COUNTER_LOSS_OF_SYNC_ERROR: case SCIC_PHY_COUNTER_RECEIVED_DISPARITY_ERROR: case SCIC_PHY_COUNTER_RECEIVED_FRAME_CRC_ERROR: case SCIC_PHY_COUNTER_RECEIVED_SHORT_FRAME: case SCIC_PHY_COUNTER_RECEIVED_FRAME_WITHOUT_CREDIT: case SCIC_PHY_COUNTER_RECEIVED_FRAME_AFTER_DONE: case SCIC_PHY_COUNTER_SN_DWORD_SYNC_ERROR: break; default: status = SCI_FAILURE; break; } return status; } // --------------------------------------------------------------------------- SCI_STATUS scic_phy_disable_counter( SCI_PHY_HANDLE_T phy, SCIC_PHY_COUNTER_ID_T counter_id ) { SCIC_SDS_PHY_T *this_phy; SCI_STATUS status = SCI_SUCCESS; this_phy = (SCIC_SDS_PHY_T *)phy; SCIC_LOG_TRACE(( sci_base_object_get_logger(this_phy), SCIC_LOG_OBJECT_PHY, "scic_phy_disable_counter(0x%x, 0x%x) enter\n", this_phy, counter_id )); switch(counter_id) { case SCIC_PHY_COUNTER_RECEIVED_DONE_ACK_NAK_TIMEOUT: { U32 control = SCU_SAS_ECENCR_READ(this_phy); control &= ~(1 << SCU_ERR_CNT_RX_DONE_ACK_NAK_TIMEOUT_INDEX); SCU_SAS_ECENCR_WRITE(this_phy, control); } break; case SCIC_PHY_COUNTER_TRANSMITTED_DONE_ACK_NAK_TIMEOUT: { U32 control = SCU_SAS_ECENCR_READ(this_phy); control &= ~(1 << SCU_ERR_CNT_TX_DONE_ACK_NAK_TIMEOUT_INDEX); SCU_SAS_ECENCR_WRITE(this_phy, control); } break; case SCIC_PHY_COUNTER_INACTIVITY_TIMER_EXPIRED: { U32 control = SCU_SAS_ECENCR_READ(this_phy); control &= ~(1 << SCU_ERR_CNT_INACTIVITY_TIMER_EXPIRED_INDEX); SCU_SAS_ECENCR_WRITE(this_phy, control); } break; case SCIC_PHY_COUNTER_RECEIVED_DONE_CREDIT_TIMEOUT: { U32 control = SCU_SAS_ECENCR_READ(this_phy); control &= ~(1 << SCU_ERR_CNT_RX_DONE_CREDIT_TIMEOUT_INDEX); SCU_SAS_ECENCR_WRITE(this_phy, control); } break; case SCIC_PHY_COUNTER_TRANSMITTED_DONE_CREDIT_TIMEOUT: { U32 control = SCU_SAS_ECENCR_READ(this_phy); control &= ~(1 << SCU_ERR_CNT_TX_DONE_CREDIT_TIMEOUT_INDEX); SCU_SAS_ECENCR_WRITE(this_phy, control); } break; case SCIC_PHY_COUNTER_RECEIVED_CREDIT_BLOCKED: { U32 control = SCU_SAS_ECENCR_READ(this_phy); control &= ~(1 << SCU_ERR_CNT_RX_CREDIT_BLOCKED_RECEIVED_INDEX); SCU_SAS_ECENCR_WRITE(this_phy, control); } break; // These error counters cannot be disabled, so return SCI_FAILURE. case SCIC_PHY_COUNTER_RECEIVED_FRAME: case SCIC_PHY_COUNTER_TRANSMITTED_FRAME: case SCIC_PHY_COUNTER_RECEIVED_FRAME_DWORD: case SCIC_PHY_COUNTER_TRANSMITTED_FRAME_DWORD: case SCIC_PHY_COUNTER_LOSS_OF_SYNC_ERROR: case SCIC_PHY_COUNTER_RECEIVED_DISPARITY_ERROR: case SCIC_PHY_COUNTER_RECEIVED_FRAME_CRC_ERROR: case SCIC_PHY_COUNTER_RECEIVED_SHORT_FRAME: case SCIC_PHY_COUNTER_RECEIVED_FRAME_WITHOUT_CREDIT: case SCIC_PHY_COUNTER_RECEIVED_FRAME_AFTER_DONE: case SCIC_PHY_COUNTER_SN_DWORD_SYNC_ERROR: default: status = SCI_FAILURE; break; } return status; } // --------------------------------------------------------------------------- SCI_STATUS scic_phy_get_counter( SCI_PHY_HANDLE_T phy, SCIC_PHY_COUNTER_ID_T counter_id, U32 * data ) { SCIC_SDS_PHY_T *this_phy; SCI_STATUS status = SCI_SUCCESS; this_phy = (SCIC_SDS_PHY_T *)phy; SCIC_LOG_TRACE(( sci_base_object_get_logger(this_phy), SCIC_LOG_OBJECT_PHY, "scic_phy_get_counter(0x%x, 0x%x) enter\n", this_phy, counter_id )); switch(counter_id) { case SCIC_PHY_COUNTER_RECEIVED_FRAME: *data = scu_link_layer_register_read(this_phy, received_frame_count); break; case SCIC_PHY_COUNTER_TRANSMITTED_FRAME: *data = scu_link_layer_register_read(this_phy, transmit_frame_count); break; case SCIC_PHY_COUNTER_RECEIVED_FRAME_DWORD: *data = scu_link_layer_register_read(this_phy, received_dword_count); break; case SCIC_PHY_COUNTER_TRANSMITTED_FRAME_DWORD: *data = scu_link_layer_register_read(this_phy, transmit_dword_count); break; case SCIC_PHY_COUNTER_LOSS_OF_SYNC_ERROR: *data = scu_link_layer_register_read(this_phy, loss_of_sync_error_count); break; case SCIC_PHY_COUNTER_RECEIVED_DISPARITY_ERROR: *data = scu_link_layer_register_read(this_phy, running_disparity_error_count); break; case SCIC_PHY_COUNTER_RECEIVED_FRAME_CRC_ERROR: *data = scu_link_layer_register_read(this_phy, received_frame_crc_error_count); break; case SCIC_PHY_COUNTER_RECEIVED_DONE_ACK_NAK_TIMEOUT: *data = this_phy->error_counter[SCU_ERR_CNT_RX_DONE_ACK_NAK_TIMEOUT_INDEX]; break; case SCIC_PHY_COUNTER_TRANSMITTED_DONE_ACK_NAK_TIMEOUT: *data = this_phy->error_counter[SCU_ERR_CNT_TX_DONE_ACK_NAK_TIMEOUT_INDEX]; break; case SCIC_PHY_COUNTER_INACTIVITY_TIMER_EXPIRED: *data = this_phy->error_counter[SCU_ERR_CNT_INACTIVITY_TIMER_EXPIRED_INDEX]; break; case SCIC_PHY_COUNTER_RECEIVED_DONE_CREDIT_TIMEOUT: *data = this_phy->error_counter[SCU_ERR_CNT_RX_DONE_CREDIT_TIMEOUT_INDEX]; break; case SCIC_PHY_COUNTER_TRANSMITTED_DONE_CREDIT_TIMEOUT: *data = this_phy->error_counter[SCU_ERR_CNT_TX_DONE_CREDIT_TIMEOUT_INDEX]; break; case SCIC_PHY_COUNTER_RECEIVED_CREDIT_BLOCKED: *data = this_phy->error_counter[SCU_ERR_CNT_RX_CREDIT_BLOCKED_RECEIVED_INDEX]; break; case SCIC_PHY_COUNTER_RECEIVED_SHORT_FRAME: *data = scu_link_layer_register_read(this_phy, received_short_frame_count); break; case SCIC_PHY_COUNTER_RECEIVED_FRAME_WITHOUT_CREDIT: *data = scu_link_layer_register_read(this_phy, received_frame_without_credit_count); break; case SCIC_PHY_COUNTER_RECEIVED_FRAME_AFTER_DONE: *data = scu_link_layer_register_read(this_phy, received_frame_after_done_count); break; case SCIC_PHY_COUNTER_SN_DWORD_SYNC_ERROR: *data = scu_link_layer_register_read(this_phy, phy_reset_problem_count); break; default: status = SCI_FAILURE; break; } return status; } // --------------------------------------------------------------------------- SCI_STATUS scic_phy_clear_counter( SCI_PHY_HANDLE_T phy, SCIC_PHY_COUNTER_ID_T counter_id ) { SCIC_SDS_PHY_T *this_phy; SCI_STATUS status = SCI_SUCCESS; this_phy = (SCIC_SDS_PHY_T *)phy; SCIC_LOG_TRACE(( sci_base_object_get_logger(this_phy), SCIC_LOG_OBJECT_PHY, "scic_phy_clear_counter(0x%x, 0x%x) enter\n", this_phy, counter_id )); switch(counter_id) { case SCIC_PHY_COUNTER_RECEIVED_FRAME: scu_link_layer_register_write(this_phy, received_frame_count, 0); break; case SCIC_PHY_COUNTER_TRANSMITTED_FRAME: scu_link_layer_register_write(this_phy, transmit_frame_count, 0); break; case SCIC_PHY_COUNTER_RECEIVED_FRAME_DWORD: scu_link_layer_register_write(this_phy, received_dword_count, 0); break; case SCIC_PHY_COUNTER_TRANSMITTED_FRAME_DWORD: scu_link_layer_register_write(this_phy, transmit_dword_count, 0); break; case SCIC_PHY_COUNTER_LOSS_OF_SYNC_ERROR: scu_link_layer_register_write(this_phy, loss_of_sync_error_count, 0); break; case SCIC_PHY_COUNTER_RECEIVED_DISPARITY_ERROR: scu_link_layer_register_write(this_phy, running_disparity_error_count, 0); break; case SCIC_PHY_COUNTER_RECEIVED_FRAME_CRC_ERROR: scu_link_layer_register_write(this_phy, received_frame_crc_error_count, 0); break; case SCIC_PHY_COUNTER_RECEIVED_DONE_ACK_NAK_TIMEOUT: this_phy->error_counter[SCU_ERR_CNT_RX_DONE_ACK_NAK_TIMEOUT_INDEX] = 0; break; case SCIC_PHY_COUNTER_TRANSMITTED_DONE_ACK_NAK_TIMEOUT: this_phy->error_counter[SCU_ERR_CNT_TX_DONE_ACK_NAK_TIMEOUT_INDEX] = 0; break; case SCIC_PHY_COUNTER_INACTIVITY_TIMER_EXPIRED: this_phy->error_counter[SCU_ERR_CNT_INACTIVITY_TIMER_EXPIRED_INDEX] = 0; break; case SCIC_PHY_COUNTER_RECEIVED_DONE_CREDIT_TIMEOUT: this_phy->error_counter[SCU_ERR_CNT_RX_DONE_CREDIT_TIMEOUT_INDEX] = 0; break; case SCIC_PHY_COUNTER_TRANSMITTED_DONE_CREDIT_TIMEOUT: this_phy->error_counter[SCU_ERR_CNT_TX_DONE_CREDIT_TIMEOUT_INDEX] = 0; break; case SCIC_PHY_COUNTER_RECEIVED_CREDIT_BLOCKED: this_phy->error_counter[SCU_ERR_CNT_RX_CREDIT_BLOCKED_RECEIVED_INDEX] = 0; break; case SCIC_PHY_COUNTER_RECEIVED_SHORT_FRAME: scu_link_layer_register_write(this_phy, received_short_frame_count, 0); break; case SCIC_PHY_COUNTER_RECEIVED_FRAME_WITHOUT_CREDIT: scu_link_layer_register_write(this_phy, received_frame_without_credit_count, 0); break; case SCIC_PHY_COUNTER_RECEIVED_FRAME_AFTER_DONE: scu_link_layer_register_write(this_phy, received_frame_after_done_count, 0); break; case SCIC_PHY_COUNTER_SN_DWORD_SYNC_ERROR: scu_link_layer_register_write(this_phy, phy_reset_problem_count, 0); break; default: status = SCI_FAILURE; } return status; } #endif // !defined(DISABLE_PHY_COUNTERS) SCI_STATUS scic_phy_stop( SCI_PHY_HANDLE_T phy ) { SCIC_SDS_PHY_T *this_phy; this_phy = (SCIC_SDS_PHY_T *)phy; SCIC_LOG_TRACE(( sci_base_object_get_logger(this_phy), SCIC_LOG_OBJECT_PHY, "scic_phy_stop(this_phy:0x%x)\n", this_phy )); return this_phy->state_handlers->parent.stop_handler(&this_phy->parent); } SCI_STATUS scic_phy_start( SCI_PHY_HANDLE_T phy ) { SCIC_SDS_PHY_T *this_phy; this_phy = (SCIC_SDS_PHY_T *)phy; SCIC_LOG_TRACE(( sci_base_object_get_logger(this_phy), SCIC_LOG_OBJECT_PHY, "scic_phy_start(this_phy:0x%x)\n", this_phy )); return this_phy->state_handlers->parent.start_handler(&this_phy->parent); } //****************************************************************************** //* PHY STATE MACHINE //****************************************************************************** //*************************************************************************** //* DEFAULT HANDLERS //*************************************************************************** /** * This is the default method for phy a start request. It will report a * warning and exit. * * @param[in] phy This is the SCI_BASE_PHY object which is cast into a * SCIC_SDS_PHY object. * * @return SCI_STATUS * @retval SCI_FAILURE_INVALID_STATE */ SCI_STATUS scic_sds_phy_default_start_handler( SCI_BASE_PHY_T *phy ) { SCIC_SDS_PHY_T *this_phy; this_phy = (SCIC_SDS_PHY_T *)phy; SCIC_LOG_WARNING(( sci_base_object_get_logger(this_phy), SCIC_LOG_OBJECT_PHY, "SCIC Phy 0x%08x requested to start from invalid state %d\n", this_phy, sci_base_state_machine_get_state(&this_phy->parent.state_machine) )); return SCI_FAILURE_INVALID_STATE; } /** * This is the default method for phy a stop request. It will report a * warning and exit. * * @param[in] phy This is the SCI_BASE_PHY object which is cast into a * SCIC_SDS_PHY object. * * @return SCI_STATUS * @retval SCI_FAILURE_INVALID_STATE */ SCI_STATUS scic_sds_phy_default_stop_handler( SCI_BASE_PHY_T *phy ) { SCIC_SDS_PHY_T *this_phy; this_phy = (SCIC_SDS_PHY_T *)phy; SCIC_LOG_WARNING(( sci_base_object_get_logger(this_phy), SCIC_LOG_OBJECT_PHY, "SCIC Phy 0x%08x requested to stop from invalid state %d\n", this_phy, sci_base_state_machine_get_state(&this_phy->parent.state_machine) )); return SCI_FAILURE_INVALID_STATE; } /** * This is the default method for phy a reset request. It will report a * warning and exit. * * @param[in] phy This is the SCI_BASE_PHY object which is cast into a * SCIC_SDS_PHY object. * * @return SCI_STATUS * @retval SCI_FAILURE_INVALID_STATE */ SCI_STATUS scic_sds_phy_default_reset_handler( SCI_BASE_PHY_T * phy ) { SCIC_SDS_PHY_T *this_phy; this_phy = (SCIC_SDS_PHY_T *)phy; SCIC_LOG_WARNING(( sci_base_object_get_logger(this_phy), SCIC_LOG_OBJECT_PHY, "SCIC Phy 0x%08x requested to reset from invalid state %d\n", this_phy, sci_base_state_machine_get_state(&this_phy->parent.state_machine) )); return SCI_FAILURE_INVALID_STATE; } /** * This is the default method for phy a destruct request. It will report a * warning and exit. * * @param[in] phy This is the SCI_BASE_PHY object which is cast into a * SCIC_SDS_PHY object. * * @return SCI_STATUS * @retval SCI_FAILURE_INVALID_STATE */ SCI_STATUS scic_sds_phy_default_destroy_handler( SCI_BASE_PHY_T *phy ) { SCIC_SDS_PHY_T *this_phy; this_phy = (SCIC_SDS_PHY_T *)phy; /// @todo Implement something for the default SCIC_LOG_WARNING(( sci_base_object_get_logger(this_phy), SCIC_LOG_OBJECT_PHY, "SCIC Phy 0x%08x requested to destroy from invalid state %d\n", this_phy, sci_base_state_machine_get_state(&this_phy->parent.state_machine) )); return SCI_FAILURE_INVALID_STATE; } /** * This is the default method for a phy frame handling request. It will * report a warning, release the frame and exit. * * @param[in] phy This is the SCI_BASE_PHY object which is cast into a * SCIC_SDS_PHY object. * @param[in] frame_index This is the frame index that was received from the * SCU hardware. * * @return SCI_STATUS * @retval SCI_FAILURE_INVALID_STATE */ SCI_STATUS scic_sds_phy_default_frame_handler( SCIC_SDS_PHY_T *this_phy, U32 frame_index ) { SCIC_LOG_WARNING(( sci_base_object_get_logger(this_phy), SCIC_LOG_OBJECT_PHY, "SCIC Phy 0x%08x received unexpected frame data %d while in state %d\n", this_phy, frame_index, sci_base_state_machine_get_state(&this_phy->parent.state_machine) )); scic_sds_controller_release_frame( scic_sds_phy_get_controller(this_phy), frame_index); return SCI_FAILURE_INVALID_STATE; } /** * This is the default method for a phy event handler. It will report a * warning and exit. * * @param[in] phy This is the SCI_BASE_PHY object which is cast into a * SCIC_SDS_PHY object. * @param[in] event_code This is the event code that was received from the SCU * hardware. * * @return SCI_STATUS * @retval SCI_FAILURE_INVALID_STATE */ SCI_STATUS scic_sds_phy_default_event_handler( SCIC_SDS_PHY_T *this_phy, U32 event_code ) { SCIC_LOG_WARNING(( sci_base_object_get_logger(this_phy), SCIC_LOG_OBJECT_PHY, "SCIC Phy 0x%08x received unexpected event status %x while in state %d\n", this_phy, event_code, sci_base_state_machine_get_state(&this_phy->parent.state_machine) )); return SCI_FAILURE_INVALID_STATE; } /** * This is the default method for a phy consume power handler. It will report * a warning and exit. * * @param[in] phy This is the SCI_BASE_PHY object which is cast into a * SCIC_SDS_PHY object. * * @return SCI_STATUS * @retval SCI_FAILURE_INVALID_STATE */ SCI_STATUS scic_sds_phy_default_consume_power_handler( SCIC_SDS_PHY_T *this_phy ) { SCIC_LOG_WARNING(( sci_base_object_get_logger(this_phy), SCIC_LOG_OBJECT_PHY, "SCIC Phy 0x%08x given unexpected permission to consume power while in state %d\n", this_phy, sci_base_state_machine_get_state(&this_phy->parent.state_machine) )); return SCI_FAILURE_INVALID_STATE; } //****************************************************************************** //* PHY STOPPED STATE HANDLERS //****************************************************************************** /** * This method takes the SCIC_SDS_PHY from a stopped state and attempts to * start it. * - The phy state machine is transitioned to the * SCI_BASE_PHY_STATE_STARTING. * * @param[in] phy This is the SCI_BASE_PHY object which is cast into a * SCIC_SDS_PHY object. * * @return SCI_STATUS * @retval SCI_SUCCESS */ static SCI_STATUS scic_sds_phy_stopped_state_start_handler( SCI_BASE_PHY_T *phy ) { SCIC_SDS_PHY_T *this_phy; this_phy = (SCIC_SDS_PHY_T *)phy; // Create the SIGNATURE FIS Timeout timer for this phy this_phy->sata_timeout_timer = scic_cb_timer_create( scic_sds_phy_get_controller(this_phy), scic_sds_phy_sata_timeout, this_phy ); if (this_phy->sata_timeout_timer != NULL) { sci_base_state_machine_change_state( scic_sds_phy_get_base_state_machine(this_phy), SCI_BASE_PHY_STATE_STARTING ); } return SCI_SUCCESS; } /** * This method takes the SCIC_SDS_PHY from a stopped state and destroys it. * - This function takes no action. * * @todo Shouldn't this function transition the SCI_BASE_PHY::state_machine to * the SCI_BASE_PHY_STATE_FINAL? * * @param[in] phy This is the SCI_BASE_PHY object which is cast into a * SCIC_SDS_PHY object. * * @return SCI_STATUS * @retval SCI_SUCCESS */ static SCI_STATUS scic_sds_phy_stopped_state_destroy_handler( SCI_BASE_PHY_T *phy ) { SCIC_SDS_PHY_T *this_phy; this_phy = (SCIC_SDS_PHY_T *)phy; /// @todo what do we actually need to do here? return SCI_SUCCESS; } //****************************************************************************** //* PHY STARTING STATE HANDLERS //****************************************************************************** // All of these state handlers are mapped to the starting sub-state machine //****************************************************************************** //* PHY READY STATE HANDLERS //****************************************************************************** /** * This method takes the SCIC_SDS_PHY from a ready state and attempts to stop * it. * - The phy state machine is transitioned to the SCI_BASE_PHY_STATE_STOPPED. * * @param[in] phy This is the SCI_BASE_PHY object which is cast into a * SCIC_SDS_PHY object. * * @return SCI_STATUS * @retval SCI_SUCCESS */ static SCI_STATUS scic_sds_phy_ready_state_stop_handler( SCI_BASE_PHY_T *phy ) { SCIC_SDS_PHY_T *this_phy; this_phy = (SCIC_SDS_PHY_T *)phy; sci_base_state_machine_change_state( scic_sds_phy_get_base_state_machine(this_phy), SCI_BASE_PHY_STATE_STOPPED ); scic_sds_controller_link_down( scic_sds_phy_get_controller(this_phy), scic_sds_phy_get_port(this_phy), this_phy ); return SCI_SUCCESS; } /** * This method takes the SCIC_SDS_PHY from a ready state and attempts to reset * it. * - The phy state machine is transitioned to the SCI_BASE_PHY_STATE_STARTING. * * @param[in] phy This is the SCI_BASE_PHY object which is cast into a * SCIC_SDS_PHY object. * * @return SCI_STATUS * @retval SCI_SUCCESS */ static SCI_STATUS scic_sds_phy_ready_state_reset_handler( SCI_BASE_PHY_T * phy ) { SCIC_SDS_PHY_T * this_phy; this_phy = (SCIC_SDS_PHY_T *)phy; sci_base_state_machine_change_state( scic_sds_phy_get_base_state_machine(this_phy), SCI_BASE_PHY_STATE_RESETTING ); return SCI_SUCCESS; } /** * This method request the SCIC_SDS_PHY handle the received event. The only * event that we are interested in while in the ready state is the link * failure event. * - decoded event is a link failure * - transition the SCIC_SDS_PHY back to the SCI_BASE_PHY_STATE_STARTING * state. * - any other event received will report a warning message * * @param[in] phy This is the SCIC_SDS_PHY object which has received the * event. * * @return SCI_STATUS * @retval SCI_SUCCESS if the event received is a link failure * @retval SCI_FAILURE_INVALID_STATE for any other event received. */ static SCI_STATUS scic_sds_phy_ready_state_event_handler( SCIC_SDS_PHY_T *this_phy, U32 event_code ) { SCI_STATUS result = SCI_FAILURE; switch (scu_get_event_code(event_code)) { case SCU_EVENT_LINK_FAILURE: // Link failure change state back to the starting state sci_base_state_machine_change_state( scic_sds_phy_get_base_state_machine(this_phy), SCI_BASE_PHY_STATE_STARTING ); result = SCI_SUCCESS; break; case SCU_EVENT_BROADCAST_CHANGE: // Broadcast change received. Notify the port. if (scic_sds_phy_get_port(this_phy) != SCI_INVALID_HANDLE) scic_sds_port_broadcast_change_received(this_phy->owning_port, this_phy); else this_phy->bcn_received_while_port_unassigned = TRUE; break; case SCU_EVENT_ERR_CNT(RX_CREDIT_BLOCKED_RECEIVED): case SCU_EVENT_ERR_CNT(TX_DONE_CREDIT_TIMEOUT): case SCU_EVENT_ERR_CNT(RX_DONE_CREDIT_TIMEOUT): case SCU_EVENT_ERR_CNT(INACTIVITY_TIMER_EXPIRED): case SCU_EVENT_ERR_CNT(TX_DONE_ACK_NAK_TIMEOUT): case SCU_EVENT_ERR_CNT(RX_DONE_ACK_NAK_TIMEOUT): { U32 error_counter_index = scu_get_event_specifier(event_code) >> SCU_EVENT_SPECIFIC_CODE_SHIFT; this_phy->error_counter[error_counter_index]++; result = SCI_SUCCESS; } break; default: SCIC_LOG_WARNING(( sci_base_object_get_logger(this_phy), SCIC_LOG_OBJECT_PHY | SCIC_LOG_OBJECT_RECEIVED_EVENTS, "SCIC PHY 0x%x ready state machine received unexpected event_code %x\n", this_phy, event_code )); result = SCI_FAILURE_INVALID_STATE; break; } return result; } // --------------------------------------------------------------------------- /** * This is the resetting state event handler. * * @param[in] this_phy This is the SCIC_SDS_PHY object which is receiving the * event. * @param[in] event_code This is the event code to be processed. * * @return SCI_STATUS * @retval SCI_FAILURE_INVALID_STATE */ static SCI_STATUS scic_sds_phy_resetting_state_event_handler( SCIC_SDS_PHY_T *this_phy, U32 event_code ) { SCI_STATUS result = SCI_FAILURE; switch (scu_get_event_code(event_code)) { case SCU_EVENT_HARD_RESET_TRANSMITTED: // Link failure change state back to the starting state sci_base_state_machine_change_state( scic_sds_phy_get_base_state_machine(this_phy), SCI_BASE_PHY_STATE_STARTING ); result = SCI_SUCCESS; break; default: SCIC_LOG_WARNING(( sci_base_object_get_logger(this_phy), SCIC_LOG_OBJECT_PHY | SCIC_LOG_OBJECT_RECEIVED_EVENTS, "SCIC PHY 0x%x resetting state machine received unexpected event_code %x\n", this_phy, event_code )); result = SCI_FAILURE_INVALID_STATE; break; } return result; } // --------------------------------------------------------------------------- SCIC_SDS_PHY_STATE_HANDLER_T scic_sds_phy_state_handler_table[SCI_BASE_PHY_MAX_STATES] = { // SCI_BASE_PHY_STATE_INITIAL { { scic_sds_phy_default_start_handler, scic_sds_phy_default_stop_handler, scic_sds_phy_default_reset_handler, scic_sds_phy_default_destroy_handler }, scic_sds_phy_default_frame_handler, scic_sds_phy_default_event_handler, scic_sds_phy_default_consume_power_handler }, // SCI_BASE_PHY_STATE_STOPPED { { scic_sds_phy_stopped_state_start_handler, scic_sds_phy_default_stop_handler, scic_sds_phy_default_reset_handler, scic_sds_phy_stopped_state_destroy_handler }, scic_sds_phy_default_frame_handler, scic_sds_phy_default_event_handler, scic_sds_phy_default_consume_power_handler }, // SCI_BASE_PHY_STATE_STARTING { { scic_sds_phy_default_start_handler, scic_sds_phy_default_stop_handler, scic_sds_phy_default_reset_handler, scic_sds_phy_default_destroy_handler }, scic_sds_phy_default_frame_handler, scic_sds_phy_default_event_handler, scic_sds_phy_default_consume_power_handler }, // SCI_BASE_PHY_STATE_READY { { scic_sds_phy_default_start_handler, scic_sds_phy_ready_state_stop_handler, scic_sds_phy_ready_state_reset_handler, scic_sds_phy_default_destroy_handler }, scic_sds_phy_default_frame_handler, scic_sds_phy_ready_state_event_handler, scic_sds_phy_default_consume_power_handler }, // SCI_BASE_PHY_STATE_RESETTING { { scic_sds_phy_default_start_handler, scic_sds_phy_default_stop_handler, scic_sds_phy_default_reset_handler, scic_sds_phy_default_destroy_handler }, scic_sds_phy_default_frame_handler, scic_sds_phy_resetting_state_event_handler, scic_sds_phy_default_consume_power_handler }, // SCI_BASE_PHY_STATE_FINAL { { scic_sds_phy_default_start_handler, scic_sds_phy_default_stop_handler, scic_sds_phy_default_reset_handler, scic_sds_phy_default_destroy_handler }, scic_sds_phy_default_frame_handler, scic_sds_phy_default_event_handler, scic_sds_phy_default_consume_power_handler } }; //**************************************************************************** //* PHY STATE PRIVATE METHODS //**************************************************************************** /** * This method will stop the SCIC_SDS_PHY object. This does not reset the * protocol engine it just suspends it and places it in a state where it will * not cause the end device to power up. * * @param[in] this_phy This is the SCIC_SDS_PHY object to stop. * * @return none */ static void scu_link_layer_stop_protocol_engine( SCIC_SDS_PHY_T *this_phy ) { U32 scu_sas_pcfg_value; U32 enable_spinup_value; // Suspend the protocol engine and place it in a sata spinup hold state scu_sas_pcfg_value = SCU_SAS_PCFG_READ(this_phy); scu_sas_pcfg_value |= ( SCU_SAS_PCFG_GEN_BIT(OOB_RESET) | SCU_SAS_PCFG_GEN_BIT(SUSPEND_PROTOCOL_ENGINE) | SCU_SAS_PCFG_GEN_BIT(SATA_SPINUP_HOLD) ); SCU_SAS_PCFG_WRITE(this_phy, scu_sas_pcfg_value); // Disable the notify enable spinup primitives enable_spinup_value = SCU_SAS_ENSPINUP_READ(this_phy); enable_spinup_value &= ~SCU_ENSPINUP_GEN_BIT(ENABLE); SCU_SAS_ENSPINUP_WRITE(this_phy, enable_spinup_value); } /** * This method will start the OOB/SN state machine for this SCIC_SDS_PHY * object. * * @param[in] this_phy This is the SCIC_SDS_PHY object on which to start the * OOB/SN state machine. */ static void scu_link_layer_start_oob( SCIC_SDS_PHY_T *this_phy ) { U32 scu_sas_pcfg_value; /* Reset OOB sequence - start */ scu_sas_pcfg_value = SCU_SAS_PCFG_READ(this_phy); scu_sas_pcfg_value &= ~(SCU_SAS_PCFG_GEN_BIT(OOB_RESET) | SCU_SAS_PCFG_GEN_BIT(HARD_RESET)); SCU_SAS_PCFG_WRITE(this_phy, scu_sas_pcfg_value); SCU_SAS_PCFG_READ(this_phy); /* Reset OOB sequence - end */ /* Start OOB sequence - start */ scu_sas_pcfg_value = SCU_SAS_PCFG_READ(this_phy); scu_sas_pcfg_value |= SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE); SCU_SAS_PCFG_WRITE(this_phy, scu_sas_pcfg_value); SCU_SAS_PCFG_READ(this_phy); /* Start OOB sequence - end */ } /** * This method will transmit a hard reset request on the specified phy. The * SCU hardware requires that we reset the OOB state machine and set the hard * reset bit in the phy configuration register. * We then must start OOB over with the hard reset bit set. * * @param[in] this_phy */ static void scu_link_layer_tx_hard_reset( SCIC_SDS_PHY_T *this_phy ) { U32 phy_configuration_value; // SAS Phys must wait for the HARD_RESET_TX event notification to transition // to the starting state. phy_configuration_value = SCU_SAS_PCFG_READ(this_phy); phy_configuration_value |= (SCU_SAS_PCFG_GEN_BIT(HARD_RESET) | SCU_SAS_PCFG_GEN_BIT(OOB_RESET)); SCU_SAS_PCFG_WRITE(this_phy, phy_configuration_value); // Now take the OOB state machine out of reset phy_configuration_value |= SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE); phy_configuration_value &= ~SCU_SAS_PCFG_GEN_BIT(OOB_RESET); SCU_SAS_PCFG_WRITE(this_phy, phy_configuration_value); } //**************************************************************************** //* PHY BASE STATE METHODS //**************************************************************************** /** * This method will perform the actions required by the SCIC_SDS_PHY on * entering the SCI_BASE_PHY_STATE_INITIAL. * - This function sets the state handlers for the phy object base state * machine initial state. * * @param[in] object This is the SCI_BASE_OBJECT which is cast to a * SCIC_SDS_PHY object. * * @return none */ static void scic_sds_phy_initial_state_enter( SCI_BASE_OBJECT_T *object ) { SCIC_SDS_PHY_T *this_phy; this_phy = (SCIC_SDS_PHY_T *)object; scic_sds_phy_set_base_state_handlers(this_phy, SCI_BASE_PHY_STATE_INITIAL); } /** * This method will perform the actions required by the SCIC_SDS_PHY on * entering the SCI_BASE_PHY_STATE_INITIAL. * - This function sets the state handlers for the phy object base state * machine initial state. * - The SCU hardware is requested to stop the protocol engine. * * @param[in] object This is the SCI_BASE_OBJECT which is cast to a * SCIC_SDS_PHY object. * * @return none */ static void scic_sds_phy_stopped_state_enter( SCI_BASE_OBJECT_T *object ) { SCIC_SDS_PHY_T *this_phy; this_phy = (SCIC_SDS_PHY_T *)object; /// @todo We need to get to the controller to place this PE in a reset state scic_sds_phy_set_base_state_handlers(this_phy, SCI_BASE_PHY_STATE_STOPPED); if (this_phy->sata_timeout_timer != NULL) { scic_cb_timer_destroy( scic_sds_phy_get_controller(this_phy), this_phy->sata_timeout_timer ); this_phy->sata_timeout_timer = NULL; } scu_link_layer_stop_protocol_engine(this_phy); } /** * This method will perform the actions required by the SCIC_SDS_PHY on * entering the SCI_BASE_PHY_STATE_STARTING. * - This function sets the state handlers for the phy object base state * machine starting state. * - The SCU hardware is requested to start OOB/SN on this protocol engine. * - The phy starting substate machine is started. * - If the previous state was the ready state then the * SCIC_SDS_CONTROLLER is informed that the phy has gone link down. * * @param[in] object This is the SCI_BASE_OBJECT which is cast to a * SCIC_SDS_PHY object. * * @return none */ static void scic_sds_phy_starting_state_enter( SCI_BASE_OBJECT_T *object ) { SCIC_SDS_PHY_T *this_phy; this_phy = (SCIC_SDS_PHY_T *)object; scic_sds_phy_set_base_state_handlers(this_phy, SCI_BASE_PHY_STATE_STARTING); scu_link_layer_stop_protocol_engine(this_phy); scu_link_layer_start_oob(this_phy); // We don't know what kind of phy we are going to be just yet this_phy->protocol = SCIC_SDS_PHY_PROTOCOL_UNKNOWN; this_phy->bcn_received_while_port_unassigned = FALSE; // Change over to the starting substate machine to continue sci_base_state_machine_start(&this_phy->starting_substate_machine); if (this_phy->parent.state_machine.previous_state_id == SCI_BASE_PHY_STATE_READY) { scic_sds_controller_link_down( scic_sds_phy_get_controller(this_phy), scic_sds_phy_get_port(this_phy), this_phy ); } } /** * This method will perform the actions required by the SCIC_SDS_PHY on * entering the SCI_BASE_PHY_STATE_READY. * - This function sets the state handlers for the phy object base state * machine ready state. * - The SCU hardware protocol engine is resumed. * - The SCIC_SDS_CONTROLLER is informed that the phy object has gone link * up. * * @param[in] object This is the SCI_BASE_OBJECT which is cast to a * SCIC_SDS_PHY object. * * @return none */ static void scic_sds_phy_ready_state_enter( SCI_BASE_OBJECT_T *object ) { SCIC_SDS_PHY_T *this_phy; this_phy = (SCIC_SDS_PHY_T *)object; scic_sds_phy_set_base_state_handlers(this_phy, SCI_BASE_PHY_STATE_READY); scic_sds_controller_link_up( scic_sds_phy_get_controller(this_phy), scic_sds_phy_get_port(this_phy), this_phy ); } /** * This method will perform the actions required by the SCIC_SDS_PHY on * exiting the SCI_BASE_PHY_STATE_INITIAL. This function suspends the SCU * hardware protocol engine represented by this SCIC_SDS_PHY object. * * @param[in] object This is the SCI_BASE_OBJECT which is cast to a * SCIC_SDS_PHY object. * * @return none */ static void scic_sds_phy_ready_state_exit( SCI_BASE_OBJECT_T *object ) { SCIC_SDS_PHY_T *this_phy; this_phy = (SCIC_SDS_PHY_T *)object; scic_sds_phy_suspend(this_phy); } /** * This method will perform the actions required by the SCIC_SDS_PHY on * entering the SCI_BASE_PHY_STATE_RESETTING. * - This function sets the state handlers for the phy object base state * machine resetting state. * * @param[in] object This is the SCI_BASE_OBJECT which is cast to a * SCIC_SDS_PHY object. * * @return none */ static void scic_sds_phy_resetting_state_enter( SCI_BASE_OBJECT_T *object ) { SCIC_SDS_PHY_T * this_phy; this_phy = (SCIC_SDS_PHY_T *)object; scic_sds_phy_set_base_state_handlers(this_phy, SCI_BASE_PHY_STATE_RESETTING); // The phy is being reset, therefore deactivate it from the port. // In the resetting state we don't notify the user regarding // link up and link down notifications. scic_sds_port_deactivate_phy(this_phy->owning_port, this_phy, FALSE); if (this_phy->protocol == SCIC_SDS_PHY_PROTOCOL_SAS) { scu_link_layer_tx_hard_reset(this_phy); } else { // The SCU does not need to have a descrete reset state so just go back to // the starting state. sci_base_state_machine_change_state( &this_phy->parent.state_machine, SCI_BASE_PHY_STATE_STARTING ); } } /** * This method will perform the actions required by the SCIC_SDS_PHY on * entering the SCI_BASE_PHY_STATE_FINAL. * - This function sets the state handlers for the phy object base state * machine final state. * * @param[in] object This is the SCI_BASE_OBJECT which is cast to a * SCIC_SDS_PHY object. * * @return none */ static void scic_sds_phy_final_state_enter( SCI_BASE_OBJECT_T *object ) { SCIC_SDS_PHY_T *this_phy; this_phy = (SCIC_SDS_PHY_T *)object; scic_sds_phy_set_base_state_handlers(this_phy, SCI_BASE_PHY_STATE_FINAL); // Nothing to do here } // --------------------------------------------------------------------------- SCI_BASE_STATE_T scic_sds_phy_state_table[SCI_BASE_PHY_MAX_STATES] = { { SCI_BASE_PHY_STATE_INITIAL, scic_sds_phy_initial_state_enter, NULL, }, { SCI_BASE_PHY_STATE_STOPPED, scic_sds_phy_stopped_state_enter, NULL, }, { SCI_BASE_PHY_STATE_STARTING, scic_sds_phy_starting_state_enter, NULL, }, { SCI_BASE_PHY_STATE_READY, scic_sds_phy_ready_state_enter, scic_sds_phy_ready_state_exit, }, { SCI_BASE_PHY_STATE_RESETTING, scic_sds_phy_resetting_state_enter, NULL, }, { SCI_BASE_PHY_STATE_FINAL, scic_sds_phy_final_state_enter, NULL, } }; //****************************************************************************** //* PHY STARTING SUB-STATE MACHINE //****************************************************************************** //***************************************************************************** //* SCIC SDS PHY HELPER FUNCTIONS //***************************************************************************** /** * This method continues the link training for the phy as if it were a SAS PHY * instead of a SATA PHY. This is done because the completion queue had a SAS * PHY DETECTED event when the state machine was expecting a SATA PHY event. * * @param[in] this_phy The phy object that received SAS PHY DETECTED. * * @return none */ static void scic_sds_phy_start_sas_link_training( SCIC_SDS_PHY_T * this_phy ) { U32 phy_control; phy_control = SCU_SAS_PCFG_READ(this_phy); phy_control |= SCU_SAS_PCFG_GEN_BIT(SATA_SPINUP_HOLD); SCU_SAS_PCFG_WRITE(this_phy, phy_control); sci_base_state_machine_change_state( &this_phy->starting_substate_machine, SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SAS_SPEED_EN ); this_phy->protocol = SCIC_SDS_PHY_PROTOCOL_SAS; } /** * This method continues the link training for the phy as if it were a SATA * PHY instead of a SAS PHY. This is done because the completion queue had a * SATA SPINUP HOLD event when the state machine was expecting a SAS PHY * event. * * @param[in] this_phy The phy object that received a SATA SPINUP HOLD event * * @return none */ static void scic_sds_phy_start_sata_link_training( SCIC_SDS_PHY_T * this_phy ) { sci_base_state_machine_change_state( &this_phy->starting_substate_machine, SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_POWER ); this_phy->protocol = SCIC_SDS_PHY_PROTOCOL_SATA; } /** * @brief This method performs processing common to all protocols upon * completion of link training. * * @param[in,out] this_phy This parameter specifies the phy object for which * link training has completed. * @param[in] max_link_rate This parameter specifies the maximum link * rate to be associated with this phy. * @param[in] next_state This parameter specifies the next state for the * phy's starting sub-state machine. * * @return none */ static void scic_sds_phy_complete_link_training( SCIC_SDS_PHY_T * this_phy, SCI_SAS_LINK_RATE max_link_rate, U32 next_state ) { this_phy->max_negotiated_speed = max_link_rate; sci_base_state_machine_change_state( scic_sds_phy_get_starting_substate_machine(this_phy), next_state ); } /** * This method restarts the SCIC_SDS_PHY objects base state machine in the * starting state from any starting substate. * * @param[in] this_phy The SCIC_SDS_PHY object to restart. * * @return none */ void scic_sds_phy_restart_starting_state( SCIC_SDS_PHY_T *this_phy ) { // Stop the current substate machine sci_base_state_machine_stop( scic_sds_phy_get_starting_substate_machine(this_phy) ); // Re-enter the base state machine starting state sci_base_state_machine_change_state( scic_sds_phy_get_base_state_machine(this_phy), SCI_BASE_PHY_STATE_STARTING ); } //***************************************************************************** //* SCIC SDS PHY general handlers //***************************************************************************** static SCI_STATUS scic_sds_phy_starting_substate_general_stop_handler( SCI_BASE_PHY_T *phy ) { SCIC_SDS_PHY_T *this_phy; this_phy = (SCIC_SDS_PHY_T *)phy; sci_base_state_machine_stop( &this_phy->starting_substate_machine ); sci_base_state_machine_change_state( &phy->state_machine, SCI_BASE_PHY_STATE_STOPPED ); return SCI_SUCCESS; } //***************************************************************************** //* SCIC SDS PHY EVENT_HANDLERS //***************************************************************************** /** * This method is called when an event notification is received for the phy * object when in the state SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SPEED_EN. * - decode the event * - sas phy detected causes a state transition to the wait for speed * event notification. * - any other events log a warning message and set a failure status * * @param[in] phy This SCIC_SDS_PHY object which has received an event. * @param[in] event_code This is the event code which the phy object is to * decode. * * @return SCI_STATUS * @retval SCI_SUCCESS on any valid event notification * @retval SCI_FAILURE on any unexpected event notifation */ static SCI_STATUS scic_sds_phy_starting_substate_await_ossp_event_handler( SCIC_SDS_PHY_T *this_phy, U32 event_code ) { U32 result = SCI_SUCCESS; switch (scu_get_event_code(event_code)) { case SCU_EVENT_SAS_PHY_DETECTED: scic_sds_phy_start_sas_link_training(this_phy); this_phy->is_in_link_training = TRUE; break; case SCU_EVENT_SATA_SPINUP_HOLD: scic_sds_phy_start_sata_link_training(this_phy); this_phy->is_in_link_training = TRUE; break; default: SCIC_LOG_WARNING(( sci_base_object_get_logger(this_phy), SCIC_LOG_OBJECT_PHY | SCIC_LOG_OBJECT_RECEIVED_EVENTS, "PHY starting substate machine received unexpected event_code %x\n", event_code )); result = SCI_FAILURE; break; } return result; } /** * This method is called when an event notification is received for the phy * object when in the state SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SPEED_EN. * - decode the event * - sas phy detected returns us back to this state. * - speed event detected causes a state transition to the wait for iaf. * - identify timeout is an un-expected event and the state machine is * restarted. * - link failure events restart the starting state machine * - any other events log a warning message and set a failure status * * @param[in] phy This SCIC_SDS_PHY object which has received an event. * @param[in] event_code This is the event code which the phy object is to * decode. * * @return SCI_STATUS * @retval SCI_SUCCESS on any valid event notification * @retval SCI_FAILURE on any unexpected event notifation */ static SCI_STATUS scic_sds_phy_starting_substate_await_sas_phy_speed_event_handler( SCIC_SDS_PHY_T *this_phy, U32 event_code ) { U32 result = SCI_SUCCESS; switch (scu_get_event_code(event_code)) { case SCU_EVENT_SAS_PHY_DETECTED: // Why is this being reported again by the controller? // We would re-enter this state so just stay here break; case SCU_EVENT_SAS_15: case SCU_EVENT_SAS_15_SSC: scic_sds_phy_complete_link_training( this_phy, SCI_SAS_150_GB, SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_IAF_UF ); break; case SCU_EVENT_SAS_30: case SCU_EVENT_SAS_30_SSC: scic_sds_phy_complete_link_training( this_phy, SCI_SAS_300_GB, SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_IAF_UF ); break; case SCU_EVENT_SAS_60: case SCU_EVENT_SAS_60_SSC: scic_sds_phy_complete_link_training( this_phy, SCI_SAS_600_GB, SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_IAF_UF ); break; case SCU_EVENT_SATA_SPINUP_HOLD: // We were doing SAS PHY link training and received a SATA PHY event // continue OOB/SN as if this were a SATA PHY scic_sds_phy_start_sata_link_training(this_phy); break; case SCU_EVENT_LINK_FAILURE: // Link failure change state back to the starting state scic_sds_phy_restart_starting_state(this_phy); break; default: SCIC_LOG_WARNING(( sci_base_object_get_logger(this_phy), SCIC_LOG_OBJECT_PHY | SCIC_LOG_OBJECT_RECEIVED_EVENTS, "PHY starting substate machine received unexpected event_code %x\n", event_code )); result = SCI_FAILURE; break; } return result; } /** * This method is called when an event notification is received for the phy * object when in the state SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_IAF_UF. * - decode the event * - sas phy detected event backs up the state machine to the await * speed notification. * - identify timeout is an un-expected event and the state machine is * restarted. * - link failure events restart the starting state machine * - any other events log a warning message and set a failure status * * @param[in] phy This SCIC_SDS_PHY object which has received an event. * @param[in] event_code This is the event code which the phy object is to * decode. * * @return SCI_STATUS * @retval SCI_SUCCESS on any valid event notification * @retval SCI_FAILURE on any unexpected event notifation */ static SCI_STATUS scic_sds_phy_starting_substate_await_iaf_uf_event_handler( SCIC_SDS_PHY_T *this_phy, U32 event_code ) { U32 result = SCI_SUCCESS; switch (scu_get_event_code(event_code)) { case SCU_EVENT_SAS_PHY_DETECTED: // Backup the state machine scic_sds_phy_start_sas_link_training(this_phy); break; case SCU_EVENT_SATA_SPINUP_HOLD: // We were doing SAS PHY link training and received a SATA PHY event // continue OOB/SN as if this were a SATA PHY scic_sds_phy_start_sata_link_training(this_phy); break; case SCU_EVENT_RECEIVED_IDENTIFY_TIMEOUT: case SCU_EVENT_LINK_FAILURE: case SCU_EVENT_HARD_RESET_RECEIVED: // Start the oob/sn state machine over again scic_sds_phy_restart_starting_state(this_phy); break; default: SCIC_LOG_WARNING(( sci_base_object_get_logger(this_phy), SCIC_LOG_OBJECT_PHY | SCIC_LOG_OBJECT_RECEIVED_EVENTS, "PHY starting substate machine received unexpected event_code %x\n", event_code )); result = SCI_FAILURE; break; } return result; } /** * This method is called when an event notification is received for the phy * object when in the state SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_POWER. * - decode the event * - link failure events restart the starting state machine * - any other events log a warning message and set a failure status * * @param[in] phy This SCIC_SDS_PHY object which has received an event. * @param[in] event_code This is the event code which the phy object is to * decode. * * @return SCI_STATUS * @retval SCI_SUCCESS on a link failure event * @retval SCI_FAILURE on any unexpected event notifation */ static SCI_STATUS scic_sds_phy_starting_substate_await_sas_power_event_handler( SCIC_SDS_PHY_T *this_phy, U32 event_code ) { U32 result = SCI_SUCCESS; switch (scu_get_event_code(event_code)) { case SCU_EVENT_LINK_FAILURE: // Link failure change state back to the starting state scic_sds_phy_restart_starting_state(this_phy); break; default: SCIC_LOG_WARNING(( sci_base_object_get_logger(this_phy), SCIC_LOG_OBJECT_PHY | SCIC_LOG_OBJECT_RECEIVED_EVENTS, "PHY starting substate machine received unexpected event_code %x\n", event_code )); result = SCI_FAILURE; break; } return result; } /** * This method is called when an event notification is received for the phy * object when in the state SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_POWER. * - decode the event * - link failure events restart the starting state machine * - sata spinup hold events are ignored since they are expected * - any other events log a warning message and set a failure status * * @param[in] phy This SCIC_SDS_PHY object which has received an event. * @param[in] event_code This is the event code which the phy object is to * decode. * * @return SCI_STATUS * @retval SCI_SUCCESS on a link failure event * @retval SCI_FAILURE on any unexpected event notifation */ static SCI_STATUS scic_sds_phy_starting_substate_await_sata_power_event_handler( SCIC_SDS_PHY_T *this_phy, U32 event_code ) { U32 result = SCI_SUCCESS; switch (scu_get_event_code(event_code)) { case SCU_EVENT_LINK_FAILURE: // Link failure change state back to the starting state scic_sds_phy_restart_starting_state(this_phy); break; case SCU_EVENT_SATA_SPINUP_HOLD: // These events are received every 10ms and are expected while in this state break; case SCU_EVENT_SAS_PHY_DETECTED: // There has been a change in the phy type before OOB/SN for the // SATA finished start down the SAS link traning path. scic_sds_phy_start_sas_link_training(this_phy); break; default: SCIC_LOG_WARNING(( sci_base_object_get_logger(this_phy), SCIC_LOG_OBJECT_PHY | SCIC_LOG_OBJECT_RECEIVED_EVENTS, "PHY starting substate machine received unexpected event_code %x\n", event_code )); result = SCI_FAILURE; break; } return result; } /** * This method is called when an event notification is received for the phy * object when in the state SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_PHY_EN. * - decode the event * - link failure events restart the starting state machine * - sata spinup hold events are ignored since they are expected * - sata phy detected event change to the wait speed event * - any other events log a warning message and set a failure status * * @param[in] phy This SCIC_SDS_PHY object which has received an event. * @param[in] event_code This is the event code which the phy object is to * decode. * * @return SCI_STATUS * @retval SCI_SUCCESS on a link failure event * @retval SCI_FAILURE on any unexpected event notifation */ static SCI_STATUS scic_sds_phy_starting_substate_await_sata_phy_event_handler( SCIC_SDS_PHY_T *this_phy, U32 event_code ) { U32 result = SCI_SUCCESS; switch (scu_get_event_code(event_code)) { case SCU_EVENT_LINK_FAILURE: // Link failure change state back to the starting state scic_sds_phy_restart_starting_state(this_phy); break; case SCU_EVENT_SATA_SPINUP_HOLD: // These events might be received since we dont know how many may be in // the completion queue while waiting for power break; case SCU_EVENT_SATA_PHY_DETECTED: this_phy->protocol = SCIC_SDS_PHY_PROTOCOL_SATA; // We have received the SATA PHY notification change state sci_base_state_machine_change_state( scic_sds_phy_get_starting_substate_machine(this_phy), SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_SPEED_EN ); break; case SCU_EVENT_SAS_PHY_DETECTED: // There has been a change in the phy type before OOB/SN for the // SATA finished start down the SAS link traning path. scic_sds_phy_start_sas_link_training(this_phy); break; default: SCIC_LOG_WARNING(( sci_base_object_get_logger(this_phy), SCIC_LOG_OBJECT_PHY | SCIC_LOG_OBJECT_RECEIVED_EVENTS, "PHY starting substate machine received unexpected event_code %x\n", event_code )); result = SCI_FAILURE; break; } return result; } /** * This method is called when an event notification is received for the phy * object when in the state * SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_SPEED_EN. * - decode the event * - sata phy detected returns us back to this state. * - speed event detected causes a state transition to the wait for * signature. * - link failure events restart the starting state machine * - any other events log a warning message and set a failure status * * @param[in] phy This SCIC_SDS_PHY object which has received an event. * @param[in] event_code This is the event code which the phy object is to * decode. * * @return SCI_STATUS * @retval SCI_SUCCESS on any valid event notification * @retval SCI_FAILURE on any unexpected event notifation */ static SCI_STATUS scic_sds_phy_starting_substate_await_sata_speed_event_handler( SCIC_SDS_PHY_T *this_phy, U32 event_code ) { U32 result = SCI_SUCCESS; switch (scu_get_event_code(event_code)) { case SCU_EVENT_SATA_PHY_DETECTED: // The hardware reports multiple SATA PHY detected events // ignore the extras break; case SCU_EVENT_SATA_15: case SCU_EVENT_SATA_15_SSC: scic_sds_phy_complete_link_training( this_phy, SCI_SAS_150_GB, SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SIG_FIS_UF ); break; case SCU_EVENT_SATA_30: case SCU_EVENT_SATA_30_SSC: scic_sds_phy_complete_link_training( this_phy, SCI_SAS_300_GB, SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SIG_FIS_UF ); break; case SCU_EVENT_SATA_60: case SCU_EVENT_SATA_60_SSC: scic_sds_phy_complete_link_training( this_phy, SCI_SAS_600_GB, SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SIG_FIS_UF ); break; case SCU_EVENT_LINK_FAILURE: // Link failure change state back to the starting state scic_sds_phy_restart_starting_state(this_phy); break; case SCU_EVENT_SAS_PHY_DETECTED: // There has been a change in the phy type before OOB/SN for the // SATA finished start down the SAS link traning path. scic_sds_phy_start_sas_link_training(this_phy); break; default: SCIC_LOG_WARNING(( sci_base_object_get_logger(this_phy), SCIC_LOG_OBJECT_PHY | SCIC_LOG_OBJECT_RECEIVED_EVENTS, "PHY starting substate machine received unexpected event_code %x\n", event_code )); result = SCI_FAILURE; break; } return result; } /** * This method is called when an event notification is received for the phy * object when in the state SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SIG_FIS_UF. * - decode the event * - sas phy detected event backs up the state machine to the await * speed notification. * - identify timeout is an un-expected event and the state machine is * restarted. * - link failure events restart the starting state machine * - any other events log a warning message and set a failure status * * @param[in] phy This SCIC_SDS_PHY object which has received an event. * @param[in] event_code This is the event code which the phy object is to * decode. * * @return SCI_STATUS * @retval SCI_SUCCESS on any valid event notification * @retval SCI_FAILURE on any unexpected event notifation */ static SCI_STATUS scic_sds_phy_starting_substate_await_sig_fis_event_handler( SCIC_SDS_PHY_T *this_phy, U32 event_code ) { U32 result = SCI_SUCCESS; switch (scu_get_event_code(event_code)) { case SCU_EVENT_SATA_PHY_DETECTED: // Backup the state machine sci_base_state_machine_change_state( scic_sds_phy_get_starting_substate_machine(this_phy), SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_SPEED_EN ); break; case SCU_EVENT_LINK_FAILURE: // Link failure change state back to the starting state scic_sds_phy_restart_starting_state(this_phy); break; default: SCIC_LOG_WARNING(( sci_base_object_get_logger(this_phy), SCIC_LOG_OBJECT_PHY | SCIC_LOG_OBJECT_RECEIVED_EVENTS, "PHY starting substate machine received unexpected event_code %x\n", event_code )); result = SCI_FAILURE; break; } return result; } //***************************************************************************** //* SCIC SDS PHY FRAME_HANDLERS //***************************************************************************** /** * This method decodes the unsolicited frame when the SCIC_SDS_PHY is in the * SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_IAF_UF. * - Get the UF Header * - If the UF is an IAF * - Copy IAF data to local phy object IAF data buffer. * - Change starting substate to wait power. * - else * - log warning message of unexpected unsolicted frame * - release frame buffer * * @param[in] phy This is SCIC_SDS_PHY object which is being requested to * decode the frame data. * @param[in] frame_index This is the index of the unsolicited frame which was * received for this phy. * * @return SCI_STATUS * @retval SCI_SUCCESS */ static SCI_STATUS scic_sds_phy_starting_substate_await_iaf_uf_frame_handler( SCIC_SDS_PHY_T *this_phy, U32 frame_index ) { SCI_STATUS result; U32 *frame_words; SCI_SAS_IDENTIFY_ADDRESS_FRAME_T *identify_frame; result = scic_sds_unsolicited_frame_control_get_header( &(scic_sds_phy_get_controller(this_phy)->uf_control), frame_index, (void **)&frame_words); if (result != SCI_SUCCESS) { return result; } frame_words[0] = SCIC_SWAP_DWORD(frame_words[0]); identify_frame = (SCI_SAS_IDENTIFY_ADDRESS_FRAME_T *)frame_words; if (identify_frame->address_frame_type == 0) { // Byte swap the rest of the frame so we can make // a copy of the buffer frame_words[1] = SCIC_SWAP_DWORD(frame_words[1]); frame_words[2] = SCIC_SWAP_DWORD(frame_words[2]); frame_words[3] = SCIC_SWAP_DWORD(frame_words[3]); frame_words[4] = SCIC_SWAP_DWORD(frame_words[4]); frame_words[5] = SCIC_SWAP_DWORD(frame_words[5]); memcpy( &this_phy->phy_type.sas.identify_address_frame_buffer, identify_frame, sizeof(SCI_SAS_IDENTIFY_ADDRESS_FRAME_T) ); if (identify_frame->protocols.u.bits.smp_target) { // We got the IAF for an expander PHY go to the final state since // there are no power requirements for expander phys. sci_base_state_machine_change_state( scic_sds_phy_get_starting_substate_machine(this_phy), SCIC_SDS_PHY_STARTING_SUBSTATE_FINAL ); } else { // We got the IAF we can now go to the await spinup semaphore state sci_base_state_machine_change_state( scic_sds_phy_get_starting_substate_machine(this_phy), SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SAS_POWER ); } result = SCI_SUCCESS; } else { SCIC_LOG_WARNING(( sci_base_object_get_logger(this_phy), SCIC_LOG_OBJECT_PHY | SCIC_LOG_OBJECT_UNSOLICITED_FRAMES, "PHY starting substate machine received unexpected frame id %x\n", frame_index )); } // Regardless of the result release this frame since we are done with it scic_sds_controller_release_frame( scic_sds_phy_get_controller(this_phy), frame_index ); return result; } /** * This method decodes the unsolicited frame when the SCIC_SDS_PHY is in the * SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SIG_FIS_UF. * - Get the UF Header * - If the UF is an SIGNATURE FIS * - Copy IAF data to local phy object SIGNATURE FIS data buffer. * - else * - log warning message of unexpected unsolicted frame * - release frame buffer * * @param[in] phy This is SCIC_SDS_PHY object which is being requested to * decode the frame data. * @param[in] frame_index This is the index of the unsolicited frame which was * received for this phy. * * @return SCI_STATUS * @retval SCI_SUCCESS * * @todo Must decode the SIGNATURE FIS data */ static SCI_STATUS scic_sds_phy_starting_substate_await_sig_fis_frame_handler( SCIC_SDS_PHY_T *this_phy, U32 frame_index ) { SCI_STATUS result; U32 * frame_words; SATA_FIS_HEADER_T * fis_frame_header; U32 * fis_frame_data; result = scic_sds_unsolicited_frame_control_get_header( &(scic_sds_phy_get_controller(this_phy)->uf_control), frame_index, (void **)&frame_words); if (result != SCI_SUCCESS) { return result; } fis_frame_header = (SATA_FIS_HEADER_T *)frame_words; if ( (fis_frame_header->fis_type == SATA_FIS_TYPE_REGD2H) && !(fis_frame_header->status & ATA_STATUS_REG_BSY_BIT) ) { scic_sds_unsolicited_frame_control_get_buffer( &(scic_sds_phy_get_controller(this_phy)->uf_control), frame_index, (void **)&fis_frame_data ); scic_sds_controller_copy_sata_response( &this_phy->phy_type.sata.signature_fis_buffer, frame_words, fis_frame_data ); // We got the IAF we can now go to the await spinup semaphore state sci_base_state_machine_change_state( scic_sds_phy_get_starting_substate_machine(this_phy), SCIC_SDS_PHY_STARTING_SUBSTATE_FINAL ); result = SCI_SUCCESS; } else { SCIC_LOG_WARNING(( sci_base_object_get_logger(this_phy), SCIC_LOG_OBJECT_PHY | SCIC_LOG_OBJECT_UNSOLICITED_FRAMES, "PHY starting substate machine received unexpected frame id %x\n", frame_index )); } // Regardless of the result release this frame since we are done with it scic_sds_controller_release_frame( scic_sds_phy_get_controller(this_phy), frame_index ); return result; } //***************************************************************************** //* SCIC SDS PHY POWER_HANDLERS //***************************************************************************** /** * This method is called by the SCIC_SDS_CONTROLLER when the phy object is * granted power. * - The notify enable spinups are turned on for this phy object * - The phy state machine is transitioned to the * SCIC_SDS_PHY_STARTING_SUBSTATE_FINAL. * * @param[in] phy This is the SCI_BASE_PHY object which is cast into a * SCIC_SDS_PHY object. * * @return SCI_STATUS * @retval SCI_SUCCESS */ static SCI_STATUS scic_sds_phy_starting_substate_await_sas_power_consume_power_handler( SCIC_SDS_PHY_T *this_phy ) { U32 enable_spinup; enable_spinup = SCU_SAS_ENSPINUP_READ(this_phy); enable_spinup |= SCU_ENSPINUP_GEN_BIT(ENABLE); SCU_SAS_ENSPINUP_WRITE(this_phy, enable_spinup); // Change state to the final state this substate machine has run to completion sci_base_state_machine_change_state( scic_sds_phy_get_starting_substate_machine(this_phy), SCIC_SDS_PHY_STARTING_SUBSTATE_FINAL ); return SCI_SUCCESS; } /** * This method is called by the SCIC_SDS_CONTROLLER when the phy object is * granted power. * - The phy state machine is transitioned to the * SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_PHY_EN. * * @param[in] phy This is the SCI_BASE_PHY object which is cast into a * SCIC_SDS_PHY object. * * @return SCI_STATUS * @retval SCI_SUCCESS */ static SCI_STATUS scic_sds_phy_starting_substate_await_sata_power_consume_power_handler( SCIC_SDS_PHY_T *this_phy ) { U32 scu_sas_pcfg_value; // Release the spinup hold state and reset the OOB state machine scu_sas_pcfg_value = SCU_SAS_PCFG_READ(this_phy); scu_sas_pcfg_value &= ~(SCU_SAS_PCFG_GEN_BIT(SATA_SPINUP_HOLD) | SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE)); scu_sas_pcfg_value |= SCU_SAS_PCFG_GEN_BIT(OOB_RESET); SCU_SAS_PCFG_WRITE(this_phy, scu_sas_pcfg_value); // Now restart the OOB operation scu_sas_pcfg_value &= ~SCU_SAS_PCFG_GEN_BIT(OOB_RESET); scu_sas_pcfg_value |= SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE); SCU_SAS_PCFG_WRITE(this_phy, scu_sas_pcfg_value); // Change state to the final state this substate machine has run to completion sci_base_state_machine_change_state( scic_sds_phy_get_starting_substate_machine(this_phy), SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_PHY_EN ); return SCI_SUCCESS; } // --------------------------------------------------------------------------- SCIC_SDS_PHY_STATE_HANDLER_T scic_sds_phy_starting_substate_handler_table[SCIC_SDS_PHY_STARTING_MAX_SUBSTATES] = { // SCIC_SDS_PHY_STARTING_SUBSTATE_INITIAL { { scic_sds_phy_default_start_handler, scic_sds_phy_starting_substate_general_stop_handler, scic_sds_phy_default_reset_handler, scic_sds_phy_default_destroy_handler }, scic_sds_phy_default_frame_handler, scic_sds_phy_default_event_handler, scic_sds_phy_default_consume_power_handler }, // SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_OSSP_EN { { scic_sds_phy_default_start_handler, scic_sds_phy_starting_substate_general_stop_handler, scic_sds_phy_default_reset_handler, scic_sds_phy_default_destroy_handler }, scic_sds_phy_default_frame_handler, scic_sds_phy_starting_substate_await_ossp_event_handler, scic_sds_phy_default_consume_power_handler }, // SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SAS_SPEED_EN { { scic_sds_phy_default_start_handler, scic_sds_phy_starting_substate_general_stop_handler, scic_sds_phy_default_reset_handler, scic_sds_phy_default_destroy_handler }, scic_sds_phy_default_frame_handler, scic_sds_phy_starting_substate_await_sas_phy_speed_event_handler, scic_sds_phy_default_consume_power_handler }, // SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_IAF_UF { { scic_sds_phy_default_start_handler, scic_sds_phy_default_stop_handler, scic_sds_phy_default_reset_handler, scic_sds_phy_default_destroy_handler }, scic_sds_phy_starting_substate_await_iaf_uf_frame_handler, scic_sds_phy_starting_substate_await_iaf_uf_event_handler, scic_sds_phy_default_consume_power_handler }, // SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SAS_POWER { { scic_sds_phy_default_start_handler, scic_sds_phy_starting_substate_general_stop_handler, scic_sds_phy_default_reset_handler, scic_sds_phy_default_destroy_handler }, scic_sds_phy_default_frame_handler, scic_sds_phy_starting_substate_await_sas_power_event_handler, scic_sds_phy_starting_substate_await_sas_power_consume_power_handler }, // SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_POWER, { { scic_sds_phy_default_start_handler, scic_sds_phy_starting_substate_general_stop_handler, scic_sds_phy_default_reset_handler, scic_sds_phy_default_destroy_handler }, scic_sds_phy_default_frame_handler, scic_sds_phy_starting_substate_await_sata_power_event_handler, scic_sds_phy_starting_substate_await_sata_power_consume_power_handler }, // SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_PHY_EN, { { scic_sds_phy_default_start_handler, scic_sds_phy_starting_substate_general_stop_handler, scic_sds_phy_default_reset_handler, scic_sds_phy_default_destroy_handler }, scic_sds_phy_default_frame_handler, scic_sds_phy_starting_substate_await_sata_phy_event_handler, scic_sds_phy_default_consume_power_handler }, // SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_SPEED_EN, { { scic_sds_phy_default_start_handler, scic_sds_phy_starting_substate_general_stop_handler, scic_sds_phy_default_reset_handler, scic_sds_phy_default_destroy_handler }, scic_sds_phy_default_frame_handler, scic_sds_phy_starting_substate_await_sata_speed_event_handler, scic_sds_phy_default_consume_power_handler }, // SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SIG_FIS_UF, { { scic_sds_phy_default_start_handler, scic_sds_phy_starting_substate_general_stop_handler, scic_sds_phy_default_reset_handler, scic_sds_phy_default_destroy_handler }, scic_sds_phy_starting_substate_await_sig_fis_frame_handler, scic_sds_phy_starting_substate_await_sig_fis_event_handler, scic_sds_phy_default_consume_power_handler }, // SCIC_SDS_PHY_STARTING_SUBSTATE_FINAL { { scic_sds_phy_default_start_handler, scic_sds_phy_starting_substate_general_stop_handler, scic_sds_phy_default_reset_handler, scic_sds_phy_default_destroy_handler }, scic_sds_phy_default_frame_handler, scic_sds_phy_default_event_handler, scic_sds_phy_default_consume_power_handler } }; /** * This macro sets the starting substate handlers by state_id */ #define scic_sds_phy_set_starting_substate_handlers(phy, state_id) \ scic_sds_phy_set_state_handlers( \ (phy), \ &scic_sds_phy_starting_substate_handler_table[(state_id)] \ ) //**************************************************************************** //* PHY STARTING SUBSTATE METHODS //**************************************************************************** /** * This method will perform the actions required by the SCIC_SDS_PHY on * entering the SCIC_SDS_PHY_STARTING_SUBSTATE_INITIAL. * - The initial state handlers are put in place for the SCIC_SDS_PHY * object. * - The state is changed to the wait phy type event notification. * * @param[in] object This is the SCI_BASE_OBJECT which is cast to a * SCIC_SDS_PHY object. * * @return none */ static void scic_sds_phy_starting_initial_substate_enter( SCI_BASE_OBJECT_T *object ) { SCIC_SDS_PHY_T *this_phy; this_phy = (SCIC_SDS_PHY_T *)object; scic_sds_phy_set_starting_substate_handlers( this_phy, SCIC_SDS_PHY_STARTING_SUBSTATE_INITIAL); // This is just an temporary state go off to the starting state sci_base_state_machine_change_state( scic_sds_phy_get_starting_substate_machine(this_phy), SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_OSSP_EN ); } /** * This method will perform the actions required by the SCIC_SDS_PHY on * entering the SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_PHY_TYPE_EN. * - Set the SCIC_SDS_PHY object state handlers for this state. * * @param[in] object This is the SCI_BASE_OBJECT which is cast to a * SCIC_SDS_PHY object. * * @return none */ static void scic_sds_phy_starting_await_ossp_en_substate_enter( SCI_BASE_OBJECT_T *object ) { SCIC_SDS_PHY_T *this_phy; this_phy = (SCIC_SDS_PHY_T *)object; scic_sds_phy_set_starting_substate_handlers( this_phy, SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_OSSP_EN ); } /** * This method will perform the actions required by the SCIC_SDS_PHY on * entering the SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SPEED_EN. * - Set the SCIC_SDS_PHY object state handlers for this state. * * @param[in] object This is the SCI_BASE_OBJECT which is cast to a * SCIC_SDS_PHY object. * * @return none */ static void scic_sds_phy_starting_await_sas_speed_en_substate_enter( SCI_BASE_OBJECT_T *object ) { SCIC_SDS_PHY_T *this_phy; this_phy = (SCIC_SDS_PHY_T *)object; scic_sds_phy_set_starting_substate_handlers( this_phy, SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SAS_SPEED_EN ); } /** * This method will perform the actions required by the SCIC_SDS_PHY on * entering the SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_IAF_UF. * - Set the SCIC_SDS_PHY object state handlers for this state. * * @param[in] object This is the SCI_BASE_OBJECT which is cast to a * SCIC_SDS_PHY object. * * @return none */ static void scic_sds_phy_starting_await_iaf_uf_substate_enter( SCI_BASE_OBJECT_T *object ) { SCIC_SDS_PHY_T *this_phy; this_phy = (SCIC_SDS_PHY_T *)object; scic_sds_phy_set_starting_substate_handlers( this_phy, SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_IAF_UF ); } /** * This method will perform the actions required by the SCIC_SDS_PHY on * entering the SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SAS_POWER. * - Set the SCIC_SDS_PHY object state handlers for this state. * - Add this phy object to the power control queue * * @param[in] object This is the SCI_BASE_OBJECT which is cast to a * SCIC_SDS_PHY object. * * @return none */ static void scic_sds_phy_starting_await_sas_power_substate_enter( SCI_BASE_OBJECT_T *object ) { SCIC_SDS_PHY_T *this_phy; this_phy = (SCIC_SDS_PHY_T *)object; scic_sds_phy_set_starting_substate_handlers( this_phy, SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SAS_POWER ); scic_sds_controller_power_control_queue_insert( scic_sds_phy_get_controller(this_phy), this_phy ); } /** * This method will perform the actions required by the SCIC_SDS_PHY on * exiting the SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SAS_POWER. * - Remove the SCIC_SDS_PHY object from the power control queue. * * @param[in] object This is the SCI_BASE_OBJECT which is cast to a * SCIC_SDS_PHY object. * * @return none */ static void scic_sds_phy_starting_await_sas_power_substate_exit( SCI_BASE_OBJECT_T *object ) { SCIC_SDS_PHY_T *this_phy; this_phy = (SCIC_SDS_PHY_T *)object; scic_sds_controller_power_control_queue_remove( scic_sds_phy_get_controller(this_phy), this_phy ); } /** * This method will perform the actions required by the SCIC_SDS_PHY on * entering the SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_POWER. * - Set the SCIC_SDS_PHY object state handlers for this state. * - Add this phy object to the power control queue * * @param[in] object This is the SCI_BASE_OBJECT which is cast to a * SCIC_SDS_PHY object. * * @return none */ static void scic_sds_phy_starting_await_sata_power_substate_enter( SCI_BASE_OBJECT_T *object ) { SCIC_SDS_PHY_T *this_phy; this_phy = (SCIC_SDS_PHY_T *)object; scic_sds_phy_set_starting_substate_handlers( this_phy, SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_POWER ); scic_sds_controller_power_control_queue_insert( scic_sds_phy_get_controller(this_phy), this_phy ); } /** * This method will perform the actions required by the SCIC_SDS_PHY on * exiting the SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_POWER. * - Remove the SCIC_SDS_PHY object from the power control queue. * * @param[in] object This is the SCI_BASE_OBJECT which is cast to a * SCIC_SDS_PHY object. * * @return none */ static void scic_sds_phy_starting_await_sata_power_substate_exit( SCI_BASE_OBJECT_T *object ) { SCIC_SDS_PHY_T *this_phy; this_phy = (SCIC_SDS_PHY_T *)object; scic_sds_controller_power_control_queue_remove( scic_sds_phy_get_controller(this_phy), this_phy ); } /** * This method will perform the actions required by the SCIC_SDS_PHY on * entering the SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_PHY_EN. * - Set the SCIC_SDS_PHY object state handlers for this state. * * @param[in] object This is the SCI_BASE_OBJECT which is cast to a * SCIC_SDS_PHY object. * * @return none */ static void scic_sds_phy_starting_await_sata_phy_substate_enter( SCI_BASE_OBJECT_T *object ) { SCIC_SDS_PHY_T *this_phy; this_phy = (SCIC_SDS_PHY_T *)object; scic_sds_phy_set_starting_substate_handlers( this_phy, SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_PHY_EN ); scic_cb_timer_start( scic_sds_phy_get_controller(this_phy), this_phy->sata_timeout_timer, SCIC_SDS_SATA_LINK_TRAINING_TIMEOUT ); } /** * This method will perform the actions required by the SCIC_SDS_PHY on * exiting the SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_SPEED_EN. * - stop the timer that was started on entry to await sata phy * event notification * * @param[in] object This is the SCI_BASE_OBJECT which is cast to a * SCIC_SDS_PHY object. * * @return none */ static void scic_sds_phy_starting_await_sata_phy_substate_exit( SCI_BASE_OBJECT_T *object ) { SCIC_SDS_PHY_T *this_phy; this_phy = (SCIC_SDS_PHY_T *)object; scic_cb_timer_stop( scic_sds_phy_get_controller(this_phy), this_phy->sata_timeout_timer ); } /** * This method will perform the actions required by the SCIC_SDS_PHY on * entering the SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_SPEED_EN. * - Set the SCIC_SDS_PHY object state handlers for this state. * * @param[in] object This is the SCI_BASE_OBJECT which is cast to a * SCIC_SDS_PHY object. * * @return none */ static void scic_sds_phy_starting_await_sata_speed_substate_enter( SCI_BASE_OBJECT_T *object ) { SCIC_SDS_PHY_T *this_phy; this_phy = (SCIC_SDS_PHY_T *)object; scic_sds_phy_set_starting_substate_handlers( this_phy, SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_SPEED_EN ); scic_cb_timer_start( scic_sds_phy_get_controller(this_phy), this_phy->sata_timeout_timer, SCIC_SDS_SATA_LINK_TRAINING_TIMEOUT ); } /** * This method will perform the actions required by the SCIC_SDS_PHY on * exiting the SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_SPEED_EN. * - stop the timer that was started on entry to await sata phy * event notification * * @param[in] object This is the SCI_BASE_OBJECT which is cast to a * SCIC_SDS_PHY object. * * @return none */ static void scic_sds_phy_starting_await_sata_speed_substate_exit( SCI_BASE_OBJECT_T *object ) { SCIC_SDS_PHY_T *this_phy; this_phy = (SCIC_SDS_PHY_T *)object; scic_cb_timer_stop( scic_sds_phy_get_controller(this_phy), this_phy->sata_timeout_timer ); } /** * This method will perform the actions required by the SCIC_SDS_PHY on * entering the SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SIG_FIS_UF. * - Set the SCIC_SDS_PHY object state handlers for this state. * - Start the SIGNATURE FIS timeout timer * * @param[in] object This is the SCI_BASE_OBJECT which is cast to a * SCIC_SDS_PHY object. * * @return none */ static void scic_sds_phy_starting_await_sig_fis_uf_substate_enter( SCI_BASE_OBJECT_T *object ) { BOOL continue_to_ready_state; SCIC_SDS_PHY_T * this_phy; this_phy = (SCIC_SDS_PHY_T *)object; scic_sds_phy_set_starting_substate_handlers( this_phy, SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SIG_FIS_UF ); continue_to_ready_state = scic_sds_port_link_detected( this_phy->owning_port, this_phy ); if (continue_to_ready_state) { // Clear the PE suspend condition so we can actually receive SIG FIS // The hardware will not respond to the XRDY until the PE suspend // condition is cleared. scic_sds_phy_resume(this_phy); scic_cb_timer_start( scic_sds_phy_get_controller(this_phy), this_phy->sata_timeout_timer, SCIC_SDS_SIGNATURE_FIS_TIMEOUT ); } else { this_phy->is_in_link_training = FALSE; } } /** * This method will perform the actions required by the SCIC_SDS_PHY on * exiting the SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SIG_FIS_UF. * - Stop the SIGNATURE FIS timeout timer. * * @param[in] object This is the SCI_BASE_OBJECT which is cast to a * SCIC_SDS_PHY object. * * @return none */ static void scic_sds_phy_starting_await_sig_fis_uf_substate_exit( SCI_BASE_OBJECT_T *object ) { SCIC_SDS_PHY_T *this_phy; this_phy = (SCIC_SDS_PHY_T *)object; scic_cb_timer_stop( scic_sds_phy_get_controller(this_phy), this_phy->sata_timeout_timer ); } /** * This method will perform the actions required by the SCIC_SDS_PHY on * entering the SCIC_SDS_PHY_STARTING_SUBSTATE_FINAL. * - Set the SCIC_SDS_PHY object state handlers for this state. * - Change base state machine to the ready state. * * @param[in] object This is the SCI_BASE_OBJECT which is cast to a * SCIC_SDS_PHY object. * * @return none */ static void scic_sds_phy_starting_final_substate_enter( SCI_BASE_OBJECT_T *object ) { SCIC_SDS_PHY_T *this_phy; this_phy = (SCIC_SDS_PHY_T *)object; scic_sds_phy_set_starting_substate_handlers( this_phy, SCIC_SDS_PHY_STARTING_SUBSTATE_FINAL ); // State machine has run to completion so exit out and change // the base state machine to the ready state sci_base_state_machine_change_state( scic_sds_phy_get_base_state_machine(this_phy), SCI_BASE_PHY_STATE_READY); } // --------------------------------------------------------------------------- SCI_BASE_STATE_T scic_sds_phy_starting_substates[SCIC_SDS_PHY_STARTING_MAX_SUBSTATES] = { { SCIC_SDS_PHY_STARTING_SUBSTATE_INITIAL, scic_sds_phy_starting_initial_substate_enter, NULL, }, { SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_OSSP_EN, scic_sds_phy_starting_await_ossp_en_substate_enter, NULL, }, { SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SAS_SPEED_EN, scic_sds_phy_starting_await_sas_speed_en_substate_enter, NULL, }, { SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_IAF_UF, scic_sds_phy_starting_await_iaf_uf_substate_enter, NULL, }, { SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SAS_POWER, scic_sds_phy_starting_await_sas_power_substate_enter, scic_sds_phy_starting_await_sas_power_substate_exit, }, { SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_POWER, scic_sds_phy_starting_await_sata_power_substate_enter, scic_sds_phy_starting_await_sata_power_substate_exit }, { SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_PHY_EN, scic_sds_phy_starting_await_sata_phy_substate_enter, scic_sds_phy_starting_await_sata_phy_substate_exit }, { SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SATA_SPEED_EN, scic_sds_phy_starting_await_sata_speed_substate_enter, scic_sds_phy_starting_await_sata_speed_substate_exit }, { SCIC_SDS_PHY_STARTING_SUBSTATE_AWAIT_SIG_FIS_UF, scic_sds_phy_starting_await_sig_fis_uf_substate_enter, scic_sds_phy_starting_await_sig_fis_uf_substate_exit }, { SCIC_SDS_PHY_STARTING_SUBSTATE_FINAL, scic_sds_phy_starting_final_substate_enter, NULL, } };