/*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2013 The FreeBSD Foundation * * This software was developed by Konstantin Belousov * under sponsorship from the FreeBSD Foundation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #define RB_AUGMENT_CHECK(entry) iommu_gas_augment_entry(entry) #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Guest Address Space management. */ static uma_zone_t iommu_map_entry_zone; #ifdef INVARIANTS static int iommu_check_free; #endif static void intel_gas_init(void) { iommu_map_entry_zone = uma_zcreate("IOMMU_MAP_ENTRY", sizeof(struct iommu_map_entry), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NODUMP); } SYSINIT(intel_gas, SI_SUB_DRIVERS, SI_ORDER_FIRST, intel_gas_init, NULL); struct iommu_map_entry * iommu_gas_alloc_entry(struct iommu_domain *domain, u_int flags) { struct iommu_map_entry *res; KASSERT((flags & ~(IOMMU_PGF_WAITOK)) == 0, ("unsupported flags %x", flags)); res = uma_zalloc(iommu_map_entry_zone, ((flags & IOMMU_PGF_WAITOK) != 0 ? M_WAITOK : M_NOWAIT) | M_ZERO); if (res != NULL && domain != NULL) { res->domain = domain; atomic_add_int(&domain->entries_cnt, 1); } return (res); } void iommu_gas_free_entry(struct iommu_map_entry *entry) { struct iommu_domain *domain; domain = entry->domain; if (domain != NULL) atomic_subtract_int(&domain->entries_cnt, 1); uma_zfree(iommu_map_entry_zone, entry); } static int iommu_gas_cmp_entries(struct iommu_map_entry *a, struct iommu_map_entry *b) { /* Last entry have zero size, so <= */ KASSERT(a->start <= a->end, ("inverted entry %p (%jx, %jx)", a, (uintmax_t)a->start, (uintmax_t)a->end)); KASSERT(b->start <= b->end, ("inverted entry %p (%jx, %jx)", b, (uintmax_t)b->start, (uintmax_t)b->end)); KASSERT(a->end <= b->start || b->end <= a->start || a->end == a->start || b->end == b->start, ("overlapping entries %p (%jx, %jx) %p (%jx, %jx)", a, (uintmax_t)a->start, (uintmax_t)a->end, b, (uintmax_t)b->start, (uintmax_t)b->end)); if (a->end < b->end) return (-1); else if (b->end < a->end) return (1); return (0); } /* * Update augmentation data based on data from children. * Return true if and only if the update changes the augmentation data. */ static bool iommu_gas_augment_entry(struct iommu_map_entry *entry) { struct iommu_map_entry *child; iommu_gaddr_t bound, delta, free_down; free_down = 0; bound = entry->start; if ((child = RB_LEFT(entry, rb_entry)) != NULL) { free_down = MAX(child->free_down, bound - child->last); bound = child->first; } delta = bound - entry->first; entry->first = bound; bound = entry->end; if ((child = RB_RIGHT(entry, rb_entry)) != NULL) { free_down = MAX(free_down, child->free_down); free_down = MAX(free_down, child->first - bound); bound = child->last; } delta += entry->last - bound; if (delta == 0) delta = entry->free_down - free_down; entry->last = bound; entry->free_down = free_down; /* * Return true either if the value of last-first changed, * or if free_down changed. */ return (delta != 0); } RB_GENERATE(iommu_gas_entries_tree, iommu_map_entry, rb_entry, iommu_gas_cmp_entries); #ifdef INVARIANTS static void iommu_gas_check_free(struct iommu_domain *domain) { struct iommu_map_entry *entry, *l, *r; iommu_gaddr_t v; RB_FOREACH(entry, iommu_gas_entries_tree, &domain->rb_root) { KASSERT(domain == entry->domain, ("mismatched free domain %p entry %p entry->domain %p", domain, entry, entry->domain)); l = RB_LEFT(entry, rb_entry); r = RB_RIGHT(entry, rb_entry); v = 0; if (l != NULL) { v = MAX(v, l->free_down); v = MAX(v, entry->start - l->last); } if (r != NULL) { v = MAX(v, r->free_down); v = MAX(v, r->first - entry->end); } MPASS(entry->free_down == v); } } #endif static void iommu_gas_rb_remove(struct iommu_domain *domain, struct iommu_map_entry *entry) { struct iommu_map_entry *nbr; /* Removing entry may open a new free gap before domain->start_gap. */ if (entry->end <= domain->start_gap->end) { if (RB_RIGHT(entry, rb_entry) != NULL) nbr = iommu_gas_entries_tree_RB_NEXT(entry); else if (RB_LEFT(entry, rb_entry) != NULL) nbr = RB_LEFT(entry, rb_entry); else nbr = RB_PARENT(entry, rb_entry); domain->start_gap = nbr; } RB_REMOVE(iommu_gas_entries_tree, &domain->rb_root, entry); } struct iommu_domain * iommu_get_ctx_domain(struct iommu_ctx *ctx) { return (ctx->domain); } void iommu_gas_init_domain(struct iommu_domain *domain) { struct iommu_map_entry *begin, *end; begin = iommu_gas_alloc_entry(domain, IOMMU_PGF_WAITOK); end = iommu_gas_alloc_entry(domain, IOMMU_PGF_WAITOK); IOMMU_DOMAIN_LOCK(domain); KASSERT(domain->entries_cnt == 2, ("dirty domain %p", domain)); KASSERT(RB_EMPTY(&domain->rb_root), ("non-empty entries %p", domain)); /* * The end entry must be inserted first because it has a zero-length gap * between start and end. Initially, all augmentation data for a new * entry is zero. Function iommu_gas_augment_entry will compute no * change in the value of (start-end) and no change in the value of * free_down, so it will return false to suggest that nothing changed in * the entry. Thus, inserting the end entry second prevents * augmentation information to be propogated to the begin entry at the * tree root. So it is inserted first. */ end->start = domain->end; end->end = domain->end; end->flags = IOMMU_MAP_ENTRY_PLACE | IOMMU_MAP_ENTRY_UNMAPPED; RB_INSERT(iommu_gas_entries_tree, &domain->rb_root, end); begin->start = 0; begin->end = IOMMU_PAGE_SIZE; begin->flags = IOMMU_MAP_ENTRY_PLACE | IOMMU_MAP_ENTRY_UNMAPPED; RB_INSERT_PREV(iommu_gas_entries_tree, &domain->rb_root, end, begin); domain->start_gap = end; domain->first_place = begin; domain->last_place = end; domain->flags |= IOMMU_DOMAIN_GAS_INITED; IOMMU_DOMAIN_UNLOCK(domain); } void iommu_gas_fini_domain(struct iommu_domain *domain) { struct iommu_map_entry *entry; IOMMU_DOMAIN_ASSERT_LOCKED(domain); KASSERT(domain->entries_cnt == 2, ("domain still in use %p", domain)); entry = RB_MIN(iommu_gas_entries_tree, &domain->rb_root); KASSERT(entry->start == 0, ("start entry start %p", domain)); KASSERT(entry->end == IOMMU_PAGE_SIZE, ("start entry end %p", domain)); KASSERT(entry->flags == (IOMMU_MAP_ENTRY_PLACE | IOMMU_MAP_ENTRY_UNMAPPED), ("start entry flags %p", domain)); iommu_gas_rb_remove(domain, entry); iommu_gas_free_entry(entry); entry = RB_MAX(iommu_gas_entries_tree, &domain->rb_root); KASSERT(entry->start == domain->end, ("end entry start %p", domain)); KASSERT(entry->end == domain->end, ("end entry end %p", domain)); KASSERT(entry->flags == (IOMMU_MAP_ENTRY_PLACE | IOMMU_MAP_ENTRY_UNMAPPED), ("end entry flags %p", domain)); iommu_gas_rb_remove(domain, entry); iommu_gas_free_entry(entry); } struct iommu_gas_match_args { iommu_gaddr_t size; int offset; const struct bus_dma_tag_common *common; u_int gas_flags; struct iommu_map_entry *entry; }; /* * The interval [beg, end) is a free interval between two iommu_map_entries. * Addresses can be allocated only in the range [lbound, ubound). Try to * allocate space in the free interval, subject to the conditions expressed by * a, and return 'true' if and only if the allocation attempt succeeds. */ static bool iommu_gas_match_one(struct iommu_gas_match_args *a, iommu_gaddr_t beg, iommu_gaddr_t end, iommu_gaddr_t lbound, iommu_gaddr_t ubound) { struct iommu_map_entry *entry; iommu_gaddr_t first, size, start; int offset; /* * The prev->end is always aligned on the page size, which * causes page alignment for the entry->start too. * * Create IOMMU_PAGE_SIZE gaps before, after new entry * to ensure that out-of-bounds accesses fault. */ beg = MAX(beg + IOMMU_PAGE_SIZE, lbound); start = roundup2(beg, a->common->alignment); if (start < beg) return (false); end = MIN(end - IOMMU_PAGE_SIZE, ubound); offset = a->offset; size = a->size; if (start + offset + size > end) return (false); /* Check for and try to skip past boundary crossing. */ if (!vm_addr_bound_ok(start + offset, size, a->common->boundary)) { /* * The start + offset to start + offset + size region crosses * the boundary. Check if there is enough space after the next * boundary after the beg. */ first = start; beg = roundup2(start + offset + 1, a->common->boundary); start = roundup2(beg, a->common->alignment); if (start + offset + size > end || !vm_addr_bound_ok(start + offset, size, a->common->boundary)) { /* * Not enough space to align at the requested boundary, * or boundary is smaller than the size, but allowed to * split. We already checked that start + size does not * overlap ubound. * * XXXKIB. It is possible that beg is exactly at the * start of the next entry, then we do not have gap. * Ignore for now. */ if ((a->gas_flags & IOMMU_MF_CANSPLIT) == 0) return (false); size = beg - first - offset; start = first; } } entry = a->entry; entry->start = start; entry->end = start + roundup2(size + offset, IOMMU_PAGE_SIZE); entry->flags = IOMMU_MAP_ENTRY_MAP; return (true); } /* Find the next entry that might abut a big-enough range. */ static struct iommu_map_entry * iommu_gas_next(struct iommu_map_entry *curr, iommu_gaddr_t min_free) { struct iommu_map_entry *next; if ((next = RB_RIGHT(curr, rb_entry)) != NULL && next->free_down >= min_free) { /* Find next entry in right subtree. */ do curr = next; while ((next = RB_LEFT(curr, rb_entry)) != NULL && next->free_down >= min_free); } else { /* Find next entry in a left-parent ancestor. */ while ((next = RB_PARENT(curr, rb_entry)) != NULL && curr == RB_RIGHT(next, rb_entry)) curr = next; curr = next; } return (curr); } /* * Address-ordered first-fit search of 'domain' for free space satisfying the * conditions of 'a'. The space allocated is at least one page big, and is * bounded by guard pages to the left and right. The allocated space for * 'domain' is described by an rb-tree of map entries at domain->rb_root, and * domain->start_gap points to a map entry less than or adjacent to the first * free-space of size at least 3 pages. */ static int iommu_gas_find_space(struct iommu_domain *domain, struct iommu_gas_match_args *a) { struct iommu_map_entry *curr, *first; iommu_gaddr_t addr, min_free; IOMMU_DOMAIN_ASSERT_LOCKED(domain); KASSERT(a->entry->flags == 0, ("dirty entry %p %p", domain, a->entry)); /* * start_gap may point to an entry adjacent to gaps too small for any * new allocation. In that case, advance start_gap to the first free * space big enough for a minimum allocation plus two guard pages. */ min_free = 3 * IOMMU_PAGE_SIZE; first = domain->start_gap; while (first != NULL && first->free_down < min_free) first = RB_PARENT(first, rb_entry); for (curr = first; curr != NULL; curr = iommu_gas_next(curr, min_free)) { if ((first = RB_LEFT(curr, rb_entry)) != NULL && first->last + min_free <= curr->start) break; if ((first = RB_RIGHT(curr, rb_entry)) != NULL && curr->end + min_free <= first->first) break; } domain->start_gap = curr; /* * If the subtree doesn't have free space for the requested allocation * plus two guard pages, skip it. */ min_free = 2 * IOMMU_PAGE_SIZE + roundup2(a->size + a->offset, IOMMU_PAGE_SIZE); /* Climb to find a node in the subtree of big-enough ranges. */ first = curr; while (first != NULL && first->free_down < min_free) first = RB_PARENT(first, rb_entry); /* * Walk the big-enough ranges tree until one satisfies alignment * requirements, or violates lowaddr address requirement. */ addr = a->common->lowaddr + 1; for (curr = first; curr != NULL; curr = iommu_gas_next(curr, min_free)) { if ((first = RB_LEFT(curr, rb_entry)) != NULL && iommu_gas_match_one(a, first->last, curr->start, 0, addr)) { RB_INSERT_PREV(iommu_gas_entries_tree, &domain->rb_root, curr, a->entry); return (0); } if (curr->end >= addr) { /* All remaining ranges >= addr */ break; } if ((first = RB_RIGHT(curr, rb_entry)) != NULL && iommu_gas_match_one(a, curr->end, first->first, 0, addr)) { RB_INSERT_NEXT(iommu_gas_entries_tree, &domain->rb_root, curr, a->entry); return (0); } } /* * To resume the search at the start of the upper region, first climb to * the nearest ancestor that spans highaddr. Then find the last entry * before highaddr that could abut a big-enough range. */ addr = a->common->highaddr; while (curr != NULL && curr->last < addr) curr = RB_PARENT(curr, rb_entry); first = NULL; while (curr != NULL && curr->free_down >= min_free) { if (addr < curr->end) curr = RB_LEFT(curr, rb_entry); else { first = curr; curr = RB_RIGHT(curr, rb_entry); } } /* * Walk the remaining big-enough ranges until one satisfies alignment * requirements. */ for (curr = first; curr != NULL; curr = iommu_gas_next(curr, min_free)) { if ((first = RB_LEFT(curr, rb_entry)) != NULL && iommu_gas_match_one(a, first->last, curr->start, addr + 1, domain->end)) { RB_INSERT_PREV(iommu_gas_entries_tree, &domain->rb_root, curr, a->entry); return (0); } if ((first = RB_RIGHT(curr, rb_entry)) != NULL && iommu_gas_match_one(a, curr->end, first->first, addr + 1, domain->end)) { RB_INSERT_NEXT(iommu_gas_entries_tree, &domain->rb_root, curr, a->entry); return (0); } } return (ENOMEM); } static int iommu_gas_alloc_region(struct iommu_domain *domain, struct iommu_map_entry *entry, u_int flags) { struct iommu_map_entry *next, *prev; IOMMU_DOMAIN_ASSERT_LOCKED(domain); if ((entry->start & IOMMU_PAGE_MASK) != 0 || (entry->end & IOMMU_PAGE_MASK) != 0) return (EINVAL); if (entry->start >= entry->end) return (EINVAL); if (entry->end >= domain->end) return (EINVAL); next = RB_NFIND(iommu_gas_entries_tree, &domain->rb_root, entry); KASSERT(next != NULL, ("next must be non-null %p %jx", domain, (uintmax_t)entry->start)); prev = RB_PREV(iommu_gas_entries_tree, &domain->rb_root, next); /* prev could be NULL */ /* * Adapt to broken BIOSes which specify overlapping RMRR * entries. * * XXXKIB: this does not handle a case when prev or next * entries are completely covered by the current one, which * extends both ways. */ if (prev != NULL && prev->end > entry->start && (prev->flags & IOMMU_MAP_ENTRY_PLACE) == 0) { if ((flags & IOMMU_MF_RMRR) == 0 || (prev->flags & IOMMU_MAP_ENTRY_RMRR) == 0) return (EBUSY); entry->start = prev->end; } if (next->start < entry->end && (next->flags & IOMMU_MAP_ENTRY_PLACE) == 0) { if ((flags & IOMMU_MF_RMRR) == 0 || (next->flags & IOMMU_MAP_ENTRY_RMRR) == 0) return (EBUSY); entry->end = next->start; } if (entry->end == entry->start) return (0); if (prev != NULL && prev->end > entry->start) { /* This assumes that prev is the placeholder entry. */ iommu_gas_rb_remove(domain, prev); prev = NULL; } RB_INSERT_PREV(iommu_gas_entries_tree, &domain->rb_root, next, entry); if (next->start < entry->end) { iommu_gas_rb_remove(domain, next); next = NULL; } if ((flags & IOMMU_MF_RMRR) != 0) entry->flags = IOMMU_MAP_ENTRY_RMRR; #ifdef INVARIANTS struct iommu_map_entry *ip, *in; ip = RB_PREV(iommu_gas_entries_tree, &domain->rb_root, entry); in = RB_NEXT(iommu_gas_entries_tree, &domain->rb_root, entry); KASSERT(prev == NULL || ip == prev, ("RMRR %p (%jx %jx) prev %p (%jx %jx) ins prev %p (%jx %jx)", entry, entry->start, entry->end, prev, prev == NULL ? 0 : prev->start, prev == NULL ? 0 : prev->end, ip, ip == NULL ? 0 : ip->start, ip == NULL ? 0 : ip->end)); KASSERT(next == NULL || in == next, ("RMRR %p (%jx %jx) next %p (%jx %jx) ins next %p (%jx %jx)", entry, entry->start, entry->end, next, next == NULL ? 0 : next->start, next == NULL ? 0 : next->end, in, in == NULL ? 0 : in->start, in == NULL ? 0 : in->end)); #endif return (0); } void iommu_gas_free_space(struct iommu_map_entry *entry) { struct iommu_domain *domain; domain = entry->domain; KASSERT((entry->flags & (IOMMU_MAP_ENTRY_PLACE | IOMMU_MAP_ENTRY_RMRR | IOMMU_MAP_ENTRY_MAP)) == IOMMU_MAP_ENTRY_MAP, ("permanent entry %p %p", domain, entry)); IOMMU_DOMAIN_LOCK(domain); iommu_gas_rb_remove(domain, entry); entry->flags &= ~IOMMU_MAP_ENTRY_MAP; #ifdef INVARIANTS if (iommu_check_free) iommu_gas_check_free(domain); #endif IOMMU_DOMAIN_UNLOCK(domain); } void iommu_gas_free_region(struct iommu_map_entry *entry) { struct iommu_domain *domain; domain = entry->domain; KASSERT((entry->flags & (IOMMU_MAP_ENTRY_PLACE | IOMMU_MAP_ENTRY_RMRR | IOMMU_MAP_ENTRY_MAP)) == IOMMU_MAP_ENTRY_RMRR, ("non-RMRR entry %p %p", domain, entry)); IOMMU_DOMAIN_LOCK(domain); if (entry != domain->first_place && entry != domain->last_place) iommu_gas_rb_remove(domain, entry); entry->flags &= ~IOMMU_MAP_ENTRY_RMRR; IOMMU_DOMAIN_UNLOCK(domain); } static struct iommu_map_entry * iommu_gas_remove_clip_left(struct iommu_domain *domain, iommu_gaddr_t start, iommu_gaddr_t end, struct iommu_map_entry **r) { struct iommu_map_entry *entry, *res, fentry; IOMMU_DOMAIN_ASSERT_LOCKED(domain); MPASS(start <= end); MPASS(end <= domain->end); /* * Find an entry which contains the supplied guest's address * start, or the first entry after the start. Since we * asserted that start is below domain end, entry should * exist. Then clip it if needed. */ fentry.start = start + 1; fentry.end = start + 1; entry = RB_NFIND(iommu_gas_entries_tree, &domain->rb_root, &fentry); if (entry->start >= start || (entry->flags & IOMMU_MAP_ENTRY_RMRR) != 0) return (entry); res = *r; *r = NULL; *res = *entry; res->start = entry->end = start; RB_UPDATE_AUGMENT(entry, rb_entry); RB_INSERT_NEXT(iommu_gas_entries_tree, &domain->rb_root, entry, res); return (res); } static bool iommu_gas_remove_clip_right(struct iommu_domain *domain, iommu_gaddr_t end, struct iommu_map_entry *entry, struct iommu_map_entry *r) { if (entry->start >= end || (entry->flags & IOMMU_MAP_ENTRY_RMRR) != 0) return (false); *r = *entry; r->end = entry->start = end; RB_UPDATE_AUGMENT(entry, rb_entry); RB_INSERT_PREV(iommu_gas_entries_tree, &domain->rb_root, entry, r); return (true); } static void iommu_gas_remove_unmap(struct iommu_domain *domain, struct iommu_map_entry *entry, struct iommu_map_entries_tailq *gcp) { IOMMU_DOMAIN_ASSERT_LOCKED(domain); if ((entry->flags & (IOMMU_MAP_ENTRY_UNMAPPED | IOMMU_MAP_ENTRY_REMOVING)) != 0) return; MPASS((entry->flags & IOMMU_MAP_ENTRY_PLACE) == 0); entry->flags |= IOMMU_MAP_ENTRY_REMOVING; TAILQ_INSERT_TAIL(gcp, entry, dmamap_link); } /* * Remove specified range from the GAS of the domain. Note that the * removal is not guaranteed to occur upon the function return, it * might be finalized some time after, when hardware reports that * (queued) IOTLB invalidation was performed. */ void iommu_gas_remove(struct iommu_domain *domain, iommu_gaddr_t start, iommu_gaddr_t size) { struct iommu_map_entry *entry, *nentry, *r1, *r2; struct iommu_map_entries_tailq gc; iommu_gaddr_t end; end = start + size; r1 = iommu_gas_alloc_entry(domain, IOMMU_PGF_WAITOK); r2 = iommu_gas_alloc_entry(domain, IOMMU_PGF_WAITOK); TAILQ_INIT(&gc); IOMMU_DOMAIN_LOCK(domain); nentry = iommu_gas_remove_clip_left(domain, start, end, &r1); RB_FOREACH_FROM(entry, iommu_gas_entries_tree, nentry) { if (entry->start >= end) break; KASSERT(start <= entry->start, ("iommu_gas_remove entry (%#jx, %#jx) start %#jx", entry->start, entry->end, start)); if ((entry->flags & IOMMU_MAP_ENTRY_RMRR) != 0) continue; iommu_gas_remove_unmap(domain, entry, &gc); } if (iommu_gas_remove_clip_right(domain, end, entry, r2)) { iommu_gas_remove_unmap(domain, r2, &gc); r2 = NULL; } #ifdef INVARIANTS RB_FOREACH(entry, iommu_gas_entries_tree, &domain->rb_root) { if ((entry->flags & IOMMU_MAP_ENTRY_RMRR) != 0) continue; KASSERT(entry->end <= start || entry->start >= end, ("iommu_gas_remove leftover entry (%#jx, %#jx) range " "(%#jx, %#jx)", entry->start, entry->end, start, end)); } #endif IOMMU_DOMAIN_UNLOCK(domain); if (r1 != NULL) iommu_gas_free_entry(r1); if (r2 != NULL) iommu_gas_free_entry(r2); iommu_domain_unload(domain, &gc, true); } int iommu_gas_map(struct iommu_domain *domain, const struct bus_dma_tag_common *common, iommu_gaddr_t size, int offset, u_int eflags, u_int flags, vm_page_t *ma, struct iommu_map_entry **res) { struct iommu_gas_match_args a; struct iommu_map_entry *entry; int error; KASSERT((flags & ~(IOMMU_MF_CANWAIT | IOMMU_MF_CANSPLIT)) == 0, ("invalid flags 0x%x", flags)); a.size = size; a.offset = offset; a.common = common; a.gas_flags = flags; entry = iommu_gas_alloc_entry(domain, (flags & IOMMU_MF_CANWAIT) != 0 ? IOMMU_PGF_WAITOK : 0); if (entry == NULL) return (ENOMEM); a.entry = entry; IOMMU_DOMAIN_LOCK(domain); error = iommu_gas_find_space(domain, &a); if (error == ENOMEM) { IOMMU_DOMAIN_UNLOCK(domain); iommu_gas_free_entry(entry); return (error); } #ifdef INVARIANTS if (iommu_check_free) iommu_gas_check_free(domain); #endif KASSERT(error == 0, ("unexpected error %d from iommu_gas_find_entry", error)); KASSERT(entry->end < domain->end, ("allocated GPA %jx, max GPA %jx", (uintmax_t)entry->end, (uintmax_t)domain->end)); entry->flags |= eflags; IOMMU_DOMAIN_UNLOCK(domain); error = domain->ops->map(domain, entry->start, entry->end - entry->start, ma, eflags, ((flags & IOMMU_MF_CANWAIT) != 0 ? IOMMU_PGF_WAITOK : 0)); if (error == ENOMEM) { iommu_domain_unload_entry(entry, true, (flags & IOMMU_MF_CANWAIT) != 0); return (error); } KASSERT(error == 0, ("unexpected error %d from domain_map_buf", error)); *res = entry; return (0); } int iommu_gas_map_region(struct iommu_domain *domain, struct iommu_map_entry *entry, u_int eflags, u_int flags, vm_page_t *ma) { iommu_gaddr_t start; int error; KASSERT(entry->domain == domain, ("mismatched domain %p entry %p entry->domain %p", domain, entry, entry->domain)); KASSERT(entry->flags == 0, ("used RMRR entry %p %p %x", domain, entry, entry->flags)); KASSERT((flags & ~(IOMMU_MF_CANWAIT | IOMMU_MF_RMRR)) == 0, ("invalid flags 0x%x", flags)); start = entry->start; IOMMU_DOMAIN_LOCK(domain); error = iommu_gas_alloc_region(domain, entry, flags); if (error != 0) { IOMMU_DOMAIN_UNLOCK(domain); return (error); } entry->flags |= eflags; IOMMU_DOMAIN_UNLOCK(domain); if (entry->end == entry->start) return (0); error = domain->ops->map(domain, entry->start, entry->end - entry->start, ma + OFF_TO_IDX(start - entry->start), eflags, ((flags & IOMMU_MF_CANWAIT) != 0 ? IOMMU_PGF_WAITOK : 0)); if (error == ENOMEM) { iommu_domain_unload_entry(entry, false, (flags & IOMMU_MF_CANWAIT) != 0); return (error); } KASSERT(error == 0, ("unexpected error %d from domain_map_buf", error)); return (0); } static int iommu_gas_reserve_region_locked(struct iommu_domain *domain, iommu_gaddr_t start, iommu_gaddr_t end, struct iommu_map_entry *entry) { int error; IOMMU_DOMAIN_ASSERT_LOCKED(domain); entry->start = start; entry->end = end; error = iommu_gas_alloc_region(domain, entry, IOMMU_MF_CANWAIT); if (error == 0) entry->flags |= IOMMU_MAP_ENTRY_UNMAPPED; return (error); } int iommu_gas_reserve_region(struct iommu_domain *domain, iommu_gaddr_t start, iommu_gaddr_t end, struct iommu_map_entry **entry0) { struct iommu_map_entry *entry; int error; entry = iommu_gas_alloc_entry(domain, IOMMU_PGF_WAITOK); IOMMU_DOMAIN_LOCK(domain); error = iommu_gas_reserve_region_locked(domain, start, end, entry); IOMMU_DOMAIN_UNLOCK(domain); if (error != 0) iommu_gas_free_entry(entry); else if (entry0 != NULL) *entry0 = entry; return (error); } /* * As in iommu_gas_reserve_region, reserve [start, end), but allow for existing * entries. */ int iommu_gas_reserve_region_extend(struct iommu_domain *domain, iommu_gaddr_t start, iommu_gaddr_t end) { struct iommu_map_entry *entry, *next, *prev, key = {}; iommu_gaddr_t entry_start, entry_end; int error; error = 0; entry = NULL; end = ummin(end, domain->end); while (start < end) { /* Preallocate an entry. */ if (entry == NULL) entry = iommu_gas_alloc_entry(domain, IOMMU_PGF_WAITOK); /* Calculate the free region from here to the next entry. */ key.start = key.end = start; IOMMU_DOMAIN_LOCK(domain); next = RB_NFIND(iommu_gas_entries_tree, &domain->rb_root, &key); KASSERT(next != NULL, ("domain %p with end %#jx has no entry " "after %#jx", domain, (uintmax_t)domain->end, (uintmax_t)start)); entry_end = ummin(end, next->start); prev = RB_PREV(iommu_gas_entries_tree, &domain->rb_root, next); if (prev != NULL) entry_start = ummax(start, prev->end); else entry_start = start; start = next->end; /* Reserve the region if non-empty. */ if (entry_start != entry_end) { error = iommu_gas_reserve_region_locked(domain, entry_start, entry_end, entry); if (error != 0) { IOMMU_DOMAIN_UNLOCK(domain); break; } entry = NULL; } IOMMU_DOMAIN_UNLOCK(domain); } /* Release a preallocated entry if it was not used. */ if (entry != NULL) iommu_gas_free_entry(entry); return (error); } void iommu_unmap_msi(struct iommu_ctx *ctx) { struct iommu_map_entry *entry; struct iommu_domain *domain; domain = ctx->domain; entry = domain->msi_entry; if (entry == NULL) return; domain->ops->unmap(domain, entry->start, entry->end - entry->start, IOMMU_PGF_WAITOK); iommu_gas_free_space(entry); iommu_gas_free_entry(entry); domain->msi_entry = NULL; domain->msi_base = 0; domain->msi_phys = 0; } int iommu_map_msi(struct iommu_ctx *ctx, iommu_gaddr_t size, int offset, u_int eflags, u_int flags, vm_page_t *ma) { struct iommu_domain *domain; struct iommu_map_entry *entry; int error; error = 0; domain = ctx->domain; /* Check if there is already an MSI page allocated */ IOMMU_DOMAIN_LOCK(domain); entry = domain->msi_entry; IOMMU_DOMAIN_UNLOCK(domain); if (entry == NULL) { error = iommu_gas_map(domain, &ctx->tag->common, size, offset, eflags, flags, ma, &entry); IOMMU_DOMAIN_LOCK(domain); if (error == 0) { if (domain->msi_entry == NULL) { MPASS(domain->msi_base == 0); MPASS(domain->msi_phys == 0); domain->msi_entry = entry; domain->msi_base = entry->start; domain->msi_phys = VM_PAGE_TO_PHYS(ma[0]); } else { /* * We lost the race and already have an * MSI page allocated. Free the unneeded entry. */ iommu_gas_free_entry(entry); } } else if (domain->msi_entry != NULL) { /* * The allocation failed, but another succeeded. * Return success as there is a valid MSI page. */ error = 0; } IOMMU_DOMAIN_UNLOCK(domain); } return (error); } void iommu_translate_msi(struct iommu_domain *domain, uint64_t *addr) { *addr = (*addr - domain->msi_phys) + domain->msi_base; KASSERT(*addr >= domain->msi_entry->start, ("%s: Address is below the MSI entry start address (%jx < %jx)", __func__, (uintmax_t)*addr, (uintmax_t)domain->msi_entry->start)); KASSERT(*addr + sizeof(*addr) <= domain->msi_entry->end, ("%s: Address is above the MSI entry end address (%jx < %jx)", __func__, (uintmax_t)*addr, (uintmax_t)domain->msi_entry->end)); } SYSCTL_NODE(_hw, OID_AUTO, iommu, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, ""); #ifdef INVARIANTS SYSCTL_INT(_hw_iommu, OID_AUTO, check_free, CTLFLAG_RWTUN, &iommu_check_free, 0, "Check the GPA RBtree for free_down and free_after validity"); #endif