/* SPDX-License-Identifier: BSD-3-Clause */ /* Copyright (c) 2021, Intel Corporation * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * 3. Neither the name of the Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /*$FreeBSD$*/ #include "ice_switch.h" #include "ice_flex_type.h" #include "ice_flow.h" #define ICE_ETH_DA_OFFSET 0 #define ICE_ETH_ETHTYPE_OFFSET 12 #define ICE_ETH_VLAN_TCI_OFFSET 14 #define ICE_MAX_VLAN_ID 0xFFF #define ICE_IPV6_ETHER_ID 0x86DD #define ICE_ETH_P_8021Q 0x8100 /* Dummy ethernet header needed in the ice_aqc_sw_rules_elem * struct to configure any switch filter rules. * {DA (6 bytes), SA(6 bytes), * Ether type (2 bytes for header without VLAN tag) OR * VLAN tag (4 bytes for header with VLAN tag) } * * Word on Hardcoded values * byte 0 = 0x2: to identify it as locally administered DA MAC * byte 6 = 0x2: to identify it as locally administered SA MAC * byte 12 = 0x81 & byte 13 = 0x00: * In case of VLAN filter first two bytes defines ether type (0x8100) * and remaining two bytes are placeholder for programming a given VLAN ID * In case of Ether type filter it is treated as header without VLAN tag * and byte 12 and 13 is used to program a given Ether type instead */ static const u8 dummy_eth_header[DUMMY_ETH_HDR_LEN] = { 0x2, 0, 0, 0, 0, 0, 0x2, 0, 0, 0, 0, 0, 0x81, 0, 0, 0}; /** * ice_init_def_sw_recp - initialize the recipe book keeping tables * @hw: pointer to the HW struct * @recp_list: pointer to sw recipe list * * Allocate memory for the entire recipe table and initialize the structures/ * entries corresponding to basic recipes. */ enum ice_status ice_init_def_sw_recp(struct ice_hw *hw, struct ice_sw_recipe **recp_list) { struct ice_sw_recipe *recps; u8 i; recps = (struct ice_sw_recipe *) ice_calloc(hw, ICE_MAX_NUM_RECIPES, sizeof(*recps)); if (!recps) return ICE_ERR_NO_MEMORY; for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) { recps[i].root_rid = i; INIT_LIST_HEAD(&recps[i].filt_rules); INIT_LIST_HEAD(&recps[i].filt_replay_rules); INIT_LIST_HEAD(&recps[i].rg_list); ice_init_lock(&recps[i].filt_rule_lock); } *recp_list = recps; return ICE_SUCCESS; } /** * ice_aq_get_sw_cfg - get switch configuration * @hw: pointer to the hardware structure * @buf: pointer to the result buffer * @buf_size: length of the buffer available for response * @req_desc: pointer to requested descriptor * @num_elems: pointer to number of elements * @cd: pointer to command details structure or NULL * * Get switch configuration (0x0200) to be placed in buf. * This admin command returns information such as initial VSI/port number * and switch ID it belongs to. * * NOTE: *req_desc is both an input/output parameter. * The caller of this function first calls this function with *request_desc set * to 0. If the response from f/w has *req_desc set to 0, all the switch * configuration information has been returned; if non-zero (meaning not all * the information was returned), the caller should call this function again * with *req_desc set to the previous value returned by f/w to get the * next block of switch configuration information. * * *num_elems is output only parameter. This reflects the number of elements * in response buffer. The caller of this function to use *num_elems while * parsing the response buffer. */ static enum ice_status ice_aq_get_sw_cfg(struct ice_hw *hw, struct ice_aqc_get_sw_cfg_resp_elem *buf, u16 buf_size, u16 *req_desc, u16 *num_elems, struct ice_sq_cd *cd) { struct ice_aqc_get_sw_cfg *cmd; struct ice_aq_desc desc; enum ice_status status; ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_sw_cfg); cmd = &desc.params.get_sw_conf; cmd->element = CPU_TO_LE16(*req_desc); status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); if (!status) { *req_desc = LE16_TO_CPU(cmd->element); *num_elems = LE16_TO_CPU(cmd->num_elems); } return status; } /** * ice_alloc_rss_global_lut - allocate a RSS global LUT * @hw: pointer to the HW struct * @shared_res: true to allocate as a shared resource and false to allocate as a dedicated resource * @global_lut_id: output parameter for the RSS global LUT's ID */ enum ice_status ice_alloc_rss_global_lut(struct ice_hw *hw, bool shared_res, u16 *global_lut_id) { struct ice_aqc_alloc_free_res_elem *sw_buf; enum ice_status status; u16 buf_len; buf_len = ice_struct_size(sw_buf, elem, 1); sw_buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len); if (!sw_buf) return ICE_ERR_NO_MEMORY; sw_buf->num_elems = CPU_TO_LE16(1); sw_buf->res_type = CPU_TO_LE16(ICE_AQC_RES_TYPE_GLOBAL_RSS_HASH | (shared_res ? ICE_AQC_RES_TYPE_FLAG_SHARED : ICE_AQC_RES_TYPE_FLAG_DEDICATED)); status = ice_aq_alloc_free_res(hw, 1, sw_buf, buf_len, ice_aqc_opc_alloc_res, NULL); if (status) { ice_debug(hw, ICE_DBG_RES, "Failed to allocate %s RSS global LUT, status %d\n", shared_res ? "shared" : "dedicated", status); goto ice_alloc_global_lut_exit; } *global_lut_id = LE16_TO_CPU(sw_buf->elem[0].e.sw_resp); ice_alloc_global_lut_exit: ice_free(hw, sw_buf); return status; } /** * ice_free_rss_global_lut - free a RSS global LUT * @hw: pointer to the HW struct * @global_lut_id: ID of the RSS global LUT to free */ enum ice_status ice_free_rss_global_lut(struct ice_hw *hw, u16 global_lut_id) { struct ice_aqc_alloc_free_res_elem *sw_buf; u16 buf_len, num_elems = 1; enum ice_status status; buf_len = ice_struct_size(sw_buf, elem, num_elems); sw_buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len); if (!sw_buf) return ICE_ERR_NO_MEMORY; sw_buf->num_elems = CPU_TO_LE16(num_elems); sw_buf->res_type = CPU_TO_LE16(ICE_AQC_RES_TYPE_GLOBAL_RSS_HASH); sw_buf->elem[0].e.sw_resp = CPU_TO_LE16(global_lut_id); status = ice_aq_alloc_free_res(hw, num_elems, sw_buf, buf_len, ice_aqc_opc_free_res, NULL); if (status) ice_debug(hw, ICE_DBG_RES, "Failed to free RSS global LUT %d, status %d\n", global_lut_id, status); ice_free(hw, sw_buf); return status; } /** * ice_alloc_sw - allocate resources specific to switch * @hw: pointer to the HW struct * @ena_stats: true to turn on VEB stats * @shared_res: true for shared resource, false for dedicated resource * @sw_id: switch ID returned * @counter_id: VEB counter ID returned * * allocates switch resources (SWID and VEB counter) (0x0208) */ enum ice_status ice_alloc_sw(struct ice_hw *hw, bool ena_stats, bool shared_res, u16 *sw_id, u16 *counter_id) { struct ice_aqc_alloc_free_res_elem *sw_buf; struct ice_aqc_res_elem *sw_ele; enum ice_status status; u16 buf_len; buf_len = ice_struct_size(sw_buf, elem, 1); sw_buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len); if (!sw_buf) return ICE_ERR_NO_MEMORY; /* Prepare buffer for switch ID. * The number of resource entries in buffer is passed as 1 since only a * single switch/VEB instance is allocated, and hence a single sw_id * is requested. */ sw_buf->num_elems = CPU_TO_LE16(1); sw_buf->res_type = CPU_TO_LE16(ICE_AQC_RES_TYPE_SWID | (shared_res ? ICE_AQC_RES_TYPE_FLAG_SHARED : ICE_AQC_RES_TYPE_FLAG_DEDICATED)); status = ice_aq_alloc_free_res(hw, 1, sw_buf, buf_len, ice_aqc_opc_alloc_res, NULL); if (status) goto ice_alloc_sw_exit; sw_ele = &sw_buf->elem[0]; *sw_id = LE16_TO_CPU(sw_ele->e.sw_resp); if (ena_stats) { /* Prepare buffer for VEB Counter */ enum ice_adminq_opc opc = ice_aqc_opc_alloc_res; struct ice_aqc_alloc_free_res_elem *counter_buf; struct ice_aqc_res_elem *counter_ele; counter_buf = (struct ice_aqc_alloc_free_res_elem *) ice_malloc(hw, buf_len); if (!counter_buf) { status = ICE_ERR_NO_MEMORY; goto ice_alloc_sw_exit; } /* The number of resource entries in buffer is passed as 1 since * only a single switch/VEB instance is allocated, and hence a * single VEB counter is requested. */ counter_buf->num_elems = CPU_TO_LE16(1); counter_buf->res_type = CPU_TO_LE16(ICE_AQC_RES_TYPE_VEB_COUNTER | ICE_AQC_RES_TYPE_FLAG_DEDICATED); status = ice_aq_alloc_free_res(hw, 1, counter_buf, buf_len, opc, NULL); if (status) { ice_free(hw, counter_buf); goto ice_alloc_sw_exit; } counter_ele = &counter_buf->elem[0]; *counter_id = LE16_TO_CPU(counter_ele->e.sw_resp); ice_free(hw, counter_buf); } ice_alloc_sw_exit: ice_free(hw, sw_buf); return status; } /** * ice_free_sw - free resources specific to switch * @hw: pointer to the HW struct * @sw_id: switch ID returned * @counter_id: VEB counter ID returned * * free switch resources (SWID and VEB counter) (0x0209) * * NOTE: This function frees multiple resources. It continues * releasing other resources even after it encounters error. * The error code returned is the last error it encountered. */ enum ice_status ice_free_sw(struct ice_hw *hw, u16 sw_id, u16 counter_id) { struct ice_aqc_alloc_free_res_elem *sw_buf, *counter_buf; enum ice_status status, ret_status; u16 buf_len; buf_len = ice_struct_size(sw_buf, elem, 1); sw_buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len); if (!sw_buf) return ICE_ERR_NO_MEMORY; /* Prepare buffer to free for switch ID res. * The number of resource entries in buffer is passed as 1 since only a * single switch/VEB instance is freed, and hence a single sw_id * is released. */ sw_buf->num_elems = CPU_TO_LE16(1); sw_buf->res_type = CPU_TO_LE16(ICE_AQC_RES_TYPE_SWID); sw_buf->elem[0].e.sw_resp = CPU_TO_LE16(sw_id); ret_status = ice_aq_alloc_free_res(hw, 1, sw_buf, buf_len, ice_aqc_opc_free_res, NULL); if (ret_status) ice_debug(hw, ICE_DBG_SW, "CQ CMD Buffer:\n"); /* Prepare buffer to free for VEB Counter resource */ counter_buf = (struct ice_aqc_alloc_free_res_elem *) ice_malloc(hw, buf_len); if (!counter_buf) { ice_free(hw, sw_buf); return ICE_ERR_NO_MEMORY; } /* The number of resource entries in buffer is passed as 1 since only a * single switch/VEB instance is freed, and hence a single VEB counter * is released */ counter_buf->num_elems = CPU_TO_LE16(1); counter_buf->res_type = CPU_TO_LE16(ICE_AQC_RES_TYPE_VEB_COUNTER); counter_buf->elem[0].e.sw_resp = CPU_TO_LE16(counter_id); status = ice_aq_alloc_free_res(hw, 1, counter_buf, buf_len, ice_aqc_opc_free_res, NULL); if (status) { ice_debug(hw, ICE_DBG_SW, "VEB counter resource could not be freed\n"); ret_status = status; } ice_free(hw, counter_buf); ice_free(hw, sw_buf); return ret_status; } /** * ice_aq_add_vsi * @hw: pointer to the HW struct * @vsi_ctx: pointer to a VSI context struct * @cd: pointer to command details structure or NULL * * Add a VSI context to the hardware (0x0210) */ enum ice_status ice_aq_add_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx, struct ice_sq_cd *cd) { struct ice_aqc_add_update_free_vsi_resp *res; struct ice_aqc_add_get_update_free_vsi *cmd; struct ice_aq_desc desc; enum ice_status status; cmd = &desc.params.vsi_cmd; res = &desc.params.add_update_free_vsi_res; ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_vsi); if (!vsi_ctx->alloc_from_pool) cmd->vsi_num = CPU_TO_LE16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID); cmd->vf_id = vsi_ctx->vf_num; cmd->vsi_flags = CPU_TO_LE16(vsi_ctx->flags); desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD); status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info, sizeof(vsi_ctx->info), cd); if (!status) { vsi_ctx->vsi_num = LE16_TO_CPU(res->vsi_num) & ICE_AQ_VSI_NUM_M; vsi_ctx->vsis_allocd = LE16_TO_CPU(res->vsi_used); vsi_ctx->vsis_unallocated = LE16_TO_CPU(res->vsi_free); } return status; } /** * ice_aq_free_vsi * @hw: pointer to the HW struct * @vsi_ctx: pointer to a VSI context struct * @keep_vsi_alloc: keep VSI allocation as part of this PF's resources * @cd: pointer to command details structure or NULL * * Free VSI context info from hardware (0x0213) */ enum ice_status ice_aq_free_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx, bool keep_vsi_alloc, struct ice_sq_cd *cd) { struct ice_aqc_add_update_free_vsi_resp *resp; struct ice_aqc_add_get_update_free_vsi *cmd; struct ice_aq_desc desc; enum ice_status status; cmd = &desc.params.vsi_cmd; resp = &desc.params.add_update_free_vsi_res; ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_free_vsi); cmd->vsi_num = CPU_TO_LE16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID); if (keep_vsi_alloc) cmd->cmd_flags = CPU_TO_LE16(ICE_AQ_VSI_KEEP_ALLOC); status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd); if (!status) { vsi_ctx->vsis_allocd = LE16_TO_CPU(resp->vsi_used); vsi_ctx->vsis_unallocated = LE16_TO_CPU(resp->vsi_free); } return status; } /** * ice_aq_update_vsi * @hw: pointer to the HW struct * @vsi_ctx: pointer to a VSI context struct * @cd: pointer to command details structure or NULL * * Update VSI context in the hardware (0x0211) */ enum ice_status ice_aq_update_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx, struct ice_sq_cd *cd) { struct ice_aqc_add_update_free_vsi_resp *resp; struct ice_aqc_add_get_update_free_vsi *cmd; struct ice_aq_desc desc; enum ice_status status; cmd = &desc.params.vsi_cmd; resp = &desc.params.add_update_free_vsi_res; ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_update_vsi); cmd->vsi_num = CPU_TO_LE16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID); desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD); status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info, sizeof(vsi_ctx->info), cd); if (!status) { vsi_ctx->vsis_allocd = LE16_TO_CPU(resp->vsi_used); vsi_ctx->vsis_unallocated = LE16_TO_CPU(resp->vsi_free); } return status; } /** * ice_is_vsi_valid - check whether the VSI is valid or not * @hw: pointer to the HW struct * @vsi_handle: VSI handle * * check whether the VSI is valid or not */ bool ice_is_vsi_valid(struct ice_hw *hw, u16 vsi_handle) { return vsi_handle < ICE_MAX_VSI && hw->vsi_ctx[vsi_handle]; } /** * ice_get_hw_vsi_num - return the HW VSI number * @hw: pointer to the HW struct * @vsi_handle: VSI handle * * return the HW VSI number * Caution: call this function only if VSI is valid (ice_is_vsi_valid) */ u16 ice_get_hw_vsi_num(struct ice_hw *hw, u16 vsi_handle) { return hw->vsi_ctx[vsi_handle]->vsi_num; } /** * ice_get_vsi_ctx - return the VSI context entry for a given VSI handle * @hw: pointer to the HW struct * @vsi_handle: VSI handle * * return the VSI context entry for a given VSI handle */ struct ice_vsi_ctx *ice_get_vsi_ctx(struct ice_hw *hw, u16 vsi_handle) { return (vsi_handle >= ICE_MAX_VSI) ? NULL : hw->vsi_ctx[vsi_handle]; } /** * ice_save_vsi_ctx - save the VSI context for a given VSI handle * @hw: pointer to the HW struct * @vsi_handle: VSI handle * @vsi: VSI context pointer * * save the VSI context entry for a given VSI handle */ static void ice_save_vsi_ctx(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi) { hw->vsi_ctx[vsi_handle] = vsi; } /** * ice_clear_vsi_q_ctx - clear VSI queue contexts for all TCs * @hw: pointer to the HW struct * @vsi_handle: VSI handle */ static void ice_clear_vsi_q_ctx(struct ice_hw *hw, u16 vsi_handle) { struct ice_vsi_ctx *vsi; u8 i; vsi = ice_get_vsi_ctx(hw, vsi_handle); if (!vsi) return; ice_for_each_traffic_class(i) { if (vsi->lan_q_ctx[i]) { ice_free(hw, vsi->lan_q_ctx[i]); vsi->lan_q_ctx[i] = NULL; } if (vsi->rdma_q_ctx[i]) { ice_free(hw, vsi->rdma_q_ctx[i]); vsi->rdma_q_ctx[i] = NULL; } } } /** * ice_clear_vsi_ctx - clear the VSI context entry * @hw: pointer to the HW struct * @vsi_handle: VSI handle * * clear the VSI context entry */ static void ice_clear_vsi_ctx(struct ice_hw *hw, u16 vsi_handle) { struct ice_vsi_ctx *vsi; vsi = ice_get_vsi_ctx(hw, vsi_handle); if (vsi) { ice_clear_vsi_q_ctx(hw, vsi_handle); ice_free(hw, vsi); hw->vsi_ctx[vsi_handle] = NULL; } } /** * ice_clear_all_vsi_ctx - clear all the VSI context entries * @hw: pointer to the HW struct */ void ice_clear_all_vsi_ctx(struct ice_hw *hw) { u16 i; for (i = 0; i < ICE_MAX_VSI; i++) ice_clear_vsi_ctx(hw, i); } /** * ice_add_vsi - add VSI context to the hardware and VSI handle list * @hw: pointer to the HW struct * @vsi_handle: unique VSI handle provided by drivers * @vsi_ctx: pointer to a VSI context struct * @cd: pointer to command details structure or NULL * * Add a VSI context to the hardware also add it into the VSI handle list. * If this function gets called after reset for existing VSIs then update * with the new HW VSI number in the corresponding VSI handle list entry. */ enum ice_status ice_add_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx, struct ice_sq_cd *cd) { struct ice_vsi_ctx *tmp_vsi_ctx; enum ice_status status; if (vsi_handle >= ICE_MAX_VSI) return ICE_ERR_PARAM; status = ice_aq_add_vsi(hw, vsi_ctx, cd); if (status) return status; tmp_vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle); if (!tmp_vsi_ctx) { /* Create a new VSI context */ tmp_vsi_ctx = (struct ice_vsi_ctx *) ice_malloc(hw, sizeof(*tmp_vsi_ctx)); if (!tmp_vsi_ctx) { ice_aq_free_vsi(hw, vsi_ctx, false, cd); return ICE_ERR_NO_MEMORY; } *tmp_vsi_ctx = *vsi_ctx; ice_save_vsi_ctx(hw, vsi_handle, tmp_vsi_ctx); } else { /* update with new HW VSI num */ tmp_vsi_ctx->vsi_num = vsi_ctx->vsi_num; } return ICE_SUCCESS; } /** * ice_free_vsi- free VSI context from hardware and VSI handle list * @hw: pointer to the HW struct * @vsi_handle: unique VSI handle * @vsi_ctx: pointer to a VSI context struct * @keep_vsi_alloc: keep VSI allocation as part of this PF's resources * @cd: pointer to command details structure or NULL * * Free VSI context info from hardware as well as from VSI handle list */ enum ice_status ice_free_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx, bool keep_vsi_alloc, struct ice_sq_cd *cd) { enum ice_status status; if (!ice_is_vsi_valid(hw, vsi_handle)) return ICE_ERR_PARAM; vsi_ctx->vsi_num = ice_get_hw_vsi_num(hw, vsi_handle); status = ice_aq_free_vsi(hw, vsi_ctx, keep_vsi_alloc, cd); if (!status) ice_clear_vsi_ctx(hw, vsi_handle); return status; } /** * ice_update_vsi * @hw: pointer to the HW struct * @vsi_handle: unique VSI handle * @vsi_ctx: pointer to a VSI context struct * @cd: pointer to command details structure or NULL * * Update VSI context in the hardware */ enum ice_status ice_update_vsi(struct ice_hw *hw, u16 vsi_handle, struct ice_vsi_ctx *vsi_ctx, struct ice_sq_cd *cd) { if (!ice_is_vsi_valid(hw, vsi_handle)) return ICE_ERR_PARAM; vsi_ctx->vsi_num = ice_get_hw_vsi_num(hw, vsi_handle); return ice_aq_update_vsi(hw, vsi_ctx, cd); } /** * ice_cfg_iwarp_fltr - enable/disable iWARP filtering on VSI * @hw: pointer to HW struct * @vsi_handle: VSI SW index * @enable: boolean for enable/disable */ enum ice_status ice_cfg_iwarp_fltr(struct ice_hw *hw, u16 vsi_handle, bool enable) { struct ice_vsi_ctx *ctx, *cached_ctx; enum ice_status status; cached_ctx = ice_get_vsi_ctx(hw, vsi_handle); if (!cached_ctx) return ICE_ERR_DOES_NOT_EXIST; ctx = (struct ice_vsi_ctx *)ice_calloc(hw, 1, sizeof(*ctx)); if (!ctx) return ICE_ERR_NO_MEMORY; ctx->info.q_opt_rss = cached_ctx->info.q_opt_rss; ctx->info.q_opt_tc = cached_ctx->info.q_opt_tc; ctx->info.q_opt_flags = cached_ctx->info.q_opt_flags; ctx->info.valid_sections = CPU_TO_LE16(ICE_AQ_VSI_PROP_Q_OPT_VALID); if (enable) ctx->info.q_opt_flags |= ICE_AQ_VSI_Q_OPT_PE_FLTR_EN; else ctx->info.q_opt_flags &= ~ICE_AQ_VSI_Q_OPT_PE_FLTR_EN; status = ice_update_vsi(hw, vsi_handle, ctx, NULL); if (!status) { cached_ctx->info.q_opt_flags = ctx->info.q_opt_flags; cached_ctx->info.valid_sections |= ctx->info.valid_sections; } ice_free(hw, ctx); return status; } /** * ice_aq_get_vsi_params * @hw: pointer to the HW struct * @vsi_ctx: pointer to a VSI context struct * @cd: pointer to command details structure or NULL * * Get VSI context info from hardware (0x0212) */ enum ice_status ice_aq_get_vsi_params(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx, struct ice_sq_cd *cd) { struct ice_aqc_add_get_update_free_vsi *cmd; struct ice_aqc_get_vsi_resp *resp; struct ice_aq_desc desc; enum ice_status status; cmd = &desc.params.vsi_cmd; resp = &desc.params.get_vsi_resp; ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_vsi_params); cmd->vsi_num = CPU_TO_LE16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID); status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info, sizeof(vsi_ctx->info), cd); if (!status) { vsi_ctx->vsi_num = LE16_TO_CPU(resp->vsi_num) & ICE_AQ_VSI_NUM_M; vsi_ctx->vf_num = resp->vf_id; vsi_ctx->vsis_allocd = LE16_TO_CPU(resp->vsi_used); vsi_ctx->vsis_unallocated = LE16_TO_CPU(resp->vsi_free); } return status; } /** * ice_aq_add_update_mir_rule - add/update a mirror rule * @hw: pointer to the HW struct * @rule_type: Rule Type * @dest_vsi: VSI number to which packets will be mirrored * @count: length of the list * @mr_buf: buffer for list of mirrored VSI numbers * @cd: pointer to command details structure or NULL * @rule_id: Rule ID * * Add/Update Mirror Rule (0x260). */ enum ice_status ice_aq_add_update_mir_rule(struct ice_hw *hw, u16 rule_type, u16 dest_vsi, u16 count, struct ice_mir_rule_buf *mr_buf, struct ice_sq_cd *cd, u16 *rule_id) { struct ice_aqc_add_update_mir_rule *cmd; struct ice_aq_desc desc; enum ice_status status; __le16 *mr_list = NULL; u16 buf_size = 0; switch (rule_type) { case ICE_AQC_RULE_TYPE_VPORT_INGRESS: case ICE_AQC_RULE_TYPE_VPORT_EGRESS: /* Make sure count and mr_buf are set for these rule_types */ if (!(count && mr_buf)) return ICE_ERR_PARAM; buf_size = count * sizeof(__le16); mr_list = (_FORCE_ __le16 *)ice_malloc(hw, buf_size); if (!mr_list) return ICE_ERR_NO_MEMORY; break; case ICE_AQC_RULE_TYPE_PPORT_INGRESS: case ICE_AQC_RULE_TYPE_PPORT_EGRESS: /* Make sure count and mr_buf are not set for these * rule_types */ if (count || mr_buf) return ICE_ERR_PARAM; break; default: ice_debug(hw, ICE_DBG_SW, "Error due to unsupported rule_type %u\n", rule_type); return ICE_ERR_OUT_OF_RANGE; } ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_update_mir_rule); /* Pre-process 'mr_buf' items for add/update of virtual port * ingress/egress mirroring (but not physical port ingress/egress * mirroring) */ if (mr_buf) { int i; for (i = 0; i < count; i++) { u16 id; id = mr_buf[i].vsi_idx & ICE_AQC_RULE_MIRRORED_VSI_M; /* Validate specified VSI number, make sure it is less * than ICE_MAX_VSI, if not return with error. */ if (id >= ICE_MAX_VSI) { ice_debug(hw, ICE_DBG_SW, "Error VSI index (%u) out-of-range\n", id); ice_free(hw, mr_list); return ICE_ERR_OUT_OF_RANGE; } /* add VSI to mirror rule */ if (mr_buf[i].add) mr_list[i] = CPU_TO_LE16(id | ICE_AQC_RULE_ACT_M); else /* remove VSI from mirror rule */ mr_list[i] = CPU_TO_LE16(id); } } cmd = &desc.params.add_update_rule; if ((*rule_id) != ICE_INVAL_MIRROR_RULE_ID) cmd->rule_id = CPU_TO_LE16(((*rule_id) & ICE_AQC_RULE_ID_M) | ICE_AQC_RULE_ID_VALID_M); cmd->rule_type = CPU_TO_LE16(rule_type & ICE_AQC_RULE_TYPE_M); cmd->num_entries = CPU_TO_LE16(count); cmd->dest = CPU_TO_LE16(dest_vsi); status = ice_aq_send_cmd(hw, &desc, mr_list, buf_size, cd); if (!status) *rule_id = LE16_TO_CPU(cmd->rule_id) & ICE_AQC_RULE_ID_M; ice_free(hw, mr_list); return status; } /** * ice_aq_delete_mir_rule - delete a mirror rule * @hw: pointer to the HW struct * @rule_id: Mirror rule ID (to be deleted) * @keep_allocd: if set, the VSI stays part of the PF allocated res, * otherwise it is returned to the shared pool * @cd: pointer to command details structure or NULL * * Delete Mirror Rule (0x261). */ enum ice_status ice_aq_delete_mir_rule(struct ice_hw *hw, u16 rule_id, bool keep_allocd, struct ice_sq_cd *cd) { struct ice_aqc_delete_mir_rule *cmd; struct ice_aq_desc desc; /* rule_id should be in the range 0...63 */ if (rule_id >= ICE_MAX_NUM_MIRROR_RULES) return ICE_ERR_OUT_OF_RANGE; ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_del_mir_rule); cmd = &desc.params.del_rule; rule_id |= ICE_AQC_RULE_ID_VALID_M; cmd->rule_id = CPU_TO_LE16(rule_id); if (keep_allocd) cmd->flags = CPU_TO_LE16(ICE_AQC_FLAG_KEEP_ALLOCD_M); return ice_aq_send_cmd(hw, &desc, NULL, 0, cd); } /** * ice_aq_alloc_free_vsi_list * @hw: pointer to the HW struct * @vsi_list_id: VSI list ID returned or used for lookup * @lkup_type: switch rule filter lookup type * @opc: switch rules population command type - pass in the command opcode * * allocates or free a VSI list resource */ static enum ice_status ice_aq_alloc_free_vsi_list(struct ice_hw *hw, u16 *vsi_list_id, enum ice_sw_lkup_type lkup_type, enum ice_adminq_opc opc) { struct ice_aqc_alloc_free_res_elem *sw_buf; struct ice_aqc_res_elem *vsi_ele; enum ice_status status; u16 buf_len; buf_len = ice_struct_size(sw_buf, elem, 1); sw_buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len); if (!sw_buf) return ICE_ERR_NO_MEMORY; sw_buf->num_elems = CPU_TO_LE16(1); if (lkup_type == ICE_SW_LKUP_MAC || lkup_type == ICE_SW_LKUP_MAC_VLAN || lkup_type == ICE_SW_LKUP_ETHERTYPE || lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC || lkup_type == ICE_SW_LKUP_PROMISC || lkup_type == ICE_SW_LKUP_PROMISC_VLAN || lkup_type == ICE_SW_LKUP_LAST) { sw_buf->res_type = CPU_TO_LE16(ICE_AQC_RES_TYPE_VSI_LIST_REP); } else if (lkup_type == ICE_SW_LKUP_VLAN) { sw_buf->res_type = CPU_TO_LE16(ICE_AQC_RES_TYPE_VSI_LIST_PRUNE); } else { status = ICE_ERR_PARAM; goto ice_aq_alloc_free_vsi_list_exit; } if (opc == ice_aqc_opc_free_res) sw_buf->elem[0].e.sw_resp = CPU_TO_LE16(*vsi_list_id); status = ice_aq_alloc_free_res(hw, 1, sw_buf, buf_len, opc, NULL); if (status) goto ice_aq_alloc_free_vsi_list_exit; if (opc == ice_aqc_opc_alloc_res) { vsi_ele = &sw_buf->elem[0]; *vsi_list_id = LE16_TO_CPU(vsi_ele->e.sw_resp); } ice_aq_alloc_free_vsi_list_exit: ice_free(hw, sw_buf); return status; } /** * ice_aq_set_storm_ctrl - Sets storm control configuration * @hw: pointer to the HW struct * @bcast_thresh: represents the upper threshold for broadcast storm control * @mcast_thresh: represents the upper threshold for multicast storm control * @ctl_bitmask: storm control knobs * * Sets the storm control configuration (0x0280) */ enum ice_status ice_aq_set_storm_ctrl(struct ice_hw *hw, u32 bcast_thresh, u32 mcast_thresh, u32 ctl_bitmask) { struct ice_aqc_storm_cfg *cmd; struct ice_aq_desc desc; cmd = &desc.params.storm_conf; ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_storm_cfg); cmd->bcast_thresh_size = CPU_TO_LE32(bcast_thresh & ICE_AQ_THRESHOLD_M); cmd->mcast_thresh_size = CPU_TO_LE32(mcast_thresh & ICE_AQ_THRESHOLD_M); cmd->storm_ctrl_ctrl = CPU_TO_LE32(ctl_bitmask); return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL); } /** * ice_aq_get_storm_ctrl - gets storm control configuration * @hw: pointer to the HW struct * @bcast_thresh: represents the upper threshold for broadcast storm control * @mcast_thresh: represents the upper threshold for multicast storm control * @ctl_bitmask: storm control knobs * * Gets the storm control configuration (0x0281) */ enum ice_status ice_aq_get_storm_ctrl(struct ice_hw *hw, u32 *bcast_thresh, u32 *mcast_thresh, u32 *ctl_bitmask) { enum ice_status status; struct ice_aq_desc desc; ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_storm_cfg); status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL); if (!status) { struct ice_aqc_storm_cfg *resp = &desc.params.storm_conf; if (bcast_thresh) *bcast_thresh = LE32_TO_CPU(resp->bcast_thresh_size) & ICE_AQ_THRESHOLD_M; if (mcast_thresh) *mcast_thresh = LE32_TO_CPU(resp->mcast_thresh_size) & ICE_AQ_THRESHOLD_M; if (ctl_bitmask) *ctl_bitmask = LE32_TO_CPU(resp->storm_ctrl_ctrl); } return status; } /** * ice_aq_sw_rules - add/update/remove switch rules * @hw: pointer to the HW struct * @rule_list: pointer to switch rule population list * @rule_list_sz: total size of the rule list in bytes * @num_rules: number of switch rules in the rule_list * @opc: switch rules population command type - pass in the command opcode * @cd: pointer to command details structure or NULL * * Add(0x02a0)/Update(0x02a1)/Remove(0x02a2) switch rules commands to firmware */ static enum ice_status ice_aq_sw_rules(struct ice_hw *hw, void *rule_list, u16 rule_list_sz, u8 num_rules, enum ice_adminq_opc opc, struct ice_sq_cd *cd) { struct ice_aq_desc desc; enum ice_status status; ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); if (opc != ice_aqc_opc_add_sw_rules && opc != ice_aqc_opc_update_sw_rules && opc != ice_aqc_opc_remove_sw_rules) return ICE_ERR_PARAM; ice_fill_dflt_direct_cmd_desc(&desc, opc); desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD); desc.params.sw_rules.num_rules_fltr_entry_index = CPU_TO_LE16(num_rules); status = ice_aq_send_cmd(hw, &desc, rule_list, rule_list_sz, cd); if (opc != ice_aqc_opc_add_sw_rules && hw->adminq.sq_last_status == ICE_AQ_RC_ENOENT) status = ICE_ERR_DOES_NOT_EXIST; return status; } /* ice_init_port_info - Initialize port_info with switch configuration data * @pi: pointer to port_info * @vsi_port_num: VSI number or port number * @type: Type of switch element (port or VSI) * @swid: switch ID of the switch the element is attached to * @pf_vf_num: PF or VF number * @is_vf: true if the element is a VF, false otherwise */ static void ice_init_port_info(struct ice_port_info *pi, u16 vsi_port_num, u8 type, u16 swid, u16 pf_vf_num, bool is_vf) { switch (type) { case ICE_AQC_GET_SW_CONF_RESP_PHYS_PORT: pi->lport = (u8)(vsi_port_num & ICE_LPORT_MASK); pi->sw_id = swid; pi->pf_vf_num = pf_vf_num; pi->is_vf = is_vf; pi->dflt_tx_vsi_num = ICE_DFLT_VSI_INVAL; pi->dflt_rx_vsi_num = ICE_DFLT_VSI_INVAL; break; default: ice_debug(pi->hw, ICE_DBG_SW, "incorrect VSI/port type received\n"); break; } } /* ice_get_initial_sw_cfg - Get initial port and default VSI data * @hw: pointer to the hardware structure */ enum ice_status ice_get_initial_sw_cfg(struct ice_hw *hw) { struct ice_aqc_get_sw_cfg_resp_elem *rbuf; enum ice_status status; u8 num_total_ports; u16 req_desc = 0; u16 num_elems; u8 j = 0; u16 i; num_total_ports = 1; rbuf = (struct ice_aqc_get_sw_cfg_resp_elem *) ice_malloc(hw, ICE_SW_CFG_MAX_BUF_LEN); if (!rbuf) return ICE_ERR_NO_MEMORY; /* Multiple calls to ice_aq_get_sw_cfg may be required * to get all the switch configuration information. The need * for additional calls is indicated by ice_aq_get_sw_cfg * writing a non-zero value in req_desc */ do { struct ice_aqc_get_sw_cfg_resp_elem *ele; status = ice_aq_get_sw_cfg(hw, rbuf, ICE_SW_CFG_MAX_BUF_LEN, &req_desc, &num_elems, NULL); if (status) break; for (i = 0, ele = rbuf; i < num_elems; i++, ele++) { u16 pf_vf_num, swid, vsi_port_num; bool is_vf = false; u8 res_type; vsi_port_num = LE16_TO_CPU(ele->vsi_port_num) & ICE_AQC_GET_SW_CONF_RESP_VSI_PORT_NUM_M; pf_vf_num = LE16_TO_CPU(ele->pf_vf_num) & ICE_AQC_GET_SW_CONF_RESP_FUNC_NUM_M; swid = LE16_TO_CPU(ele->swid); if (LE16_TO_CPU(ele->pf_vf_num) & ICE_AQC_GET_SW_CONF_RESP_IS_VF) is_vf = true; res_type = (u8)(LE16_TO_CPU(ele->vsi_port_num) >> ICE_AQC_GET_SW_CONF_RESP_TYPE_S); switch (res_type) { case ICE_AQC_GET_SW_CONF_RESP_PHYS_PORT: case ICE_AQC_GET_SW_CONF_RESP_VIRT_PORT: if (j == num_total_ports) { ice_debug(hw, ICE_DBG_SW, "more ports than expected\n"); status = ICE_ERR_CFG; goto out; } ice_init_port_info(hw->port_info, vsi_port_num, res_type, swid, pf_vf_num, is_vf); j++; break; default: break; } } } while (req_desc && !status); out: ice_free(hw, rbuf); return status; } /** * ice_fill_sw_info - Helper function to populate lb_en and lan_en * @hw: pointer to the hardware structure * @fi: filter info structure to fill/update * * This helper function populates the lb_en and lan_en elements of the provided * ice_fltr_info struct using the switch's type and characteristics of the * switch rule being configured. */ static void ice_fill_sw_info(struct ice_hw *hw, struct ice_fltr_info *fi) { fi->lb_en = false; fi->lan_en = false; if ((fi->flag & ICE_FLTR_TX) && (fi->fltr_act == ICE_FWD_TO_VSI || fi->fltr_act == ICE_FWD_TO_VSI_LIST || fi->fltr_act == ICE_FWD_TO_Q || fi->fltr_act == ICE_FWD_TO_QGRP)) { /* Setting LB for prune actions will result in replicated * packets to the internal switch that will be dropped. */ if (fi->lkup_type != ICE_SW_LKUP_VLAN) fi->lb_en = true; /* Set lan_en to TRUE if * 1. The switch is a VEB AND * 2 * 2.1 The lookup is a directional lookup like ethertype, * promiscuous, ethertype-MAC, promiscuous-VLAN * and default-port OR * 2.2 The lookup is VLAN, OR * 2.3 The lookup is MAC with mcast or bcast addr for MAC, OR * 2.4 The lookup is MAC_VLAN with mcast or bcast addr for MAC. * * OR * * The switch is a VEPA. * * In all other cases, the LAN enable has to be set to false. */ if (hw->evb_veb) { if (fi->lkup_type == ICE_SW_LKUP_ETHERTYPE || fi->lkup_type == ICE_SW_LKUP_PROMISC || fi->lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC || fi->lkup_type == ICE_SW_LKUP_PROMISC_VLAN || fi->lkup_type == ICE_SW_LKUP_DFLT || fi->lkup_type == ICE_SW_LKUP_VLAN || (fi->lkup_type == ICE_SW_LKUP_MAC && !IS_UNICAST_ETHER_ADDR(fi->l_data.mac.mac_addr)) || (fi->lkup_type == ICE_SW_LKUP_MAC_VLAN && !IS_UNICAST_ETHER_ADDR(fi->l_data.mac.mac_addr))) fi->lan_en = true; } else { fi->lan_en = true; } } } /** * ice_fill_sw_rule - Helper function to fill switch rule structure * @hw: pointer to the hardware structure * @f_info: entry containing packet forwarding information * @s_rule: switch rule structure to be filled in based on mac_entry * @opc: switch rules population command type - pass in the command opcode */ static void ice_fill_sw_rule(struct ice_hw *hw, struct ice_fltr_info *f_info, struct ice_aqc_sw_rules_elem *s_rule, enum ice_adminq_opc opc) { u16 vlan_id = ICE_MAX_VLAN_ID + 1; u16 vlan_tpid = ICE_ETH_P_8021Q; void *daddr = NULL; u16 eth_hdr_sz; u8 *eth_hdr; u32 act = 0; __be16 *off; u8 q_rgn; if (opc == ice_aqc_opc_remove_sw_rules) { s_rule->pdata.lkup_tx_rx.act = 0; s_rule->pdata.lkup_tx_rx.index = CPU_TO_LE16(f_info->fltr_rule_id); s_rule->pdata.lkup_tx_rx.hdr_len = 0; return; } eth_hdr_sz = sizeof(dummy_eth_header); eth_hdr = s_rule->pdata.lkup_tx_rx.hdr; /* initialize the ether header with a dummy header */ ice_memcpy(eth_hdr, dummy_eth_header, eth_hdr_sz, ICE_NONDMA_TO_NONDMA); ice_fill_sw_info(hw, f_info); switch (f_info->fltr_act) { case ICE_FWD_TO_VSI: act |= (f_info->fwd_id.hw_vsi_id << ICE_SINGLE_ACT_VSI_ID_S) & ICE_SINGLE_ACT_VSI_ID_M; if (f_info->lkup_type != ICE_SW_LKUP_VLAN) act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_VALID_BIT; break; case ICE_FWD_TO_VSI_LIST: act |= ICE_SINGLE_ACT_VSI_LIST; act |= (f_info->fwd_id.vsi_list_id << ICE_SINGLE_ACT_VSI_LIST_ID_S) & ICE_SINGLE_ACT_VSI_LIST_ID_M; if (f_info->lkup_type != ICE_SW_LKUP_VLAN) act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_VALID_BIT; break; case ICE_FWD_TO_Q: act |= ICE_SINGLE_ACT_TO_Q; act |= (f_info->fwd_id.q_id << ICE_SINGLE_ACT_Q_INDEX_S) & ICE_SINGLE_ACT_Q_INDEX_M; break; case ICE_DROP_PACKET: act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_DROP | ICE_SINGLE_ACT_VALID_BIT; break; case ICE_FWD_TO_QGRP: q_rgn = f_info->qgrp_size > 0 ? (u8)ice_ilog2(f_info->qgrp_size) : 0; act |= ICE_SINGLE_ACT_TO_Q; act |= (f_info->fwd_id.q_id << ICE_SINGLE_ACT_Q_INDEX_S) & ICE_SINGLE_ACT_Q_INDEX_M; act |= (q_rgn << ICE_SINGLE_ACT_Q_REGION_S) & ICE_SINGLE_ACT_Q_REGION_M; break; default: return; } if (f_info->lb_en) act |= ICE_SINGLE_ACT_LB_ENABLE; if (f_info->lan_en) act |= ICE_SINGLE_ACT_LAN_ENABLE; switch (f_info->lkup_type) { case ICE_SW_LKUP_MAC: daddr = f_info->l_data.mac.mac_addr; break; case ICE_SW_LKUP_VLAN: vlan_id = f_info->l_data.vlan.vlan_id; if (f_info->l_data.vlan.tpid_valid) vlan_tpid = f_info->l_data.vlan.tpid; if (f_info->fltr_act == ICE_FWD_TO_VSI || f_info->fltr_act == ICE_FWD_TO_VSI_LIST) { act |= ICE_SINGLE_ACT_PRUNE; act |= ICE_SINGLE_ACT_EGRESS | ICE_SINGLE_ACT_INGRESS; } break; case ICE_SW_LKUP_ETHERTYPE_MAC: daddr = f_info->l_data.ethertype_mac.mac_addr; /* fall-through */ case ICE_SW_LKUP_ETHERTYPE: off = (_FORCE_ __be16 *)(eth_hdr + ICE_ETH_ETHTYPE_OFFSET); *off = CPU_TO_BE16(f_info->l_data.ethertype_mac.ethertype); break; case ICE_SW_LKUP_MAC_VLAN: daddr = f_info->l_data.mac_vlan.mac_addr; vlan_id = f_info->l_data.mac_vlan.vlan_id; break; case ICE_SW_LKUP_PROMISC_VLAN: vlan_id = f_info->l_data.mac_vlan.vlan_id; /* fall-through */ case ICE_SW_LKUP_PROMISC: daddr = f_info->l_data.mac_vlan.mac_addr; break; default: break; } s_rule->type = (f_info->flag & ICE_FLTR_RX) ? CPU_TO_LE16(ICE_AQC_SW_RULES_T_LKUP_RX) : CPU_TO_LE16(ICE_AQC_SW_RULES_T_LKUP_TX); /* Recipe set depending on lookup type */ s_rule->pdata.lkup_tx_rx.recipe_id = CPU_TO_LE16(f_info->lkup_type); s_rule->pdata.lkup_tx_rx.src = CPU_TO_LE16(f_info->src); s_rule->pdata.lkup_tx_rx.act = CPU_TO_LE32(act); if (daddr) ice_memcpy(eth_hdr + ICE_ETH_DA_OFFSET, daddr, ETH_ALEN, ICE_NONDMA_TO_NONDMA); if (!(vlan_id > ICE_MAX_VLAN_ID)) { off = (_FORCE_ __be16 *)(eth_hdr + ICE_ETH_VLAN_TCI_OFFSET); *off = CPU_TO_BE16(vlan_id); off = (_FORCE_ __be16 *)(eth_hdr + ICE_ETH_ETHTYPE_OFFSET); *off = CPU_TO_BE16(vlan_tpid); } /* Create the switch rule with the final dummy Ethernet header */ if (opc != ice_aqc_opc_update_sw_rules) s_rule->pdata.lkup_tx_rx.hdr_len = CPU_TO_LE16(eth_hdr_sz); } /** * ice_add_marker_act * @hw: pointer to the hardware structure * @m_ent: the management entry for which sw marker needs to be added * @sw_marker: sw marker to tag the Rx descriptor with * @l_id: large action resource ID * * Create a large action to hold software marker and update the switch rule * entry pointed by m_ent with newly created large action */ static enum ice_status ice_add_marker_act(struct ice_hw *hw, struct ice_fltr_mgmt_list_entry *m_ent, u16 sw_marker, u16 l_id) { struct ice_aqc_sw_rules_elem *lg_act, *rx_tx; /* For software marker we need 3 large actions * 1. FWD action: FWD TO VSI or VSI LIST * 2. GENERIC VALUE action to hold the profile ID * 3. GENERIC VALUE action to hold the software marker ID */ const u16 num_lg_acts = 3; enum ice_status status; u16 lg_act_size; u16 rules_size; u32 act; u16 id; if (m_ent->fltr_info.lkup_type != ICE_SW_LKUP_MAC) return ICE_ERR_PARAM; /* Create two back-to-back switch rules and submit them to the HW using * one memory buffer: * 1. Large Action * 2. Look up Tx Rx */ lg_act_size = (u16)ICE_SW_RULE_LG_ACT_SIZE(num_lg_acts); rules_size = lg_act_size + ICE_SW_RULE_RX_TX_ETH_HDR_SIZE; lg_act = (struct ice_aqc_sw_rules_elem *)ice_malloc(hw, rules_size); if (!lg_act) return ICE_ERR_NO_MEMORY; rx_tx = (struct ice_aqc_sw_rules_elem *)((u8 *)lg_act + lg_act_size); /* Fill in the first switch rule i.e. large action */ lg_act->type = CPU_TO_LE16(ICE_AQC_SW_RULES_T_LG_ACT); lg_act->pdata.lg_act.index = CPU_TO_LE16(l_id); lg_act->pdata.lg_act.size = CPU_TO_LE16(num_lg_acts); /* First action VSI forwarding or VSI list forwarding depending on how * many VSIs */ id = (m_ent->vsi_count > 1) ? m_ent->fltr_info.fwd_id.vsi_list_id : m_ent->fltr_info.fwd_id.hw_vsi_id; act = ICE_LG_ACT_VSI_FORWARDING | ICE_LG_ACT_VALID_BIT; act |= (id << ICE_LG_ACT_VSI_LIST_ID_S) & ICE_LG_ACT_VSI_LIST_ID_M; if (m_ent->vsi_count > 1) act |= ICE_LG_ACT_VSI_LIST; lg_act->pdata.lg_act.act[0] = CPU_TO_LE32(act); /* Second action descriptor type */ act = ICE_LG_ACT_GENERIC; act |= (1 << ICE_LG_ACT_GENERIC_VALUE_S) & ICE_LG_ACT_GENERIC_VALUE_M; lg_act->pdata.lg_act.act[1] = CPU_TO_LE32(act); act = (ICE_LG_ACT_GENERIC_OFF_RX_DESC_PROF_IDX << ICE_LG_ACT_GENERIC_OFFSET_S) & ICE_LG_ACT_GENERIC_OFFSET_M; /* Third action Marker value */ act |= ICE_LG_ACT_GENERIC; act |= (sw_marker << ICE_LG_ACT_GENERIC_VALUE_S) & ICE_LG_ACT_GENERIC_VALUE_M; lg_act->pdata.lg_act.act[2] = CPU_TO_LE32(act); /* call the fill switch rule to fill the lookup Tx Rx structure */ ice_fill_sw_rule(hw, &m_ent->fltr_info, rx_tx, ice_aqc_opc_update_sw_rules); /* Update the action to point to the large action ID */ rx_tx->pdata.lkup_tx_rx.act = CPU_TO_LE32(ICE_SINGLE_ACT_PTR | ((l_id << ICE_SINGLE_ACT_PTR_VAL_S) & ICE_SINGLE_ACT_PTR_VAL_M)); /* Use the filter rule ID of the previously created rule with single * act. Once the update happens, hardware will treat this as large * action */ rx_tx->pdata.lkup_tx_rx.index = CPU_TO_LE16(m_ent->fltr_info.fltr_rule_id); status = ice_aq_sw_rules(hw, lg_act, rules_size, 2, ice_aqc_opc_update_sw_rules, NULL); if (!status) { m_ent->lg_act_idx = l_id; m_ent->sw_marker_id = sw_marker; } ice_free(hw, lg_act); return status; } /** * ice_add_counter_act - add/update filter rule with counter action * @hw: pointer to the hardware structure * @m_ent: the management entry for which counter needs to be added * @counter_id: VLAN counter ID returned as part of allocate resource * @l_id: large action resource ID */ static enum ice_status ice_add_counter_act(struct ice_hw *hw, struct ice_fltr_mgmt_list_entry *m_ent, u16 counter_id, u16 l_id) { struct ice_aqc_sw_rules_elem *lg_act; struct ice_aqc_sw_rules_elem *rx_tx; enum ice_status status; /* 2 actions will be added while adding a large action counter */ const int num_acts = 2; u16 lg_act_size; u16 rules_size; u16 f_rule_id; u32 act; u16 id; if (m_ent->fltr_info.lkup_type != ICE_SW_LKUP_MAC) return ICE_ERR_PARAM; /* Create two back-to-back switch rules and submit them to the HW using * one memory buffer: * 1. Large Action * 2. Look up Tx Rx */ lg_act_size = (u16)ICE_SW_RULE_LG_ACT_SIZE(num_acts); rules_size = lg_act_size + ICE_SW_RULE_RX_TX_ETH_HDR_SIZE; lg_act = (struct ice_aqc_sw_rules_elem *)ice_malloc(hw, rules_size); if (!lg_act) return ICE_ERR_NO_MEMORY; rx_tx = (struct ice_aqc_sw_rules_elem *)((u8 *)lg_act + lg_act_size); /* Fill in the first switch rule i.e. large action */ lg_act->type = CPU_TO_LE16(ICE_AQC_SW_RULES_T_LG_ACT); lg_act->pdata.lg_act.index = CPU_TO_LE16(l_id); lg_act->pdata.lg_act.size = CPU_TO_LE16(num_acts); /* First action VSI forwarding or VSI list forwarding depending on how * many VSIs */ id = (m_ent->vsi_count > 1) ? m_ent->fltr_info.fwd_id.vsi_list_id : m_ent->fltr_info.fwd_id.hw_vsi_id; act = ICE_LG_ACT_VSI_FORWARDING | ICE_LG_ACT_VALID_BIT; act |= (id << ICE_LG_ACT_VSI_LIST_ID_S) & ICE_LG_ACT_VSI_LIST_ID_M; if (m_ent->vsi_count > 1) act |= ICE_LG_ACT_VSI_LIST; lg_act->pdata.lg_act.act[0] = CPU_TO_LE32(act); /* Second action counter ID */ act = ICE_LG_ACT_STAT_COUNT; act |= (counter_id << ICE_LG_ACT_STAT_COUNT_S) & ICE_LG_ACT_STAT_COUNT_M; lg_act->pdata.lg_act.act[1] = CPU_TO_LE32(act); /* call the fill switch rule to fill the lookup Tx Rx structure */ ice_fill_sw_rule(hw, &m_ent->fltr_info, rx_tx, ice_aqc_opc_update_sw_rules); act = ICE_SINGLE_ACT_PTR; act |= (l_id << ICE_SINGLE_ACT_PTR_VAL_S) & ICE_SINGLE_ACT_PTR_VAL_M; rx_tx->pdata.lkup_tx_rx.act = CPU_TO_LE32(act); /* Use the filter rule ID of the previously created rule with single * act. Once the update happens, hardware will treat this as large * action */ f_rule_id = m_ent->fltr_info.fltr_rule_id; rx_tx->pdata.lkup_tx_rx.index = CPU_TO_LE16(f_rule_id); status = ice_aq_sw_rules(hw, lg_act, rules_size, 2, ice_aqc_opc_update_sw_rules, NULL); if (!status) { m_ent->lg_act_idx = l_id; m_ent->counter_index = counter_id; } ice_free(hw, lg_act); return status; } /** * ice_create_vsi_list_map * @hw: pointer to the hardware structure * @vsi_handle_arr: array of VSI handles to set in the VSI mapping * @num_vsi: number of VSI handles in the array * @vsi_list_id: VSI list ID generated as part of allocate resource * * Helper function to create a new entry of VSI list ID to VSI mapping * using the given VSI list ID */ static struct ice_vsi_list_map_info * ice_create_vsi_list_map(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi, u16 vsi_list_id) { struct ice_switch_info *sw = hw->switch_info; struct ice_vsi_list_map_info *v_map; int i; v_map = (struct ice_vsi_list_map_info *)ice_malloc(hw, sizeof(*v_map)); if (!v_map) return NULL; v_map->vsi_list_id = vsi_list_id; v_map->ref_cnt = 1; for (i = 0; i < num_vsi; i++) ice_set_bit(vsi_handle_arr[i], v_map->vsi_map); LIST_ADD(&v_map->list_entry, &sw->vsi_list_map_head); return v_map; } /** * ice_update_vsi_list_rule * @hw: pointer to the hardware structure * @vsi_handle_arr: array of VSI handles to form a VSI list * @num_vsi: number of VSI handles in the array * @vsi_list_id: VSI list ID generated as part of allocate resource * @remove: Boolean value to indicate if this is a remove action * @opc: switch rules population command type - pass in the command opcode * @lkup_type: lookup type of the filter * * Call AQ command to add a new switch rule or update existing switch rule * using the given VSI list ID */ static enum ice_status ice_update_vsi_list_rule(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi, u16 vsi_list_id, bool remove, enum ice_adminq_opc opc, enum ice_sw_lkup_type lkup_type) { struct ice_aqc_sw_rules_elem *s_rule; enum ice_status status; u16 s_rule_size; u16 rule_type; int i; if (!num_vsi) return ICE_ERR_PARAM; if (lkup_type == ICE_SW_LKUP_MAC || lkup_type == ICE_SW_LKUP_MAC_VLAN || lkup_type == ICE_SW_LKUP_ETHERTYPE || lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC || lkup_type == ICE_SW_LKUP_PROMISC || lkup_type == ICE_SW_LKUP_PROMISC_VLAN || lkup_type == ICE_SW_LKUP_LAST) rule_type = remove ? ICE_AQC_SW_RULES_T_VSI_LIST_CLEAR : ICE_AQC_SW_RULES_T_VSI_LIST_SET; else if (lkup_type == ICE_SW_LKUP_VLAN) rule_type = remove ? ICE_AQC_SW_RULES_T_PRUNE_LIST_CLEAR : ICE_AQC_SW_RULES_T_PRUNE_LIST_SET; else return ICE_ERR_PARAM; s_rule_size = (u16)ICE_SW_RULE_VSI_LIST_SIZE(num_vsi); s_rule = (struct ice_aqc_sw_rules_elem *)ice_malloc(hw, s_rule_size); if (!s_rule) return ICE_ERR_NO_MEMORY; for (i = 0; i < num_vsi; i++) { if (!ice_is_vsi_valid(hw, vsi_handle_arr[i])) { status = ICE_ERR_PARAM; goto exit; } /* AQ call requires hw_vsi_id(s) */ s_rule->pdata.vsi_list.vsi[i] = CPU_TO_LE16(ice_get_hw_vsi_num(hw, vsi_handle_arr[i])); } s_rule->type = CPU_TO_LE16(rule_type); s_rule->pdata.vsi_list.number_vsi = CPU_TO_LE16(num_vsi); s_rule->pdata.vsi_list.index = CPU_TO_LE16(vsi_list_id); status = ice_aq_sw_rules(hw, s_rule, s_rule_size, 1, opc, NULL); exit: ice_free(hw, s_rule); return status; } /** * ice_create_vsi_list_rule - Creates and populates a VSI list rule * @hw: pointer to the HW struct * @vsi_handle_arr: array of VSI handles to form a VSI list * @num_vsi: number of VSI handles in the array * @vsi_list_id: stores the ID of the VSI list to be created * @lkup_type: switch rule filter's lookup type */ static enum ice_status ice_create_vsi_list_rule(struct ice_hw *hw, u16 *vsi_handle_arr, u16 num_vsi, u16 *vsi_list_id, enum ice_sw_lkup_type lkup_type) { enum ice_status status; status = ice_aq_alloc_free_vsi_list(hw, vsi_list_id, lkup_type, ice_aqc_opc_alloc_res); if (status) return status; /* Update the newly created VSI list to include the specified VSIs */ return ice_update_vsi_list_rule(hw, vsi_handle_arr, num_vsi, *vsi_list_id, false, ice_aqc_opc_add_sw_rules, lkup_type); } /** * ice_create_pkt_fwd_rule * @hw: pointer to the hardware structure * @recp_list: corresponding filter management list * @f_entry: entry containing packet forwarding information * * Create switch rule with given filter information and add an entry * to the corresponding filter management list to track this switch rule * and VSI mapping */ static enum ice_status ice_create_pkt_fwd_rule(struct ice_hw *hw, struct ice_sw_recipe *recp_list, struct ice_fltr_list_entry *f_entry) { struct ice_fltr_mgmt_list_entry *fm_entry; struct ice_aqc_sw_rules_elem *s_rule; enum ice_status status; s_rule = (struct ice_aqc_sw_rules_elem *) ice_malloc(hw, ICE_SW_RULE_RX_TX_ETH_HDR_SIZE); if (!s_rule) return ICE_ERR_NO_MEMORY; fm_entry = (struct ice_fltr_mgmt_list_entry *) ice_malloc(hw, sizeof(*fm_entry)); if (!fm_entry) { status = ICE_ERR_NO_MEMORY; goto ice_create_pkt_fwd_rule_exit; } fm_entry->fltr_info = f_entry->fltr_info; /* Initialize all the fields for the management entry */ fm_entry->vsi_count = 1; fm_entry->lg_act_idx = ICE_INVAL_LG_ACT_INDEX; fm_entry->sw_marker_id = ICE_INVAL_SW_MARKER_ID; fm_entry->counter_index = ICE_INVAL_COUNTER_ID; ice_fill_sw_rule(hw, &fm_entry->fltr_info, s_rule, ice_aqc_opc_add_sw_rules); status = ice_aq_sw_rules(hw, s_rule, ICE_SW_RULE_RX_TX_ETH_HDR_SIZE, 1, ice_aqc_opc_add_sw_rules, NULL); if (status) { ice_free(hw, fm_entry); goto ice_create_pkt_fwd_rule_exit; } f_entry->fltr_info.fltr_rule_id = LE16_TO_CPU(s_rule->pdata.lkup_tx_rx.index); fm_entry->fltr_info.fltr_rule_id = LE16_TO_CPU(s_rule->pdata.lkup_tx_rx.index); /* The book keeping entries will get removed when base driver * calls remove filter AQ command */ LIST_ADD(&fm_entry->list_entry, &recp_list->filt_rules); ice_create_pkt_fwd_rule_exit: ice_free(hw, s_rule); return status; } /** * ice_update_pkt_fwd_rule * @hw: pointer to the hardware structure * @f_info: filter information for switch rule * * Call AQ command to update a previously created switch rule with a * VSI list ID */ static enum ice_status ice_update_pkt_fwd_rule(struct ice_hw *hw, struct ice_fltr_info *f_info) { struct ice_aqc_sw_rules_elem *s_rule; enum ice_status status; s_rule = (struct ice_aqc_sw_rules_elem *) ice_malloc(hw, ICE_SW_RULE_RX_TX_ETH_HDR_SIZE); if (!s_rule) return ICE_ERR_NO_MEMORY; ice_fill_sw_rule(hw, f_info, s_rule, ice_aqc_opc_update_sw_rules); s_rule->pdata.lkup_tx_rx.index = CPU_TO_LE16(f_info->fltr_rule_id); /* Update switch rule with new rule set to forward VSI list */ status = ice_aq_sw_rules(hw, s_rule, ICE_SW_RULE_RX_TX_ETH_HDR_SIZE, 1, ice_aqc_opc_update_sw_rules, NULL); ice_free(hw, s_rule); return status; } /** * ice_update_sw_rule_bridge_mode * @hw: pointer to the HW struct * * Updates unicast switch filter rules based on VEB/VEPA mode */ enum ice_status ice_update_sw_rule_bridge_mode(struct ice_hw *hw) { struct ice_switch_info *sw = hw->switch_info; struct ice_fltr_mgmt_list_entry *fm_entry; enum ice_status status = ICE_SUCCESS; struct LIST_HEAD_TYPE *rule_head; struct ice_lock *rule_lock; /* Lock to protect filter rule list */ rule_lock = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rule_lock; rule_head = &sw->recp_list[ICE_SW_LKUP_MAC].filt_rules; ice_acquire_lock(rule_lock); LIST_FOR_EACH_ENTRY(fm_entry, rule_head, ice_fltr_mgmt_list_entry, list_entry) { struct ice_fltr_info *fi = &fm_entry->fltr_info; u8 *addr = fi->l_data.mac.mac_addr; /* Update unicast Tx rules to reflect the selected * VEB/VEPA mode */ if ((fi->flag & ICE_FLTR_TX) && IS_UNICAST_ETHER_ADDR(addr) && (fi->fltr_act == ICE_FWD_TO_VSI || fi->fltr_act == ICE_FWD_TO_VSI_LIST || fi->fltr_act == ICE_FWD_TO_Q || fi->fltr_act == ICE_FWD_TO_QGRP)) { status = ice_update_pkt_fwd_rule(hw, fi); if (status) break; } } ice_release_lock(rule_lock); return status; } /** * ice_add_update_vsi_list * @hw: pointer to the hardware structure * @m_entry: pointer to current filter management list entry * @cur_fltr: filter information from the book keeping entry * @new_fltr: filter information with the new VSI to be added * * Call AQ command to add or update previously created VSI list with new VSI. * * Helper function to do book keeping associated with adding filter information * The algorithm to do the book keeping is described below : * When a VSI needs to subscribe to a given filter (MAC/VLAN/Ethtype etc.) * if only one VSI has been added till now * Allocate a new VSI list and add two VSIs * to this list using switch rule command * Update the previously created switch rule with the * newly created VSI list ID * if a VSI list was previously created * Add the new VSI to the previously created VSI list set * using the update switch rule command */ static enum ice_status ice_add_update_vsi_list(struct ice_hw *hw, struct ice_fltr_mgmt_list_entry *m_entry, struct ice_fltr_info *cur_fltr, struct ice_fltr_info *new_fltr) { enum ice_status status = ICE_SUCCESS; u16 vsi_list_id = 0; if ((cur_fltr->fltr_act == ICE_FWD_TO_Q || cur_fltr->fltr_act == ICE_FWD_TO_QGRP)) return ICE_ERR_NOT_IMPL; if ((new_fltr->fltr_act == ICE_FWD_TO_Q || new_fltr->fltr_act == ICE_FWD_TO_QGRP) && (cur_fltr->fltr_act == ICE_FWD_TO_VSI || cur_fltr->fltr_act == ICE_FWD_TO_VSI_LIST)) return ICE_ERR_NOT_IMPL; if (m_entry->vsi_count < 2 && !m_entry->vsi_list_info) { /* Only one entry existed in the mapping and it was not already * a part of a VSI list. So, create a VSI list with the old and * new VSIs. */ struct ice_fltr_info tmp_fltr; u16 vsi_handle_arr[2]; /* A rule already exists with the new VSI being added */ if (cur_fltr->fwd_id.hw_vsi_id == new_fltr->fwd_id.hw_vsi_id) return ICE_ERR_ALREADY_EXISTS; vsi_handle_arr[0] = cur_fltr->vsi_handle; vsi_handle_arr[1] = new_fltr->vsi_handle; status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2, &vsi_list_id, new_fltr->lkup_type); if (status) return status; tmp_fltr = *new_fltr; tmp_fltr.fltr_rule_id = cur_fltr->fltr_rule_id; tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST; tmp_fltr.fwd_id.vsi_list_id = vsi_list_id; /* Update the previous switch rule of "MAC forward to VSI" to * "MAC fwd to VSI list" */ status = ice_update_pkt_fwd_rule(hw, &tmp_fltr); if (status) return status; cur_fltr->fwd_id.vsi_list_id = vsi_list_id; cur_fltr->fltr_act = ICE_FWD_TO_VSI_LIST; m_entry->vsi_list_info = ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2, vsi_list_id); if (!m_entry->vsi_list_info) return ICE_ERR_NO_MEMORY; /* If this entry was large action then the large action needs * to be updated to point to FWD to VSI list */ if (m_entry->sw_marker_id != ICE_INVAL_SW_MARKER_ID) status = ice_add_marker_act(hw, m_entry, m_entry->sw_marker_id, m_entry->lg_act_idx); } else { u16 vsi_handle = new_fltr->vsi_handle; enum ice_adminq_opc opcode; if (!m_entry->vsi_list_info) return ICE_ERR_CFG; /* A rule already exists with the new VSI being added */ if (ice_is_bit_set(m_entry->vsi_list_info->vsi_map, vsi_handle)) return ICE_SUCCESS; /* Update the previously created VSI list set with * the new VSI ID passed in */ vsi_list_id = cur_fltr->fwd_id.vsi_list_id; opcode = ice_aqc_opc_update_sw_rules; status = ice_update_vsi_list_rule(hw, &vsi_handle, 1, vsi_list_id, false, opcode, new_fltr->lkup_type); /* update VSI list mapping info with new VSI ID */ if (!status) ice_set_bit(vsi_handle, m_entry->vsi_list_info->vsi_map); } if (!status) m_entry->vsi_count++; return status; } /** * ice_find_rule_entry - Search a rule entry * @list_head: head of rule list * @f_info: rule information * * Helper function to search for a given rule entry * Returns pointer to entry storing the rule if found */ static struct ice_fltr_mgmt_list_entry * ice_find_rule_entry(struct LIST_HEAD_TYPE *list_head, struct ice_fltr_info *f_info) { struct ice_fltr_mgmt_list_entry *list_itr, *ret = NULL; LIST_FOR_EACH_ENTRY(list_itr, list_head, ice_fltr_mgmt_list_entry, list_entry) { if (!memcmp(&f_info->l_data, &list_itr->fltr_info.l_data, sizeof(f_info->l_data)) && f_info->flag == list_itr->fltr_info.flag) { ret = list_itr; break; } } return ret; } /** * ice_find_vsi_list_entry - Search VSI list map with VSI count 1 * @recp_list: VSI lists needs to be searched * @vsi_handle: VSI handle to be found in VSI list * @vsi_list_id: VSI list ID found containing vsi_handle * * Helper function to search a VSI list with single entry containing given VSI * handle element. This can be extended further to search VSI list with more * than 1 vsi_count. Returns pointer to VSI list entry if found. */ static struct ice_vsi_list_map_info * ice_find_vsi_list_entry(struct ice_sw_recipe *recp_list, u16 vsi_handle, u16 *vsi_list_id) { struct ice_vsi_list_map_info *map_info = NULL; struct LIST_HEAD_TYPE *list_head; list_head = &recp_list->filt_rules; if (recp_list->adv_rule) { struct ice_adv_fltr_mgmt_list_entry *list_itr; LIST_FOR_EACH_ENTRY(list_itr, list_head, ice_adv_fltr_mgmt_list_entry, list_entry) { if (list_itr->vsi_list_info) { map_info = list_itr->vsi_list_info; if (ice_is_bit_set(map_info->vsi_map, vsi_handle)) { *vsi_list_id = map_info->vsi_list_id; return map_info; } } } } else { struct ice_fltr_mgmt_list_entry *list_itr; LIST_FOR_EACH_ENTRY(list_itr, list_head, ice_fltr_mgmt_list_entry, list_entry) { if (list_itr->vsi_count == 1 && list_itr->vsi_list_info) { map_info = list_itr->vsi_list_info; if (ice_is_bit_set(map_info->vsi_map, vsi_handle)) { *vsi_list_id = map_info->vsi_list_id; return map_info; } } } } return NULL; } /** * ice_add_rule_internal - add rule for a given lookup type * @hw: pointer to the hardware structure * @recp_list: recipe list for which rule has to be added * @lport: logic port number on which function add rule * @f_entry: structure containing MAC forwarding information * * Adds or updates the rule lists for a given recipe */ static enum ice_status ice_add_rule_internal(struct ice_hw *hw, struct ice_sw_recipe *recp_list, u8 lport, struct ice_fltr_list_entry *f_entry) { struct ice_fltr_info *new_fltr, *cur_fltr; struct ice_fltr_mgmt_list_entry *m_entry; struct ice_lock *rule_lock; /* Lock to protect filter rule list */ enum ice_status status = ICE_SUCCESS; if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle)) return ICE_ERR_PARAM; /* Load the hw_vsi_id only if the fwd action is fwd to VSI */ if (f_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI) f_entry->fltr_info.fwd_id.hw_vsi_id = ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle); rule_lock = &recp_list->filt_rule_lock; ice_acquire_lock(rule_lock); new_fltr = &f_entry->fltr_info; if (new_fltr->flag & ICE_FLTR_RX) new_fltr->src = lport; else if (new_fltr->flag & ICE_FLTR_TX) new_fltr->src = ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle); m_entry = ice_find_rule_entry(&recp_list->filt_rules, new_fltr); if (!m_entry) { status = ice_create_pkt_fwd_rule(hw, recp_list, f_entry); goto exit_add_rule_internal; } cur_fltr = &m_entry->fltr_info; status = ice_add_update_vsi_list(hw, m_entry, cur_fltr, new_fltr); exit_add_rule_internal: ice_release_lock(rule_lock); return status; } /** * ice_remove_vsi_list_rule * @hw: pointer to the hardware structure * @vsi_list_id: VSI list ID generated as part of allocate resource * @lkup_type: switch rule filter lookup type * * The VSI list should be emptied before this function is called to remove the * VSI list. */ static enum ice_status ice_remove_vsi_list_rule(struct ice_hw *hw, u16 vsi_list_id, enum ice_sw_lkup_type lkup_type) { /* Free the vsi_list resource that we allocated. It is assumed that the * list is empty at this point. */ return ice_aq_alloc_free_vsi_list(hw, &vsi_list_id, lkup_type, ice_aqc_opc_free_res); } /** * ice_rem_update_vsi_list * @hw: pointer to the hardware structure * @vsi_handle: VSI handle of the VSI to remove * @fm_list: filter management entry for which the VSI list management needs to * be done */ static enum ice_status ice_rem_update_vsi_list(struct ice_hw *hw, u16 vsi_handle, struct ice_fltr_mgmt_list_entry *fm_list) { enum ice_sw_lkup_type lkup_type; enum ice_status status = ICE_SUCCESS; u16 vsi_list_id; if (fm_list->fltr_info.fltr_act != ICE_FWD_TO_VSI_LIST || fm_list->vsi_count == 0) return ICE_ERR_PARAM; /* A rule with the VSI being removed does not exist */ if (!ice_is_bit_set(fm_list->vsi_list_info->vsi_map, vsi_handle)) return ICE_ERR_DOES_NOT_EXIST; lkup_type = fm_list->fltr_info.lkup_type; vsi_list_id = fm_list->fltr_info.fwd_id.vsi_list_id; status = ice_update_vsi_list_rule(hw, &vsi_handle, 1, vsi_list_id, true, ice_aqc_opc_update_sw_rules, lkup_type); if (status) return status; fm_list->vsi_count--; ice_clear_bit(vsi_handle, fm_list->vsi_list_info->vsi_map); if (fm_list->vsi_count == 1 && lkup_type != ICE_SW_LKUP_VLAN) { struct ice_fltr_info tmp_fltr_info = fm_list->fltr_info; struct ice_vsi_list_map_info *vsi_list_info = fm_list->vsi_list_info; u16 rem_vsi_handle; rem_vsi_handle = ice_find_first_bit(vsi_list_info->vsi_map, ICE_MAX_VSI); if (!ice_is_vsi_valid(hw, rem_vsi_handle)) return ICE_ERR_OUT_OF_RANGE; /* Make sure VSI list is empty before removing it below */ status = ice_update_vsi_list_rule(hw, &rem_vsi_handle, 1, vsi_list_id, true, ice_aqc_opc_update_sw_rules, lkup_type); if (status) return status; tmp_fltr_info.fltr_act = ICE_FWD_TO_VSI; tmp_fltr_info.fwd_id.hw_vsi_id = ice_get_hw_vsi_num(hw, rem_vsi_handle); tmp_fltr_info.vsi_handle = rem_vsi_handle; status = ice_update_pkt_fwd_rule(hw, &tmp_fltr_info); if (status) { ice_debug(hw, ICE_DBG_SW, "Failed to update pkt fwd rule to FWD_TO_VSI on HW VSI %d, error %d\n", tmp_fltr_info.fwd_id.hw_vsi_id, status); return status; } fm_list->fltr_info = tmp_fltr_info; } if ((fm_list->vsi_count == 1 && lkup_type != ICE_SW_LKUP_VLAN) || (fm_list->vsi_count == 0 && lkup_type == ICE_SW_LKUP_VLAN)) { struct ice_vsi_list_map_info *vsi_list_info = fm_list->vsi_list_info; /* Remove the VSI list since it is no longer used */ status = ice_remove_vsi_list_rule(hw, vsi_list_id, lkup_type); if (status) { ice_debug(hw, ICE_DBG_SW, "Failed to remove VSI list %d, error %d\n", vsi_list_id, status); return status; } LIST_DEL(&vsi_list_info->list_entry); ice_free(hw, vsi_list_info); fm_list->vsi_list_info = NULL; } return status; } /** * ice_remove_rule_internal - Remove a filter rule of a given type * * @hw: pointer to the hardware structure * @recp_list: recipe list for which the rule needs to removed * @f_entry: rule entry containing filter information */ static enum ice_status ice_remove_rule_internal(struct ice_hw *hw, struct ice_sw_recipe *recp_list, struct ice_fltr_list_entry *f_entry) { struct ice_fltr_mgmt_list_entry *list_elem; struct ice_lock *rule_lock; /* Lock to protect filter rule list */ enum ice_status status = ICE_SUCCESS; bool remove_rule = false; u16 vsi_handle; if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle)) return ICE_ERR_PARAM; f_entry->fltr_info.fwd_id.hw_vsi_id = ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle); rule_lock = &recp_list->filt_rule_lock; ice_acquire_lock(rule_lock); list_elem = ice_find_rule_entry(&recp_list->filt_rules, &f_entry->fltr_info); if (!list_elem) { status = ICE_ERR_DOES_NOT_EXIST; goto exit; } if (list_elem->fltr_info.fltr_act != ICE_FWD_TO_VSI_LIST) { remove_rule = true; } else if (!list_elem->vsi_list_info) { status = ICE_ERR_DOES_NOT_EXIST; goto exit; } else if (list_elem->vsi_list_info->ref_cnt > 1) { /* a ref_cnt > 1 indicates that the vsi_list is being * shared by multiple rules. Decrement the ref_cnt and * remove this rule, but do not modify the list, as it * is in-use by other rules. */ list_elem->vsi_list_info->ref_cnt--; remove_rule = true; } else { /* a ref_cnt of 1 indicates the vsi_list is only used * by one rule. However, the original removal request is only * for a single VSI. Update the vsi_list first, and only * remove the rule if there are no further VSIs in this list. */ vsi_handle = f_entry->fltr_info.vsi_handle; status = ice_rem_update_vsi_list(hw, vsi_handle, list_elem); if (status) goto exit; /* if VSI count goes to zero after updating the VSI list */ if (list_elem->vsi_count == 0) remove_rule = true; } if (remove_rule) { /* Remove the lookup rule */ struct ice_aqc_sw_rules_elem *s_rule; s_rule = (struct ice_aqc_sw_rules_elem *) ice_malloc(hw, ICE_SW_RULE_RX_TX_NO_HDR_SIZE); if (!s_rule) { status = ICE_ERR_NO_MEMORY; goto exit; } ice_fill_sw_rule(hw, &list_elem->fltr_info, s_rule, ice_aqc_opc_remove_sw_rules); status = ice_aq_sw_rules(hw, s_rule, ICE_SW_RULE_RX_TX_NO_HDR_SIZE, 1, ice_aqc_opc_remove_sw_rules, NULL); /* Remove a book keeping from the list */ ice_free(hw, s_rule); if (status) goto exit; LIST_DEL(&list_elem->list_entry); ice_free(hw, list_elem); } exit: ice_release_lock(rule_lock); return status; } /** * ice_aq_get_res_alloc - get allocated resources * @hw: pointer to the HW struct * @num_entries: pointer to u16 to store the number of resource entries returned * @buf: pointer to buffer * @buf_size: size of buf * @cd: pointer to command details structure or NULL * * The caller-supplied buffer must be large enough to store the resource * information for all resource types. Each resource type is an * ice_aqc_get_res_resp_elem structure. */ enum ice_status ice_aq_get_res_alloc(struct ice_hw *hw, u16 *num_entries, struct ice_aqc_get_res_resp_elem *buf, u16 buf_size, struct ice_sq_cd *cd) { struct ice_aqc_get_res_alloc *resp; enum ice_status status; struct ice_aq_desc desc; if (!buf) return ICE_ERR_BAD_PTR; if (buf_size < ICE_AQ_GET_RES_ALLOC_BUF_LEN) return ICE_ERR_INVAL_SIZE; resp = &desc.params.get_res; ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_res_alloc); status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); if (!status && num_entries) *num_entries = LE16_TO_CPU(resp->resp_elem_num); return status; } /** * ice_aq_get_res_descs - get allocated resource descriptors * @hw: pointer to the hardware structure * @num_entries: number of resource entries in buffer * @buf: structure to hold response data buffer * @buf_size: size of buffer * @res_type: resource type * @res_shared: is resource shared * @desc_id: input - first desc ID to start; output - next desc ID * @cd: pointer to command details structure or NULL */ enum ice_status ice_aq_get_res_descs(struct ice_hw *hw, u16 num_entries, struct ice_aqc_res_elem *buf, u16 buf_size, u16 res_type, bool res_shared, u16 *desc_id, struct ice_sq_cd *cd) { struct ice_aqc_get_allocd_res_desc *cmd; struct ice_aq_desc desc; enum ice_status status; ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); cmd = &desc.params.get_res_desc; if (!buf) return ICE_ERR_PARAM; if (buf_size != (num_entries * sizeof(*buf))) return ICE_ERR_PARAM; ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_allocd_res_desc); cmd->ops.cmd.res = CPU_TO_LE16(((res_type << ICE_AQC_RES_TYPE_S) & ICE_AQC_RES_TYPE_M) | (res_shared ? ICE_AQC_RES_TYPE_FLAG_SHARED : 0)); cmd->ops.cmd.first_desc = CPU_TO_LE16(*desc_id); status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); if (!status) *desc_id = LE16_TO_CPU(cmd->ops.resp.next_desc); return status; } /** * ice_add_mac_rule - Add a MAC address based filter rule * @hw: pointer to the hardware structure * @m_list: list of MAC addresses and forwarding information * @sw: pointer to switch info struct for which function add rule * @lport: logic port number on which function add rule * * IMPORTANT: When the umac_shared flag is set to false and m_list has * multiple unicast addresses, the function assumes that all the * addresses are unique in a given add_mac call. It doesn't * check for duplicates in this case, removing duplicates from a given * list should be taken care of in the caller of this function. */ static enum ice_status ice_add_mac_rule(struct ice_hw *hw, struct LIST_HEAD_TYPE *m_list, struct ice_switch_info *sw, u8 lport) { struct ice_sw_recipe *recp_list = &sw->recp_list[ICE_SW_LKUP_MAC]; struct ice_aqc_sw_rules_elem *s_rule, *r_iter; struct ice_fltr_list_entry *m_list_itr; struct LIST_HEAD_TYPE *rule_head; u16 total_elem_left, s_rule_size; struct ice_lock *rule_lock; /* Lock to protect filter rule list */ enum ice_status status = ICE_SUCCESS; u16 num_unicast = 0; u8 elem_sent; s_rule = NULL; rule_lock = &recp_list->filt_rule_lock; rule_head = &recp_list->filt_rules; LIST_FOR_EACH_ENTRY(m_list_itr, m_list, ice_fltr_list_entry, list_entry) { u8 *add = &m_list_itr->fltr_info.l_data.mac.mac_addr[0]; u16 vsi_handle; u16 hw_vsi_id; m_list_itr->fltr_info.flag = ICE_FLTR_TX; vsi_handle = m_list_itr->fltr_info.vsi_handle; if (!ice_is_vsi_valid(hw, vsi_handle)) return ICE_ERR_PARAM; hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle); m_list_itr->fltr_info.fwd_id.hw_vsi_id = hw_vsi_id; /* update the src in case it is VSI num */ if (m_list_itr->fltr_info.src_id != ICE_SRC_ID_VSI) return ICE_ERR_PARAM; m_list_itr->fltr_info.src = hw_vsi_id; if (m_list_itr->fltr_info.lkup_type != ICE_SW_LKUP_MAC || IS_ZERO_ETHER_ADDR(add)) return ICE_ERR_PARAM; if (IS_UNICAST_ETHER_ADDR(add) && !hw->umac_shared) { /* Don't overwrite the unicast address */ ice_acquire_lock(rule_lock); if (ice_find_rule_entry(rule_head, &m_list_itr->fltr_info)) { ice_release_lock(rule_lock); continue; } ice_release_lock(rule_lock); num_unicast++; } else if (IS_MULTICAST_ETHER_ADDR(add) || (IS_UNICAST_ETHER_ADDR(add) && hw->umac_shared)) { m_list_itr->status = ice_add_rule_internal(hw, recp_list, lport, m_list_itr); if (m_list_itr->status) return m_list_itr->status; } } ice_acquire_lock(rule_lock); /* Exit if no suitable entries were found for adding bulk switch rule */ if (!num_unicast) { status = ICE_SUCCESS; goto ice_add_mac_exit; } /* Allocate switch rule buffer for the bulk update for unicast */ s_rule_size = ICE_SW_RULE_RX_TX_ETH_HDR_SIZE; s_rule = (struct ice_aqc_sw_rules_elem *) ice_calloc(hw, num_unicast, s_rule_size); if (!s_rule) { status = ICE_ERR_NO_MEMORY; goto ice_add_mac_exit; } r_iter = s_rule; LIST_FOR_EACH_ENTRY(m_list_itr, m_list, ice_fltr_list_entry, list_entry) { struct ice_fltr_info *f_info = &m_list_itr->fltr_info; u8 *mac_addr = &f_info->l_data.mac.mac_addr[0]; if (IS_UNICAST_ETHER_ADDR(mac_addr)) { ice_fill_sw_rule(hw, &m_list_itr->fltr_info, r_iter, ice_aqc_opc_add_sw_rules); r_iter = (struct ice_aqc_sw_rules_elem *) ((u8 *)r_iter + s_rule_size); } } /* Call AQ bulk switch rule update for all unicast addresses */ r_iter = s_rule; /* Call AQ switch rule in AQ_MAX chunk */ for (total_elem_left = num_unicast; total_elem_left > 0; total_elem_left -= elem_sent) { struct ice_aqc_sw_rules_elem *entry = r_iter; elem_sent = MIN_T(u8, total_elem_left, (ICE_AQ_MAX_BUF_LEN / s_rule_size)); status = ice_aq_sw_rules(hw, entry, elem_sent * s_rule_size, elem_sent, ice_aqc_opc_add_sw_rules, NULL); if (status) goto ice_add_mac_exit; r_iter = (struct ice_aqc_sw_rules_elem *) ((u8 *)r_iter + (elem_sent * s_rule_size)); } /* Fill up rule ID based on the value returned from FW */ r_iter = s_rule; LIST_FOR_EACH_ENTRY(m_list_itr, m_list, ice_fltr_list_entry, list_entry) { struct ice_fltr_info *f_info = &m_list_itr->fltr_info; u8 *mac_addr = &f_info->l_data.mac.mac_addr[0]; struct ice_fltr_mgmt_list_entry *fm_entry; if (IS_UNICAST_ETHER_ADDR(mac_addr)) { f_info->fltr_rule_id = LE16_TO_CPU(r_iter->pdata.lkup_tx_rx.index); f_info->fltr_act = ICE_FWD_TO_VSI; /* Create an entry to track this MAC address */ fm_entry = (struct ice_fltr_mgmt_list_entry *) ice_malloc(hw, sizeof(*fm_entry)); if (!fm_entry) { status = ICE_ERR_NO_MEMORY; goto ice_add_mac_exit; } fm_entry->fltr_info = *f_info; fm_entry->vsi_count = 1; /* The book keeping entries will get removed when * base driver calls remove filter AQ command */ LIST_ADD(&fm_entry->list_entry, rule_head); r_iter = (struct ice_aqc_sw_rules_elem *) ((u8 *)r_iter + s_rule_size); } } ice_add_mac_exit: ice_release_lock(rule_lock); if (s_rule) ice_free(hw, s_rule); return status; } /** * ice_add_mac - Add a MAC address based filter rule * @hw: pointer to the hardware structure * @m_list: list of MAC addresses and forwarding information * * Function add MAC rule for logical port from HW struct */ enum ice_status ice_add_mac(struct ice_hw *hw, struct LIST_HEAD_TYPE *m_list) { if (!m_list || !hw) return ICE_ERR_PARAM; return ice_add_mac_rule(hw, m_list, hw->switch_info, hw->port_info->lport); } /** * ice_add_vlan_internal - Add one VLAN based filter rule * @hw: pointer to the hardware structure * @recp_list: recipe list for which rule has to be added * @f_entry: filter entry containing one VLAN information */ static enum ice_status ice_add_vlan_internal(struct ice_hw *hw, struct ice_sw_recipe *recp_list, struct ice_fltr_list_entry *f_entry) { struct ice_fltr_mgmt_list_entry *v_list_itr; struct ice_fltr_info *new_fltr, *cur_fltr; enum ice_sw_lkup_type lkup_type; u16 vsi_list_id = 0, vsi_handle; struct ice_lock *rule_lock; /* Lock to protect filter rule list */ enum ice_status status = ICE_SUCCESS; if (!ice_is_vsi_valid(hw, f_entry->fltr_info.vsi_handle)) return ICE_ERR_PARAM; f_entry->fltr_info.fwd_id.hw_vsi_id = ice_get_hw_vsi_num(hw, f_entry->fltr_info.vsi_handle); new_fltr = &f_entry->fltr_info; /* VLAN ID should only be 12 bits */ if (new_fltr->l_data.vlan.vlan_id > ICE_MAX_VLAN_ID) return ICE_ERR_PARAM; if (new_fltr->src_id != ICE_SRC_ID_VSI) return ICE_ERR_PARAM; new_fltr->src = new_fltr->fwd_id.hw_vsi_id; lkup_type = new_fltr->lkup_type; vsi_handle = new_fltr->vsi_handle; rule_lock = &recp_list->filt_rule_lock; ice_acquire_lock(rule_lock); v_list_itr = ice_find_rule_entry(&recp_list->filt_rules, new_fltr); if (!v_list_itr) { struct ice_vsi_list_map_info *map_info = NULL; if (new_fltr->fltr_act == ICE_FWD_TO_VSI) { /* All VLAN pruning rules use a VSI list. Check if * there is already a VSI list containing VSI that we * want to add. If found, use the same vsi_list_id for * this new VLAN rule or else create a new list. */ map_info = ice_find_vsi_list_entry(recp_list, vsi_handle, &vsi_list_id); if (!map_info) { status = ice_create_vsi_list_rule(hw, &vsi_handle, 1, &vsi_list_id, lkup_type); if (status) goto exit; } /* Convert the action to forwarding to a VSI list. */ new_fltr->fltr_act = ICE_FWD_TO_VSI_LIST; new_fltr->fwd_id.vsi_list_id = vsi_list_id; } status = ice_create_pkt_fwd_rule(hw, recp_list, f_entry); if (!status) { v_list_itr = ice_find_rule_entry(&recp_list->filt_rules, new_fltr); if (!v_list_itr) { status = ICE_ERR_DOES_NOT_EXIST; goto exit; } /* reuse VSI list for new rule and increment ref_cnt */ if (map_info) { v_list_itr->vsi_list_info = map_info; map_info->ref_cnt++; } else { v_list_itr->vsi_list_info = ice_create_vsi_list_map(hw, &vsi_handle, 1, vsi_list_id); } } } else if (v_list_itr->vsi_list_info->ref_cnt == 1) { /* Update existing VSI list to add new VSI ID only if it used * by one VLAN rule. */ cur_fltr = &v_list_itr->fltr_info; status = ice_add_update_vsi_list(hw, v_list_itr, cur_fltr, new_fltr); } else { /* If VLAN rule exists and VSI list being used by this rule is * referenced by more than 1 VLAN rule. Then create a new VSI * list appending previous VSI with new VSI and update existing * VLAN rule to point to new VSI list ID */ struct ice_fltr_info tmp_fltr; u16 vsi_handle_arr[2]; u16 cur_handle; /* Current implementation only supports reusing VSI list with * one VSI count. We should never hit below condition */ if (v_list_itr->vsi_count > 1 && v_list_itr->vsi_list_info->ref_cnt > 1) { ice_debug(hw, ICE_DBG_SW, "Invalid configuration: Optimization to reuse VSI list with more than one VSI is not being done yet\n"); status = ICE_ERR_CFG; goto exit; } cur_handle = ice_find_first_bit(v_list_itr->vsi_list_info->vsi_map, ICE_MAX_VSI); /* A rule already exists with the new VSI being added */ if (cur_handle == vsi_handle) { status = ICE_ERR_ALREADY_EXISTS; goto exit; } vsi_handle_arr[0] = cur_handle; vsi_handle_arr[1] = vsi_handle; status = ice_create_vsi_list_rule(hw, &vsi_handle_arr[0], 2, &vsi_list_id, lkup_type); if (status) goto exit; tmp_fltr = v_list_itr->fltr_info; tmp_fltr.fltr_rule_id = v_list_itr->fltr_info.fltr_rule_id; tmp_fltr.fwd_id.vsi_list_id = vsi_list_id; tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST; /* Update the previous switch rule to a new VSI list which * includes current VSI that is requested */ status = ice_update_pkt_fwd_rule(hw, &tmp_fltr); if (status) goto exit; /* before overriding VSI list map info. decrement ref_cnt of * previous VSI list */ v_list_itr->vsi_list_info->ref_cnt--; /* now update to newly created list */ v_list_itr->fltr_info.fwd_id.vsi_list_id = vsi_list_id; v_list_itr->vsi_list_info = ice_create_vsi_list_map(hw, &vsi_handle_arr[0], 2, vsi_list_id); v_list_itr->vsi_count++; } exit: ice_release_lock(rule_lock); return status; } /** * ice_add_vlan_rule - Add VLAN based filter rule * @hw: pointer to the hardware structure * @v_list: list of VLAN entries and forwarding information * @sw: pointer to switch info struct for which function add rule */ static enum ice_status ice_add_vlan_rule(struct ice_hw *hw, struct LIST_HEAD_TYPE *v_list, struct ice_switch_info *sw) { struct ice_fltr_list_entry *v_list_itr; struct ice_sw_recipe *recp_list; recp_list = &sw->recp_list[ICE_SW_LKUP_VLAN]; LIST_FOR_EACH_ENTRY(v_list_itr, v_list, ice_fltr_list_entry, list_entry) { if (v_list_itr->fltr_info.lkup_type != ICE_SW_LKUP_VLAN) return ICE_ERR_PARAM; v_list_itr->fltr_info.flag = ICE_FLTR_TX; v_list_itr->status = ice_add_vlan_internal(hw, recp_list, v_list_itr); if (v_list_itr->status) return v_list_itr->status; } return ICE_SUCCESS; } /** * ice_add_vlan - Add a VLAN based filter rule * @hw: pointer to the hardware structure * @v_list: list of VLAN and forwarding information * * Function add VLAN rule for logical port from HW struct */ enum ice_status ice_add_vlan(struct ice_hw *hw, struct LIST_HEAD_TYPE *v_list) { if (!v_list || !hw) return ICE_ERR_PARAM; return ice_add_vlan_rule(hw, v_list, hw->switch_info); } /** * ice_add_eth_mac_rule - Add ethertype and MAC based filter rule * @hw: pointer to the hardware structure * @em_list: list of ether type MAC filter, MAC is optional * @sw: pointer to switch info struct for which function add rule * @lport: logic port number on which function add rule * * This function requires the caller to populate the entries in * the filter list with the necessary fields (including flags to * indicate Tx or Rx rules). */ static enum ice_status ice_add_eth_mac_rule(struct ice_hw *hw, struct LIST_HEAD_TYPE *em_list, struct ice_switch_info *sw, u8 lport) { struct ice_fltr_list_entry *em_list_itr; LIST_FOR_EACH_ENTRY(em_list_itr, em_list, ice_fltr_list_entry, list_entry) { struct ice_sw_recipe *recp_list; enum ice_sw_lkup_type l_type; l_type = em_list_itr->fltr_info.lkup_type; recp_list = &sw->recp_list[l_type]; if (l_type != ICE_SW_LKUP_ETHERTYPE_MAC && l_type != ICE_SW_LKUP_ETHERTYPE) return ICE_ERR_PARAM; em_list_itr->status = ice_add_rule_internal(hw, recp_list, lport, em_list_itr); if (em_list_itr->status) return em_list_itr->status; } return ICE_SUCCESS; } /** * ice_add_eth_mac - Add a ethertype based filter rule * @hw: pointer to the hardware structure * @em_list: list of ethertype and forwarding information * * Function add ethertype rule for logical port from HW struct */ enum ice_status ice_add_eth_mac(struct ice_hw *hw, struct LIST_HEAD_TYPE *em_list) { if (!em_list || !hw) return ICE_ERR_PARAM; return ice_add_eth_mac_rule(hw, em_list, hw->switch_info, hw->port_info->lport); } /** * ice_remove_eth_mac_rule - Remove an ethertype (or MAC) based filter rule * @hw: pointer to the hardware structure * @em_list: list of ethertype or ethertype MAC entries * @sw: pointer to switch info struct for which function add rule */ static enum ice_status ice_remove_eth_mac_rule(struct ice_hw *hw, struct LIST_HEAD_TYPE *em_list, struct ice_switch_info *sw) { struct ice_fltr_list_entry *em_list_itr, *tmp; LIST_FOR_EACH_ENTRY_SAFE(em_list_itr, tmp, em_list, ice_fltr_list_entry, list_entry) { struct ice_sw_recipe *recp_list; enum ice_sw_lkup_type l_type; l_type = em_list_itr->fltr_info.lkup_type; if (l_type != ICE_SW_LKUP_ETHERTYPE_MAC && l_type != ICE_SW_LKUP_ETHERTYPE) return ICE_ERR_PARAM; recp_list = &sw->recp_list[l_type]; em_list_itr->status = ice_remove_rule_internal(hw, recp_list, em_list_itr); if (em_list_itr->status) return em_list_itr->status; } return ICE_SUCCESS; } /** * ice_remove_eth_mac - remove a ethertype based filter rule * @hw: pointer to the hardware structure * @em_list: list of ethertype and forwarding information * */ enum ice_status ice_remove_eth_mac(struct ice_hw *hw, struct LIST_HEAD_TYPE *em_list) { if (!em_list || !hw) return ICE_ERR_PARAM; return ice_remove_eth_mac_rule(hw, em_list, hw->switch_info); } /** * ice_rem_sw_rule_info * @hw: pointer to the hardware structure * @rule_head: pointer to the switch list structure that we want to delete */ static void ice_rem_sw_rule_info(struct ice_hw *hw, struct LIST_HEAD_TYPE *rule_head) { if (!LIST_EMPTY(rule_head)) { struct ice_fltr_mgmt_list_entry *entry; struct ice_fltr_mgmt_list_entry *tmp; LIST_FOR_EACH_ENTRY_SAFE(entry, tmp, rule_head, ice_fltr_mgmt_list_entry, list_entry) { LIST_DEL(&entry->list_entry); ice_free(hw, entry); } } } /** * ice_rem_all_sw_rules_info * @hw: pointer to the hardware structure */ void ice_rem_all_sw_rules_info(struct ice_hw *hw) { struct ice_switch_info *sw = hw->switch_info; u8 i; for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) { struct LIST_HEAD_TYPE *rule_head; rule_head = &sw->recp_list[i].filt_rules; if (!sw->recp_list[i].adv_rule) ice_rem_sw_rule_info(hw, rule_head); } } /** * ice_cfg_dflt_vsi - change state of VSI to set/clear default * @pi: pointer to the port_info structure * @vsi_handle: VSI handle to set as default * @set: true to add the above mentioned switch rule, false to remove it * @direction: ICE_FLTR_RX or ICE_FLTR_TX * * add filter rule to set/unset given VSI as default VSI for the switch * (represented by swid) */ enum ice_status ice_cfg_dflt_vsi(struct ice_port_info *pi, u16 vsi_handle, bool set, u8 direction) { struct ice_aqc_sw_rules_elem *s_rule; struct ice_fltr_info f_info; struct ice_hw *hw = pi->hw; enum ice_adminq_opc opcode; enum ice_status status; u16 s_rule_size; u16 hw_vsi_id; if (!ice_is_vsi_valid(hw, vsi_handle)) return ICE_ERR_PARAM; hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle); s_rule_size = set ? ICE_SW_RULE_RX_TX_ETH_HDR_SIZE : ICE_SW_RULE_RX_TX_NO_HDR_SIZE; s_rule = (struct ice_aqc_sw_rules_elem *)ice_malloc(hw, s_rule_size); if (!s_rule) return ICE_ERR_NO_MEMORY; ice_memset(&f_info, 0, sizeof(f_info), ICE_NONDMA_MEM); f_info.lkup_type = ICE_SW_LKUP_DFLT; f_info.flag = direction; f_info.fltr_act = ICE_FWD_TO_VSI; f_info.fwd_id.hw_vsi_id = hw_vsi_id; if (f_info.flag & ICE_FLTR_RX) { f_info.src = pi->lport; f_info.src_id = ICE_SRC_ID_LPORT; if (!set) f_info.fltr_rule_id = pi->dflt_rx_vsi_rule_id; } else if (f_info.flag & ICE_FLTR_TX) { f_info.src_id = ICE_SRC_ID_VSI; f_info.src = hw_vsi_id; if (!set) f_info.fltr_rule_id = pi->dflt_tx_vsi_rule_id; } if (set) opcode = ice_aqc_opc_add_sw_rules; else opcode = ice_aqc_opc_remove_sw_rules; ice_fill_sw_rule(hw, &f_info, s_rule, opcode); status = ice_aq_sw_rules(hw, s_rule, s_rule_size, 1, opcode, NULL); if (status || !(f_info.flag & ICE_FLTR_TX_RX)) goto out; if (set) { u16 index = LE16_TO_CPU(s_rule->pdata.lkup_tx_rx.index); if (f_info.flag & ICE_FLTR_TX) { pi->dflt_tx_vsi_num = hw_vsi_id; pi->dflt_tx_vsi_rule_id = index; } else if (f_info.flag & ICE_FLTR_RX) { pi->dflt_rx_vsi_num = hw_vsi_id; pi->dflt_rx_vsi_rule_id = index; } } else { if (f_info.flag & ICE_FLTR_TX) { pi->dflt_tx_vsi_num = ICE_DFLT_VSI_INVAL; pi->dflt_tx_vsi_rule_id = ICE_INVAL_ACT; } else if (f_info.flag & ICE_FLTR_RX) { pi->dflt_rx_vsi_num = ICE_DFLT_VSI_INVAL; pi->dflt_rx_vsi_rule_id = ICE_INVAL_ACT; } } out: ice_free(hw, s_rule); return status; } /** * ice_find_ucast_rule_entry - Search for a unicast MAC filter rule entry * @list_head: head of rule list * @f_info: rule information * * Helper function to search for a unicast rule entry - this is to be used * to remove unicast MAC filter that is not shared with other VSIs on the * PF switch. * * Returns pointer to entry storing the rule if found */ static struct ice_fltr_mgmt_list_entry * ice_find_ucast_rule_entry(struct LIST_HEAD_TYPE *list_head, struct ice_fltr_info *f_info) { struct ice_fltr_mgmt_list_entry *list_itr; LIST_FOR_EACH_ENTRY(list_itr, list_head, ice_fltr_mgmt_list_entry, list_entry) { if (!memcmp(&f_info->l_data, &list_itr->fltr_info.l_data, sizeof(f_info->l_data)) && f_info->fwd_id.hw_vsi_id == list_itr->fltr_info.fwd_id.hw_vsi_id && f_info->flag == list_itr->fltr_info.flag) return list_itr; } return NULL; } /** * ice_remove_mac_rule - remove a MAC based filter rule * @hw: pointer to the hardware structure * @m_list: list of MAC addresses and forwarding information * @recp_list: list from which function remove MAC address * * This function removes either a MAC filter rule or a specific VSI from a * VSI list for a multicast MAC address. * * Returns ICE_ERR_DOES_NOT_EXIST if a given entry was not added by * ice_add_mac. Caller should be aware that this call will only work if all * the entries passed into m_list were added previously. It will not attempt to * do a partial remove of entries that were found. */ static enum ice_status ice_remove_mac_rule(struct ice_hw *hw, struct LIST_HEAD_TYPE *m_list, struct ice_sw_recipe *recp_list) { struct ice_fltr_list_entry *list_itr, *tmp; struct ice_lock *rule_lock; /* Lock to protect filter rule list */ if (!m_list) return ICE_ERR_PARAM; rule_lock = &recp_list->filt_rule_lock; LIST_FOR_EACH_ENTRY_SAFE(list_itr, tmp, m_list, ice_fltr_list_entry, list_entry) { enum ice_sw_lkup_type l_type = list_itr->fltr_info.lkup_type; u8 *add = &list_itr->fltr_info.l_data.mac.mac_addr[0]; u16 vsi_handle; if (l_type != ICE_SW_LKUP_MAC) return ICE_ERR_PARAM; vsi_handle = list_itr->fltr_info.vsi_handle; if (!ice_is_vsi_valid(hw, vsi_handle)) return ICE_ERR_PARAM; list_itr->fltr_info.fwd_id.hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle); if (IS_UNICAST_ETHER_ADDR(add) && !hw->umac_shared) { /* Don't remove the unicast address that belongs to * another VSI on the switch, since it is not being * shared... */ ice_acquire_lock(rule_lock); if (!ice_find_ucast_rule_entry(&recp_list->filt_rules, &list_itr->fltr_info)) { ice_release_lock(rule_lock); return ICE_ERR_DOES_NOT_EXIST; } ice_release_lock(rule_lock); } list_itr->status = ice_remove_rule_internal(hw, recp_list, list_itr); if (list_itr->status) return list_itr->status; } return ICE_SUCCESS; } /** * ice_remove_mac - remove a MAC address based filter rule * @hw: pointer to the hardware structure * @m_list: list of MAC addresses and forwarding information * */ enum ice_status ice_remove_mac(struct ice_hw *hw, struct LIST_HEAD_TYPE *m_list) { struct ice_sw_recipe *recp_list; recp_list = &hw->switch_info->recp_list[ICE_SW_LKUP_MAC]; return ice_remove_mac_rule(hw, m_list, recp_list); } /** * ice_remove_vlan_rule - Remove VLAN based filter rule * @hw: pointer to the hardware structure * @v_list: list of VLAN entries and forwarding information * @recp_list: list from which function remove VLAN */ static enum ice_status ice_remove_vlan_rule(struct ice_hw *hw, struct LIST_HEAD_TYPE *v_list, struct ice_sw_recipe *recp_list) { struct ice_fltr_list_entry *v_list_itr, *tmp; LIST_FOR_EACH_ENTRY_SAFE(v_list_itr, tmp, v_list, ice_fltr_list_entry, list_entry) { enum ice_sw_lkup_type l_type = v_list_itr->fltr_info.lkup_type; if (l_type != ICE_SW_LKUP_VLAN) return ICE_ERR_PARAM; v_list_itr->status = ice_remove_rule_internal(hw, recp_list, v_list_itr); if (v_list_itr->status) return v_list_itr->status; } return ICE_SUCCESS; } /** * ice_remove_vlan - remove a VLAN address based filter rule * @hw: pointer to the hardware structure * @v_list: list of VLAN and forwarding information * */ enum ice_status ice_remove_vlan(struct ice_hw *hw, struct LIST_HEAD_TYPE *v_list) { struct ice_sw_recipe *recp_list; if (!v_list || !hw) return ICE_ERR_PARAM; recp_list = &hw->switch_info->recp_list[ICE_SW_LKUP_VLAN]; return ice_remove_vlan_rule(hw, v_list, recp_list); } /** * ice_vsi_uses_fltr - Determine if given VSI uses specified filter * @fm_entry: filter entry to inspect * @vsi_handle: VSI handle to compare with filter info */ static bool ice_vsi_uses_fltr(struct ice_fltr_mgmt_list_entry *fm_entry, u16 vsi_handle) { return ((fm_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI && fm_entry->fltr_info.vsi_handle == vsi_handle) || (fm_entry->fltr_info.fltr_act == ICE_FWD_TO_VSI_LIST && fm_entry->vsi_list_info && (ice_is_bit_set(fm_entry->vsi_list_info->vsi_map, vsi_handle)))); } /** * ice_add_entry_to_vsi_fltr_list - Add copy of fltr_list_entry to remove list * @hw: pointer to the hardware structure * @vsi_handle: VSI handle to remove filters from * @vsi_list_head: pointer to the list to add entry to * @fi: pointer to fltr_info of filter entry to copy & add * * Helper function, used when creating a list of filters to remove from * a specific VSI. The entry added to vsi_list_head is a COPY of the * original filter entry, with the exception of fltr_info.fltr_act and * fltr_info.fwd_id fields. These are set such that later logic can * extract which VSI to remove the fltr from, and pass on that information. */ static enum ice_status ice_add_entry_to_vsi_fltr_list(struct ice_hw *hw, u16 vsi_handle, struct LIST_HEAD_TYPE *vsi_list_head, struct ice_fltr_info *fi) { struct ice_fltr_list_entry *tmp; /* this memory is freed up in the caller function * once filters for this VSI are removed */ tmp = (struct ice_fltr_list_entry *)ice_malloc(hw, sizeof(*tmp)); if (!tmp) return ICE_ERR_NO_MEMORY; tmp->fltr_info = *fi; /* Overwrite these fields to indicate which VSI to remove filter from, * so find and remove logic can extract the information from the * list entries. Note that original entries will still have proper * values. */ tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI; tmp->fltr_info.vsi_handle = vsi_handle; tmp->fltr_info.fwd_id.hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle); LIST_ADD(&tmp->list_entry, vsi_list_head); return ICE_SUCCESS; } /** * ice_add_to_vsi_fltr_list - Add VSI filters to the list * @hw: pointer to the hardware structure * @vsi_handle: VSI handle to remove filters from * @lkup_list_head: pointer to the list that has certain lookup type filters * @vsi_list_head: pointer to the list pertaining to VSI with vsi_handle * * Locates all filters in lkup_list_head that are used by the given VSI, * and adds COPIES of those entries to vsi_list_head (intended to be used * to remove the listed filters). * Note that this means all entries in vsi_list_head must be explicitly * deallocated by the caller when done with list. */ static enum ice_status ice_add_to_vsi_fltr_list(struct ice_hw *hw, u16 vsi_handle, struct LIST_HEAD_TYPE *lkup_list_head, struct LIST_HEAD_TYPE *vsi_list_head) { struct ice_fltr_mgmt_list_entry *fm_entry; enum ice_status status = ICE_SUCCESS; /* check to make sure VSI ID is valid and within boundary */ if (!ice_is_vsi_valid(hw, vsi_handle)) return ICE_ERR_PARAM; LIST_FOR_EACH_ENTRY(fm_entry, lkup_list_head, ice_fltr_mgmt_list_entry, list_entry) { if (!ice_vsi_uses_fltr(fm_entry, vsi_handle)) continue; status = ice_add_entry_to_vsi_fltr_list(hw, vsi_handle, vsi_list_head, &fm_entry->fltr_info); if (status) return status; } return status; } /** * ice_determine_promisc_mask * @fi: filter info to parse * * Helper function to determine which ICE_PROMISC_ mask corresponds * to given filter into. */ static u8 ice_determine_promisc_mask(struct ice_fltr_info *fi) { u16 vid = fi->l_data.mac_vlan.vlan_id; u8 *macaddr = fi->l_data.mac.mac_addr; bool is_tx_fltr = false; u8 promisc_mask = 0; if (fi->flag == ICE_FLTR_TX) is_tx_fltr = true; if (IS_BROADCAST_ETHER_ADDR(macaddr)) promisc_mask |= is_tx_fltr ? ICE_PROMISC_BCAST_TX : ICE_PROMISC_BCAST_RX; else if (IS_MULTICAST_ETHER_ADDR(macaddr)) promisc_mask |= is_tx_fltr ? ICE_PROMISC_MCAST_TX : ICE_PROMISC_MCAST_RX; else if (IS_UNICAST_ETHER_ADDR(macaddr)) promisc_mask |= is_tx_fltr ? ICE_PROMISC_UCAST_TX : ICE_PROMISC_UCAST_RX; if (vid) promisc_mask |= is_tx_fltr ? ICE_PROMISC_VLAN_TX : ICE_PROMISC_VLAN_RX; return promisc_mask; } /** * _ice_get_vsi_promisc - get promiscuous mode of given VSI * @hw: pointer to the hardware structure * @vsi_handle: VSI handle to retrieve info from * @promisc_mask: pointer to mask to be filled in * @vid: VLAN ID of promisc VLAN VSI * @sw: pointer to switch info struct for which function add rule * @lkup: switch rule filter lookup type */ static enum ice_status _ice_get_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 *promisc_mask, u16 *vid, struct ice_switch_info *sw, enum ice_sw_lkup_type lkup) { struct ice_fltr_mgmt_list_entry *itr; struct LIST_HEAD_TYPE *rule_head; struct ice_lock *rule_lock; /* Lock to protect filter rule list */ if (!ice_is_vsi_valid(hw, vsi_handle) || (lkup != ICE_SW_LKUP_PROMISC && lkup != ICE_SW_LKUP_PROMISC_VLAN)) return ICE_ERR_PARAM; *vid = 0; *promisc_mask = 0; rule_head = &sw->recp_list[lkup].filt_rules; rule_lock = &sw->recp_list[lkup].filt_rule_lock; ice_acquire_lock(rule_lock); LIST_FOR_EACH_ENTRY(itr, rule_head, ice_fltr_mgmt_list_entry, list_entry) { /* Continue if this filter doesn't apply to this VSI or the * VSI ID is not in the VSI map for this filter */ if (!ice_vsi_uses_fltr(itr, vsi_handle)) continue; *promisc_mask |= ice_determine_promisc_mask(&itr->fltr_info); } ice_release_lock(rule_lock); return ICE_SUCCESS; } /** * ice_get_vsi_promisc - get promiscuous mode of given VSI * @hw: pointer to the hardware structure * @vsi_handle: VSI handle to retrieve info from * @promisc_mask: pointer to mask to be filled in * @vid: VLAN ID of promisc VLAN VSI */ enum ice_status ice_get_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 *promisc_mask, u16 *vid) { return _ice_get_vsi_promisc(hw, vsi_handle, promisc_mask, vid, hw->switch_info, ICE_SW_LKUP_PROMISC); } /** * ice_get_vsi_vlan_promisc - get VLAN promiscuous mode of given VSI * @hw: pointer to the hardware structure * @vsi_handle: VSI handle to retrieve info from * @promisc_mask: pointer to mask to be filled in * @vid: VLAN ID of promisc VLAN VSI */ enum ice_status ice_get_vsi_vlan_promisc(struct ice_hw *hw, u16 vsi_handle, u8 *promisc_mask, u16 *vid) { return _ice_get_vsi_promisc(hw, vsi_handle, promisc_mask, vid, hw->switch_info, ICE_SW_LKUP_PROMISC_VLAN); } /** * ice_remove_promisc - Remove promisc based filter rules * @hw: pointer to the hardware structure * @recp_id: recipe ID for which the rule needs to removed * @v_list: list of promisc entries */ static enum ice_status ice_remove_promisc(struct ice_hw *hw, u8 recp_id, struct LIST_HEAD_TYPE *v_list) { struct ice_fltr_list_entry *v_list_itr, *tmp; struct ice_sw_recipe *recp_list; recp_list = &hw->switch_info->recp_list[recp_id]; LIST_FOR_EACH_ENTRY_SAFE(v_list_itr, tmp, v_list, ice_fltr_list_entry, list_entry) { v_list_itr->status = ice_remove_rule_internal(hw, recp_list, v_list_itr); if (v_list_itr->status) return v_list_itr->status; } return ICE_SUCCESS; } /** * _ice_clear_vsi_promisc - clear specified promiscuous mode(s) * @hw: pointer to the hardware structure * @vsi_handle: VSI handle to clear mode * @promisc_mask: mask of promiscuous config bits to clear * @vid: VLAN ID to clear VLAN promiscuous * @sw: pointer to switch info struct for which function add rule */ static enum ice_status _ice_clear_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask, u16 vid, struct ice_switch_info *sw) { struct ice_fltr_list_entry *fm_entry, *tmp; struct LIST_HEAD_TYPE remove_list_head; struct ice_fltr_mgmt_list_entry *itr; struct LIST_HEAD_TYPE *rule_head; struct ice_lock *rule_lock; /* Lock to protect filter rule list */ enum ice_status status = ICE_SUCCESS; u8 recipe_id; if (!ice_is_vsi_valid(hw, vsi_handle)) return ICE_ERR_PARAM; if (promisc_mask & (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX)) recipe_id = ICE_SW_LKUP_PROMISC_VLAN; else recipe_id = ICE_SW_LKUP_PROMISC; rule_head = &sw->recp_list[recipe_id].filt_rules; rule_lock = &sw->recp_list[recipe_id].filt_rule_lock; INIT_LIST_HEAD(&remove_list_head); ice_acquire_lock(rule_lock); LIST_FOR_EACH_ENTRY(itr, rule_head, ice_fltr_mgmt_list_entry, list_entry) { struct ice_fltr_info *fltr_info; u8 fltr_promisc_mask = 0; if (!ice_vsi_uses_fltr(itr, vsi_handle)) continue; fltr_info = &itr->fltr_info; if (recipe_id == ICE_SW_LKUP_PROMISC_VLAN && vid != fltr_info->l_data.mac_vlan.vlan_id) continue; fltr_promisc_mask |= ice_determine_promisc_mask(fltr_info); /* Skip if filter is not completely specified by given mask */ if (fltr_promisc_mask & ~promisc_mask) continue; status = ice_add_entry_to_vsi_fltr_list(hw, vsi_handle, &remove_list_head, fltr_info); if (status) { ice_release_lock(rule_lock); goto free_fltr_list; } } ice_release_lock(rule_lock); status = ice_remove_promisc(hw, recipe_id, &remove_list_head); free_fltr_list: LIST_FOR_EACH_ENTRY_SAFE(fm_entry, tmp, &remove_list_head, ice_fltr_list_entry, list_entry) { LIST_DEL(&fm_entry->list_entry); ice_free(hw, fm_entry); } return status; } /** * ice_clear_vsi_promisc - clear specified promiscuous mode(s) for given VSI * @hw: pointer to the hardware structure * @vsi_handle: VSI handle to clear mode * @promisc_mask: mask of promiscuous config bits to clear * @vid: VLAN ID to clear VLAN promiscuous */ enum ice_status ice_clear_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask, u16 vid) { return _ice_clear_vsi_promisc(hw, vsi_handle, promisc_mask, vid, hw->switch_info); } /** * _ice_set_vsi_promisc - set given VSI to given promiscuous mode(s) * @hw: pointer to the hardware structure * @vsi_handle: VSI handle to configure * @promisc_mask: mask of promiscuous config bits * @vid: VLAN ID to set VLAN promiscuous * @lport: logical port number to configure promisc mode * @sw: pointer to switch info struct for which function add rule */ static enum ice_status _ice_set_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask, u16 vid, u8 lport, struct ice_switch_info *sw) { enum { UCAST_FLTR = 1, MCAST_FLTR, BCAST_FLTR }; struct ice_fltr_list_entry f_list_entry; struct ice_fltr_info new_fltr; enum ice_status status = ICE_SUCCESS; bool is_tx_fltr; u16 hw_vsi_id; int pkt_type; u8 recipe_id; ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); if (!ice_is_vsi_valid(hw, vsi_handle)) return ICE_ERR_PARAM; hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle); ice_memset(&new_fltr, 0, sizeof(new_fltr), ICE_NONDMA_MEM); if (promisc_mask & (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX)) { new_fltr.lkup_type = ICE_SW_LKUP_PROMISC_VLAN; new_fltr.l_data.mac_vlan.vlan_id = vid; recipe_id = ICE_SW_LKUP_PROMISC_VLAN; } else { new_fltr.lkup_type = ICE_SW_LKUP_PROMISC; recipe_id = ICE_SW_LKUP_PROMISC; } /* Separate filters must be set for each direction/packet type * combination, so we will loop over the mask value, store the * individual type, and clear it out in the input mask as it * is found. */ while (promisc_mask) { struct ice_sw_recipe *recp_list; u8 *mac_addr; pkt_type = 0; is_tx_fltr = false; if (promisc_mask & ICE_PROMISC_UCAST_RX) { promisc_mask &= ~ICE_PROMISC_UCAST_RX; pkt_type = UCAST_FLTR; } else if (promisc_mask & ICE_PROMISC_UCAST_TX) { promisc_mask &= ~ICE_PROMISC_UCAST_TX; pkt_type = UCAST_FLTR; is_tx_fltr = true; } else if (promisc_mask & ICE_PROMISC_MCAST_RX) { promisc_mask &= ~ICE_PROMISC_MCAST_RX; pkt_type = MCAST_FLTR; } else if (promisc_mask & ICE_PROMISC_MCAST_TX) { promisc_mask &= ~ICE_PROMISC_MCAST_TX; pkt_type = MCAST_FLTR; is_tx_fltr = true; } else if (promisc_mask & ICE_PROMISC_BCAST_RX) { promisc_mask &= ~ICE_PROMISC_BCAST_RX; pkt_type = BCAST_FLTR; } else if (promisc_mask & ICE_PROMISC_BCAST_TX) { promisc_mask &= ~ICE_PROMISC_BCAST_TX; pkt_type = BCAST_FLTR; is_tx_fltr = true; } /* Check for VLAN promiscuous flag */ if (promisc_mask & ICE_PROMISC_VLAN_RX) { promisc_mask &= ~ICE_PROMISC_VLAN_RX; } else if (promisc_mask & ICE_PROMISC_VLAN_TX) { promisc_mask &= ~ICE_PROMISC_VLAN_TX; is_tx_fltr = true; } /* Set filter DA based on packet type */ mac_addr = new_fltr.l_data.mac.mac_addr; if (pkt_type == BCAST_FLTR) { ice_memset(mac_addr, 0xff, ETH_ALEN, ICE_NONDMA_MEM); } else if (pkt_type == MCAST_FLTR || pkt_type == UCAST_FLTR) { /* Use the dummy ether header DA */ ice_memcpy(mac_addr, dummy_eth_header, ETH_ALEN, ICE_NONDMA_TO_NONDMA); if (pkt_type == MCAST_FLTR) mac_addr[0] |= 0x1; /* Set multicast bit */ } /* Need to reset this to zero for all iterations */ new_fltr.flag = 0; if (is_tx_fltr) { new_fltr.flag |= ICE_FLTR_TX; new_fltr.src = hw_vsi_id; } else { new_fltr.flag |= ICE_FLTR_RX; new_fltr.src = lport; } new_fltr.fltr_act = ICE_FWD_TO_VSI; new_fltr.vsi_handle = vsi_handle; new_fltr.fwd_id.hw_vsi_id = hw_vsi_id; f_list_entry.fltr_info = new_fltr; recp_list = &sw->recp_list[recipe_id]; status = ice_add_rule_internal(hw, recp_list, lport, &f_list_entry); if (status != ICE_SUCCESS) goto set_promisc_exit; } set_promisc_exit: return status; } /** * ice_set_vsi_promisc - set given VSI to given promiscuous mode(s) * @hw: pointer to the hardware structure * @vsi_handle: VSI handle to configure * @promisc_mask: mask of promiscuous config bits * @vid: VLAN ID to set VLAN promiscuous */ enum ice_status ice_set_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask, u16 vid) { return _ice_set_vsi_promisc(hw, vsi_handle, promisc_mask, vid, hw->port_info->lport, hw->switch_info); } /** * _ice_set_vlan_vsi_promisc * @hw: pointer to the hardware structure * @vsi_handle: VSI handle to configure * @promisc_mask: mask of promiscuous config bits * @rm_vlan_promisc: Clear VLANs VSI promisc mode * @lport: logical port number to configure promisc mode * @sw: pointer to switch info struct for which function add rule * * Configure VSI with all associated VLANs to given promiscuous mode(s) */ static enum ice_status _ice_set_vlan_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask, bool rm_vlan_promisc, u8 lport, struct ice_switch_info *sw) { struct ice_fltr_list_entry *list_itr, *tmp; struct LIST_HEAD_TYPE vsi_list_head; struct LIST_HEAD_TYPE *vlan_head; struct ice_lock *vlan_lock; /* Lock to protect filter rule list */ enum ice_status status; u16 vlan_id; INIT_LIST_HEAD(&vsi_list_head); vlan_lock = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rule_lock; vlan_head = &sw->recp_list[ICE_SW_LKUP_VLAN].filt_rules; ice_acquire_lock(vlan_lock); status = ice_add_to_vsi_fltr_list(hw, vsi_handle, vlan_head, &vsi_list_head); ice_release_lock(vlan_lock); if (status) goto free_fltr_list; LIST_FOR_EACH_ENTRY(list_itr, &vsi_list_head, ice_fltr_list_entry, list_entry) { vlan_id = list_itr->fltr_info.l_data.vlan.vlan_id; if (rm_vlan_promisc) status = _ice_clear_vsi_promisc(hw, vsi_handle, promisc_mask, vlan_id, sw); else status = _ice_set_vsi_promisc(hw, vsi_handle, promisc_mask, vlan_id, lport, sw); if (status) break; } free_fltr_list: LIST_FOR_EACH_ENTRY_SAFE(list_itr, tmp, &vsi_list_head, ice_fltr_list_entry, list_entry) { LIST_DEL(&list_itr->list_entry); ice_free(hw, list_itr); } return status; } /** * ice_set_vlan_vsi_promisc * @hw: pointer to the hardware structure * @vsi_handle: VSI handle to configure * @promisc_mask: mask of promiscuous config bits * @rm_vlan_promisc: Clear VLANs VSI promisc mode * * Configure VSI with all associated VLANs to given promiscuous mode(s) */ enum ice_status ice_set_vlan_vsi_promisc(struct ice_hw *hw, u16 vsi_handle, u8 promisc_mask, bool rm_vlan_promisc) { return _ice_set_vlan_vsi_promisc(hw, vsi_handle, promisc_mask, rm_vlan_promisc, hw->port_info->lport, hw->switch_info); } /** * ice_remove_vsi_lkup_fltr - Remove lookup type filters for a VSI * @hw: pointer to the hardware structure * @vsi_handle: VSI handle to remove filters from * @recp_list: recipe list from which function remove fltr * @lkup: switch rule filter lookup type */ static void ice_remove_vsi_lkup_fltr(struct ice_hw *hw, u16 vsi_handle, struct ice_sw_recipe *recp_list, enum ice_sw_lkup_type lkup) { struct ice_fltr_list_entry *fm_entry; struct LIST_HEAD_TYPE remove_list_head; struct LIST_HEAD_TYPE *rule_head; struct ice_fltr_list_entry *tmp; struct ice_lock *rule_lock; /* Lock to protect filter rule list */ enum ice_status status; INIT_LIST_HEAD(&remove_list_head); rule_lock = &recp_list[lkup].filt_rule_lock; rule_head = &recp_list[lkup].filt_rules; ice_acquire_lock(rule_lock); status = ice_add_to_vsi_fltr_list(hw, vsi_handle, rule_head, &remove_list_head); ice_release_lock(rule_lock); if (status) goto free_fltr_list; switch (lkup) { case ICE_SW_LKUP_MAC: ice_remove_mac_rule(hw, &remove_list_head, &recp_list[lkup]); break; case ICE_SW_LKUP_VLAN: ice_remove_vlan_rule(hw, &remove_list_head, &recp_list[lkup]); break; case ICE_SW_LKUP_PROMISC: case ICE_SW_LKUP_PROMISC_VLAN: ice_remove_promisc(hw, lkup, &remove_list_head); break; case ICE_SW_LKUP_MAC_VLAN: ice_debug(hw, ICE_DBG_SW, "MAC VLAN look up is not supported yet\n"); break; case ICE_SW_LKUP_ETHERTYPE: case ICE_SW_LKUP_ETHERTYPE_MAC: ice_remove_eth_mac(hw, &remove_list_head); break; case ICE_SW_LKUP_DFLT: ice_debug(hw, ICE_DBG_SW, "Remove filters for this lookup type hasn't been implemented yet\n"); break; case ICE_SW_LKUP_LAST: ice_debug(hw, ICE_DBG_SW, "Unsupported lookup type\n"); break; } free_fltr_list: LIST_FOR_EACH_ENTRY_SAFE(fm_entry, tmp, &remove_list_head, ice_fltr_list_entry, list_entry) { LIST_DEL(&fm_entry->list_entry); ice_free(hw, fm_entry); } } /** * ice_remove_vsi_fltr_rule - Remove all filters for a VSI * @hw: pointer to the hardware structure * @vsi_handle: VSI handle to remove filters from * @sw: pointer to switch info struct */ static void ice_remove_vsi_fltr_rule(struct ice_hw *hw, u16 vsi_handle, struct ice_switch_info *sw) { ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__); ice_remove_vsi_lkup_fltr(hw, vsi_handle, sw->recp_list, ICE_SW_LKUP_MAC); ice_remove_vsi_lkup_fltr(hw, vsi_handle, sw->recp_list, ICE_SW_LKUP_MAC_VLAN); ice_remove_vsi_lkup_fltr(hw, vsi_handle, sw->recp_list, ICE_SW_LKUP_PROMISC); ice_remove_vsi_lkup_fltr(hw, vsi_handle, sw->recp_list, ICE_SW_LKUP_VLAN); ice_remove_vsi_lkup_fltr(hw, vsi_handle, sw->recp_list, ICE_SW_LKUP_DFLT); ice_remove_vsi_lkup_fltr(hw, vsi_handle, sw->recp_list, ICE_SW_LKUP_ETHERTYPE); ice_remove_vsi_lkup_fltr(hw, vsi_handle, sw->recp_list, ICE_SW_LKUP_ETHERTYPE_MAC); ice_remove_vsi_lkup_fltr(hw, vsi_handle, sw->recp_list, ICE_SW_LKUP_PROMISC_VLAN); } /** * ice_remove_vsi_fltr - Remove all filters for a VSI * @hw: pointer to the hardware structure * @vsi_handle: VSI handle to remove filters from */ void ice_remove_vsi_fltr(struct ice_hw *hw, u16 vsi_handle) { ice_remove_vsi_fltr_rule(hw, vsi_handle, hw->switch_info); } /** * ice_alloc_res_cntr - allocating resource counter * @hw: pointer to the hardware structure * @type: type of resource * @alloc_shared: if set it is shared else dedicated * @num_items: number of entries requested for FD resource type * @counter_id: counter index returned by AQ call */ static enum ice_status ice_alloc_res_cntr(struct ice_hw *hw, u8 type, u8 alloc_shared, u16 num_items, u16 *counter_id) { struct ice_aqc_alloc_free_res_elem *buf; enum ice_status status; u16 buf_len; /* Allocate resource */ buf_len = ice_struct_size(buf, elem, 1); buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len); if (!buf) return ICE_ERR_NO_MEMORY; buf->num_elems = CPU_TO_LE16(num_items); buf->res_type = CPU_TO_LE16(((type << ICE_AQC_RES_TYPE_S) & ICE_AQC_RES_TYPE_M) | alloc_shared); status = ice_aq_alloc_free_res(hw, 1, buf, buf_len, ice_aqc_opc_alloc_res, NULL); if (status) goto exit; *counter_id = LE16_TO_CPU(buf->elem[0].e.sw_resp); exit: ice_free(hw, buf); return status; } /** * ice_free_res_cntr - free resource counter * @hw: pointer to the hardware structure * @type: type of resource * @alloc_shared: if set it is shared else dedicated * @num_items: number of entries to be freed for FD resource type * @counter_id: counter ID resource which needs to be freed */ static enum ice_status ice_free_res_cntr(struct ice_hw *hw, u8 type, u8 alloc_shared, u16 num_items, u16 counter_id) { struct ice_aqc_alloc_free_res_elem *buf; enum ice_status status; u16 buf_len; /* Free resource */ buf_len = ice_struct_size(buf, elem, 1); buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len); if (!buf) return ICE_ERR_NO_MEMORY; buf->num_elems = CPU_TO_LE16(num_items); buf->res_type = CPU_TO_LE16(((type << ICE_AQC_RES_TYPE_S) & ICE_AQC_RES_TYPE_M) | alloc_shared); buf->elem[0].e.sw_resp = CPU_TO_LE16(counter_id); status = ice_aq_alloc_free_res(hw, 1, buf, buf_len, ice_aqc_opc_free_res, NULL); if (status) ice_debug(hw, ICE_DBG_SW, "counter resource could not be freed\n"); ice_free(hw, buf); return status; } /** * ice_alloc_vlan_res_counter - obtain counter resource for VLAN type * @hw: pointer to the hardware structure * @counter_id: returns counter index */ enum ice_status ice_alloc_vlan_res_counter(struct ice_hw *hw, u16 *counter_id) { return ice_alloc_res_cntr(hw, ICE_AQC_RES_TYPE_VLAN_COUNTER, ICE_AQC_RES_TYPE_FLAG_DEDICATED, 1, counter_id); } /** * ice_free_vlan_res_counter - Free counter resource for VLAN type * @hw: pointer to the hardware structure * @counter_id: counter index to be freed */ enum ice_status ice_free_vlan_res_counter(struct ice_hw *hw, u16 counter_id) { return ice_free_res_cntr(hw, ICE_AQC_RES_TYPE_VLAN_COUNTER, ICE_AQC_RES_TYPE_FLAG_DEDICATED, 1, counter_id); } /** * ice_alloc_res_lg_act - add large action resource * @hw: pointer to the hardware structure * @l_id: large action ID to fill it in * @num_acts: number of actions to hold with a large action entry */ static enum ice_status ice_alloc_res_lg_act(struct ice_hw *hw, u16 *l_id, u16 num_acts) { struct ice_aqc_alloc_free_res_elem *sw_buf; enum ice_status status; u16 buf_len; if (num_acts > ICE_MAX_LG_ACT || num_acts == 0) return ICE_ERR_PARAM; /* Allocate resource for large action */ buf_len = ice_struct_size(sw_buf, elem, 1); sw_buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len); if (!sw_buf) return ICE_ERR_NO_MEMORY; sw_buf->num_elems = CPU_TO_LE16(1); /* If num_acts is 1, use ICE_AQC_RES_TYPE_WIDE_TABLE_1. * If num_acts is 2, use ICE_AQC_RES_TYPE_WIDE_TABLE_3. * If num_acts is greater than 2, then use * ICE_AQC_RES_TYPE_WIDE_TABLE_4. * The num_acts cannot exceed 4. This was ensured at the * beginning of the function. */ if (num_acts == 1) sw_buf->res_type = CPU_TO_LE16(ICE_AQC_RES_TYPE_WIDE_TABLE_1); else if (num_acts == 2) sw_buf->res_type = CPU_TO_LE16(ICE_AQC_RES_TYPE_WIDE_TABLE_2); else sw_buf->res_type = CPU_TO_LE16(ICE_AQC_RES_TYPE_WIDE_TABLE_4); status = ice_aq_alloc_free_res(hw, 1, sw_buf, buf_len, ice_aqc_opc_alloc_res, NULL); if (!status) *l_id = LE16_TO_CPU(sw_buf->elem[0].e.sw_resp); ice_free(hw, sw_buf); return status; } /** * ice_add_mac_with_sw_marker - add filter with sw marker * @hw: pointer to the hardware structure * @f_info: filter info structure containing the MAC filter information * @sw_marker: sw marker to tag the Rx descriptor with */ enum ice_status ice_add_mac_with_sw_marker(struct ice_hw *hw, struct ice_fltr_info *f_info, u16 sw_marker) { struct ice_fltr_mgmt_list_entry *m_entry; struct ice_fltr_list_entry fl_info; struct ice_sw_recipe *recp_list; struct LIST_HEAD_TYPE l_head; struct ice_lock *rule_lock; /* Lock to protect filter rule list */ enum ice_status ret; bool entry_exists; u16 lg_act_id; if (f_info->fltr_act != ICE_FWD_TO_VSI) return ICE_ERR_PARAM; if (f_info->lkup_type != ICE_SW_LKUP_MAC) return ICE_ERR_PARAM; if (sw_marker == ICE_INVAL_SW_MARKER_ID) return ICE_ERR_PARAM; if (!ice_is_vsi_valid(hw, f_info->vsi_handle)) return ICE_ERR_PARAM; f_info->fwd_id.hw_vsi_id = ice_get_hw_vsi_num(hw, f_info->vsi_handle); /* Add filter if it doesn't exist so then the adding of large * action always results in update */ INIT_LIST_HEAD(&l_head); fl_info.fltr_info = *f_info; LIST_ADD(&fl_info.list_entry, &l_head); entry_exists = false; ret = ice_add_mac_rule(hw, &l_head, hw->switch_info, hw->port_info->lport); if (ret == ICE_ERR_ALREADY_EXISTS) entry_exists = true; else if (ret) return ret; recp_list = &hw->switch_info->recp_list[ICE_SW_LKUP_MAC]; rule_lock = &recp_list->filt_rule_lock; ice_acquire_lock(rule_lock); /* Get the book keeping entry for the filter */ m_entry = ice_find_rule_entry(&recp_list->filt_rules, f_info); if (!m_entry) goto exit_error; /* If counter action was enabled for this rule then don't enable * sw marker large action */ if (m_entry->counter_index != ICE_INVAL_COUNTER_ID) { ret = ICE_ERR_PARAM; goto exit_error; } /* if same marker was added before */ if (m_entry->sw_marker_id == sw_marker) { ret = ICE_ERR_ALREADY_EXISTS; goto exit_error; } /* Allocate a hardware table entry to hold large act. Three actions * for marker based large action */ ret = ice_alloc_res_lg_act(hw, &lg_act_id, 3); if (ret) goto exit_error; if (lg_act_id == ICE_INVAL_LG_ACT_INDEX) goto exit_error; /* Update the switch rule to add the marker action */ ret = ice_add_marker_act(hw, m_entry, sw_marker, lg_act_id); if (!ret) { ice_release_lock(rule_lock); return ret; } exit_error: ice_release_lock(rule_lock); /* only remove entry if it did not exist previously */ if (!entry_exists) ret = ice_remove_mac(hw, &l_head); return ret; } /** * ice_add_mac_with_counter - add filter with counter enabled * @hw: pointer to the hardware structure * @f_info: pointer to filter info structure containing the MAC filter * information */ enum ice_status ice_add_mac_with_counter(struct ice_hw *hw, struct ice_fltr_info *f_info) { struct ice_fltr_mgmt_list_entry *m_entry; struct ice_fltr_list_entry fl_info; struct ice_sw_recipe *recp_list; struct LIST_HEAD_TYPE l_head; struct ice_lock *rule_lock; /* Lock to protect filter rule list */ enum ice_status ret; bool entry_exist; u16 counter_id; u16 lg_act_id; if (f_info->fltr_act != ICE_FWD_TO_VSI) return ICE_ERR_PARAM; if (f_info->lkup_type != ICE_SW_LKUP_MAC) return ICE_ERR_PARAM; if (!ice_is_vsi_valid(hw, f_info->vsi_handle)) return ICE_ERR_PARAM; f_info->fwd_id.hw_vsi_id = ice_get_hw_vsi_num(hw, f_info->vsi_handle); recp_list = &hw->switch_info->recp_list[ICE_SW_LKUP_MAC]; entry_exist = false; rule_lock = &recp_list->filt_rule_lock; /* Add filter if it doesn't exist so then the adding of large * action always results in update */ INIT_LIST_HEAD(&l_head); fl_info.fltr_info = *f_info; LIST_ADD(&fl_info.list_entry, &l_head); ret = ice_add_mac_rule(hw, &l_head, hw->switch_info, hw->port_info->lport); if (ret == ICE_ERR_ALREADY_EXISTS) entry_exist = true; else if (ret) return ret; ice_acquire_lock(rule_lock); m_entry = ice_find_rule_entry(&recp_list->filt_rules, f_info); if (!m_entry) { ret = ICE_ERR_BAD_PTR; goto exit_error; } /* Don't enable counter for a filter for which sw marker was enabled */ if (m_entry->sw_marker_id != ICE_INVAL_SW_MARKER_ID) { ret = ICE_ERR_PARAM; goto exit_error; } /* If a counter was already enabled then don't need to add again */ if (m_entry->counter_index != ICE_INVAL_COUNTER_ID) { ret = ICE_ERR_ALREADY_EXISTS; goto exit_error; } /* Allocate a hardware table entry to VLAN counter */ ret = ice_alloc_vlan_res_counter(hw, &counter_id); if (ret) goto exit_error; /* Allocate a hardware table entry to hold large act. Two actions for * counter based large action */ ret = ice_alloc_res_lg_act(hw, &lg_act_id, 2); if (ret) goto exit_error; if (lg_act_id == ICE_INVAL_LG_ACT_INDEX) goto exit_error; /* Update the switch rule to add the counter action */ ret = ice_add_counter_act(hw, m_entry, counter_id, lg_act_id); if (!ret) { ice_release_lock(rule_lock); return ret; } exit_error: ice_release_lock(rule_lock); /* only remove entry if it did not exist previously */ if (!entry_exist) ret = ice_remove_mac(hw, &l_head); return ret; } /** * ice_replay_fltr - Replay all the filters stored by a specific list head * @hw: pointer to the hardware structure * @list_head: list for which filters needs to be replayed * @recp_id: Recipe ID for which rules need to be replayed */ static enum ice_status ice_replay_fltr(struct ice_hw *hw, u8 recp_id, struct LIST_HEAD_TYPE *list_head) { struct ice_fltr_mgmt_list_entry *itr; enum ice_status status = ICE_SUCCESS; struct ice_sw_recipe *recp_list; u8 lport = hw->port_info->lport; struct LIST_HEAD_TYPE l_head; if (LIST_EMPTY(list_head)) return status; recp_list = &hw->switch_info->recp_list[recp_id]; /* Move entries from the given list_head to a temporary l_head so that * they can be replayed. Otherwise when trying to re-add the same * filter, the function will return already exists */ LIST_REPLACE_INIT(list_head, &l_head); /* Mark the given list_head empty by reinitializing it so filters * could be added again by *handler */ LIST_FOR_EACH_ENTRY(itr, &l_head, ice_fltr_mgmt_list_entry, list_entry) { struct ice_fltr_list_entry f_entry; u16 vsi_handle; f_entry.fltr_info = itr->fltr_info; if (itr->vsi_count < 2 && recp_id != ICE_SW_LKUP_VLAN) { status = ice_add_rule_internal(hw, recp_list, lport, &f_entry); if (status != ICE_SUCCESS) goto end; continue; } /* Add a filter per VSI separately */ ice_for_each_set_bit(vsi_handle, itr->vsi_list_info->vsi_map, ICE_MAX_VSI) { if (!ice_is_vsi_valid(hw, vsi_handle)) break; ice_clear_bit(vsi_handle, itr->vsi_list_info->vsi_map); f_entry.fltr_info.vsi_handle = vsi_handle; f_entry.fltr_info.fwd_id.hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle); f_entry.fltr_info.fltr_act = ICE_FWD_TO_VSI; if (recp_id == ICE_SW_LKUP_VLAN) status = ice_add_vlan_internal(hw, recp_list, &f_entry); else status = ice_add_rule_internal(hw, recp_list, lport, &f_entry); if (status != ICE_SUCCESS) goto end; } } end: /* Clear the filter management list */ ice_rem_sw_rule_info(hw, &l_head); return status; } /** * ice_replay_all_fltr - replay all filters stored in bookkeeping lists * @hw: pointer to the hardware structure * * NOTE: This function does not clean up partially added filters on error. * It is up to caller of the function to issue a reset or fail early. */ enum ice_status ice_replay_all_fltr(struct ice_hw *hw) { struct ice_switch_info *sw = hw->switch_info; enum ice_status status = ICE_SUCCESS; u8 i; for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) { struct LIST_HEAD_TYPE *head = &sw->recp_list[i].filt_rules; status = ice_replay_fltr(hw, i, head); if (status != ICE_SUCCESS) return status; } return status; } /** * ice_replay_vsi_fltr - Replay filters for requested VSI * @hw: pointer to the hardware structure * @pi: pointer to port information structure * @sw: pointer to switch info struct for which function replays filters * @vsi_handle: driver VSI handle * @recp_id: Recipe ID for which rules need to be replayed * @list_head: list for which filters need to be replayed * * Replays the filter of recipe recp_id for a VSI represented via vsi_handle. * It is required to pass valid VSI handle. */ static enum ice_status ice_replay_vsi_fltr(struct ice_hw *hw, struct ice_port_info *pi, struct ice_switch_info *sw, u16 vsi_handle, u8 recp_id, struct LIST_HEAD_TYPE *list_head) { struct ice_fltr_mgmt_list_entry *itr; enum ice_status status = ICE_SUCCESS; struct ice_sw_recipe *recp_list; u16 hw_vsi_id; if (LIST_EMPTY(list_head)) return status; recp_list = &sw->recp_list[recp_id]; hw_vsi_id = ice_get_hw_vsi_num(hw, vsi_handle); LIST_FOR_EACH_ENTRY(itr, list_head, ice_fltr_mgmt_list_entry, list_entry) { struct ice_fltr_list_entry f_entry; f_entry.fltr_info = itr->fltr_info; if (itr->vsi_count < 2 && recp_id != ICE_SW_LKUP_VLAN && itr->fltr_info.vsi_handle == vsi_handle) { /* update the src in case it is VSI num */ if (f_entry.fltr_info.src_id == ICE_SRC_ID_VSI) f_entry.fltr_info.src = hw_vsi_id; status = ice_add_rule_internal(hw, recp_list, pi->lport, &f_entry); if (status != ICE_SUCCESS) goto end; continue; } if (!itr->vsi_list_info || !ice_is_bit_set(itr->vsi_list_info->vsi_map, vsi_handle)) continue; /* Clearing it so that the logic can add it back */ ice_clear_bit(vsi_handle, itr->vsi_list_info->vsi_map); f_entry.fltr_info.vsi_handle = vsi_handle; f_entry.fltr_info.fltr_act = ICE_FWD_TO_VSI; /* update the src in case it is VSI num */ if (f_entry.fltr_info.src_id == ICE_SRC_ID_VSI) f_entry.fltr_info.src = hw_vsi_id; if (recp_id == ICE_SW_LKUP_VLAN) status = ice_add_vlan_internal(hw, recp_list, &f_entry); else status = ice_add_rule_internal(hw, recp_list, pi->lport, &f_entry); if (status != ICE_SUCCESS) goto end; } end: return status; } /** * ice_replay_vsi_all_fltr - replay all filters stored in bookkeeping lists * @hw: pointer to the hardware structure * @pi: pointer to port information structure * @vsi_handle: driver VSI handle * * Replays filters for requested VSI via vsi_handle. */ enum ice_status ice_replay_vsi_all_fltr(struct ice_hw *hw, struct ice_port_info *pi, u16 vsi_handle) { struct ice_switch_info *sw = hw->switch_info; enum ice_status status = ICE_SUCCESS; u8 i; /* Update the recipes that were created */ for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) { struct LIST_HEAD_TYPE *head; head = &sw->recp_list[i].filt_replay_rules; if (!sw->recp_list[i].adv_rule) status = ice_replay_vsi_fltr(hw, pi, sw, vsi_handle, i, head); if (status != ICE_SUCCESS) return status; } return ICE_SUCCESS; } /** * ice_rm_sw_replay_rule_info - helper function to delete filter replay rules * @hw: pointer to the HW struct * @sw: pointer to switch info struct for which function removes filters * * Deletes the filter replay rules for given switch */ void ice_rm_sw_replay_rule_info(struct ice_hw *hw, struct ice_switch_info *sw) { u8 i; if (!sw) return; for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) { if (!LIST_EMPTY(&sw->recp_list[i].filt_replay_rules)) { struct LIST_HEAD_TYPE *l_head; l_head = &sw->recp_list[i].filt_replay_rules; if (!sw->recp_list[i].adv_rule) ice_rem_sw_rule_info(hw, l_head); } } } /** * ice_rm_all_sw_replay_rule_info - deletes filter replay rules * @hw: pointer to the HW struct * * Deletes the filter replay rules. */ void ice_rm_all_sw_replay_rule_info(struct ice_hw *hw) { ice_rm_sw_replay_rule_info(hw, hw->switch_info); }