/* SPDX-License-Identifier: BSD-3-Clause */ /* Copyright (c) 2022, Intel Corporation * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * 3. Neither the name of the Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /*$FreeBSD$*/ /** * @file ice_osdep.h * @brief OS compatibility layer * * Contains various definitions and functions which are part of an OS * compatibility layer for sharing code with other operating systems. */ #ifndef _ICE_OSDEP_H_ #define _ICE_OSDEP_H_ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ice_alloc.h" #define ICE_INTEL_VENDOR_ID 0x8086 #define ICE_STR_BUF_LEN 32 struct ice_hw; device_t ice_hw_to_dev(struct ice_hw *hw); /* configure hw->debug_mask to enable debug prints */ void ice_debug(struct ice_hw *hw, uint64_t mask, char *fmt, ...) __printflike(3, 4); void ice_debug_array(struct ice_hw *hw, uint64_t mask, uint32_t rowsize, uint32_t groupsize, uint8_t *buf, size_t len); void ice_info_fwlog(struct ice_hw *hw, uint32_t rowsize, uint32_t groupsize, uint8_t *buf, size_t len); #define ice_info(_hw, _fmt, args...) \ device_printf(ice_hw_to_dev(_hw), (_fmt), ##args) #define ice_warn(_hw, _fmt, args...) \ device_printf(ice_hw_to_dev(_hw), (_fmt), ##args) #define DIVIDE_AND_ROUND_UP howmany #define ROUND_UP roundup uint32_t rd32(struct ice_hw *hw, uint32_t reg); uint64_t rd64(struct ice_hw *hw, uint32_t reg); void wr32(struct ice_hw *hw, uint32_t reg, uint32_t val); void wr64(struct ice_hw *hw, uint32_t reg, uint64_t val); #define ice_flush(_hw) rd32((_hw), GLGEN_STAT) MALLOC_DECLARE(M_ICE_OSDEP); /** * ice_calloc - Allocate an array of elementes * @hw: the hardware private structure * @count: number of elements to allocate * @size: the size of each element * * Allocate memory for an array of items equal to size. Note that the OS * compatibility layer assumes all allocation functions will provide zero'd * memory. */ static inline void * ice_calloc(struct ice_hw __unused *hw, size_t count, size_t size) { return malloc(count * size, M_ICE_OSDEP, M_ZERO | M_NOWAIT); } /** * ice_malloc - Allocate memory of a specified size * @hw: the hardware private structure * @size: the size to allocate * * Allocates memory of the specified size. Note that the OS compatibility * layer assumes that all allocations will provide zero'd memory. */ static inline void * ice_malloc(struct ice_hw __unused *hw, size_t size) { return malloc(size, M_ICE_OSDEP, M_ZERO | M_NOWAIT); } /** * ice_memdup - Allocate a copy of some other memory * @hw: private hardware structure * @src: the source to copy from * @size: allocation size * @dir: the direction of copying * * Allocate memory of the specified size, and copy bytes from the src to fill * it. We don't need to zero this memory as we immediately initialize it by * copying from the src pointer. */ static inline void * ice_memdup(struct ice_hw __unused *hw, const void *src, size_t size, enum ice_memcpy_type __unused dir) { void *dst = malloc(size, M_ICE_OSDEP, M_NOWAIT); if (dst != NULL) memcpy(dst, src, size); return dst; } /** * ice_free - Free previously allocated memory * @hw: the hardware private structure * @mem: pointer to the memory to free * * Free memory that was previously allocated by ice_calloc, ice_malloc, or * ice_memdup. */ static inline void ice_free(struct ice_hw __unused *hw, void *mem) { free(mem, M_ICE_OSDEP); } /* These are macros in order to drop the unused direction enumeration constant */ #define ice_memset(addr, c, len, unused) memset((addr), (c), (len)) #define ice_memcpy(dst, src, len, unused) memcpy((dst), (src), (len)) void ice_usec_delay(uint32_t time, bool sleep); void ice_msec_delay(uint32_t time, bool sleep); void ice_msec_pause(uint32_t time); void ice_msec_spin(uint32_t time); #define UNREFERENCED_PARAMETER(_p) _p = _p #define UNREFERENCED_1PARAMETER(_p) do { \ UNREFERENCED_PARAMETER(_p); \ } while (0) #define UNREFERENCED_2PARAMETER(_p, _q) do { \ UNREFERENCED_PARAMETER(_p); \ UNREFERENCED_PARAMETER(_q); \ } while (0) #define UNREFERENCED_3PARAMETER(_p, _q, _r) do { \ UNREFERENCED_PARAMETER(_p); \ UNREFERENCED_PARAMETER(_q); \ UNREFERENCED_PARAMETER(_r); \ } while (0) #define UNREFERENCED_4PARAMETER(_p, _q, _r, _s) do { \ UNREFERENCED_PARAMETER(_p); \ UNREFERENCED_PARAMETER(_q); \ UNREFERENCED_PARAMETER(_r); \ UNREFERENCED_PARAMETER(_s); \ } while (0) #define UNREFERENCED_5PARAMETER(_p, _q, _r, _s, _t) do { \ UNREFERENCED_PARAMETER(_p); \ UNREFERENCED_PARAMETER(_q); \ UNREFERENCED_PARAMETER(_r); \ UNREFERENCED_PARAMETER(_s); \ UNREFERENCED_PARAMETER(_t); \ } while (0) #define FIELD_SIZEOF(t, f) (sizeof(((t*)0)->f)) #define ARRAY_SIZE(a) (sizeof(a) / sizeof((a)[0])) #define MAKEMASK(_m, _s) ((_m) << (_s)) #define LIST_HEAD_TYPE ice_list_head #define LIST_ENTRY_TYPE ice_list_node /** * @struct ice_list_node * @brief simplified linked list node API * * Represents a node in a linked list, which can be embedded into a structure * to allow that structure to be inserted into a linked list. Access to the * contained structure is done via __containerof */ struct ice_list_node { LIST_ENTRY(ice_list_node) entries; }; /** * @struct ice_list_head * @brief simplified linked list head API * * Represents the head of a linked list. The linked list should consist of * a series of ice_list_node structures embedded into another structure * accessed using __containerof. This way, the ice_list_head doesn't need to * know the type of the structure it contains. */ LIST_HEAD(ice_list_head, ice_list_node); #define INIT_LIST_HEAD LIST_INIT /* LIST_EMPTY doesn't need to be changed */ #define LIST_ADD(entry, head) LIST_INSERT_HEAD(head, entry, entries) #define LIST_ADD_AFTER(entry, elem) LIST_INSERT_AFTER(elem, entry, entries) #define LIST_DEL(entry) LIST_REMOVE(entry, entries) #define _osdep_LIST_ENTRY(ptr, type, member) \ __containerof(ptr, type, member) #define LIST_FIRST_ENTRY(head, type, member) \ _osdep_LIST_ENTRY(LIST_FIRST(head), type, member) #define LIST_NEXT_ENTRY(ptr, unused, member) \ _osdep_LIST_ENTRY(LIST_NEXT(&(ptr->member), entries), __typeof(*ptr), member) #define LIST_REPLACE_INIT(old_head, new_head) do { \ __typeof(new_head) _new_head = (new_head); \ LIST_INIT(_new_head); \ LIST_SWAP(old_head, _new_head, ice_list_node, entries); \ } while (0) #define LIST_ENTRY_SAFE(_ptr, _type, _member) \ ({ __typeof(_ptr) ____ptr = (_ptr); \ ____ptr ? _osdep_LIST_ENTRY(____ptr, _type, _member) : NULL; \ }) /** * ice_get_list_tail - Return the pointer to the last node in the list * @head: the pointer to the head of the list * * A helper function for implementing LIST_ADD_TAIL and LIST_LAST_ENTRY. * Returns the pointer to the last node in the list, or NULL of the list is * empty. * * Note: due to the list implementation this is O(N), where N is the size of * the list. An O(1) implementation requires replacing the underlying list * datastructure with one that has a tail pointer. This is problematic, * because using a simple TAILQ would require that the addition and deletion * be given the head of the list. */ static inline struct ice_list_node * ice_get_list_tail(struct ice_list_head *head) { struct ice_list_node *node = LIST_FIRST(head); if (node == NULL) return NULL; while (LIST_NEXT(node, entries) != NULL) node = LIST_NEXT(node, entries); return node; } /* TODO: This is O(N). An O(1) implementation would require a different * underlying list structure, such as a circularly linked list. */ #define LIST_ADD_TAIL(entry, head) do { \ struct ice_list_node *node = ice_get_list_tail(head); \ \ if (node == NULL) { \ LIST_ADD(entry, head); \ } else { \ LIST_INSERT_AFTER(node, entry, entries); \ } \ } while (0) #define LIST_LAST_ENTRY(head, type, member) \ LIST_ENTRY_SAFE(ice_get_list_tail(head), type, member) #define LIST_FIRST_ENTRY_SAFE(head, type, member) \ LIST_ENTRY_SAFE(LIST_FIRST(head), type, member) #define LIST_NEXT_ENTRY_SAFE(ptr, member) \ LIST_ENTRY_SAFE(LIST_NEXT(&(ptr->member), entries), __typeof(*ptr), member) #define LIST_FOR_EACH_ENTRY(pos, head, unused, member) \ for (pos = LIST_FIRST_ENTRY_SAFE(head, __typeof(*pos), member); \ pos; \ pos = LIST_NEXT_ENTRY_SAFE(pos, member)) #define LIST_FOR_EACH_ENTRY_SAFE(pos, n, head, unused, member) \ for (pos = LIST_FIRST_ENTRY_SAFE(head, __typeof(*pos), member); \ pos && ({ n = LIST_NEXT_ENTRY_SAFE(pos, member); 1; }); \ pos = n) #define STATIC static #define NTOHS ntohs #define NTOHL ntohl #define HTONS htons #define HTONL htonl #define LE16_TO_CPU le16toh #define LE32_TO_CPU le32toh #define LE64_TO_CPU le64toh #define CPU_TO_LE16 htole16 #define CPU_TO_LE32 htole32 #define CPU_TO_LE64 htole64 #define CPU_TO_BE16 htobe16 #define CPU_TO_BE32 htobe32 #define SNPRINTF snprintf /** * @typedef u8 * @brief compatibility typedef for uint8_t */ typedef uint8_t u8; /** * @typedef u16 * @brief compatibility typedef for uint16_t */ typedef uint16_t u16; /** * @typedef u32 * @brief compatibility typedef for uint32_t */ typedef uint32_t u32; /** * @typedef u64 * @brief compatibility typedef for uint64_t */ typedef uint64_t u64; /** * @typedef s8 * @brief compatibility typedef for int8_t */ typedef int8_t s8; /** * @typedef s16 * @brief compatibility typedef for int16_t */ typedef int16_t s16; /** * @typedef s32 * @brief compatibility typedef for int32_t */ typedef int32_t s32; /** * @typedef s64 * @brief compatibility typedef for int64_t */ typedef int64_t s64; #define __le16 u16 #define __le32 u32 #define __le64 u64 #define __be16 u16 #define __be32 u32 #define __be64 u64 #define ice_hweight8(x) bitcount16((u8)x) #define ice_hweight16(x) bitcount16(x) #define ice_hweight32(x) bitcount32(x) #define ice_hweight64(x) bitcount64(x) /** * @struct ice_dma_mem * @brief DMA memory allocation * * Contains DMA allocation bits, used to simplify DMA allocations. */ struct ice_dma_mem { void *va; uint64_t pa; size_t size; bus_dma_tag_t tag; bus_dmamap_t map; bus_dma_segment_t seg; }; void * ice_alloc_dma_mem(struct ice_hw *hw, struct ice_dma_mem *mem, u64 size); void ice_free_dma_mem(struct ice_hw __unused *hw, struct ice_dma_mem *mem); /** * @struct ice_lock * @brief simplified lock API * * Contains a simple lock implementation used to lock various resources. */ struct ice_lock { struct mtx mutex; char name[ICE_STR_BUF_LEN]; }; extern u16 ice_lock_count; /** * ice_init_lock - Initialize a lock for use * @lock: the lock memory to initialize * * OS compatibility layer to provide a simple locking mechanism. We use * a mutex for this purpose. */ static inline void ice_init_lock(struct ice_lock *lock) { /* * Make each lock unique by incrementing a counter each time this * function is called. Use of a u16 allows 65535 possible locks before * we'd hit a duplicate. */ memset(lock->name, 0, sizeof(lock->name)); snprintf(lock->name, ICE_STR_BUF_LEN, "ice_lock_%u", ice_lock_count++); mtx_init(&lock->mutex, lock->name, NULL, MTX_DEF); } /** * ice_acquire_lock - Acquire the lock * @lock: the lock to acquire * * Acquires the mutex specified by the lock pointer. */ static inline void ice_acquire_lock(struct ice_lock *lock) { mtx_lock(&lock->mutex); } /** * ice_release_lock - Release the lock * @lock: the lock to release * * Releases the mutex specified by the lock pointer. */ static inline void ice_release_lock(struct ice_lock *lock) { mtx_unlock(&lock->mutex); } /** * ice_destroy_lock - Destroy the lock to de-allocate it * @lock: the lock to destroy * * Destroys a previously initialized lock. We only do this if the mutex was * previously initialized. */ static inline void ice_destroy_lock(struct ice_lock *lock) { if (mtx_initialized(&lock->mutex)) mtx_destroy(&lock->mutex); memset(lock->name, 0, sizeof(lock->name)); } /* Some function parameters are unused outside of MPASS/KASSERT macros. Rather * than marking these as __unused all the time, mark them as __invariant_only, * and define this to __unused when INVARIANTS is disabled. Otherwise, define * it empty so that __invariant_only parameters are caught as unused by the * INVARIANTS build. */ #ifndef INVARIANTS #define __invariant_only __unused #else #define __invariant_only #endif #define __ALWAYS_UNUSED __unused /** * ice_ilog2 - Calculate the integer log base 2 of a 64bit value * @n: 64bit number * * Calculates the integer log base 2 of a 64bit value, rounded down. * * @remark The integer log base 2 of zero is technically undefined, but this * function will return 0 in that case. * */ static inline int ice_ilog2(u64 n) { if (n == 0) return 0; return flsll(n) - 1; } /** * ice_is_pow2 - Check if the value is a power of 2 * @n: 64bit number * * Check if the given value is a power of 2. * * @remark FreeBSD's powerof2 function treats zero as a power of 2, while this * function does not. * * @returns true or false */ static inline bool ice_is_pow2(u64 n) { if (n == 0) return false; return powerof2(n); } #endif /* _ICE_OSDEP_H_ */