/* * Copyright (c) 2014 The DragonFly Project. All rights reserved. * * This code is derived from software contributed to The DragonFly Project * by Matthew Dillon and was subsequently ported * to FreeBSD by Michael Gmelin * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name of The DragonFly Project nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific, prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); /* * Intel fourth generation mobile cpus integrated I2C device, smbus driver. * * See ig4_reg.h for datasheet reference and notes. * See ig4_var.h for locking semantics. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define TRANS_NORMAL 1 #define TRANS_PCALL 2 #define TRANS_BLOCK 3 static void ig4iic_start(void *xdev); static void ig4iic_intr(void *cookie); static void ig4iic_dump(ig4iic_softc_t *sc); static int ig4_dump; SYSCTL_INT(_debug, OID_AUTO, ig4_dump, CTLFLAG_RW, &ig4_dump, 0, "Dump controller registers"); /* * Low-level inline support functions */ static __inline void reg_write(ig4iic_softc_t *sc, uint32_t reg, uint32_t value) { bus_write_4(sc->regs_res, reg, value); bus_barrier(sc->regs_res, reg, 4, BUS_SPACE_BARRIER_WRITE); } static __inline uint32_t reg_read(ig4iic_softc_t *sc, uint32_t reg) { uint32_t value; bus_barrier(sc->regs_res, reg, 4, BUS_SPACE_BARRIER_READ); value = bus_read_4(sc->regs_res, reg); return (value); } /* * Enable or disable the controller and wait for the controller to acknowledge * the state change. */ static int set_controller(ig4iic_softc_t *sc, uint32_t ctl) { int retry; int error; uint32_t v; /* * When the controller is enabled, interrupt on STOP detect * or receive character ready and clear pending interrupts. */ if (ctl & IG4_I2C_ENABLE) { reg_write(sc, IG4_REG_INTR_MASK, IG4_INTR_STOP_DET | IG4_INTR_RX_FULL); reg_read(sc, IG4_REG_CLR_INTR); } else reg_write(sc, IG4_REG_INTR_MASK, 0); reg_write(sc, IG4_REG_I2C_EN, ctl); error = IIC_ETIMEOUT; for (retry = 100; retry > 0; --retry) { v = reg_read(sc, IG4_REG_ENABLE_STATUS); if (((v ^ ctl) & IG4_I2C_ENABLE) == 0) { error = 0; break; } if (cold) DELAY(1000); else mtx_sleep(sc, &sc->io_lock, 0, "i2cslv", 1); } return (error); } /* * Wait up to 25ms for the requested status using a 25uS polling loop. */ static int wait_status(ig4iic_softc_t *sc, uint32_t status) { uint32_t v; int error; int txlvl = -1; u_int count_us = 0; u_int limit_us = 25000; /* 25ms */ error = IIC_ETIMEOUT; for (;;) { /* * Check requested status */ v = reg_read(sc, IG4_REG_I2C_STA); if (v & status) { error = 0; break; } /* * When waiting for receive data break-out if the interrupt * loaded data into the FIFO. */ if (status & IG4_STATUS_RX_NOTEMPTY) { if (sc->rpos != sc->rnext) { error = 0; break; } } /* * When waiting for the transmit FIFO to become empty, * reset the timeout if we see a change in the transmit * FIFO level as progress is being made. */ if (status & IG4_STATUS_TX_EMPTY) { v = reg_read(sc, IG4_REG_TXFLR) & IG4_FIFOLVL_MASK; if (txlvl != v) { txlvl = v; count_us = 0; } } /* * Stop if we've run out of time. */ if (count_us >= limit_us) break; /* * When waiting for receive data let the interrupt do its * work, otherwise poll with the lock held. */ if (status & IG4_STATUS_RX_NOTEMPTY) { mtx_sleep(sc, &sc->io_lock, 0, "i2cwait", (hz + 99) / 100); /* sleep up to 10ms */ count_us += 10000; } else { DELAY(25); count_us += 25; } } return (error); } /* * Read I2C data. The data might have already been read by * the interrupt code, otherwise it is sitting in the data * register. */ static uint8_t data_read(ig4iic_softc_t *sc) { uint8_t c; if (sc->rpos == sc->rnext) { c = (uint8_t)reg_read(sc, IG4_REG_DATA_CMD); } else { c = sc->rbuf[sc->rpos & IG4_RBUFMASK]; ++sc->rpos; } return (c); } /* * Set the slave address. The controller must be disabled when * changing the address. * * This operation does not issue anything to the I2C bus but sets * the target address for when the controller later issues a START. */ static void set_slave_addr(ig4iic_softc_t *sc, uint8_t slave, int trans_op) { uint32_t tar; uint32_t ctl; int use_10bit; use_10bit = sc->use_10bit; if (trans_op & SMB_TRANS_7BIT) use_10bit = 0; if (trans_op & SMB_TRANS_10BIT) use_10bit = 1; if (sc->slave_valid && sc->last_slave == slave && sc->use_10bit == use_10bit) { return; } sc->use_10bit = use_10bit; /* * Wait for TXFIFO to drain before disabling the controller. * * If a write message has not been completed it's really a * programming error, but for now in that case issue an extra * byte + STOP. * * If a read message has not been completed it's also a programming * error, for now just ignore it. */ wait_status(sc, IG4_STATUS_TX_NOTFULL); if (sc->write_started) { reg_write(sc, IG4_REG_DATA_CMD, IG4_DATA_STOP); sc->write_started = 0; } if (sc->read_started) sc->read_started = 0; wait_status(sc, IG4_STATUS_TX_EMPTY); set_controller(sc, 0); ctl = reg_read(sc, IG4_REG_CTL); ctl &= ~IG4_CTL_10BIT; ctl |= IG4_CTL_RESTARTEN; tar = slave; if (sc->use_10bit) { tar |= IG4_TAR_10BIT; ctl |= IG4_CTL_10BIT; } reg_write(sc, IG4_REG_CTL, ctl); reg_write(sc, IG4_REG_TAR_ADD, tar); set_controller(sc, IG4_I2C_ENABLE); sc->slave_valid = 1; sc->last_slave = slave; } /* * Issue START with byte command, possible count, and a variable length * read or write buffer, then possible turn-around read. The read also * has a possible count received. * * For SMBUS - * * Quick: START+ADDR+RD/WR STOP * * Normal: START+ADDR+WR CMD DATA..DATA STOP * * START+ADDR+RD CMD * RESTART+ADDR RDATA..RDATA STOP * (can also be used for I2C transactions) * * Process Call: START+ADDR+WR CMD DATAL DATAH * RESTART+ADDR+RD RDATAL RDATAH STOP * * Block: START+ADDR+RD CMD * RESTART+ADDR+RD RCOUNT DATA... STOP * * START+ADDR+WR CMD * RESTART+ADDR+WR WCOUNT DATA... STOP * * For I2C - basically, no *COUNT fields, possibly no *CMD field. If the * sender needs to issue a 2-byte command it will incorporate it * into the write buffer and also set NOCMD. * * Generally speaking, the START+ADDR / RESTART+ADDR is handled automatically * by the controller at the beginning of a command sequence or on a data * direction turn-around, and we only need to tell it when to issue the STOP. */ static int smb_transaction(ig4iic_softc_t *sc, char cmd, int op, char *wbuf, int wcount, char *rbuf, int rcount, int *actualp) { int error; int unit; uint32_t last; /* * Debugging - dump registers */ if (ig4_dump) { unit = device_get_unit(sc->dev); if (ig4_dump & (1 << unit)) { ig4_dump &= ~(1 << unit); ig4iic_dump(sc); } } /* * Issue START or RESTART with next data byte, clear any previous * abort condition that may have been holding the txfifo in reset. */ last = IG4_DATA_RESTART; reg_read(sc, IG4_REG_CLR_TX_ABORT); if (actualp) *actualp = 0; /* * Issue command if not told otherwise (smbus). */ if ((op & SMB_TRANS_NOCMD) == 0) { error = wait_status(sc, IG4_STATUS_TX_NOTFULL); if (error) goto done; last |= (u_char)cmd; if (wcount == 0 && rcount == 0 && (op & SMB_TRANS_NOSTOP) == 0) last |= IG4_DATA_STOP; reg_write(sc, IG4_REG_DATA_CMD, last); last = 0; } /* * Clean out any previously received data. */ if (sc->rpos != sc->rnext && (op & SMB_TRANS_NOREPORT) == 0) { device_printf(sc->dev, "discarding %d bytes of spurious data\n", sc->rnext - sc->rpos); } sc->rpos = 0; sc->rnext = 0; /* * If writing and not told otherwise, issue the write count (smbus). */ if (wcount && (op & SMB_TRANS_NOCNT) == 0) { error = wait_status(sc, IG4_STATUS_TX_NOTFULL); if (error) goto done; last |= (u_char)cmd; reg_write(sc, IG4_REG_DATA_CMD, last); last = 0; } /* * Bulk write (i2c) */ while (wcount) { error = wait_status(sc, IG4_STATUS_TX_NOTFULL); if (error) goto done; last |= (u_char)*wbuf; if (wcount == 1 && rcount == 0 && (op & SMB_TRANS_NOSTOP) == 0) last |= IG4_DATA_STOP; reg_write(sc, IG4_REG_DATA_CMD, last); --wcount; ++wbuf; last = 0; } /* * Issue reads to xmit FIFO (strange, I know) to tell the controller * to clock in data. At the moment just issue one read ahead to * pipeline the incoming data. * * NOTE: In the case of NOCMD and wcount == 0 we still issue a * RESTART here, even if the data direction has not changed * from the previous CHAINing call. This we force the RESTART. * (A new START is issued automatically by the controller in * the other nominal cases such as a data direction change or * a previous STOP was issued). * * If this will be the last byte read we must also issue the STOP * at the end of the read. */ if (rcount) { last = IG4_DATA_RESTART | IG4_DATA_COMMAND_RD; if (rcount == 1 && (op & (SMB_TRANS_NOSTOP | SMB_TRANS_NOCNT)) == SMB_TRANS_NOCNT) { last |= IG4_DATA_STOP; } reg_write(sc, IG4_REG_DATA_CMD, last); last = IG4_DATA_COMMAND_RD; } /* * Bulk read (i2c) and count field handling (smbus) */ while (rcount) { /* * Maintain a pipeline by queueing the allowance for the next * read before waiting for the current read. */ if (rcount > 1) { if (op & SMB_TRANS_NOCNT) last = (rcount == 2) ? IG4_DATA_STOP : 0; else last = 0; reg_write(sc, IG4_REG_DATA_CMD, IG4_DATA_COMMAND_RD | last); } error = wait_status(sc, IG4_STATUS_RX_NOTEMPTY); if (error) { if ((op & SMB_TRANS_NOREPORT) == 0) { device_printf(sc->dev, "rx timeout addr 0x%02x\n", sc->last_slave); } goto done; } last = data_read(sc); if (op & SMB_TRANS_NOCNT) { *rbuf = (u_char)last; ++rbuf; --rcount; if (actualp) ++*actualp; } else { /* * Handle count field (smbus), which is not part of * the rcount'ed buffer. The first read data in a * bulk transfer is the count. * * XXX if rcount is loaded as 0 how do I generate a * STOP now without issuing another RD or WR? */ if (rcount > (u_char)last) rcount = (u_char)last; op |= SMB_TRANS_NOCNT; } } error = 0; done: /* XXX wait for xmit buffer to become empty */ last = reg_read(sc, IG4_REG_TX_ABRT_SOURCE); return (error); } /* * IICBUS API FUNCTIONS */ static int ig4iic_xfer_start(ig4iic_softc_t *sc, uint16_t slave) { /* XXX 10-bit address support? */ set_slave_addr(sc, slave >> 1, 0); return (0); } static int ig4iic_read(ig4iic_softc_t *sc, uint8_t *buf, uint16_t len, bool repeated_start, bool stop) { uint32_t cmd; uint16_t i; int error; if (len == 0) return (0); cmd = IG4_DATA_COMMAND_RD; cmd |= repeated_start ? IG4_DATA_RESTART : 0; cmd |= stop && len == 1 ? IG4_DATA_STOP : 0; /* Issue request for the first byte (could be last as well). */ reg_write(sc, IG4_REG_DATA_CMD, cmd); for (i = 0; i < len; i++) { /* * Maintain a pipeline by queueing the allowance for the next * read before waiting for the current read. */ cmd = IG4_DATA_COMMAND_RD; if (i < len - 1) { cmd = IG4_DATA_COMMAND_RD; cmd |= stop && i == len - 2 ? IG4_DATA_STOP : 0; reg_write(sc, IG4_REG_DATA_CMD, cmd); } error = wait_status(sc, IG4_STATUS_RX_NOTEMPTY); if (error) break; buf[i] = data_read(sc); } (void)reg_read(sc, IG4_REG_TX_ABRT_SOURCE); return (error); } static int ig4iic_write(ig4iic_softc_t *sc, uint8_t *buf, uint16_t len, bool repeated_start, bool stop) { uint32_t cmd; uint16_t i; int error; if (len == 0) return (0); cmd = repeated_start ? IG4_DATA_RESTART : 0; for (i = 0; i < len; i++) { error = wait_status(sc, IG4_STATUS_TX_NOTFULL); if (error) break; cmd |= buf[i]; cmd |= stop && i == len - 1 ? IG4_DATA_STOP : 0; reg_write(sc, IG4_REG_DATA_CMD, cmd); cmd = 0; } (void)reg_read(sc, IG4_REG_TX_ABRT_SOURCE); return (error); } int ig4iic_transfer(device_t dev, struct iic_msg *msgs, uint32_t nmsgs) { ig4iic_softc_t *sc = device_get_softc(dev); const char *reason = NULL; uint32_t i; int error; int unit; bool rpstart; bool stop; /* * The hardware interface imposes limits on allowed I2C messages. * It is not possible to explicitly send a start or stop. * They are automatically sent (or not sent, depending on the * configuration) when a data byte is transferred. * For this reason it's impossible to send a message with no data * at all (like an SMBus quick message). * The start condition is automatically generated after the stop * condition, so it's impossible to not have a start after a stop. * The repeated start condition is automatically sent if a change * of the transfer direction happens, so it's impossible to have * a change of direction without a (repeated) start. * The repeated start can be forced even without the change of * direction. * Changing the target slave address requires resetting the hardware * state, so it's impossible to do that without the stop followed * by the start. */ for (i = 0; i < nmsgs; i++) { #if 0 if (i == 0 && (msgs[i].flags & IIC_M_NOSTART) != 0) { reason = "first message without start"; break; } if (i == nmsgs - 1 && (msgs[i].flags & IIC_M_NOSTOP) != 0) { reason = "last message without stop"; break; } #endif if (msgs[i].len == 0) { reason = "message with no data"; break; } if (i > 0) { if ((msgs[i].flags & IIC_M_NOSTART) != 0 && (msgs[i - 1].flags & IIC_M_NOSTOP) == 0) { reason = "stop not followed by start"; break; } if ((msgs[i - 1].flags & IIC_M_NOSTOP) != 0 && msgs[i].slave != msgs[i - 1].slave) { reason = "change of slave without stop"; break; } if ((msgs[i].flags & IIC_M_NOSTART) != 0 && (msgs[i].flags & IIC_M_RD) != (msgs[i - 1].flags & IIC_M_RD)) { reason = "change of direction without repeated" " start"; break; } } } if (reason != NULL) { if (bootverbose) device_printf(dev, "%s\n", reason); return (IIC_ENOTSUPP); } sx_xlock(&sc->call_lock); mtx_lock(&sc->io_lock); /* Debugging - dump registers. */ if (ig4_dump) { unit = device_get_unit(dev); if (ig4_dump & (1 << unit)) { ig4_dump &= ~(1 << unit); ig4iic_dump(sc); } } /* * Clear any previous abort condition that may have been holding * the txfifo in reset. */ reg_read(sc, IG4_REG_CLR_TX_ABORT); /* * Clean out any previously received data. */ if (sc->rpos != sc->rnext && bootverbose) { device_printf(sc->dev, "discarding %d bytes of spurious data\n", sc->rnext - sc->rpos); } sc->rpos = 0; sc->rnext = 0; rpstart = false; error = 0; for (i = 0; i < nmsgs; i++) { if ((msgs[i].flags & IIC_M_NOSTART) == 0) { error = ig4iic_xfer_start(sc, msgs[i].slave); } else { if (!sc->slave_valid || (msgs[i].slave >> 1) != sc->last_slave) { device_printf(dev, "start condition suppressed" "but slave address is not set up"); error = EINVAL; break; } rpstart = false; } if (error != 0) break; stop = (msgs[i].flags & IIC_M_NOSTOP) == 0; if (msgs[i].flags & IIC_M_RD) error = ig4iic_read(sc, msgs[i].buf, msgs[i].len, rpstart, stop); else error = ig4iic_write(sc, msgs[i].buf, msgs[i].len, rpstart, stop); if (error != 0) break; rpstart = !stop; } mtx_unlock(&sc->io_lock); sx_unlock(&sc->call_lock); return (error); } int ig4iic_reset(device_t dev, u_char speed, u_char addr, u_char *oldaddr) { ig4iic_softc_t *sc = device_get_softc(dev); sx_xlock(&sc->call_lock); mtx_lock(&sc->io_lock); /* TODO handle speed configuration? */ if (oldaddr != NULL) *oldaddr = sc->last_slave << 1; set_slave_addr(sc, addr >> 1, 0); if (addr == IIC_UNKNOWN) sc->slave_valid = false; mtx_unlock(&sc->io_lock); sx_unlock(&sc->call_lock); return (0); } /* * SMBUS API FUNCTIONS * * Called from ig4iic_pci_attach/detach() */ int ig4iic_attach(ig4iic_softc_t *sc) { int error; uint32_t v; v = reg_read(sc, IG4_REG_COMP_TYPE); v = reg_read(sc, IG4_REG_COMP_PARAM1); v = reg_read(sc, IG4_REG_GENERAL); if ((v & IG4_GENERAL_SWMODE) == 0) { v |= IG4_GENERAL_SWMODE; reg_write(sc, IG4_REG_GENERAL, v); v = reg_read(sc, IG4_REG_GENERAL); } v = reg_read(sc, IG4_REG_SW_LTR_VALUE); v = reg_read(sc, IG4_REG_AUTO_LTR_VALUE); v = reg_read(sc, IG4_REG_COMP_VER); if (v != IG4_COMP_VER) { error = ENXIO; goto done; } v = reg_read(sc, IG4_REG_SS_SCL_HCNT); v = reg_read(sc, IG4_REG_SS_SCL_LCNT); v = reg_read(sc, IG4_REG_FS_SCL_HCNT); v = reg_read(sc, IG4_REG_FS_SCL_LCNT); v = reg_read(sc, IG4_REG_SDA_HOLD); v = reg_read(sc, IG4_REG_SS_SCL_HCNT); reg_write(sc, IG4_REG_FS_SCL_HCNT, v); v = reg_read(sc, IG4_REG_SS_SCL_LCNT); reg_write(sc, IG4_REG_FS_SCL_LCNT, v); /* * Program based on a 25000 Hz clock. This is a bit of a * hack (obviously). The defaults are 400 and 470 for standard * and 60 and 130 for fast. The defaults for standard fail * utterly (presumably cause an abort) because the clock time * is ~18.8ms by default. This brings it down to ~4ms (for now). */ reg_write(sc, IG4_REG_SS_SCL_HCNT, 100); reg_write(sc, IG4_REG_SS_SCL_LCNT, 125); reg_write(sc, IG4_REG_FS_SCL_HCNT, 100); reg_write(sc, IG4_REG_FS_SCL_LCNT, 125); /* * Use a threshold of 1 so we get interrupted on each character, * allowing us to use mtx_sleep() in our poll code. Not perfect * but this is better than using DELAY() for receiving data. * * See ig4_var.h for details on interrupt handler synchronization. */ reg_write(sc, IG4_REG_RX_TL, 1); reg_write(sc, IG4_REG_CTL, IG4_CTL_MASTER | IG4_CTL_SLAVE_DISABLE | IG4_CTL_RESTARTEN | IG4_CTL_SPEED_STD); sc->iicbus = device_add_child(sc->dev, "iicbus", -1); if (sc->iicbus == NULL) { device_printf(sc->dev, "iicbus driver not found\n"); error = ENXIO; goto done; } #if 0 /* * Don't do this, it blows up the PCI config */ reg_write(sc, IG4_REG_RESETS, IG4_RESETS_ASSERT); reg_write(sc, IG4_REG_RESETS, IG4_RESETS_DEASSERT); #endif mtx_lock(&sc->io_lock); if (set_controller(sc, 0)) device_printf(sc->dev, "controller error during attach-1\n"); if (set_controller(sc, IG4_I2C_ENABLE)) device_printf(sc->dev, "controller error during attach-2\n"); mtx_unlock(&sc->io_lock); error = bus_setup_intr(sc->dev, sc->intr_res, INTR_TYPE_MISC | INTR_MPSAFE, NULL, ig4iic_intr, sc, &sc->intr_handle); if (error) { device_printf(sc->dev, "Unable to setup irq: error %d\n", error); } sc->enum_hook.ich_func = ig4iic_start; sc->enum_hook.ich_arg = sc->dev; /* * We have to wait until interrupts are enabled. I2C read and write * only works if the interrupts are available. */ if (config_intrhook_establish(&sc->enum_hook) != 0) error = ENOMEM; else error = 0; done: return (error); } void ig4iic_start(void *xdev) { int error; ig4iic_softc_t *sc; device_t dev = (device_t)xdev; sc = device_get_softc(dev); config_intrhook_disestablish(&sc->enum_hook); /* Attach us to the smbus */ error = bus_generic_attach(sc->dev); if (error) { device_printf(sc->dev, "failed to attach child: error %d\n", error); } } int ig4iic_detach(ig4iic_softc_t *sc) { int error; if (device_is_attached(sc->dev)) { error = bus_generic_detach(sc->dev); if (error) return (error); } if (sc->iicbus) device_delete_child(sc->dev, sc->iicbus); if (sc->intr_handle) bus_teardown_intr(sc->dev, sc->intr_res, sc->intr_handle); sx_xlock(&sc->call_lock); mtx_lock(&sc->io_lock); sc->iicbus = NULL; sc->intr_handle = NULL; reg_write(sc, IG4_REG_INTR_MASK, 0); set_controller(sc, 0); mtx_unlock(&sc->io_lock); sx_xunlock(&sc->call_lock); return (0); } int ig4iic_smb_callback(device_t dev, int index, void *data) { int error; switch (index) { case SMB_REQUEST_BUS: error = 0; break; case SMB_RELEASE_BUS: error = 0; break; default: error = SMB_EABORT; break; } return (error); } /* * Quick command. i.e. START + cmd + R/W + STOP and no data. It is * unclear to me how I could implement this with the intel i2c controller * because the controller sends STARTs and STOPs automatically with data. */ int ig4iic_smb_quick(device_t dev, u_char slave, int how) { return (SMB_ENOTSUPP); } /* * Incremental send byte without stop (?). It is unclear why the slave * address is specified if this presumably is used in combination with * ig4iic_smb_quick(). * * (Also, how would this work anyway? Issue the last byte with writeb()?) */ int ig4iic_smb_sendb(device_t dev, u_char slave, char byte) { ig4iic_softc_t *sc = device_get_softc(dev); uint32_t cmd; int error; sx_xlock(&sc->call_lock); mtx_lock(&sc->io_lock); set_slave_addr(sc, slave, 0); cmd = byte; if (wait_status(sc, IG4_STATUS_TX_NOTFULL) == 0) { reg_write(sc, IG4_REG_DATA_CMD, cmd); error = 0; } else { error = SMB_ETIMEOUT; } mtx_unlock(&sc->io_lock); sx_xunlock(&sc->call_lock); return (error); } /* * Incremental receive byte without stop (?). It is unclear why the slave * address is specified if this presumably is used in combination with * ig4iic_smb_quick(). */ int ig4iic_smb_recvb(device_t dev, u_char slave, char *byte) { ig4iic_softc_t *sc = device_get_softc(dev); int error; sx_xlock(&sc->call_lock); mtx_lock(&sc->io_lock); set_slave_addr(sc, slave, 0); reg_write(sc, IG4_REG_DATA_CMD, IG4_DATA_COMMAND_RD); if (wait_status(sc, IG4_STATUS_RX_NOTEMPTY) == 0) { *byte = data_read(sc); error = 0; } else { *byte = 0; error = SMB_ETIMEOUT; } mtx_unlock(&sc->io_lock); sx_xunlock(&sc->call_lock); return (error); } /* * Write command and single byte in transaction. */ int ig4iic_smb_writeb(device_t dev, u_char slave, char cmd, char byte) { ig4iic_softc_t *sc = device_get_softc(dev); int error; sx_xlock(&sc->call_lock); mtx_lock(&sc->io_lock); set_slave_addr(sc, slave, 0); error = smb_transaction(sc, cmd, SMB_TRANS_NOCNT, &byte, 1, NULL, 0, NULL); mtx_unlock(&sc->io_lock); sx_xunlock(&sc->call_lock); return (error); } /* * Write command and single word in transaction. */ int ig4iic_smb_writew(device_t dev, u_char slave, char cmd, short word) { ig4iic_softc_t *sc = device_get_softc(dev); char buf[2]; int error; sx_xlock(&sc->call_lock); mtx_lock(&sc->io_lock); set_slave_addr(sc, slave, 0); buf[0] = word & 0xFF; buf[1] = word >> 8; error = smb_transaction(sc, cmd, SMB_TRANS_NOCNT, buf, 2, NULL, 0, NULL); mtx_unlock(&sc->io_lock); sx_xunlock(&sc->call_lock); return (error); } /* * write command and read single byte in transaction. */ int ig4iic_smb_readb(device_t dev, u_char slave, char cmd, char *byte) { ig4iic_softc_t *sc = device_get_softc(dev); int error; sx_xlock(&sc->call_lock); mtx_lock(&sc->io_lock); set_slave_addr(sc, slave, 0); error = smb_transaction(sc, cmd, SMB_TRANS_NOCNT, NULL, 0, byte, 1, NULL); mtx_unlock(&sc->io_lock); sx_xunlock(&sc->call_lock); return (error); } /* * write command and read word in transaction. */ int ig4iic_smb_readw(device_t dev, u_char slave, char cmd, short *word) { ig4iic_softc_t *sc = device_get_softc(dev); char buf[2]; int error; sx_xlock(&sc->call_lock); mtx_lock(&sc->io_lock); set_slave_addr(sc, slave, 0); if ((error = smb_transaction(sc, cmd, SMB_TRANS_NOCNT, NULL, 0, buf, 2, NULL)) == 0) { *word = (u_char)buf[0] | ((u_char)buf[1] << 8); } mtx_unlock(&sc->io_lock); sx_xunlock(&sc->call_lock); return (error); } /* * write command and word and read word in transaction */ int ig4iic_smb_pcall(device_t dev, u_char slave, char cmd, short sdata, short *rdata) { ig4iic_softc_t *sc = device_get_softc(dev); char rbuf[2]; char wbuf[2]; int error; sx_xlock(&sc->call_lock); mtx_lock(&sc->io_lock); set_slave_addr(sc, slave, 0); wbuf[0] = sdata & 0xFF; wbuf[1] = sdata >> 8; if ((error = smb_transaction(sc, cmd, SMB_TRANS_NOCNT, wbuf, 2, rbuf, 2, NULL)) == 0) { *rdata = (u_char)rbuf[0] | ((u_char)rbuf[1] << 8); } mtx_unlock(&sc->io_lock); sx_xunlock(&sc->call_lock); return (error); } int ig4iic_smb_bwrite(device_t dev, u_char slave, char cmd, u_char wcount, char *buf) { ig4iic_softc_t *sc = device_get_softc(dev); int error; sx_xlock(&sc->call_lock); mtx_lock(&sc->io_lock); set_slave_addr(sc, slave, 0); error = smb_transaction(sc, cmd, 0, buf, wcount, NULL, 0, NULL); mtx_unlock(&sc->io_lock); sx_xunlock(&sc->call_lock); return (error); } int ig4iic_smb_bread(device_t dev, u_char slave, char cmd, u_char *countp_char, char *buf) { ig4iic_softc_t *sc = device_get_softc(dev); int rcount = *countp_char; int error; sx_xlock(&sc->call_lock); mtx_lock(&sc->io_lock); set_slave_addr(sc, slave, 0); error = smb_transaction(sc, cmd, 0, NULL, 0, buf, rcount, &rcount); *countp_char = rcount; mtx_unlock(&sc->io_lock); sx_xunlock(&sc->call_lock); return (error); } int ig4iic_smb_trans(device_t dev, int slave, char cmd, int op, char *wbuf, int wcount, char *rbuf, int rcount, int *actualp) { ig4iic_softc_t *sc = device_get_softc(dev); int error; sx_xlock(&sc->call_lock); mtx_lock(&sc->io_lock); set_slave_addr(sc, slave, op); error = smb_transaction(sc, cmd, op, wbuf, wcount, rbuf, rcount, actualp); mtx_unlock(&sc->io_lock); sx_xunlock(&sc->call_lock); return (error); } /* * Interrupt Operation, see ig4_var.h for locking semantics. */ static void ig4iic_intr(void *cookie) { ig4iic_softc_t *sc = cookie; uint32_t status; mtx_lock(&sc->io_lock); /* reg_write(sc, IG4_REG_INTR_MASK, IG4_INTR_STOP_DET);*/ reg_read(sc, IG4_REG_CLR_INTR); status = reg_read(sc, IG4_REG_I2C_STA); while (status & IG4_STATUS_RX_NOTEMPTY) { sc->rbuf[sc->rnext & IG4_RBUFMASK] = (uint8_t)reg_read(sc, IG4_REG_DATA_CMD); ++sc->rnext; status = reg_read(sc, IG4_REG_I2C_STA); } wakeup(sc); mtx_unlock(&sc->io_lock); } #define REGDUMP(sc, reg) \ device_printf(sc->dev, " %-23s %08x\n", #reg, reg_read(sc, reg)) static void ig4iic_dump(ig4iic_softc_t *sc) { device_printf(sc->dev, "ig4iic register dump:\n"); REGDUMP(sc, IG4_REG_CTL); REGDUMP(sc, IG4_REG_TAR_ADD); REGDUMP(sc, IG4_REG_SS_SCL_HCNT); REGDUMP(sc, IG4_REG_SS_SCL_LCNT); REGDUMP(sc, IG4_REG_FS_SCL_HCNT); REGDUMP(sc, IG4_REG_FS_SCL_LCNT); REGDUMP(sc, IG4_REG_INTR_STAT); REGDUMP(sc, IG4_REG_INTR_MASK); REGDUMP(sc, IG4_REG_RAW_INTR_STAT); REGDUMP(sc, IG4_REG_RX_TL); REGDUMP(sc, IG4_REG_TX_TL); REGDUMP(sc, IG4_REG_I2C_EN); REGDUMP(sc, IG4_REG_I2C_STA); REGDUMP(sc, IG4_REG_TXFLR); REGDUMP(sc, IG4_REG_RXFLR); REGDUMP(sc, IG4_REG_SDA_HOLD); REGDUMP(sc, IG4_REG_TX_ABRT_SOURCE); REGDUMP(sc, IG4_REG_SLV_DATA_NACK); REGDUMP(sc, IG4_REG_DMA_CTRL); REGDUMP(sc, IG4_REG_DMA_TDLR); REGDUMP(sc, IG4_REG_DMA_RDLR); REGDUMP(sc, IG4_REG_SDA_SETUP); REGDUMP(sc, IG4_REG_ENABLE_STATUS); REGDUMP(sc, IG4_REG_COMP_PARAM1); REGDUMP(sc, IG4_REG_COMP_VER); REGDUMP(sc, IG4_REG_COMP_TYPE); REGDUMP(sc, IG4_REG_CLK_PARMS); REGDUMP(sc, IG4_REG_RESETS); REGDUMP(sc, IG4_REG_GENERAL); REGDUMP(sc, IG4_REG_SW_LTR_VALUE); REGDUMP(sc, IG4_REG_AUTO_LTR_VALUE); } #undef REGDUMP DRIVER_MODULE(iicbus, ig4iic, iicbus_driver, iicbus_devclass, NULL, NULL);