/*- * Copyright (c) 2010-2012 Citrix Inc. * Copyright (c) 2009-2012,2016-2017 Microsoft Corp. * Copyright (c) 2012 NetApp Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice unmodified, this list of conditions, and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /*- * Copyright (c) 2004-2006 Kip Macy * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_hn.h" #include "opt_inet6.h" #include "opt_inet.h" #include "opt_rss.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef RSS #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "vmbus_if.h" #define HN_IFSTART_SUPPORT #define HN_RING_CNT_DEF_MAX 8 #define HN_VFMAP_SIZE_DEF 8 #define HN_XPNT_VF_ATTWAIT_MIN 2 /* seconds */ /* YYY should get it from the underlying channel */ #define HN_TX_DESC_CNT 512 #define HN_RNDIS_PKT_LEN \ (sizeof(struct rndis_packet_msg) + \ HN_RNDIS_PKTINFO_SIZE(HN_NDIS_HASH_VALUE_SIZE) + \ HN_RNDIS_PKTINFO_SIZE(NDIS_VLAN_INFO_SIZE) + \ HN_RNDIS_PKTINFO_SIZE(NDIS_LSO2_INFO_SIZE) + \ HN_RNDIS_PKTINFO_SIZE(NDIS_TXCSUM_INFO_SIZE)) #define HN_RNDIS_PKT_BOUNDARY PAGE_SIZE #define HN_RNDIS_PKT_ALIGN CACHE_LINE_SIZE #define HN_TX_DATA_BOUNDARY PAGE_SIZE #define HN_TX_DATA_MAXSIZE IP_MAXPACKET #define HN_TX_DATA_SEGSIZE PAGE_SIZE /* -1 for RNDIS packet message */ #define HN_TX_DATA_SEGCNT_MAX (HN_GPACNT_MAX - 1) #define HN_DIRECT_TX_SIZE_DEF 128 #define HN_EARLY_TXEOF_THRESH 8 #define HN_PKTBUF_LEN_DEF (16 * 1024) #define HN_LROENT_CNT_DEF 128 #define HN_LRO_LENLIM_MULTIRX_DEF (12 * ETHERMTU) #define HN_LRO_LENLIM_DEF (25 * ETHERMTU) /* YYY 2*MTU is a bit rough, but should be good enough. */ #define HN_LRO_LENLIM_MIN(ifp) (2 * (ifp)->if_mtu) #define HN_LRO_ACKCNT_DEF 1 #define HN_LOCK_INIT(sc) \ sx_init(&(sc)->hn_lock, device_get_nameunit((sc)->hn_dev)) #define HN_LOCK_DESTROY(sc) sx_destroy(&(sc)->hn_lock) #define HN_LOCK_ASSERT(sc) sx_assert(&(sc)->hn_lock, SA_XLOCKED) #define HN_LOCK(sc) \ do { \ while (sx_try_xlock(&(sc)->hn_lock) == 0) \ DELAY(1000); \ } while (0) #define HN_UNLOCK(sc) sx_xunlock(&(sc)->hn_lock) #define HN_CSUM_IP_MASK (CSUM_IP | CSUM_IP_TCP | CSUM_IP_UDP) #define HN_CSUM_IP6_MASK (CSUM_IP6_TCP | CSUM_IP6_UDP) #define HN_CSUM_IP_HWASSIST(sc) \ ((sc)->hn_tx_ring[0].hn_csum_assist & HN_CSUM_IP_MASK) #define HN_CSUM_IP6_HWASSIST(sc) \ ((sc)->hn_tx_ring[0].hn_csum_assist & HN_CSUM_IP6_MASK) #define HN_PKTSIZE_MIN(align) \ roundup2(ETHER_MIN_LEN + ETHER_VLAN_ENCAP_LEN - ETHER_CRC_LEN + \ HN_RNDIS_PKT_LEN, (align)) #define HN_PKTSIZE(m, align) \ roundup2((m)->m_pkthdr.len + HN_RNDIS_PKT_LEN, (align)) #ifdef RSS #define HN_RING_IDX2CPU(sc, idx) rss_getcpu((idx) % rss_getnumbuckets()) #else #define HN_RING_IDX2CPU(sc, idx) (((sc)->hn_cpu + (idx)) % mp_ncpus) #endif struct hn_txdesc { #ifndef HN_USE_TXDESC_BUFRING SLIST_ENTRY(hn_txdesc) link; #endif STAILQ_ENTRY(hn_txdesc) agg_link; /* Aggregated txdescs, in sending order. */ STAILQ_HEAD(, hn_txdesc) agg_list; /* The oldest packet, if transmission aggregation happens. */ struct mbuf *m; struct hn_tx_ring *txr; int refs; uint32_t flags; /* HN_TXD_FLAG_ */ struct hn_nvs_sendctx send_ctx; uint32_t chim_index; int chim_size; bus_dmamap_t data_dmap; bus_addr_t rndis_pkt_paddr; struct rndis_packet_msg *rndis_pkt; bus_dmamap_t rndis_pkt_dmap; }; #define HN_TXD_FLAG_ONLIST 0x0001 #define HN_TXD_FLAG_DMAMAP 0x0002 #define HN_TXD_FLAG_ONAGG 0x0004 struct hn_rxinfo { uint32_t vlan_info; uint32_t csum_info; uint32_t hash_info; uint32_t hash_value; }; struct hn_rxvf_setarg { struct hn_rx_ring *rxr; struct ifnet *vf_ifp; }; #define HN_RXINFO_VLAN 0x0001 #define HN_RXINFO_CSUM 0x0002 #define HN_RXINFO_HASHINF 0x0004 #define HN_RXINFO_HASHVAL 0x0008 #define HN_RXINFO_ALL \ (HN_RXINFO_VLAN | \ HN_RXINFO_CSUM | \ HN_RXINFO_HASHINF | \ HN_RXINFO_HASHVAL) #define HN_NDIS_VLAN_INFO_INVALID 0xffffffff #define HN_NDIS_RXCSUM_INFO_INVALID 0 #define HN_NDIS_HASH_INFO_INVALID 0 static int hn_probe(device_t); static int hn_attach(device_t); static int hn_detach(device_t); static int hn_shutdown(device_t); static void hn_chan_callback(struct vmbus_channel *, void *); static void hn_init(void *); static int hn_ioctl(struct ifnet *, u_long, caddr_t); #ifdef HN_IFSTART_SUPPORT static void hn_start(struct ifnet *); #endif static int hn_transmit(struct ifnet *, struct mbuf *); static void hn_xmit_qflush(struct ifnet *); static int hn_ifmedia_upd(struct ifnet *); static void hn_ifmedia_sts(struct ifnet *, struct ifmediareq *); static void hn_ifnet_event(void *, struct ifnet *, int); static void hn_ifaddr_event(void *, struct ifnet *); static void hn_ifnet_attevent(void *, struct ifnet *); static void hn_ifnet_detevent(void *, struct ifnet *); static void hn_ifnet_lnkevent(void *, struct ifnet *, int); static bool hn_ismyvf(const struct hn_softc *, const struct ifnet *); static void hn_rxvf_change(struct hn_softc *, struct ifnet *, bool); static void hn_rxvf_set(struct hn_softc *, struct ifnet *); static void hn_rxvf_set_task(void *, int); static void hn_xpnt_vf_input(struct ifnet *, struct mbuf *); static int hn_xpnt_vf_iocsetflags(struct hn_softc *); static int hn_xpnt_vf_iocsetcaps(struct hn_softc *, struct ifreq *); static void hn_xpnt_vf_saveifflags(struct hn_softc *); static bool hn_xpnt_vf_isready(struct hn_softc *); static void hn_xpnt_vf_setready(struct hn_softc *); static void hn_xpnt_vf_init_taskfunc(void *, int); static void hn_xpnt_vf_init(struct hn_softc *); static void hn_xpnt_vf_setenable(struct hn_softc *); static void hn_xpnt_vf_setdisable(struct hn_softc *, bool); static void hn_vf_rss_fixup(struct hn_softc *, bool); static void hn_vf_rss_restore(struct hn_softc *); static int hn_rndis_rxinfo(const void *, int, struct hn_rxinfo *); static void hn_rndis_rx_data(struct hn_rx_ring *, const void *, int); static void hn_rndis_rx_status(struct hn_softc *, const void *, int); static void hn_rndis_init_fixat(struct hn_softc *, int); static void hn_nvs_handle_notify(struct hn_softc *, const struct vmbus_chanpkt_hdr *); static void hn_nvs_handle_comp(struct hn_softc *, struct vmbus_channel *, const struct vmbus_chanpkt_hdr *); static void hn_nvs_handle_rxbuf(struct hn_rx_ring *, struct vmbus_channel *, const struct vmbus_chanpkt_hdr *); static void hn_nvs_ack_rxbuf(struct hn_rx_ring *, struct vmbus_channel *, uint64_t); #if __FreeBSD_version >= 1100099 static int hn_lro_lenlim_sysctl(SYSCTL_HANDLER_ARGS); static int hn_lro_ackcnt_sysctl(SYSCTL_HANDLER_ARGS); #endif static int hn_trust_hcsum_sysctl(SYSCTL_HANDLER_ARGS); static int hn_chim_size_sysctl(SYSCTL_HANDLER_ARGS); #if __FreeBSD_version < 1100095 static int hn_rx_stat_int_sysctl(SYSCTL_HANDLER_ARGS); #else static int hn_rx_stat_u64_sysctl(SYSCTL_HANDLER_ARGS); #endif static int hn_rx_stat_ulong_sysctl(SYSCTL_HANDLER_ARGS); static int hn_tx_stat_ulong_sysctl(SYSCTL_HANDLER_ARGS); static int hn_tx_conf_int_sysctl(SYSCTL_HANDLER_ARGS); static int hn_ndis_version_sysctl(SYSCTL_HANDLER_ARGS); static int hn_caps_sysctl(SYSCTL_HANDLER_ARGS); static int hn_hwassist_sysctl(SYSCTL_HANDLER_ARGS); static int hn_rxfilter_sysctl(SYSCTL_HANDLER_ARGS); #ifndef RSS static int hn_rss_key_sysctl(SYSCTL_HANDLER_ARGS); static int hn_rss_ind_sysctl(SYSCTL_HANDLER_ARGS); #endif static int hn_rss_hash_sysctl(SYSCTL_HANDLER_ARGS); static int hn_rss_hcap_sysctl(SYSCTL_HANDLER_ARGS); static int hn_rss_mbuf_sysctl(SYSCTL_HANDLER_ARGS); static int hn_txagg_size_sysctl(SYSCTL_HANDLER_ARGS); static int hn_txagg_pkts_sysctl(SYSCTL_HANDLER_ARGS); static int hn_txagg_pktmax_sysctl(SYSCTL_HANDLER_ARGS); static int hn_txagg_align_sysctl(SYSCTL_HANDLER_ARGS); static int hn_polling_sysctl(SYSCTL_HANDLER_ARGS); static int hn_vf_sysctl(SYSCTL_HANDLER_ARGS); static int hn_rxvf_sysctl(SYSCTL_HANDLER_ARGS); static int hn_vflist_sysctl(SYSCTL_HANDLER_ARGS); static int hn_vfmap_sysctl(SYSCTL_HANDLER_ARGS); static int hn_xpnt_vf_accbpf_sysctl(SYSCTL_HANDLER_ARGS); static int hn_xpnt_vf_enabled_sysctl(SYSCTL_HANDLER_ARGS); static void hn_stop(struct hn_softc *, bool); static void hn_init_locked(struct hn_softc *); static int hn_chan_attach(struct hn_softc *, struct vmbus_channel *); static void hn_chan_detach(struct hn_softc *, struct vmbus_channel *); static int hn_attach_subchans(struct hn_softc *); static void hn_detach_allchans(struct hn_softc *); static void hn_chan_rollup(struct hn_rx_ring *, struct hn_tx_ring *); static void hn_set_ring_inuse(struct hn_softc *, int); static int hn_synth_attach(struct hn_softc *, int); static void hn_synth_detach(struct hn_softc *); static int hn_synth_alloc_subchans(struct hn_softc *, int *); static bool hn_synth_attachable(const struct hn_softc *); static void hn_suspend(struct hn_softc *); static void hn_suspend_data(struct hn_softc *); static void hn_suspend_mgmt(struct hn_softc *); static void hn_resume(struct hn_softc *); static void hn_resume_data(struct hn_softc *); static void hn_resume_mgmt(struct hn_softc *); static void hn_suspend_mgmt_taskfunc(void *, int); static void hn_chan_drain(struct hn_softc *, struct vmbus_channel *); static void hn_disable_rx(struct hn_softc *); static void hn_drain_rxtx(struct hn_softc *, int); static void hn_polling(struct hn_softc *, u_int); static void hn_chan_polling(struct vmbus_channel *, u_int); static void hn_mtu_change_fixup(struct hn_softc *); static void hn_update_link_status(struct hn_softc *); static void hn_change_network(struct hn_softc *); static void hn_link_taskfunc(void *, int); static void hn_netchg_init_taskfunc(void *, int); static void hn_netchg_status_taskfunc(void *, int); static void hn_link_status(struct hn_softc *); static int hn_create_rx_data(struct hn_softc *, int); static void hn_destroy_rx_data(struct hn_softc *); static int hn_check_iplen(const struct mbuf *, int); static void hn_rxpkt_proto(const struct mbuf *, int *, int *); static int hn_set_rxfilter(struct hn_softc *, uint32_t); static int hn_rxfilter_config(struct hn_softc *); static int hn_rss_reconfig(struct hn_softc *); static void hn_rss_ind_fixup(struct hn_softc *); static void hn_rss_mbuf_hash(struct hn_softc *, uint32_t); static int hn_rxpkt(struct hn_rx_ring *, const void *, int, const struct hn_rxinfo *); static uint32_t hn_rss_type_fromndis(uint32_t); static uint32_t hn_rss_type_tondis(uint32_t); static int hn_tx_ring_create(struct hn_softc *, int); static void hn_tx_ring_destroy(struct hn_tx_ring *); static int hn_create_tx_data(struct hn_softc *, int); static void hn_fixup_tx_data(struct hn_softc *); static void hn_fixup_rx_data(struct hn_softc *); static void hn_destroy_tx_data(struct hn_softc *); static void hn_txdesc_dmamap_destroy(struct hn_txdesc *); static void hn_txdesc_gc(struct hn_tx_ring *, struct hn_txdesc *); static int hn_encap(struct ifnet *, struct hn_tx_ring *, struct hn_txdesc *, struct mbuf **); static int hn_txpkt(struct ifnet *, struct hn_tx_ring *, struct hn_txdesc *); static void hn_set_chim_size(struct hn_softc *, int); static void hn_set_tso_maxsize(struct hn_softc *, int, int); static bool hn_tx_ring_pending(struct hn_tx_ring *); static void hn_tx_ring_qflush(struct hn_tx_ring *); static void hn_resume_tx(struct hn_softc *, int); static void hn_set_txagg(struct hn_softc *); static void *hn_try_txagg(struct ifnet *, struct hn_tx_ring *, struct hn_txdesc *, int); static int hn_get_txswq_depth(const struct hn_tx_ring *); static void hn_txpkt_done(struct hn_nvs_sendctx *, struct hn_softc *, struct vmbus_channel *, const void *, int); static int hn_txpkt_sglist(struct hn_tx_ring *, struct hn_txdesc *); static int hn_txpkt_chim(struct hn_tx_ring *, struct hn_txdesc *); static int hn_xmit(struct hn_tx_ring *, int); static void hn_xmit_taskfunc(void *, int); static void hn_xmit_txeof(struct hn_tx_ring *); static void hn_xmit_txeof_taskfunc(void *, int); #ifdef HN_IFSTART_SUPPORT static int hn_start_locked(struct hn_tx_ring *, int); static void hn_start_taskfunc(void *, int); static void hn_start_txeof(struct hn_tx_ring *); static void hn_start_txeof_taskfunc(void *, int); #endif SYSCTL_NODE(_hw, OID_AUTO, hn, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Hyper-V network interface"); /* Trust tcp segements verification on host side. */ static int hn_trust_hosttcp = 1; SYSCTL_INT(_hw_hn, OID_AUTO, trust_hosttcp, CTLFLAG_RDTUN, &hn_trust_hosttcp, 0, "Trust tcp segement verification on host side, " "when csum info is missing (global setting)"); /* Trust udp datagrams verification on host side. */ static int hn_trust_hostudp = 1; SYSCTL_INT(_hw_hn, OID_AUTO, trust_hostudp, CTLFLAG_RDTUN, &hn_trust_hostudp, 0, "Trust udp datagram verification on host side, " "when csum info is missing (global setting)"); /* Trust ip packets verification on host side. */ static int hn_trust_hostip = 1; SYSCTL_INT(_hw_hn, OID_AUTO, trust_hostip, CTLFLAG_RDTUN, &hn_trust_hostip, 0, "Trust ip packet verification on host side, " "when csum info is missing (global setting)"); /* * Offload UDP/IPv4 checksum. */ static int hn_enable_udp4cs = 1; SYSCTL_INT(_hw_hn, OID_AUTO, enable_udp4cs, CTLFLAG_RDTUN, &hn_enable_udp4cs, 0, "Offload UDP/IPv4 checksum"); /* * Offload UDP/IPv6 checksum. */ static int hn_enable_udp6cs = 1; SYSCTL_INT(_hw_hn, OID_AUTO, enable_udp6cs, CTLFLAG_RDTUN, &hn_enable_udp6cs, 0, "Offload UDP/IPv6 checksum"); /* Stats. */ static counter_u64_t hn_udpcs_fixup; SYSCTL_COUNTER_U64(_hw_hn, OID_AUTO, udpcs_fixup, CTLFLAG_RW, &hn_udpcs_fixup, "# of UDP checksum fixup"); /* * See hn_set_hlen(). * * This value is for Azure. For Hyper-V, set this above * 65536 to disable UDP datagram checksum fixup. */ static int hn_udpcs_fixup_mtu = 1420; SYSCTL_INT(_hw_hn, OID_AUTO, udpcs_fixup_mtu, CTLFLAG_RWTUN, &hn_udpcs_fixup_mtu, 0, "UDP checksum fixup MTU threshold"); /* Limit TSO burst size */ static int hn_tso_maxlen = IP_MAXPACKET; SYSCTL_INT(_hw_hn, OID_AUTO, tso_maxlen, CTLFLAG_RDTUN, &hn_tso_maxlen, 0, "TSO burst limit"); /* Limit chimney send size */ static int hn_tx_chimney_size = 0; SYSCTL_INT(_hw_hn, OID_AUTO, tx_chimney_size, CTLFLAG_RDTUN, &hn_tx_chimney_size, 0, "Chimney send packet size limit"); /* Limit the size of packet for direct transmission */ static int hn_direct_tx_size = HN_DIRECT_TX_SIZE_DEF; SYSCTL_INT(_hw_hn, OID_AUTO, direct_tx_size, CTLFLAG_RDTUN, &hn_direct_tx_size, 0, "Size of the packet for direct transmission"); /* # of LRO entries per RX ring */ #if defined(INET) || defined(INET6) #if __FreeBSD_version >= 1100095 static int hn_lro_entry_count = HN_LROENT_CNT_DEF; SYSCTL_INT(_hw_hn, OID_AUTO, lro_entry_count, CTLFLAG_RDTUN, &hn_lro_entry_count, 0, "LRO entry count"); #endif #endif static int hn_tx_taskq_cnt = 1; SYSCTL_INT(_hw_hn, OID_AUTO, tx_taskq_cnt, CTLFLAG_RDTUN, &hn_tx_taskq_cnt, 0, "# of TX taskqueues"); #define HN_TX_TASKQ_M_INDEP 0 #define HN_TX_TASKQ_M_GLOBAL 1 #define HN_TX_TASKQ_M_EVTTQ 2 static int hn_tx_taskq_mode = HN_TX_TASKQ_M_INDEP; SYSCTL_INT(_hw_hn, OID_AUTO, tx_taskq_mode, CTLFLAG_RDTUN, &hn_tx_taskq_mode, 0, "TX taskqueue modes: " "0 - independent, 1 - share global tx taskqs, 2 - share event taskqs"); #ifndef HN_USE_TXDESC_BUFRING static int hn_use_txdesc_bufring = 0; #else static int hn_use_txdesc_bufring = 1; #endif SYSCTL_INT(_hw_hn, OID_AUTO, use_txdesc_bufring, CTLFLAG_RD, &hn_use_txdesc_bufring, 0, "Use buf_ring for TX descriptors"); #ifdef HN_IFSTART_SUPPORT /* Use ifnet.if_start instead of ifnet.if_transmit */ static int hn_use_if_start = 0; SYSCTL_INT(_hw_hn, OID_AUTO, use_if_start, CTLFLAG_RDTUN, &hn_use_if_start, 0, "Use if_start TX method"); #endif /* # of channels to use */ static int hn_chan_cnt = 0; SYSCTL_INT(_hw_hn, OID_AUTO, chan_cnt, CTLFLAG_RDTUN, &hn_chan_cnt, 0, "# of channels to use; each channel has one RX ring and one TX ring"); /* # of transmit rings to use */ static int hn_tx_ring_cnt = 0; SYSCTL_INT(_hw_hn, OID_AUTO, tx_ring_cnt, CTLFLAG_RDTUN, &hn_tx_ring_cnt, 0, "# of TX rings to use"); /* Software TX ring deptch */ static int hn_tx_swq_depth = 0; SYSCTL_INT(_hw_hn, OID_AUTO, tx_swq_depth, CTLFLAG_RDTUN, &hn_tx_swq_depth, 0, "Depth of IFQ or BUFRING"); /* Enable sorted LRO, and the depth of the per-channel mbuf queue */ #if __FreeBSD_version >= 1100095 static u_int hn_lro_mbufq_depth = 0; SYSCTL_UINT(_hw_hn, OID_AUTO, lro_mbufq_depth, CTLFLAG_RDTUN, &hn_lro_mbufq_depth, 0, "Depth of LRO mbuf queue"); #endif /* Packet transmission aggregation size limit */ static int hn_tx_agg_size = -1; SYSCTL_INT(_hw_hn, OID_AUTO, tx_agg_size, CTLFLAG_RDTUN, &hn_tx_agg_size, 0, "Packet transmission aggregation size limit"); /* Packet transmission aggregation count limit */ static int hn_tx_agg_pkts = -1; SYSCTL_INT(_hw_hn, OID_AUTO, tx_agg_pkts, CTLFLAG_RDTUN, &hn_tx_agg_pkts, 0, "Packet transmission aggregation packet limit"); /* VF list */ SYSCTL_PROC(_hw_hn, OID_AUTO, vflist, CTLFLAG_RD | CTLTYPE_STRING, 0, 0, hn_vflist_sysctl, "A", "VF list"); /* VF mapping */ SYSCTL_PROC(_hw_hn, OID_AUTO, vfmap, CTLFLAG_RD | CTLTYPE_STRING, 0, 0, hn_vfmap_sysctl, "A", "VF mapping"); /* Transparent VF */ static int hn_xpnt_vf = 1; SYSCTL_INT(_hw_hn, OID_AUTO, vf_transparent, CTLFLAG_RDTUN, &hn_xpnt_vf, 0, "Transparent VF mod"); /* Accurate BPF support for Transparent VF */ static int hn_xpnt_vf_accbpf = 0; SYSCTL_INT(_hw_hn, OID_AUTO, vf_xpnt_accbpf, CTLFLAG_RDTUN, &hn_xpnt_vf_accbpf, 0, "Accurate BPF for transparent VF"); /* Extra wait for transparent VF attach routing; unit seconds. */ static int hn_xpnt_vf_attwait = HN_XPNT_VF_ATTWAIT_MIN; SYSCTL_INT(_hw_hn, OID_AUTO, vf_xpnt_attwait, CTLFLAG_RWTUN, &hn_xpnt_vf_attwait, 0, "Extra wait for transparent VF attach routing; unit: seconds"); static u_int hn_cpu_index; /* next CPU for channel */ static struct taskqueue **hn_tx_taskque;/* shared TX taskqueues */ static struct rmlock hn_vfmap_lock; static int hn_vfmap_size; static struct ifnet **hn_vfmap; #ifndef RSS static const uint8_t hn_rss_key_default[NDIS_HASH_KEYSIZE_TOEPLITZ] = { 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2, 0x41, 0x67, 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0, 0xd0, 0xca, 0x2b, 0xcb, 0xae, 0x7b, 0x30, 0xb4, 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30, 0xf2, 0x0c, 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa }; #endif /* !RSS */ static const struct hyperv_guid hn_guid = { .hv_guid = { 0x63, 0x51, 0x61, 0xf8, 0x3e, 0xdf, 0xc5, 0x46, 0x91, 0x3f, 0xf2, 0xd2, 0xf9, 0x65, 0xed, 0x0e } }; static device_method_t hn_methods[] = { /* Device interface */ DEVMETHOD(device_probe, hn_probe), DEVMETHOD(device_attach, hn_attach), DEVMETHOD(device_detach, hn_detach), DEVMETHOD(device_shutdown, hn_shutdown), DEVMETHOD_END }; static driver_t hn_driver = { "hn", hn_methods, sizeof(struct hn_softc) }; static devclass_t hn_devclass; DRIVER_MODULE(hn, vmbus, hn_driver, hn_devclass, 0, 0); MODULE_VERSION(hn, 1); MODULE_DEPEND(hn, vmbus, 1, 1, 1); #if __FreeBSD_version >= 1100099 static void hn_set_lro_lenlim(struct hn_softc *sc, int lenlim) { int i; for (i = 0; i < sc->hn_rx_ring_cnt; ++i) sc->hn_rx_ring[i].hn_lro.lro_length_lim = lenlim; } #endif static int hn_txpkt_sglist(struct hn_tx_ring *txr, struct hn_txdesc *txd) { KASSERT(txd->chim_index == HN_NVS_CHIM_IDX_INVALID && txd->chim_size == 0, ("invalid rndis sglist txd")); return (hn_nvs_send_rndis_sglist(txr->hn_chan, HN_NVS_RNDIS_MTYPE_DATA, &txd->send_ctx, txr->hn_gpa, txr->hn_gpa_cnt)); } static int hn_txpkt_chim(struct hn_tx_ring *txr, struct hn_txdesc *txd) { struct hn_nvs_rndis rndis; KASSERT(txd->chim_index != HN_NVS_CHIM_IDX_INVALID && txd->chim_size > 0, ("invalid rndis chim txd")); rndis.nvs_type = HN_NVS_TYPE_RNDIS; rndis.nvs_rndis_mtype = HN_NVS_RNDIS_MTYPE_DATA; rndis.nvs_chim_idx = txd->chim_index; rndis.nvs_chim_sz = txd->chim_size; return (hn_nvs_send(txr->hn_chan, VMBUS_CHANPKT_FLAG_RC, &rndis, sizeof(rndis), &txd->send_ctx)); } static __inline uint32_t hn_chim_alloc(struct hn_softc *sc) { int i, bmap_cnt = sc->hn_chim_bmap_cnt; u_long *bmap = sc->hn_chim_bmap; uint32_t ret = HN_NVS_CHIM_IDX_INVALID; for (i = 0; i < bmap_cnt; ++i) { int idx; idx = ffsl(~bmap[i]); if (idx == 0) continue; --idx; /* ffsl is 1-based */ KASSERT(i * LONG_BIT + idx < sc->hn_chim_cnt, ("invalid i %d and idx %d", i, idx)); if (atomic_testandset_long(&bmap[i], idx)) continue; ret = i * LONG_BIT + idx; break; } return (ret); } static __inline void hn_chim_free(struct hn_softc *sc, uint32_t chim_idx) { u_long mask; uint32_t idx; idx = chim_idx / LONG_BIT; KASSERT(idx < sc->hn_chim_bmap_cnt, ("invalid chimney index 0x%x", chim_idx)); mask = 1UL << (chim_idx % LONG_BIT); KASSERT(sc->hn_chim_bmap[idx] & mask, ("index bitmap 0x%lx, chimney index %u, " "bitmap idx %d, bitmask 0x%lx", sc->hn_chim_bmap[idx], chim_idx, idx, mask)); atomic_clear_long(&sc->hn_chim_bmap[idx], mask); } #if defined(INET6) || defined(INET) #define PULLUP_HDR(m, len) \ do { \ if (__predict_false((m)->m_len < (len))) { \ (m) = m_pullup((m), (len)); \ if ((m) == NULL) \ return (NULL); \ } \ } while (0) /* * NOTE: If this function failed, the m_head would be freed. */ static __inline struct mbuf * hn_tso_fixup(struct mbuf *m_head) { struct ether_vlan_header *evl; struct tcphdr *th; int ehlen; KASSERT(M_WRITABLE(m_head), ("TSO mbuf not writable")); PULLUP_HDR(m_head, sizeof(*evl)); evl = mtod(m_head, struct ether_vlan_header *); if (evl->evl_encap_proto == ntohs(ETHERTYPE_VLAN)) ehlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN; else ehlen = ETHER_HDR_LEN; m_head->m_pkthdr.l2hlen = ehlen; #ifdef INET if (m_head->m_pkthdr.csum_flags & CSUM_IP_TSO) { struct ip *ip; int iphlen; PULLUP_HDR(m_head, ehlen + sizeof(*ip)); ip = mtodo(m_head, ehlen); iphlen = ip->ip_hl << 2; m_head->m_pkthdr.l3hlen = iphlen; PULLUP_HDR(m_head, ehlen + iphlen + sizeof(*th)); th = mtodo(m_head, ehlen + iphlen); ip->ip_len = 0; ip->ip_sum = 0; th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr, htons(IPPROTO_TCP)); } #endif #if defined(INET6) && defined(INET) else #endif #ifdef INET6 { struct ip6_hdr *ip6; PULLUP_HDR(m_head, ehlen + sizeof(*ip6)); ip6 = mtodo(m_head, ehlen); if (ip6->ip6_nxt != IPPROTO_TCP) { m_freem(m_head); return (NULL); } m_head->m_pkthdr.l3hlen = sizeof(*ip6); PULLUP_HDR(m_head, ehlen + sizeof(*ip6) + sizeof(*th)); th = mtodo(m_head, ehlen + sizeof(*ip6)); ip6->ip6_plen = 0; th->th_sum = in6_cksum_pseudo(ip6, 0, IPPROTO_TCP, 0); } #endif return (m_head); } /* * NOTE: If this function failed, the m_head would be freed. */ static __inline struct mbuf * hn_set_hlen(struct mbuf *m_head) { const struct ether_vlan_header *evl; int ehlen; PULLUP_HDR(m_head, sizeof(*evl)); evl = mtod(m_head, const struct ether_vlan_header *); if (evl->evl_encap_proto == ntohs(ETHERTYPE_VLAN)) ehlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN; else ehlen = ETHER_HDR_LEN; m_head->m_pkthdr.l2hlen = ehlen; #ifdef INET if (m_head->m_pkthdr.csum_flags & (CSUM_IP_TCP | CSUM_IP_UDP)) { const struct ip *ip; int iphlen; PULLUP_HDR(m_head, ehlen + sizeof(*ip)); ip = mtodo(m_head, ehlen); iphlen = ip->ip_hl << 2; m_head->m_pkthdr.l3hlen = iphlen; /* * UDP checksum offload does not work in Azure, if the * following conditions meet: * - sizeof(IP hdr + UDP hdr + payload) > 1420. * - IP_DF is not set in the IP hdr. * * Fallback to software checksum for these UDP datagrams. */ if ((m_head->m_pkthdr.csum_flags & CSUM_IP_UDP) && m_head->m_pkthdr.len > hn_udpcs_fixup_mtu + ehlen && (ntohs(ip->ip_off) & IP_DF) == 0) { uint16_t off = ehlen + iphlen; counter_u64_add(hn_udpcs_fixup, 1); PULLUP_HDR(m_head, off + sizeof(struct udphdr)); *(uint16_t *)(m_head->m_data + off + m_head->m_pkthdr.csum_data) = in_cksum_skip( m_head, m_head->m_pkthdr.len, off); m_head->m_pkthdr.csum_flags &= ~CSUM_IP_UDP; } } #endif #if defined(INET6) && defined(INET) else #endif #ifdef INET6 { const struct ip6_hdr *ip6; PULLUP_HDR(m_head, ehlen + sizeof(*ip6)); ip6 = mtodo(m_head, ehlen); if (ip6->ip6_nxt != IPPROTO_TCP && ip6->ip6_nxt != IPPROTO_UDP) { m_freem(m_head); return (NULL); } m_head->m_pkthdr.l3hlen = sizeof(*ip6); } #endif return (m_head); } /* * NOTE: If this function failed, the m_head would be freed. */ static __inline struct mbuf * hn_check_tcpsyn(struct mbuf *m_head, int *tcpsyn) { const struct tcphdr *th; int ehlen, iphlen; *tcpsyn = 0; ehlen = m_head->m_pkthdr.l2hlen; iphlen = m_head->m_pkthdr.l3hlen; PULLUP_HDR(m_head, ehlen + iphlen + sizeof(*th)); th = mtodo(m_head, ehlen + iphlen); if (th->th_flags & TH_SYN) *tcpsyn = 1; return (m_head); } #undef PULLUP_HDR #endif /* INET6 || INET */ static int hn_set_rxfilter(struct hn_softc *sc, uint32_t filter) { int error = 0; HN_LOCK_ASSERT(sc); if (sc->hn_rx_filter != filter) { error = hn_rndis_set_rxfilter(sc, filter); if (!error) sc->hn_rx_filter = filter; } return (error); } static int hn_rxfilter_config(struct hn_softc *sc) { struct ifnet *ifp = sc->hn_ifp; uint32_t filter; HN_LOCK_ASSERT(sc); /* * If the non-transparent mode VF is activated, we don't know how * its RX filter is configured, so stick the synthetic device in * the promiscous mode. */ if ((ifp->if_flags & IFF_PROMISC) || (sc->hn_flags & HN_FLAG_RXVF)) { filter = NDIS_PACKET_TYPE_PROMISCUOUS; } else { filter = NDIS_PACKET_TYPE_DIRECTED; if (ifp->if_flags & IFF_BROADCAST) filter |= NDIS_PACKET_TYPE_BROADCAST; /* TODO: support multicast list */ if ((ifp->if_flags & IFF_ALLMULTI) || !CK_STAILQ_EMPTY(&ifp->if_multiaddrs)) filter |= NDIS_PACKET_TYPE_ALL_MULTICAST; } return (hn_set_rxfilter(sc, filter)); } static void hn_set_txagg(struct hn_softc *sc) { uint32_t size, pkts; int i; /* * Setup aggregation size. */ if (sc->hn_agg_size < 0) size = UINT32_MAX; else size = sc->hn_agg_size; if (sc->hn_rndis_agg_size < size) size = sc->hn_rndis_agg_size; /* NOTE: We only aggregate packets using chimney sending buffers. */ if (size > (uint32_t)sc->hn_chim_szmax) size = sc->hn_chim_szmax; if (size <= 2 * HN_PKTSIZE_MIN(sc->hn_rndis_agg_align)) { /* Disable */ size = 0; pkts = 0; goto done; } /* NOTE: Type of the per TX ring setting is 'int'. */ if (size > INT_MAX) size = INT_MAX; /* * Setup aggregation packet count. */ if (sc->hn_agg_pkts < 0) pkts = UINT32_MAX; else pkts = sc->hn_agg_pkts; if (sc->hn_rndis_agg_pkts < pkts) pkts = sc->hn_rndis_agg_pkts; if (pkts <= 1) { /* Disable */ size = 0; pkts = 0; goto done; } /* NOTE: Type of the per TX ring setting is 'short'. */ if (pkts > SHRT_MAX) pkts = SHRT_MAX; done: /* NOTE: Type of the per TX ring setting is 'short'. */ if (sc->hn_rndis_agg_align > SHRT_MAX) { /* Disable */ size = 0; pkts = 0; } if (bootverbose) { if_printf(sc->hn_ifp, "TX agg size %u, pkts %u, align %u\n", size, pkts, sc->hn_rndis_agg_align); } for (i = 0; i < sc->hn_tx_ring_cnt; ++i) { struct hn_tx_ring *txr = &sc->hn_tx_ring[i]; mtx_lock(&txr->hn_tx_lock); txr->hn_agg_szmax = size; txr->hn_agg_pktmax = pkts; txr->hn_agg_align = sc->hn_rndis_agg_align; mtx_unlock(&txr->hn_tx_lock); } } static int hn_get_txswq_depth(const struct hn_tx_ring *txr) { KASSERT(txr->hn_txdesc_cnt > 0, ("tx ring is not setup yet")); if (hn_tx_swq_depth < txr->hn_txdesc_cnt) return txr->hn_txdesc_cnt; return hn_tx_swq_depth; } static int hn_rss_reconfig(struct hn_softc *sc) { int error; HN_LOCK_ASSERT(sc); if ((sc->hn_flags & HN_FLAG_SYNTH_ATTACHED) == 0) return (ENXIO); /* * Disable RSS first. * * NOTE: * Direct reconfiguration by setting the UNCHG flags does * _not_ work properly. */ if (bootverbose) if_printf(sc->hn_ifp, "disable RSS\n"); error = hn_rndis_conf_rss(sc, NDIS_RSS_FLAG_DISABLE); if (error) { if_printf(sc->hn_ifp, "RSS disable failed\n"); return (error); } /* * Reenable the RSS w/ the updated RSS key or indirect * table. */ if (bootverbose) if_printf(sc->hn_ifp, "reconfig RSS\n"); error = hn_rndis_conf_rss(sc, NDIS_RSS_FLAG_NONE); if (error) { if_printf(sc->hn_ifp, "RSS reconfig failed\n"); return (error); } return (0); } static void hn_rss_ind_fixup(struct hn_softc *sc) { struct ndis_rssprm_toeplitz *rss = &sc->hn_rss; int i, nchan; nchan = sc->hn_rx_ring_inuse; KASSERT(nchan > 1, ("invalid # of channels %d", nchan)); /* * Check indirect table to make sure that all channels in it * can be used. */ for (i = 0; i < NDIS_HASH_INDCNT; ++i) { if (rss->rss_ind[i] >= nchan) { if_printf(sc->hn_ifp, "RSS indirect table %d fixup: %u -> %d\n", i, rss->rss_ind[i], nchan - 1); rss->rss_ind[i] = nchan - 1; } } } static int hn_ifmedia_upd(struct ifnet *ifp __unused) { return EOPNOTSUPP; } static void hn_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) { struct hn_softc *sc = ifp->if_softc; ifmr->ifm_status = IFM_AVALID; ifmr->ifm_active = IFM_ETHER; if ((sc->hn_link_flags & HN_LINK_FLAG_LINKUP) == 0) { ifmr->ifm_active |= IFM_NONE; return; } ifmr->ifm_status |= IFM_ACTIVE; ifmr->ifm_active |= IFM_10G_T | IFM_FDX; } static void hn_rxvf_set_task(void *xarg, int pending __unused) { struct hn_rxvf_setarg *arg = xarg; arg->rxr->hn_rxvf_ifp = arg->vf_ifp; } static void hn_rxvf_set(struct hn_softc *sc, struct ifnet *vf_ifp) { struct hn_rx_ring *rxr; struct hn_rxvf_setarg arg; struct task task; int i; HN_LOCK_ASSERT(sc); TASK_INIT(&task, 0, hn_rxvf_set_task, &arg); for (i = 0; i < sc->hn_rx_ring_cnt; ++i) { rxr = &sc->hn_rx_ring[i]; if (i < sc->hn_rx_ring_inuse) { arg.rxr = rxr; arg.vf_ifp = vf_ifp; vmbus_chan_run_task(rxr->hn_chan, &task); } else { rxr->hn_rxvf_ifp = vf_ifp; } } } static bool hn_ismyvf(const struct hn_softc *sc, const struct ifnet *ifp) { const struct ifnet *hn_ifp; hn_ifp = sc->hn_ifp; if (ifp == hn_ifp) return (false); if (ifp->if_alloctype != IFT_ETHER) return (false); /* Ignore lagg/vlan interfaces */ if (strcmp(ifp->if_dname, "lagg") == 0 || strcmp(ifp->if_dname, "vlan") == 0) return (false); /* * During detach events ifp->if_addr might be NULL. * Make sure the bcmp() below doesn't panic on that: */ if (ifp->if_addr == NULL || hn_ifp->if_addr == NULL) return (false); if (bcmp(IF_LLADDR(ifp), IF_LLADDR(hn_ifp), ETHER_ADDR_LEN) != 0) return (false); return (true); } static void hn_rxvf_change(struct hn_softc *sc, struct ifnet *ifp, bool rxvf) { struct ifnet *hn_ifp; HN_LOCK(sc); if (!(sc->hn_flags & HN_FLAG_SYNTH_ATTACHED)) goto out; if (!hn_ismyvf(sc, ifp)) goto out; hn_ifp = sc->hn_ifp; if (rxvf) { if (sc->hn_flags & HN_FLAG_RXVF) goto out; sc->hn_flags |= HN_FLAG_RXVF; hn_rxfilter_config(sc); } else { if (!(sc->hn_flags & HN_FLAG_RXVF)) goto out; sc->hn_flags &= ~HN_FLAG_RXVF; if (hn_ifp->if_drv_flags & IFF_DRV_RUNNING) hn_rxfilter_config(sc); else hn_set_rxfilter(sc, NDIS_PACKET_TYPE_NONE); } hn_nvs_set_datapath(sc, rxvf ? HN_NVS_DATAPATH_VF : HN_NVS_DATAPATH_SYNTH); hn_rxvf_set(sc, rxvf ? ifp : NULL); if (rxvf) { hn_vf_rss_fixup(sc, true); hn_suspend_mgmt(sc); sc->hn_link_flags &= ~(HN_LINK_FLAG_LINKUP | HN_LINK_FLAG_NETCHG); if_link_state_change(hn_ifp, LINK_STATE_DOWN); } else { hn_vf_rss_restore(sc); hn_resume_mgmt(sc); } devctl_notify("HYPERV_NIC_VF", hn_ifp->if_xname, rxvf ? "VF_UP" : "VF_DOWN", NULL); if (bootverbose) { if_printf(hn_ifp, "datapath is switched %s %s\n", rxvf ? "to" : "from", ifp->if_xname); } out: HN_UNLOCK(sc); } static void hn_ifnet_event(void *arg, struct ifnet *ifp, int event) { if (event != IFNET_EVENT_UP && event != IFNET_EVENT_DOWN) return; hn_rxvf_change(arg, ifp, event == IFNET_EVENT_UP); } static void hn_ifaddr_event(void *arg, struct ifnet *ifp) { hn_rxvf_change(arg, ifp, ifp->if_flags & IFF_UP); } static int hn_xpnt_vf_iocsetcaps(struct hn_softc *sc, struct ifreq *ifr) { struct ifnet *ifp, *vf_ifp; uint64_t tmp; int error; HN_LOCK_ASSERT(sc); ifp = sc->hn_ifp; vf_ifp = sc->hn_vf_ifp; /* * Fix up requested capabilities w/ supported capabilities, * since the supported capabilities could have been changed. */ ifr->ifr_reqcap &= ifp->if_capabilities; /* Pass SIOCSIFCAP to VF. */ error = vf_ifp->if_ioctl(vf_ifp, SIOCSIFCAP, (caddr_t)ifr); /* * NOTE: * The error will be propagated to the callers, however, it * is _not_ useful here. */ /* * Merge VF's enabled capabilities. */ ifp->if_capenable = vf_ifp->if_capenable & ifp->if_capabilities; tmp = vf_ifp->if_hwassist & HN_CSUM_IP_HWASSIST(sc); if (ifp->if_capenable & IFCAP_TXCSUM) ifp->if_hwassist |= tmp; else ifp->if_hwassist &= ~tmp; tmp = vf_ifp->if_hwassist & HN_CSUM_IP6_HWASSIST(sc); if (ifp->if_capenable & IFCAP_TXCSUM_IPV6) ifp->if_hwassist |= tmp; else ifp->if_hwassist &= ~tmp; tmp = vf_ifp->if_hwassist & CSUM_IP_TSO; if (ifp->if_capenable & IFCAP_TSO4) ifp->if_hwassist |= tmp; else ifp->if_hwassist &= ~tmp; tmp = vf_ifp->if_hwassist & CSUM_IP6_TSO; if (ifp->if_capenable & IFCAP_TSO6) ifp->if_hwassist |= tmp; else ifp->if_hwassist &= ~tmp; return (error); } static int hn_xpnt_vf_iocsetflags(struct hn_softc *sc) { struct ifnet *vf_ifp; struct ifreq ifr; HN_LOCK_ASSERT(sc); vf_ifp = sc->hn_vf_ifp; memset(&ifr, 0, sizeof(ifr)); strlcpy(ifr.ifr_name, vf_ifp->if_xname, sizeof(ifr.ifr_name)); ifr.ifr_flags = vf_ifp->if_flags & 0xffff; ifr.ifr_flagshigh = vf_ifp->if_flags >> 16; return (vf_ifp->if_ioctl(vf_ifp, SIOCSIFFLAGS, (caddr_t)&ifr)); } static void hn_xpnt_vf_saveifflags(struct hn_softc *sc) { struct ifnet *ifp = sc->hn_ifp; int allmulti = 0; HN_LOCK_ASSERT(sc); /* XXX vlan(4) style mcast addr maintenance */ if (!CK_STAILQ_EMPTY(&ifp->if_multiaddrs)) allmulti = IFF_ALLMULTI; /* Always set the VF's if_flags */ sc->hn_vf_ifp->if_flags = ifp->if_flags | allmulti; } static void hn_xpnt_vf_input(struct ifnet *vf_ifp, struct mbuf *m) { struct rm_priotracker pt; struct ifnet *hn_ifp = NULL; struct mbuf *mn; /* * XXX racy, if hn(4) ever detached. */ rm_rlock(&hn_vfmap_lock, &pt); if (vf_ifp->if_index < hn_vfmap_size) hn_ifp = hn_vfmap[vf_ifp->if_index]; rm_runlock(&hn_vfmap_lock, &pt); if (hn_ifp != NULL) { for (mn = m; mn != NULL; mn = mn->m_nextpkt) { /* * Allow tapping on the VF. */ ETHER_BPF_MTAP(vf_ifp, mn); /* * Update VF stats. */ if ((vf_ifp->if_capenable & IFCAP_HWSTATS) == 0) { if_inc_counter(vf_ifp, IFCOUNTER_IBYTES, mn->m_pkthdr.len); } /* * XXX IFCOUNTER_IMCAST * This stat updating is kinda invasive, since it * requires two checks on the mbuf: the length check * and the ethernet header check. As of this write, * all multicast packets go directly to hn(4), which * makes imcast stat updating in the VF a try in vian. */ /* * Fix up rcvif and increase hn(4)'s ipackets. */ mn->m_pkthdr.rcvif = hn_ifp; if_inc_counter(hn_ifp, IFCOUNTER_IPACKETS, 1); } /* * Go through hn(4)'s if_input. */ hn_ifp->if_input(hn_ifp, m); } else { /* * In the middle of the transition; free this * mbuf chain. */ while (m != NULL) { mn = m->m_nextpkt; m->m_nextpkt = NULL; m_freem(m); m = mn; } } } static void hn_mtu_change_fixup(struct hn_softc *sc) { struct ifnet *ifp; HN_LOCK_ASSERT(sc); ifp = sc->hn_ifp; hn_set_tso_maxsize(sc, hn_tso_maxlen, ifp->if_mtu); #if __FreeBSD_version >= 1100099 if (sc->hn_rx_ring[0].hn_lro.lro_length_lim < HN_LRO_LENLIM_MIN(ifp)) hn_set_lro_lenlim(sc, HN_LRO_LENLIM_MIN(ifp)); #endif } static uint32_t hn_rss_type_fromndis(uint32_t rss_hash) { uint32_t types = 0; if (rss_hash & NDIS_HASH_IPV4) types |= RSS_TYPE_IPV4; if (rss_hash & NDIS_HASH_TCP_IPV4) types |= RSS_TYPE_TCP_IPV4; if (rss_hash & NDIS_HASH_IPV6) types |= RSS_TYPE_IPV6; if (rss_hash & NDIS_HASH_IPV6_EX) types |= RSS_TYPE_IPV6_EX; if (rss_hash & NDIS_HASH_TCP_IPV6) types |= RSS_TYPE_TCP_IPV6; if (rss_hash & NDIS_HASH_TCP_IPV6_EX) types |= RSS_TYPE_TCP_IPV6_EX; if (rss_hash & NDIS_HASH_UDP_IPV4_X) types |= RSS_TYPE_UDP_IPV4; return (types); } static uint32_t hn_rss_type_tondis(uint32_t types) { uint32_t rss_hash = 0; KASSERT((types & (RSS_TYPE_UDP_IPV6 | RSS_TYPE_UDP_IPV6_EX)) == 0, ("UDP6 and UDP6EX are not supported")); if (types & RSS_TYPE_IPV4) rss_hash |= NDIS_HASH_IPV4; if (types & RSS_TYPE_TCP_IPV4) rss_hash |= NDIS_HASH_TCP_IPV4; if (types & RSS_TYPE_IPV6) rss_hash |= NDIS_HASH_IPV6; if (types & RSS_TYPE_IPV6_EX) rss_hash |= NDIS_HASH_IPV6_EX; if (types & RSS_TYPE_TCP_IPV6) rss_hash |= NDIS_HASH_TCP_IPV6; if (types & RSS_TYPE_TCP_IPV6_EX) rss_hash |= NDIS_HASH_TCP_IPV6_EX; if (types & RSS_TYPE_UDP_IPV4) rss_hash |= NDIS_HASH_UDP_IPV4_X; return (rss_hash); } static void hn_rss_mbuf_hash(struct hn_softc *sc, uint32_t mbuf_hash) { int i; HN_LOCK_ASSERT(sc); for (i = 0; i < sc->hn_rx_ring_cnt; ++i) sc->hn_rx_ring[i].hn_mbuf_hash = mbuf_hash; } static void hn_vf_rss_fixup(struct hn_softc *sc, bool reconf) { struct ifnet *ifp, *vf_ifp; struct ifrsshash ifrh; struct ifrsskey ifrk; int error; uint32_t my_types, diff_types, mbuf_types = 0; HN_LOCK_ASSERT(sc); KASSERT(sc->hn_flags & HN_FLAG_SYNTH_ATTACHED, ("%s: synthetic parts are not attached", sc->hn_ifp->if_xname)); if (sc->hn_rx_ring_inuse == 1) { /* No RSS on synthetic parts; done. */ return; } if ((sc->hn_rss_hcap & NDIS_HASH_FUNCTION_TOEPLITZ) == 0) { /* Synthetic parts do not support Toeplitz; done. */ return; } ifp = sc->hn_ifp; vf_ifp = sc->hn_vf_ifp; /* * Extract VF's RSS key. Only 40 bytes key for Toeplitz is * supported. */ memset(&ifrk, 0, sizeof(ifrk)); strlcpy(ifrk.ifrk_name, vf_ifp->if_xname, sizeof(ifrk.ifrk_name)); error = vf_ifp->if_ioctl(vf_ifp, SIOCGIFRSSKEY, (caddr_t)&ifrk); if (error) { if_printf(ifp, "%s SIOCGIFRSSKEY failed: %d\n", vf_ifp->if_xname, error); goto done; } if (ifrk.ifrk_func != RSS_FUNC_TOEPLITZ) { if_printf(ifp, "%s RSS function %u is not Toeplitz\n", vf_ifp->if_xname, ifrk.ifrk_func); goto done; } if (ifrk.ifrk_keylen != NDIS_HASH_KEYSIZE_TOEPLITZ) { if_printf(ifp, "%s invalid RSS Toeplitz key length %d\n", vf_ifp->if_xname, ifrk.ifrk_keylen); goto done; } /* * Extract VF's RSS hash. Only Toeplitz is supported. */ memset(&ifrh, 0, sizeof(ifrh)); strlcpy(ifrh.ifrh_name, vf_ifp->if_xname, sizeof(ifrh.ifrh_name)); error = vf_ifp->if_ioctl(vf_ifp, SIOCGIFRSSHASH, (caddr_t)&ifrh); if (error) { if_printf(ifp, "%s SIOCGRSSHASH failed: %d\n", vf_ifp->if_xname, error); goto done; } if (ifrh.ifrh_func != RSS_FUNC_TOEPLITZ) { if_printf(ifp, "%s RSS function %u is not Toeplitz\n", vf_ifp->if_xname, ifrh.ifrh_func); goto done; } my_types = hn_rss_type_fromndis(sc->hn_rss_hcap); if ((ifrh.ifrh_types & my_types) == 0) { /* This disables RSS; ignore it then */ if_printf(ifp, "%s intersection of RSS types failed. " "VF %#x, mine %#x\n", vf_ifp->if_xname, ifrh.ifrh_types, my_types); goto done; } diff_types = my_types ^ ifrh.ifrh_types; my_types &= ifrh.ifrh_types; mbuf_types = my_types; /* * Detect RSS hash value/type confliction. * * NOTE: * We don't disable the hash type, but stop delivery the hash * value/type through mbufs on RX path. * * XXX If HN_CAP_UDPHASH is set in hn_caps, then UDP 4-tuple * hash is delivered with type of TCP_IPV4. This means if * UDP_IPV4 is enabled, then TCP_IPV4 should be forced, at * least to hn_mbuf_hash. However, given that _all_ of the * NICs implement TCP_IPV4, this will _not_ impose any issues * here. */ if ((my_types & RSS_TYPE_IPV4) && (diff_types & ifrh.ifrh_types & (RSS_TYPE_TCP_IPV4 | RSS_TYPE_UDP_IPV4))) { /* Conflict; disable IPV4 hash type/value delivery. */ if_printf(ifp, "disable IPV4 mbuf hash delivery\n"); mbuf_types &= ~RSS_TYPE_IPV4; } if ((my_types & RSS_TYPE_IPV6) && (diff_types & ifrh.ifrh_types & (RSS_TYPE_TCP_IPV6 | RSS_TYPE_UDP_IPV6 | RSS_TYPE_TCP_IPV6_EX | RSS_TYPE_UDP_IPV6_EX | RSS_TYPE_IPV6_EX))) { /* Conflict; disable IPV6 hash type/value delivery. */ if_printf(ifp, "disable IPV6 mbuf hash delivery\n"); mbuf_types &= ~RSS_TYPE_IPV6; } if ((my_types & RSS_TYPE_IPV6_EX) && (diff_types & ifrh.ifrh_types & (RSS_TYPE_TCP_IPV6 | RSS_TYPE_UDP_IPV6 | RSS_TYPE_TCP_IPV6_EX | RSS_TYPE_UDP_IPV6_EX | RSS_TYPE_IPV6))) { /* Conflict; disable IPV6_EX hash type/value delivery. */ if_printf(ifp, "disable IPV6_EX mbuf hash delivery\n"); mbuf_types &= ~RSS_TYPE_IPV6_EX; } if ((my_types & RSS_TYPE_TCP_IPV6) && (diff_types & ifrh.ifrh_types & RSS_TYPE_TCP_IPV6_EX)) { /* Conflict; disable TCP_IPV6 hash type/value delivery. */ if_printf(ifp, "disable TCP_IPV6 mbuf hash delivery\n"); mbuf_types &= ~RSS_TYPE_TCP_IPV6; } if ((my_types & RSS_TYPE_TCP_IPV6_EX) && (diff_types & ifrh.ifrh_types & RSS_TYPE_TCP_IPV6)) { /* Conflict; disable TCP_IPV6_EX hash type/value delivery. */ if_printf(ifp, "disable TCP_IPV6_EX mbuf hash delivery\n"); mbuf_types &= ~RSS_TYPE_TCP_IPV6_EX; } if ((my_types & RSS_TYPE_UDP_IPV6) && (diff_types & ifrh.ifrh_types & RSS_TYPE_UDP_IPV6_EX)) { /* Conflict; disable UDP_IPV6 hash type/value delivery. */ if_printf(ifp, "disable UDP_IPV6 mbuf hash delivery\n"); mbuf_types &= ~RSS_TYPE_UDP_IPV6; } if ((my_types & RSS_TYPE_UDP_IPV6_EX) && (diff_types & ifrh.ifrh_types & RSS_TYPE_UDP_IPV6)) { /* Conflict; disable UDP_IPV6_EX hash type/value delivery. */ if_printf(ifp, "disable UDP_IPV6_EX mbuf hash delivery\n"); mbuf_types &= ~RSS_TYPE_UDP_IPV6_EX; } /* * Indirect table does not matter. */ sc->hn_rss_hash = (sc->hn_rss_hcap & NDIS_HASH_FUNCTION_MASK) | hn_rss_type_tondis(my_types); memcpy(sc->hn_rss.rss_key, ifrk.ifrk_key, sizeof(sc->hn_rss.rss_key)); sc->hn_flags |= HN_FLAG_HAS_RSSKEY; if (reconf) { error = hn_rss_reconfig(sc); if (error) { /* XXX roll-back? */ if_printf(ifp, "hn_rss_reconfig failed: %d\n", error); /* XXX keep going. */ } } done: /* Hash deliverability for mbufs. */ hn_rss_mbuf_hash(sc, hn_rss_type_tondis(mbuf_types)); } static void hn_vf_rss_restore(struct hn_softc *sc) { HN_LOCK_ASSERT(sc); KASSERT(sc->hn_flags & HN_FLAG_SYNTH_ATTACHED, ("%s: synthetic parts are not attached", sc->hn_ifp->if_xname)); if (sc->hn_rx_ring_inuse == 1) goto done; /* * Restore hash types. Key does _not_ matter. */ if (sc->hn_rss_hash != sc->hn_rss_hcap) { int error; sc->hn_rss_hash = sc->hn_rss_hcap; error = hn_rss_reconfig(sc); if (error) { if_printf(sc->hn_ifp, "hn_rss_reconfig failed: %d\n", error); /* XXX keep going. */ } } done: /* Hash deliverability for mbufs. */ hn_rss_mbuf_hash(sc, NDIS_HASH_ALL); } static void hn_xpnt_vf_setready(struct hn_softc *sc) { struct ifnet *ifp, *vf_ifp; struct ifreq ifr; HN_LOCK_ASSERT(sc); ifp = sc->hn_ifp; vf_ifp = sc->hn_vf_ifp; /* * Mark the VF ready. */ sc->hn_vf_rdytick = 0; /* * Save information for restoration. */ sc->hn_saved_caps = ifp->if_capabilities; sc->hn_saved_tsomax = ifp->if_hw_tsomax; sc->hn_saved_tsosegcnt = ifp->if_hw_tsomaxsegcount; sc->hn_saved_tsosegsz = ifp->if_hw_tsomaxsegsize; /* * Intersect supported/enabled capabilities. * * NOTE: * if_hwassist is not changed here. */ ifp->if_capabilities &= vf_ifp->if_capabilities; ifp->if_capenable &= ifp->if_capabilities; /* * Fix TSO settings. */ if (ifp->if_hw_tsomax > vf_ifp->if_hw_tsomax) ifp->if_hw_tsomax = vf_ifp->if_hw_tsomax; if (ifp->if_hw_tsomaxsegcount > vf_ifp->if_hw_tsomaxsegcount) ifp->if_hw_tsomaxsegcount = vf_ifp->if_hw_tsomaxsegcount; if (ifp->if_hw_tsomaxsegsize > vf_ifp->if_hw_tsomaxsegsize) ifp->if_hw_tsomaxsegsize = vf_ifp->if_hw_tsomaxsegsize; /* * Change VF's enabled capabilities. */ memset(&ifr, 0, sizeof(ifr)); strlcpy(ifr.ifr_name, vf_ifp->if_xname, sizeof(ifr.ifr_name)); ifr.ifr_reqcap = ifp->if_capenable; hn_xpnt_vf_iocsetcaps(sc, &ifr); if (ifp->if_mtu != ETHERMTU) { int error; /* * Change VF's MTU. */ memset(&ifr, 0, sizeof(ifr)); strlcpy(ifr.ifr_name, vf_ifp->if_xname, sizeof(ifr.ifr_name)); ifr.ifr_mtu = ifp->if_mtu; error = vf_ifp->if_ioctl(vf_ifp, SIOCSIFMTU, (caddr_t)&ifr); if (error) { if_printf(ifp, "%s SIOCSIFMTU %u failed\n", vf_ifp->if_xname, ifp->if_mtu); if (ifp->if_mtu > ETHERMTU) { if_printf(ifp, "change MTU to %d\n", ETHERMTU); /* * XXX * No need to adjust the synthetic parts' MTU; * failure of the adjustment will cause us * infinite headache. */ ifp->if_mtu = ETHERMTU; hn_mtu_change_fixup(sc); } } } } static bool hn_xpnt_vf_isready(struct hn_softc *sc) { HN_LOCK_ASSERT(sc); if (!hn_xpnt_vf || sc->hn_vf_ifp == NULL) return (false); if (sc->hn_vf_rdytick == 0) return (true); if (sc->hn_vf_rdytick > ticks) return (false); /* Mark VF as ready. */ hn_xpnt_vf_setready(sc); return (true); } static void hn_xpnt_vf_setenable(struct hn_softc *sc) { int i; HN_LOCK_ASSERT(sc); /* NOTE: hn_vf_lock for hn_transmit()/hn_qflush() */ rm_wlock(&sc->hn_vf_lock); sc->hn_xvf_flags |= HN_XVFFLAG_ENABLED; rm_wunlock(&sc->hn_vf_lock); for (i = 0; i < sc->hn_rx_ring_cnt; ++i) sc->hn_rx_ring[i].hn_rx_flags |= HN_RX_FLAG_XPNT_VF; } static void hn_xpnt_vf_setdisable(struct hn_softc *sc, bool clear_vf) { int i; HN_LOCK_ASSERT(sc); /* NOTE: hn_vf_lock for hn_transmit()/hn_qflush() */ rm_wlock(&sc->hn_vf_lock); sc->hn_xvf_flags &= ~HN_XVFFLAG_ENABLED; if (clear_vf) sc->hn_vf_ifp = NULL; rm_wunlock(&sc->hn_vf_lock); for (i = 0; i < sc->hn_rx_ring_cnt; ++i) sc->hn_rx_ring[i].hn_rx_flags &= ~HN_RX_FLAG_XPNT_VF; } static void hn_xpnt_vf_init(struct hn_softc *sc) { int error; HN_LOCK_ASSERT(sc); KASSERT((sc->hn_xvf_flags & HN_XVFFLAG_ENABLED) == 0, ("%s: transparent VF was enabled", sc->hn_ifp->if_xname)); if (bootverbose) { if_printf(sc->hn_ifp, "try bringing up %s\n", sc->hn_vf_ifp->if_xname); } /* * Bring the VF up. */ hn_xpnt_vf_saveifflags(sc); sc->hn_vf_ifp->if_flags |= IFF_UP; error = hn_xpnt_vf_iocsetflags(sc); if (error) { if_printf(sc->hn_ifp, "bringing up %s failed: %d\n", sc->hn_vf_ifp->if_xname, error); return; } /* * NOTE: * Datapath setting must happen _after_ bringing the VF up. */ hn_nvs_set_datapath(sc, HN_NVS_DATAPATH_VF); /* * NOTE: * Fixup RSS related bits _after_ the VF is brought up, since * many VFs generate RSS key during it's initialization. */ hn_vf_rss_fixup(sc, true); /* Mark transparent mode VF as enabled. */ hn_xpnt_vf_setenable(sc); } static void hn_xpnt_vf_init_taskfunc(void *xsc, int pending __unused) { struct hn_softc *sc = xsc; HN_LOCK(sc); if ((sc->hn_flags & HN_FLAG_SYNTH_ATTACHED) == 0) goto done; if (sc->hn_vf_ifp == NULL) goto done; if (sc->hn_xvf_flags & HN_XVFFLAG_ENABLED) goto done; if (sc->hn_vf_rdytick != 0) { /* Mark VF as ready. */ hn_xpnt_vf_setready(sc); } if (sc->hn_ifp->if_drv_flags & IFF_DRV_RUNNING) { /* * Delayed VF initialization. */ if (bootverbose) { if_printf(sc->hn_ifp, "delayed initialize %s\n", sc->hn_vf_ifp->if_xname); } hn_xpnt_vf_init(sc); } done: HN_UNLOCK(sc); } static void hn_ifnet_attevent(void *xsc, struct ifnet *ifp) { struct hn_softc *sc = xsc; HN_LOCK(sc); if (!(sc->hn_flags & HN_FLAG_SYNTH_ATTACHED)) goto done; if (!hn_ismyvf(sc, ifp)) goto done; if (sc->hn_vf_ifp != NULL) { if_printf(sc->hn_ifp, "%s was attached as VF\n", sc->hn_vf_ifp->if_xname); goto done; } if (hn_xpnt_vf && ifp->if_start != NULL) { /* * ifnet.if_start is _not_ supported by transparent * mode VF; mainly due to the IFF_DRV_OACTIVE flag. */ if_printf(sc->hn_ifp, "%s uses if_start, which is unsupported " "in transparent VF mode.\n", ifp->if_xname); goto done; } rm_wlock(&hn_vfmap_lock); if (ifp->if_index >= hn_vfmap_size) { struct ifnet **newmap; int newsize; newsize = ifp->if_index + HN_VFMAP_SIZE_DEF; newmap = malloc(sizeof(struct ifnet *) * newsize, M_DEVBUF, M_WAITOK | M_ZERO); memcpy(newmap, hn_vfmap, sizeof(struct ifnet *) * hn_vfmap_size); free(hn_vfmap, M_DEVBUF); hn_vfmap = newmap; hn_vfmap_size = newsize; } KASSERT(hn_vfmap[ifp->if_index] == NULL, ("%s: ifindex %d was mapped to %s", ifp->if_xname, ifp->if_index, hn_vfmap[ifp->if_index]->if_xname)); hn_vfmap[ifp->if_index] = sc->hn_ifp; rm_wunlock(&hn_vfmap_lock); /* NOTE: hn_vf_lock for hn_transmit()/hn_qflush() */ rm_wlock(&sc->hn_vf_lock); KASSERT((sc->hn_xvf_flags & HN_XVFFLAG_ENABLED) == 0, ("%s: transparent VF was enabled", sc->hn_ifp->if_xname)); sc->hn_vf_ifp = ifp; rm_wunlock(&sc->hn_vf_lock); if (hn_xpnt_vf) { int wait_ticks; /* * Install if_input for vf_ifp, which does vf_ifp -> hn_ifp. * Save vf_ifp's current if_input for later restoration. */ sc->hn_vf_input = ifp->if_input; ifp->if_input = hn_xpnt_vf_input; /* * Stop link status management; use the VF's. */ hn_suspend_mgmt(sc); /* * Give VF sometime to complete its attach routing. */ wait_ticks = hn_xpnt_vf_attwait * hz; sc->hn_vf_rdytick = ticks + wait_ticks; taskqueue_enqueue_timeout(sc->hn_vf_taskq, &sc->hn_vf_init, wait_ticks); } done: HN_UNLOCK(sc); } static void hn_ifnet_detevent(void *xsc, struct ifnet *ifp) { struct hn_softc *sc = xsc; HN_LOCK(sc); if (sc->hn_vf_ifp == NULL) goto done; if (!hn_ismyvf(sc, ifp)) goto done; if (hn_xpnt_vf) { /* * Make sure that the delayed initialization is not running. * * NOTE: * - This lock _must_ be released, since the hn_vf_init task * will try holding this lock. * - It is safe to release this lock here, since the * hn_ifnet_attevent() is interlocked by the hn_vf_ifp. * * XXX racy, if hn(4) ever detached. */ HN_UNLOCK(sc); taskqueue_drain_timeout(sc->hn_vf_taskq, &sc->hn_vf_init); HN_LOCK(sc); KASSERT(sc->hn_vf_input != NULL, ("%s VF input is not saved", sc->hn_ifp->if_xname)); ifp->if_input = sc->hn_vf_input; sc->hn_vf_input = NULL; if ((sc->hn_flags & HN_FLAG_SYNTH_ATTACHED) && (sc->hn_xvf_flags & HN_XVFFLAG_ENABLED)) hn_nvs_set_datapath(sc, HN_NVS_DATAPATH_SYNTH); if (sc->hn_vf_rdytick == 0) { /* * The VF was ready; restore some settings. */ sc->hn_ifp->if_capabilities = sc->hn_saved_caps; /* * NOTE: * There is _no_ need to fixup if_capenable and * if_hwassist, since the if_capabilities before * restoration was an intersection of the VF's * if_capabilites and the synthetic device's * if_capabilites. */ sc->hn_ifp->if_hw_tsomax = sc->hn_saved_tsomax; sc->hn_ifp->if_hw_tsomaxsegcount = sc->hn_saved_tsosegcnt; sc->hn_ifp->if_hw_tsomaxsegsize = sc->hn_saved_tsosegsz; } if (sc->hn_flags & HN_FLAG_SYNTH_ATTACHED) { /* * Restore RSS settings. */ hn_vf_rss_restore(sc); /* * Resume link status management, which was suspended * by hn_ifnet_attevent(). */ hn_resume_mgmt(sc); } } /* Mark transparent mode VF as disabled. */ hn_xpnt_vf_setdisable(sc, true /* clear hn_vf_ifp */); rm_wlock(&hn_vfmap_lock); KASSERT(ifp->if_index < hn_vfmap_size, ("ifindex %d, vfmapsize %d", ifp->if_index, hn_vfmap_size)); if (hn_vfmap[ifp->if_index] != NULL) { KASSERT(hn_vfmap[ifp->if_index] == sc->hn_ifp, ("%s: ifindex %d was mapped to %s", ifp->if_xname, ifp->if_index, hn_vfmap[ifp->if_index]->if_xname)); hn_vfmap[ifp->if_index] = NULL; } rm_wunlock(&hn_vfmap_lock); done: HN_UNLOCK(sc); } static void hn_ifnet_lnkevent(void *xsc, struct ifnet *ifp, int link_state) { struct hn_softc *sc = xsc; if (sc->hn_vf_ifp == ifp) if_link_state_change(sc->hn_ifp, link_state); } static int hn_probe(device_t dev) { if (VMBUS_PROBE_GUID(device_get_parent(dev), dev, &hn_guid) == 0) { device_set_desc(dev, "Hyper-V Network Interface"); return BUS_PROBE_DEFAULT; } return ENXIO; } static int hn_attach(device_t dev) { struct hn_softc *sc = device_get_softc(dev); struct sysctl_oid_list *child; struct sysctl_ctx_list *ctx; uint8_t eaddr[ETHER_ADDR_LEN]; struct ifnet *ifp = NULL; int error, ring_cnt, tx_ring_cnt; uint32_t mtu; sc->hn_dev = dev; sc->hn_prichan = vmbus_get_channel(dev); HN_LOCK_INIT(sc); rm_init(&sc->hn_vf_lock, "hnvf"); if (hn_xpnt_vf && hn_xpnt_vf_accbpf) sc->hn_xvf_flags |= HN_XVFFLAG_ACCBPF; /* * Initialize these tunables once. */ sc->hn_agg_size = hn_tx_agg_size; sc->hn_agg_pkts = hn_tx_agg_pkts; /* * Setup taskqueue for transmission. */ if (hn_tx_taskq_mode == HN_TX_TASKQ_M_INDEP) { int i; sc->hn_tx_taskqs = malloc(hn_tx_taskq_cnt * sizeof(struct taskqueue *), M_DEVBUF, M_WAITOK); for (i = 0; i < hn_tx_taskq_cnt; ++i) { sc->hn_tx_taskqs[i] = taskqueue_create("hn_tx", M_WAITOK, taskqueue_thread_enqueue, &sc->hn_tx_taskqs[i]); taskqueue_start_threads(&sc->hn_tx_taskqs[i], 1, PI_NET, "%s tx%d", device_get_nameunit(dev), i); } } else if (hn_tx_taskq_mode == HN_TX_TASKQ_M_GLOBAL) { sc->hn_tx_taskqs = hn_tx_taskque; } /* * Setup taskqueue for mangement tasks, e.g. link status. */ sc->hn_mgmt_taskq0 = taskqueue_create("hn_mgmt", M_WAITOK, taskqueue_thread_enqueue, &sc->hn_mgmt_taskq0); taskqueue_start_threads(&sc->hn_mgmt_taskq0, 1, PI_NET, "%s mgmt", device_get_nameunit(dev)); TASK_INIT(&sc->hn_link_task, 0, hn_link_taskfunc, sc); TASK_INIT(&sc->hn_netchg_init, 0, hn_netchg_init_taskfunc, sc); TIMEOUT_TASK_INIT(sc->hn_mgmt_taskq0, &sc->hn_netchg_status, 0, hn_netchg_status_taskfunc, sc); if (hn_xpnt_vf) { /* * Setup taskqueue for VF tasks, e.g. delayed VF bringing up. */ sc->hn_vf_taskq = taskqueue_create("hn_vf", M_WAITOK, taskqueue_thread_enqueue, &sc->hn_vf_taskq); taskqueue_start_threads(&sc->hn_vf_taskq, 1, PI_NET, "%s vf", device_get_nameunit(dev)); TIMEOUT_TASK_INIT(sc->hn_vf_taskq, &sc->hn_vf_init, 0, hn_xpnt_vf_init_taskfunc, sc); } /* * Allocate ifnet and setup its name earlier, so that if_printf * can be used by functions, which will be called after * ether_ifattach(). */ ifp = sc->hn_ifp = if_alloc(IFT_ETHER); ifp->if_softc = sc; if_initname(ifp, device_get_name(dev), device_get_unit(dev)); /* * Initialize ifmedia earlier so that it can be unconditionally * destroyed, if error happened later on. */ ifmedia_init(&sc->hn_media, 0, hn_ifmedia_upd, hn_ifmedia_sts); /* * Figure out the # of RX rings (ring_cnt) and the # of TX rings * to use (tx_ring_cnt). * * NOTE: * The # of RX rings to use is same as the # of channels to use. */ ring_cnt = hn_chan_cnt; if (ring_cnt <= 0) { /* Default */ ring_cnt = mp_ncpus; if (ring_cnt > HN_RING_CNT_DEF_MAX) ring_cnt = HN_RING_CNT_DEF_MAX; } else if (ring_cnt > mp_ncpus) { ring_cnt = mp_ncpus; } #ifdef RSS if (ring_cnt > rss_getnumbuckets()) ring_cnt = rss_getnumbuckets(); #endif tx_ring_cnt = hn_tx_ring_cnt; if (tx_ring_cnt <= 0 || tx_ring_cnt > ring_cnt) tx_ring_cnt = ring_cnt; #ifdef HN_IFSTART_SUPPORT if (hn_use_if_start) { /* ifnet.if_start only needs one TX ring. */ tx_ring_cnt = 1; } #endif /* * Set the leader CPU for channels. */ sc->hn_cpu = atomic_fetchadd_int(&hn_cpu_index, ring_cnt) % mp_ncpus; /* * Create enough TX/RX rings, even if only limited number of * channels can be allocated. */ error = hn_create_tx_data(sc, tx_ring_cnt); if (error) goto failed; error = hn_create_rx_data(sc, ring_cnt); if (error) goto failed; /* * Create transaction context for NVS and RNDIS transactions. */ sc->hn_xact = vmbus_xact_ctx_create(bus_get_dma_tag(dev), HN_XACT_REQ_SIZE, HN_XACT_RESP_SIZE, 0); if (sc->hn_xact == NULL) { error = ENXIO; goto failed; } /* * Install orphan handler for the revocation of this device's * primary channel. * * NOTE: * The processing order is critical here: * Install the orphan handler, _before_ testing whether this * device's primary channel has been revoked or not. */ vmbus_chan_set_orphan(sc->hn_prichan, sc->hn_xact); if (vmbus_chan_is_revoked(sc->hn_prichan)) { error = ENXIO; goto failed; } /* * Attach the synthetic parts, i.e. NVS and RNDIS. */ error = hn_synth_attach(sc, ETHERMTU); if (error) goto failed; error = hn_rndis_get_eaddr(sc, eaddr); if (error) goto failed; error = hn_rndis_get_mtu(sc, &mtu); if (error) mtu = ETHERMTU; else if (bootverbose) device_printf(dev, "RNDIS mtu %u\n", mtu); #if __FreeBSD_version >= 1100099 if (sc->hn_rx_ring_inuse > 1) { /* * Reduce TCP segment aggregation limit for multiple * RX rings to increase ACK timeliness. */ hn_set_lro_lenlim(sc, HN_LRO_LENLIM_MULTIRX_DEF); } #endif /* * Fixup TX/RX stuffs after synthetic parts are attached. */ hn_fixup_tx_data(sc); hn_fixup_rx_data(sc); ctx = device_get_sysctl_ctx(dev); child = SYSCTL_CHILDREN(device_get_sysctl_tree(dev)); SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "nvs_version", CTLFLAG_RD, &sc->hn_nvs_ver, 0, "NVS version"); SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "ndis_version", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, hn_ndis_version_sysctl, "A", "NDIS version"); SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "caps", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, hn_caps_sysctl, "A", "capabilities"); SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "hwassist", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, hn_hwassist_sysctl, "A", "hwassist"); SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tso_max", CTLFLAG_RD, &ifp->if_hw_tsomax, 0, "max TSO size"); SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tso_maxsegcnt", CTLFLAG_RD, &ifp->if_hw_tsomaxsegcount, 0, "max # of TSO segments"); SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "tso_maxsegsz", CTLFLAG_RD, &ifp->if_hw_tsomaxsegsize, 0, "max size of TSO segment"); SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rxfilter", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, hn_rxfilter_sysctl, "A", "rxfilter"); SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rss_hash", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, hn_rss_hash_sysctl, "A", "RSS hash"); SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rss_hashcap", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, hn_rss_hcap_sysctl, "A", "RSS hash capabilities"); SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "mbuf_hash", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, hn_rss_mbuf_sysctl, "A", "RSS hash for mbufs"); SYSCTL_ADD_INT(ctx, child, OID_AUTO, "rss_ind_size", CTLFLAG_RD, &sc->hn_rss_ind_size, 0, "RSS indirect entry count"); #ifndef RSS /* * Don't allow RSS key/indirect table changes, if RSS is defined. */ SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rss_key", CTLTYPE_OPAQUE | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, hn_rss_key_sysctl, "IU", "RSS key"); SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rss_ind", CTLTYPE_OPAQUE | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, hn_rss_ind_sysctl, "IU", "RSS indirect table"); #endif SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rndis_agg_size", CTLFLAG_RD, &sc->hn_rndis_agg_size, 0, "RNDIS offered packet transmission aggregation size limit"); SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rndis_agg_pkts", CTLFLAG_RD, &sc->hn_rndis_agg_pkts, 0, "RNDIS offered packet transmission aggregation count limit"); SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "rndis_agg_align", CTLFLAG_RD, &sc->hn_rndis_agg_align, 0, "RNDIS packet transmission aggregation alignment"); SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "agg_size", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, hn_txagg_size_sysctl, "I", "Packet transmission aggregation size, 0 -- disable, -1 -- auto"); SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "agg_pkts", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, hn_txagg_pkts_sysctl, "I", "Packet transmission aggregation packets, " "0 -- disable, -1 -- auto"); SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "polling", CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, hn_polling_sysctl, "I", "Polling frequency: [100,1000000], 0 disable polling"); SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "vf", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, hn_vf_sysctl, "A", "Virtual Function's name"); if (!hn_xpnt_vf) { SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rxvf", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, hn_rxvf_sysctl, "A", "activated Virtual Function's name"); } else { SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "vf_xpnt_enabled", CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, hn_xpnt_vf_enabled_sysctl, "I", "Transparent VF enabled"); SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "vf_xpnt_accbpf", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, hn_xpnt_vf_accbpf_sysctl, "I", "Accurate BPF for transparent VF"); } /* * Setup the ifmedia, which has been initialized earlier. */ ifmedia_add(&sc->hn_media, IFM_ETHER | IFM_AUTO, 0, NULL); ifmedia_set(&sc->hn_media, IFM_ETHER | IFM_AUTO); /* XXX ifmedia_set really should do this for us */ sc->hn_media.ifm_media = sc->hn_media.ifm_cur->ifm_media; /* * Setup the ifnet for this interface. */ ifp->if_baudrate = IF_Gbps(10); ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = hn_ioctl; ifp->if_init = hn_init; #ifdef HN_IFSTART_SUPPORT if (hn_use_if_start) { int qdepth = hn_get_txswq_depth(&sc->hn_tx_ring[0]); ifp->if_start = hn_start; IFQ_SET_MAXLEN(&ifp->if_snd, qdepth); ifp->if_snd.ifq_drv_maxlen = qdepth - 1; IFQ_SET_READY(&ifp->if_snd); } else #endif { ifp->if_transmit = hn_transmit; ifp->if_qflush = hn_xmit_qflush; } ifp->if_capabilities |= IFCAP_RXCSUM | IFCAP_LRO | IFCAP_LINKSTATE; #ifdef foo /* We can't diff IPv6 packets from IPv4 packets on RX path. */ ifp->if_capabilities |= IFCAP_RXCSUM_IPV6; #endif if (sc->hn_caps & HN_CAP_VLAN) { /* XXX not sure about VLAN_MTU. */ ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU; } ifp->if_hwassist = sc->hn_tx_ring[0].hn_csum_assist; if (ifp->if_hwassist & HN_CSUM_IP_MASK) ifp->if_capabilities |= IFCAP_TXCSUM; if (ifp->if_hwassist & HN_CSUM_IP6_MASK) ifp->if_capabilities |= IFCAP_TXCSUM_IPV6; if (sc->hn_caps & HN_CAP_TSO4) { ifp->if_capabilities |= IFCAP_TSO4; ifp->if_hwassist |= CSUM_IP_TSO; } if (sc->hn_caps & HN_CAP_TSO6) { ifp->if_capabilities |= IFCAP_TSO6; ifp->if_hwassist |= CSUM_IP6_TSO; } /* Enable all available capabilities by default. */ ifp->if_capenable = ifp->if_capabilities; /* * Disable IPv6 TSO and TXCSUM by default, they still can * be enabled through SIOCSIFCAP. */ ifp->if_capenable &= ~(IFCAP_TXCSUM_IPV6 | IFCAP_TSO6); ifp->if_hwassist &= ~(HN_CSUM_IP6_MASK | CSUM_IP6_TSO); if (ifp->if_capabilities & (IFCAP_TSO6 | IFCAP_TSO4)) { /* * Lock hn_set_tso_maxsize() to simplify its * internal logic. */ HN_LOCK(sc); hn_set_tso_maxsize(sc, hn_tso_maxlen, ETHERMTU); HN_UNLOCK(sc); ifp->if_hw_tsomaxsegcount = HN_TX_DATA_SEGCNT_MAX; ifp->if_hw_tsomaxsegsize = PAGE_SIZE; } ether_ifattach(ifp, eaddr); if ((ifp->if_capabilities & (IFCAP_TSO6 | IFCAP_TSO4)) && bootverbose) { if_printf(ifp, "TSO segcnt %u segsz %u\n", ifp->if_hw_tsomaxsegcount, ifp->if_hw_tsomaxsegsize); } if (mtu < ETHERMTU) { if_printf(ifp, "fixup mtu %u -> %u\n", ifp->if_mtu, mtu); ifp->if_mtu = mtu; } /* Inform the upper layer about the long frame support. */ ifp->if_hdrlen = sizeof(struct ether_vlan_header); /* * Kick off link status check. */ sc->hn_mgmt_taskq = sc->hn_mgmt_taskq0; hn_update_link_status(sc); if (!hn_xpnt_vf) { sc->hn_ifnet_evthand = EVENTHANDLER_REGISTER(ifnet_event, hn_ifnet_event, sc, EVENTHANDLER_PRI_ANY); sc->hn_ifaddr_evthand = EVENTHANDLER_REGISTER(ifaddr_event, hn_ifaddr_event, sc, EVENTHANDLER_PRI_ANY); } else { sc->hn_ifnet_lnkhand = EVENTHANDLER_REGISTER(ifnet_link_event, hn_ifnet_lnkevent, sc, EVENTHANDLER_PRI_ANY); } /* * NOTE: * Subscribe ether_ifattach event, instead of ifnet_arrival event, * since interface's LLADDR is needed; interface LLADDR is not * available when ifnet_arrival event is triggered. */ sc->hn_ifnet_atthand = EVENTHANDLER_REGISTER(ether_ifattach_event, hn_ifnet_attevent, sc, EVENTHANDLER_PRI_ANY); sc->hn_ifnet_dethand = EVENTHANDLER_REGISTER(ifnet_departure_event, hn_ifnet_detevent, sc, EVENTHANDLER_PRI_ANY); return (0); failed: if (sc->hn_flags & HN_FLAG_SYNTH_ATTACHED) hn_synth_detach(sc); hn_detach(dev); return (error); } static int hn_detach(device_t dev) { struct hn_softc *sc = device_get_softc(dev); struct ifnet *ifp = sc->hn_ifp, *vf_ifp; if (sc->hn_xact != NULL && vmbus_chan_is_revoked(sc->hn_prichan)) { /* * In case that the vmbus missed the orphan handler * installation. */ vmbus_xact_ctx_orphan(sc->hn_xact); } if (sc->hn_ifaddr_evthand != NULL) EVENTHANDLER_DEREGISTER(ifaddr_event, sc->hn_ifaddr_evthand); if (sc->hn_ifnet_evthand != NULL) EVENTHANDLER_DEREGISTER(ifnet_event, sc->hn_ifnet_evthand); if (sc->hn_ifnet_atthand != NULL) { EVENTHANDLER_DEREGISTER(ether_ifattach_event, sc->hn_ifnet_atthand); } if (sc->hn_ifnet_dethand != NULL) { EVENTHANDLER_DEREGISTER(ifnet_departure_event, sc->hn_ifnet_dethand); } if (sc->hn_ifnet_lnkhand != NULL) EVENTHANDLER_DEREGISTER(ifnet_link_event, sc->hn_ifnet_lnkhand); vf_ifp = sc->hn_vf_ifp; __compiler_membar(); if (vf_ifp != NULL) hn_ifnet_detevent(sc, vf_ifp); if (device_is_attached(dev)) { HN_LOCK(sc); if (sc->hn_flags & HN_FLAG_SYNTH_ATTACHED) { if (ifp->if_drv_flags & IFF_DRV_RUNNING) hn_stop(sc, true); /* * NOTE: * hn_stop() only suspends data, so managment * stuffs have to be suspended manually here. */ hn_suspend_mgmt(sc); hn_synth_detach(sc); } HN_UNLOCK(sc); ether_ifdetach(ifp); } ifmedia_removeall(&sc->hn_media); hn_destroy_rx_data(sc); hn_destroy_tx_data(sc); if (sc->hn_tx_taskqs != NULL && sc->hn_tx_taskqs != hn_tx_taskque) { int i; for (i = 0; i < hn_tx_taskq_cnt; ++i) taskqueue_free(sc->hn_tx_taskqs[i]); free(sc->hn_tx_taskqs, M_DEVBUF); } taskqueue_free(sc->hn_mgmt_taskq0); if (sc->hn_vf_taskq != NULL) taskqueue_free(sc->hn_vf_taskq); if (sc->hn_xact != NULL) { /* * Uninstall the orphan handler _before_ the xact is * destructed. */ vmbus_chan_unset_orphan(sc->hn_prichan); vmbus_xact_ctx_destroy(sc->hn_xact); } if_free(ifp); HN_LOCK_DESTROY(sc); rm_destroy(&sc->hn_vf_lock); return (0); } static int hn_shutdown(device_t dev) { return (0); } static void hn_link_status(struct hn_softc *sc) { uint32_t link_status; int error; error = hn_rndis_get_linkstatus(sc, &link_status); if (error) { /* XXX what to do? */ return; } if (link_status == NDIS_MEDIA_STATE_CONNECTED) sc->hn_link_flags |= HN_LINK_FLAG_LINKUP; else sc->hn_link_flags &= ~HN_LINK_FLAG_LINKUP; if_link_state_change(sc->hn_ifp, (sc->hn_link_flags & HN_LINK_FLAG_LINKUP) ? LINK_STATE_UP : LINK_STATE_DOWN); } static void hn_link_taskfunc(void *xsc, int pending __unused) { struct hn_softc *sc = xsc; if (sc->hn_link_flags & HN_LINK_FLAG_NETCHG) return; hn_link_status(sc); } static void hn_netchg_init_taskfunc(void *xsc, int pending __unused) { struct hn_softc *sc = xsc; /* Prevent any link status checks from running. */ sc->hn_link_flags |= HN_LINK_FLAG_NETCHG; /* * Fake up a [link down --> link up] state change; 5 seconds * delay is used, which closely simulates miibus reaction * upon link down event. */ sc->hn_link_flags &= ~HN_LINK_FLAG_LINKUP; if_link_state_change(sc->hn_ifp, LINK_STATE_DOWN); taskqueue_enqueue_timeout(sc->hn_mgmt_taskq0, &sc->hn_netchg_status, 5 * hz); } static void hn_netchg_status_taskfunc(void *xsc, int pending __unused) { struct hn_softc *sc = xsc; /* Re-allow link status checks. */ sc->hn_link_flags &= ~HN_LINK_FLAG_NETCHG; hn_link_status(sc); } static void hn_update_link_status(struct hn_softc *sc) { if (sc->hn_mgmt_taskq != NULL) taskqueue_enqueue(sc->hn_mgmt_taskq, &sc->hn_link_task); } static void hn_change_network(struct hn_softc *sc) { if (sc->hn_mgmt_taskq != NULL) taskqueue_enqueue(sc->hn_mgmt_taskq, &sc->hn_netchg_init); } static __inline int hn_txdesc_dmamap_load(struct hn_tx_ring *txr, struct hn_txdesc *txd, struct mbuf **m_head, bus_dma_segment_t *segs, int *nsegs) { struct mbuf *m = *m_head; int error; KASSERT(txd->chim_index == HN_NVS_CHIM_IDX_INVALID, ("txd uses chim")); error = bus_dmamap_load_mbuf_sg(txr->hn_tx_data_dtag, txd->data_dmap, m, segs, nsegs, BUS_DMA_NOWAIT); if (error == EFBIG) { struct mbuf *m_new; m_new = m_collapse(m, M_NOWAIT, HN_TX_DATA_SEGCNT_MAX); if (m_new == NULL) return ENOBUFS; else *m_head = m = m_new; txr->hn_tx_collapsed++; error = bus_dmamap_load_mbuf_sg(txr->hn_tx_data_dtag, txd->data_dmap, m, segs, nsegs, BUS_DMA_NOWAIT); } if (!error) { bus_dmamap_sync(txr->hn_tx_data_dtag, txd->data_dmap, BUS_DMASYNC_PREWRITE); txd->flags |= HN_TXD_FLAG_DMAMAP; } return error; } static __inline int hn_txdesc_put(struct hn_tx_ring *txr, struct hn_txdesc *txd) { KASSERT((txd->flags & HN_TXD_FLAG_ONLIST) == 0, ("put an onlist txd %#x", txd->flags)); KASSERT((txd->flags & HN_TXD_FLAG_ONAGG) == 0, ("put an onagg txd %#x", txd->flags)); KASSERT(txd->refs > 0, ("invalid txd refs %d", txd->refs)); if (atomic_fetchadd_int(&txd->refs, -1) != 1) return 0; if (!STAILQ_EMPTY(&txd->agg_list)) { struct hn_txdesc *tmp_txd; while ((tmp_txd = STAILQ_FIRST(&txd->agg_list)) != NULL) { int freed; KASSERT(STAILQ_EMPTY(&tmp_txd->agg_list), ("resursive aggregation on aggregated txdesc")); KASSERT((tmp_txd->flags & HN_TXD_FLAG_ONAGG), ("not aggregated txdesc")); KASSERT((tmp_txd->flags & HN_TXD_FLAG_DMAMAP) == 0, ("aggregated txdesc uses dmamap")); KASSERT(tmp_txd->chim_index == HN_NVS_CHIM_IDX_INVALID, ("aggregated txdesc consumes " "chimney sending buffer")); KASSERT(tmp_txd->chim_size == 0, ("aggregated txdesc has non-zero " "chimney sending size")); STAILQ_REMOVE_HEAD(&txd->agg_list, agg_link); tmp_txd->flags &= ~HN_TXD_FLAG_ONAGG; freed = hn_txdesc_put(txr, tmp_txd); KASSERT(freed, ("failed to free aggregated txdesc")); } } if (txd->chim_index != HN_NVS_CHIM_IDX_INVALID) { KASSERT((txd->flags & HN_TXD_FLAG_DMAMAP) == 0, ("chim txd uses dmamap")); hn_chim_free(txr->hn_sc, txd->chim_index); txd->chim_index = HN_NVS_CHIM_IDX_INVALID; txd->chim_size = 0; } else if (txd->flags & HN_TXD_FLAG_DMAMAP) { bus_dmamap_sync(txr->hn_tx_data_dtag, txd->data_dmap, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(txr->hn_tx_data_dtag, txd->data_dmap); txd->flags &= ~HN_TXD_FLAG_DMAMAP; } if (txd->m != NULL) { m_freem(txd->m); txd->m = NULL; } txd->flags |= HN_TXD_FLAG_ONLIST; #ifndef HN_USE_TXDESC_BUFRING mtx_lock_spin(&txr->hn_txlist_spin); KASSERT(txr->hn_txdesc_avail >= 0 && txr->hn_txdesc_avail < txr->hn_txdesc_cnt, ("txdesc_put: invalid txd avail %d", txr->hn_txdesc_avail)); txr->hn_txdesc_avail++; SLIST_INSERT_HEAD(&txr->hn_txlist, txd, link); mtx_unlock_spin(&txr->hn_txlist_spin); #else /* HN_USE_TXDESC_BUFRING */ #ifdef HN_DEBUG atomic_add_int(&txr->hn_txdesc_avail, 1); #endif buf_ring_enqueue(txr->hn_txdesc_br, txd); #endif /* !HN_USE_TXDESC_BUFRING */ return 1; } static __inline struct hn_txdesc * hn_txdesc_get(struct hn_tx_ring *txr) { struct hn_txdesc *txd; #ifndef HN_USE_TXDESC_BUFRING mtx_lock_spin(&txr->hn_txlist_spin); txd = SLIST_FIRST(&txr->hn_txlist); if (txd != NULL) { KASSERT(txr->hn_txdesc_avail > 0, ("txdesc_get: invalid txd avail %d", txr->hn_txdesc_avail)); txr->hn_txdesc_avail--; SLIST_REMOVE_HEAD(&txr->hn_txlist, link); } mtx_unlock_spin(&txr->hn_txlist_spin); #else txd = buf_ring_dequeue_sc(txr->hn_txdesc_br); #endif if (txd != NULL) { #ifdef HN_USE_TXDESC_BUFRING #ifdef HN_DEBUG atomic_subtract_int(&txr->hn_txdesc_avail, 1); #endif #endif /* HN_USE_TXDESC_BUFRING */ KASSERT(txd->m == NULL && txd->refs == 0 && STAILQ_EMPTY(&txd->agg_list) && txd->chim_index == HN_NVS_CHIM_IDX_INVALID && txd->chim_size == 0 && (txd->flags & HN_TXD_FLAG_ONLIST) && (txd->flags & HN_TXD_FLAG_ONAGG) == 0 && (txd->flags & HN_TXD_FLAG_DMAMAP) == 0, ("invalid txd")); txd->flags &= ~HN_TXD_FLAG_ONLIST; txd->refs = 1; } return txd; } static __inline void hn_txdesc_hold(struct hn_txdesc *txd) { /* 0->1 transition will never work */ KASSERT(txd->refs > 0, ("invalid txd refs %d", txd->refs)); atomic_add_int(&txd->refs, 1); } static __inline void hn_txdesc_agg(struct hn_txdesc *agg_txd, struct hn_txdesc *txd) { KASSERT((agg_txd->flags & HN_TXD_FLAG_ONAGG) == 0, ("recursive aggregation on aggregating txdesc")); KASSERT((txd->flags & HN_TXD_FLAG_ONAGG) == 0, ("already aggregated")); KASSERT(STAILQ_EMPTY(&txd->agg_list), ("recursive aggregation on to-be-aggregated txdesc")); txd->flags |= HN_TXD_FLAG_ONAGG; STAILQ_INSERT_TAIL(&agg_txd->agg_list, txd, agg_link); } static bool hn_tx_ring_pending(struct hn_tx_ring *txr) { bool pending = false; #ifndef HN_USE_TXDESC_BUFRING mtx_lock_spin(&txr->hn_txlist_spin); if (txr->hn_txdesc_avail != txr->hn_txdesc_cnt) pending = true; mtx_unlock_spin(&txr->hn_txlist_spin); #else if (!buf_ring_full(txr->hn_txdesc_br)) pending = true; #endif return (pending); } static __inline void hn_txeof(struct hn_tx_ring *txr) { txr->hn_has_txeof = 0; txr->hn_txeof(txr); } static void hn_txpkt_done(struct hn_nvs_sendctx *sndc, struct hn_softc *sc, struct vmbus_channel *chan, const void *data __unused, int dlen __unused) { struct hn_txdesc *txd = sndc->hn_cbarg; struct hn_tx_ring *txr; txr = txd->txr; KASSERT(txr->hn_chan == chan, ("channel mismatch, on chan%u, should be chan%u", vmbus_chan_id(chan), vmbus_chan_id(txr->hn_chan))); txr->hn_has_txeof = 1; hn_txdesc_put(txr, txd); ++txr->hn_txdone_cnt; if (txr->hn_txdone_cnt >= HN_EARLY_TXEOF_THRESH) { txr->hn_txdone_cnt = 0; if (txr->hn_oactive) hn_txeof(txr); } } static void hn_chan_rollup(struct hn_rx_ring *rxr, struct hn_tx_ring *txr) { #if defined(INET) || defined(INET6) tcp_lro_flush_all(&rxr->hn_lro); #endif /* * NOTE: * 'txr' could be NULL, if multiple channels and * ifnet.if_start method are enabled. */ if (txr == NULL || !txr->hn_has_txeof) return; txr->hn_txdone_cnt = 0; hn_txeof(txr); } static __inline uint32_t hn_rndis_pktmsg_offset(uint32_t ofs) { KASSERT(ofs >= sizeof(struct rndis_packet_msg), ("invalid RNDIS packet msg offset %u", ofs)); return (ofs - __offsetof(struct rndis_packet_msg, rm_dataoffset)); } static __inline void * hn_rndis_pktinfo_append(struct rndis_packet_msg *pkt, size_t pktsize, size_t pi_dlen, uint32_t pi_type) { const size_t pi_size = HN_RNDIS_PKTINFO_SIZE(pi_dlen); struct rndis_pktinfo *pi; KASSERT((pi_size & RNDIS_PACKET_MSG_OFFSET_ALIGNMASK) == 0, ("unaligned pktinfo size %zu, pktinfo dlen %zu", pi_size, pi_dlen)); /* * Per-packet-info does not move; it only grows. * * NOTE: * rm_pktinfooffset in this phase counts from the beginning * of rndis_packet_msg. */ KASSERT(pkt->rm_pktinfooffset + pkt->rm_pktinfolen + pi_size <= pktsize, ("%u pktinfo overflows RNDIS packet msg", pi_type)); pi = (struct rndis_pktinfo *)((uint8_t *)pkt + pkt->rm_pktinfooffset + pkt->rm_pktinfolen); pkt->rm_pktinfolen += pi_size; pi->rm_size = pi_size; pi->rm_type = pi_type; pi->rm_pktinfooffset = RNDIS_PKTINFO_OFFSET; return (pi->rm_data); } static __inline int hn_flush_txagg(struct ifnet *ifp, struct hn_tx_ring *txr) { struct hn_txdesc *txd; struct mbuf *m; int error, pkts; txd = txr->hn_agg_txd; KASSERT(txd != NULL, ("no aggregate txdesc")); /* * Since hn_txpkt() will reset this temporary stat, save * it now, so that oerrors can be updated properly, if * hn_txpkt() ever fails. */ pkts = txr->hn_stat_pkts; /* * Since txd's mbuf will _not_ be freed upon hn_txpkt() * failure, save it for later freeing, if hn_txpkt() ever * fails. */ m = txd->m; error = hn_txpkt(ifp, txr, txd); if (__predict_false(error)) { /* txd is freed, but m is not. */ m_freem(m); txr->hn_flush_failed++; if_inc_counter(ifp, IFCOUNTER_OERRORS, pkts); } /* Reset all aggregation states. */ txr->hn_agg_txd = NULL; txr->hn_agg_szleft = 0; txr->hn_agg_pktleft = 0; txr->hn_agg_prevpkt = NULL; return (error); } static void * hn_try_txagg(struct ifnet *ifp, struct hn_tx_ring *txr, struct hn_txdesc *txd, int pktsize) { void *chim; if (txr->hn_agg_txd != NULL) { if (txr->hn_agg_pktleft >= 1 && txr->hn_agg_szleft > pktsize) { struct hn_txdesc *agg_txd = txr->hn_agg_txd; struct rndis_packet_msg *pkt = txr->hn_agg_prevpkt; int olen; /* * Update the previous RNDIS packet's total length, * it can be increased due to the mandatory alignment * padding for this RNDIS packet. And update the * aggregating txdesc's chimney sending buffer size * accordingly. * * XXX * Zero-out the padding, as required by the RNDIS spec. */ olen = pkt->rm_len; pkt->rm_len = roundup2(olen, txr->hn_agg_align); agg_txd->chim_size += pkt->rm_len - olen; /* Link this txdesc to the parent. */ hn_txdesc_agg(agg_txd, txd); chim = (uint8_t *)pkt + pkt->rm_len; /* Save the current packet for later fixup. */ txr->hn_agg_prevpkt = chim; txr->hn_agg_pktleft--; txr->hn_agg_szleft -= pktsize; if (txr->hn_agg_szleft <= HN_PKTSIZE_MIN(txr->hn_agg_align)) { /* * Probably can't aggregate more packets, * flush this aggregating txdesc proactively. */ txr->hn_agg_pktleft = 0; } /* Done! */ return (chim); } hn_flush_txagg(ifp, txr); } KASSERT(txr->hn_agg_txd == NULL, ("lingering aggregating txdesc")); txr->hn_tx_chimney_tried++; txd->chim_index = hn_chim_alloc(txr->hn_sc); if (txd->chim_index == HN_NVS_CHIM_IDX_INVALID) return (NULL); txr->hn_tx_chimney++; chim = txr->hn_sc->hn_chim + (txd->chim_index * txr->hn_sc->hn_chim_szmax); if (txr->hn_agg_pktmax > 1 && txr->hn_agg_szmax > pktsize + HN_PKTSIZE_MIN(txr->hn_agg_align)) { txr->hn_agg_txd = txd; txr->hn_agg_pktleft = txr->hn_agg_pktmax - 1; txr->hn_agg_szleft = txr->hn_agg_szmax - pktsize; txr->hn_agg_prevpkt = chim; } return (chim); } /* * NOTE: * If this function fails, then both txd and m_head0 will be freed. */ static int hn_encap(struct ifnet *ifp, struct hn_tx_ring *txr, struct hn_txdesc *txd, struct mbuf **m_head0) { bus_dma_segment_t segs[HN_TX_DATA_SEGCNT_MAX]; int error, nsegs, i; struct mbuf *m_head = *m_head0; struct rndis_packet_msg *pkt; uint32_t *pi_data; void *chim = NULL; int pkt_hlen, pkt_size; pkt = txd->rndis_pkt; pkt_size = HN_PKTSIZE(m_head, txr->hn_agg_align); if (pkt_size < txr->hn_chim_size) { chim = hn_try_txagg(ifp, txr, txd, pkt_size); if (chim != NULL) pkt = chim; } else { if (txr->hn_agg_txd != NULL) hn_flush_txagg(ifp, txr); } pkt->rm_type = REMOTE_NDIS_PACKET_MSG; pkt->rm_len = m_head->m_pkthdr.len; pkt->rm_dataoffset = 0; pkt->rm_datalen = m_head->m_pkthdr.len; pkt->rm_oobdataoffset = 0; pkt->rm_oobdatalen = 0; pkt->rm_oobdataelements = 0; pkt->rm_pktinfooffset = sizeof(*pkt); pkt->rm_pktinfolen = 0; pkt->rm_vchandle = 0; pkt->rm_reserved = 0; if (txr->hn_tx_flags & HN_TX_FLAG_HASHVAL) { /* * Set the hash value for this packet, so that the host could * dispatch the TX done event for this packet back to this TX * ring's channel. */ pi_data = hn_rndis_pktinfo_append(pkt, HN_RNDIS_PKT_LEN, HN_NDIS_HASH_VALUE_SIZE, HN_NDIS_PKTINFO_TYPE_HASHVAL); *pi_data = txr->hn_tx_idx; } if (m_head->m_flags & M_VLANTAG) { pi_data = hn_rndis_pktinfo_append(pkt, HN_RNDIS_PKT_LEN, NDIS_VLAN_INFO_SIZE, NDIS_PKTINFO_TYPE_VLAN); *pi_data = NDIS_VLAN_INFO_MAKE( EVL_VLANOFTAG(m_head->m_pkthdr.ether_vtag), EVL_PRIOFTAG(m_head->m_pkthdr.ether_vtag), EVL_CFIOFTAG(m_head->m_pkthdr.ether_vtag)); } if (m_head->m_pkthdr.csum_flags & CSUM_TSO) { #if defined(INET6) || defined(INET) pi_data = hn_rndis_pktinfo_append(pkt, HN_RNDIS_PKT_LEN, NDIS_LSO2_INFO_SIZE, NDIS_PKTINFO_TYPE_LSO); #ifdef INET if (m_head->m_pkthdr.csum_flags & CSUM_IP_TSO) { *pi_data = NDIS_LSO2_INFO_MAKEIPV4( m_head->m_pkthdr.l2hlen + m_head->m_pkthdr.l3hlen, m_head->m_pkthdr.tso_segsz); } #endif #if defined(INET6) && defined(INET) else #endif #ifdef INET6 { *pi_data = NDIS_LSO2_INFO_MAKEIPV6( m_head->m_pkthdr.l2hlen + m_head->m_pkthdr.l3hlen, m_head->m_pkthdr.tso_segsz); } #endif #endif /* INET6 || INET */ } else if (m_head->m_pkthdr.csum_flags & txr->hn_csum_assist) { pi_data = hn_rndis_pktinfo_append(pkt, HN_RNDIS_PKT_LEN, NDIS_TXCSUM_INFO_SIZE, NDIS_PKTINFO_TYPE_CSUM); if (m_head->m_pkthdr.csum_flags & (CSUM_IP6_TCP | CSUM_IP6_UDP)) { *pi_data = NDIS_TXCSUM_INFO_IPV6; } else { *pi_data = NDIS_TXCSUM_INFO_IPV4; if (m_head->m_pkthdr.csum_flags & CSUM_IP) *pi_data |= NDIS_TXCSUM_INFO_IPCS; } if (m_head->m_pkthdr.csum_flags & (CSUM_IP_TCP | CSUM_IP6_TCP)) { *pi_data |= NDIS_TXCSUM_INFO_MKTCPCS( m_head->m_pkthdr.l2hlen + m_head->m_pkthdr.l3hlen); } else if (m_head->m_pkthdr.csum_flags & (CSUM_IP_UDP | CSUM_IP6_UDP)) { *pi_data |= NDIS_TXCSUM_INFO_MKUDPCS( m_head->m_pkthdr.l2hlen + m_head->m_pkthdr.l3hlen); } } pkt_hlen = pkt->rm_pktinfooffset + pkt->rm_pktinfolen; /* Fixup RNDIS packet message total length */ pkt->rm_len += pkt_hlen; /* Convert RNDIS packet message offsets */ pkt->rm_dataoffset = hn_rndis_pktmsg_offset(pkt_hlen); pkt->rm_pktinfooffset = hn_rndis_pktmsg_offset(pkt->rm_pktinfooffset); /* * Fast path: Chimney sending. */ if (chim != NULL) { struct hn_txdesc *tgt_txd = txd; if (txr->hn_agg_txd != NULL) { tgt_txd = txr->hn_agg_txd; #ifdef INVARIANTS *m_head0 = NULL; #endif } KASSERT(pkt == chim, ("RNDIS pkt not in chimney sending buffer")); KASSERT(tgt_txd->chim_index != HN_NVS_CHIM_IDX_INVALID, ("chimney sending buffer is not used")); tgt_txd->chim_size += pkt->rm_len; m_copydata(m_head, 0, m_head->m_pkthdr.len, ((uint8_t *)chim) + pkt_hlen); txr->hn_gpa_cnt = 0; txr->hn_sendpkt = hn_txpkt_chim; goto done; } KASSERT(txr->hn_agg_txd == NULL, ("aggregating sglist txdesc")); KASSERT(txd->chim_index == HN_NVS_CHIM_IDX_INVALID, ("chimney buffer is used")); KASSERT(pkt == txd->rndis_pkt, ("RNDIS pkt not in txdesc")); error = hn_txdesc_dmamap_load(txr, txd, &m_head, segs, &nsegs); if (__predict_false(error)) { int freed; /* * This mbuf is not linked w/ the txd yet, so free it now. */ m_freem(m_head); *m_head0 = NULL; freed = hn_txdesc_put(txr, txd); KASSERT(freed != 0, ("fail to free txd upon txdma error")); txr->hn_txdma_failed++; if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); return error; } *m_head0 = m_head; /* +1 RNDIS packet message */ txr->hn_gpa_cnt = nsegs + 1; /* send packet with page buffer */ txr->hn_gpa[0].gpa_page = atop(txd->rndis_pkt_paddr); txr->hn_gpa[0].gpa_ofs = txd->rndis_pkt_paddr & PAGE_MASK; txr->hn_gpa[0].gpa_len = pkt_hlen; /* * Fill the page buffers with mbuf info after the page * buffer for RNDIS packet message. */ for (i = 0; i < nsegs; ++i) { struct vmbus_gpa *gpa = &txr->hn_gpa[i + 1]; gpa->gpa_page = atop(segs[i].ds_addr); gpa->gpa_ofs = segs[i].ds_addr & PAGE_MASK; gpa->gpa_len = segs[i].ds_len; } txd->chim_index = HN_NVS_CHIM_IDX_INVALID; txd->chim_size = 0; txr->hn_sendpkt = hn_txpkt_sglist; done: txd->m = m_head; /* Set the completion routine */ hn_nvs_sendctx_init(&txd->send_ctx, hn_txpkt_done, txd); /* Update temporary stats for later use. */ txr->hn_stat_pkts++; txr->hn_stat_size += m_head->m_pkthdr.len; if (m_head->m_flags & M_MCAST) txr->hn_stat_mcasts++; return 0; } /* * NOTE: * If this function fails, then txd will be freed, but the mbuf * associated w/ the txd will _not_ be freed. */ static int hn_txpkt(struct ifnet *ifp, struct hn_tx_ring *txr, struct hn_txdesc *txd) { int error, send_failed = 0, has_bpf; again: has_bpf = bpf_peers_present(ifp->if_bpf); if (has_bpf) { /* * Make sure that this txd and any aggregated txds are not * freed before ETHER_BPF_MTAP. */ hn_txdesc_hold(txd); } error = txr->hn_sendpkt(txr, txd); if (!error) { if (has_bpf) { const struct hn_txdesc *tmp_txd; ETHER_BPF_MTAP(ifp, txd->m); STAILQ_FOREACH(tmp_txd, &txd->agg_list, agg_link) ETHER_BPF_MTAP(ifp, tmp_txd->m); } if_inc_counter(ifp, IFCOUNTER_OPACKETS, txr->hn_stat_pkts); #ifdef HN_IFSTART_SUPPORT if (!hn_use_if_start) #endif { if_inc_counter(ifp, IFCOUNTER_OBYTES, txr->hn_stat_size); if (txr->hn_stat_mcasts != 0) { if_inc_counter(ifp, IFCOUNTER_OMCASTS, txr->hn_stat_mcasts); } } txr->hn_pkts += txr->hn_stat_pkts; txr->hn_sends++; } if (has_bpf) hn_txdesc_put(txr, txd); if (__predict_false(error)) { int freed; /* * This should "really rarely" happen. * * XXX Too many RX to be acked or too many sideband * commands to run? Ask netvsc_channel_rollup() * to kick start later. */ txr->hn_has_txeof = 1; if (!send_failed) { txr->hn_send_failed++; send_failed = 1; /* * Try sending again after set hn_has_txeof; * in case that we missed the last * netvsc_channel_rollup(). */ goto again; } if_printf(ifp, "send failed\n"); /* * Caller will perform further processing on the * associated mbuf, so don't free it in hn_txdesc_put(); * only unload it from the DMA map in hn_txdesc_put(), * if it was loaded. */ txd->m = NULL; freed = hn_txdesc_put(txr, txd); KASSERT(freed != 0, ("fail to free txd upon send error")); txr->hn_send_failed++; } /* Reset temporary stats, after this sending is done. */ txr->hn_stat_size = 0; txr->hn_stat_pkts = 0; txr->hn_stat_mcasts = 0; return (error); } /* * Append the specified data to the indicated mbuf chain, * Extend the mbuf chain if the new data does not fit in * existing space. * * This is a minor rewrite of m_append() from sys/kern/uipc_mbuf.c. * There should be an equivalent in the kernel mbuf code, * but there does not appear to be one yet. * * Differs from m_append() in that additional mbufs are * allocated with cluster size MJUMPAGESIZE, and filled * accordingly. * * Return 1 if able to complete the job; otherwise 0. */ static int hv_m_append(struct mbuf *m0, int len, c_caddr_t cp) { struct mbuf *m, *n; int remainder, space; for (m = m0; m->m_next != NULL; m = m->m_next) ; remainder = len; space = M_TRAILINGSPACE(m); if (space > 0) { /* * Copy into available space. */ if (space > remainder) space = remainder; bcopy(cp, mtod(m, caddr_t) + m->m_len, space); m->m_len += space; cp += space; remainder -= space; } while (remainder > 0) { /* * Allocate a new mbuf; could check space * and allocate a cluster instead. */ n = m_getjcl(M_NOWAIT, m->m_type, 0, MJUMPAGESIZE); if (n == NULL) break; n->m_len = min(MJUMPAGESIZE, remainder); bcopy(cp, mtod(n, caddr_t), n->m_len); cp += n->m_len; remainder -= n->m_len; m->m_next = n; m = n; } if (m0->m_flags & M_PKTHDR) m0->m_pkthdr.len += len - remainder; return (remainder == 0); } #if defined(INET) || defined(INET6) static __inline int hn_lro_rx(struct lro_ctrl *lc, struct mbuf *m) { #if __FreeBSD_version >= 1100095 if (hn_lro_mbufq_depth) { tcp_lro_queue_mbuf(lc, m); return 0; } #endif return tcp_lro_rx(lc, m, 0); } #endif static int hn_rxpkt(struct hn_rx_ring *rxr, const void *data, int dlen, const struct hn_rxinfo *info) { struct ifnet *ifp, *hn_ifp = rxr->hn_ifp; struct mbuf *m_new; int size, do_lro = 0, do_csum = 1, is_vf = 0; int hash_type = M_HASHTYPE_NONE; int l3proto = ETHERTYPE_MAX, l4proto = IPPROTO_DONE; ifp = hn_ifp; if (rxr->hn_rxvf_ifp != NULL) { /* * Non-transparent mode VF; pretend this packet is from * the VF. */ ifp = rxr->hn_rxvf_ifp; is_vf = 1; } else if (rxr->hn_rx_flags & HN_RX_FLAG_XPNT_VF) { /* Transparent mode VF. */ is_vf = 1; } if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { /* * NOTE: * See the NOTE of hn_rndis_init_fixat(). This * function can be reached, immediately after the * RNDIS is initialized but before the ifnet is * setup on the hn_attach() path; drop the unexpected * packets. */ return (0); } if (__predict_false(dlen < ETHER_HDR_LEN)) { if_inc_counter(hn_ifp, IFCOUNTER_IERRORS, 1); return (0); } if (dlen <= MHLEN) { m_new = m_gethdr(M_NOWAIT, MT_DATA); if (m_new == NULL) { if_inc_counter(hn_ifp, IFCOUNTER_IQDROPS, 1); return (0); } memcpy(mtod(m_new, void *), data, dlen); m_new->m_pkthdr.len = m_new->m_len = dlen; rxr->hn_small_pkts++; } else { /* * Get an mbuf with a cluster. For packets 2K or less, * get a standard 2K cluster. For anything larger, get a * 4K cluster. Any buffers larger than 4K can cause problems * if looped around to the Hyper-V TX channel, so avoid them. */ size = MCLBYTES; if (dlen > MCLBYTES) { /* 4096 */ size = MJUMPAGESIZE; } m_new = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, size); if (m_new == NULL) { if_inc_counter(hn_ifp, IFCOUNTER_IQDROPS, 1); return (0); } hv_m_append(m_new, dlen, data); } m_new->m_pkthdr.rcvif = ifp; if (__predict_false((hn_ifp->if_capenable & IFCAP_RXCSUM) == 0)) do_csum = 0; /* receive side checksum offload */ if (info->csum_info != HN_NDIS_RXCSUM_INFO_INVALID) { /* IP csum offload */ if ((info->csum_info & NDIS_RXCSUM_INFO_IPCS_OK) && do_csum) { m_new->m_pkthdr.csum_flags |= (CSUM_IP_CHECKED | CSUM_IP_VALID); rxr->hn_csum_ip++; } /* TCP/UDP csum offload */ if ((info->csum_info & (NDIS_RXCSUM_INFO_UDPCS_OK | NDIS_RXCSUM_INFO_TCPCS_OK)) && do_csum) { m_new->m_pkthdr.csum_flags |= (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); m_new->m_pkthdr.csum_data = 0xffff; if (info->csum_info & NDIS_RXCSUM_INFO_TCPCS_OK) rxr->hn_csum_tcp++; else rxr->hn_csum_udp++; } /* * XXX * As of this write (Oct 28th, 2016), host side will turn * on only TCPCS_OK and IPCS_OK even for UDP datagrams, so * the do_lro setting here is actually _not_ accurate. We * depend on the RSS hash type check to reset do_lro. */ if ((info->csum_info & (NDIS_RXCSUM_INFO_TCPCS_OK | NDIS_RXCSUM_INFO_IPCS_OK)) == (NDIS_RXCSUM_INFO_TCPCS_OK | NDIS_RXCSUM_INFO_IPCS_OK)) do_lro = 1; } else { hn_rxpkt_proto(m_new, &l3proto, &l4proto); if (l3proto == ETHERTYPE_IP) { if (l4proto == IPPROTO_TCP) { if (do_csum && (rxr->hn_trust_hcsum & HN_TRUST_HCSUM_TCP)) { rxr->hn_csum_trusted++; m_new->m_pkthdr.csum_flags |= (CSUM_IP_CHECKED | CSUM_IP_VALID | CSUM_DATA_VALID | CSUM_PSEUDO_HDR); m_new->m_pkthdr.csum_data = 0xffff; } do_lro = 1; } else if (l4proto == IPPROTO_UDP) { if (do_csum && (rxr->hn_trust_hcsum & HN_TRUST_HCSUM_UDP)) { rxr->hn_csum_trusted++; m_new->m_pkthdr.csum_flags |= (CSUM_IP_CHECKED | CSUM_IP_VALID | CSUM_DATA_VALID | CSUM_PSEUDO_HDR); m_new->m_pkthdr.csum_data = 0xffff; } } else if (l4proto != IPPROTO_DONE && do_csum && (rxr->hn_trust_hcsum & HN_TRUST_HCSUM_IP)) { rxr->hn_csum_trusted++; m_new->m_pkthdr.csum_flags |= (CSUM_IP_CHECKED | CSUM_IP_VALID); } } } if (info->vlan_info != HN_NDIS_VLAN_INFO_INVALID) { m_new->m_pkthdr.ether_vtag = EVL_MAKETAG( NDIS_VLAN_INFO_ID(info->vlan_info), NDIS_VLAN_INFO_PRI(info->vlan_info), NDIS_VLAN_INFO_CFI(info->vlan_info)); m_new->m_flags |= M_VLANTAG; } /* * If VF is activated (tranparent/non-transparent mode does not * matter here). * * - Disable LRO * * hn(4) will only receive broadcast packets, multicast packets, * TCP SYN and SYN|ACK (in Azure), LRO is useless for these * packet types. * * For non-transparent, we definitely _cannot_ enable LRO at * all, since the LRO flush will use hn(4) as the receiving * interface; i.e. hn_ifp->if_input(hn_ifp, m). */ if (is_vf) do_lro = 0; /* * If VF is activated (tranparent/non-transparent mode does not * matter here), do _not_ mess with unsupported hash types or * functions. */ if (info->hash_info != HN_NDIS_HASH_INFO_INVALID) { rxr->hn_rss_pkts++; m_new->m_pkthdr.flowid = info->hash_value; if (!is_vf) hash_type = M_HASHTYPE_OPAQUE_HASH; if ((info->hash_info & NDIS_HASH_FUNCTION_MASK) == NDIS_HASH_FUNCTION_TOEPLITZ) { uint32_t type = (info->hash_info & NDIS_HASH_TYPE_MASK & rxr->hn_mbuf_hash); /* * NOTE: * do_lro is resetted, if the hash types are not TCP * related. See the comment in the above csum_flags * setup section. */ switch (type) { case NDIS_HASH_IPV4: hash_type = M_HASHTYPE_RSS_IPV4; do_lro = 0; break; case NDIS_HASH_TCP_IPV4: hash_type = M_HASHTYPE_RSS_TCP_IPV4; if (rxr->hn_rx_flags & HN_RX_FLAG_UDP_HASH) { int def_htype = M_HASHTYPE_OPAQUE_HASH; if (is_vf) def_htype = M_HASHTYPE_NONE; /* * UDP 4-tuple hash is delivered as * TCP 4-tuple hash. */ if (l3proto == ETHERTYPE_MAX) { hn_rxpkt_proto(m_new, &l3proto, &l4proto); } if (l3proto == ETHERTYPE_IP) { if (l4proto == IPPROTO_UDP && (rxr->hn_mbuf_hash & NDIS_HASH_UDP_IPV4_X)) { hash_type = M_HASHTYPE_RSS_UDP_IPV4; do_lro = 0; } else if (l4proto != IPPROTO_TCP) { hash_type = def_htype; do_lro = 0; } } else { hash_type = def_htype; do_lro = 0; } } break; case NDIS_HASH_IPV6: hash_type = M_HASHTYPE_RSS_IPV6; do_lro = 0; break; case NDIS_HASH_IPV6_EX: hash_type = M_HASHTYPE_RSS_IPV6_EX; do_lro = 0; break; case NDIS_HASH_TCP_IPV6: hash_type = M_HASHTYPE_RSS_TCP_IPV6; break; case NDIS_HASH_TCP_IPV6_EX: hash_type = M_HASHTYPE_RSS_TCP_IPV6_EX; break; } } } else if (!is_vf) { m_new->m_pkthdr.flowid = rxr->hn_rx_idx; hash_type = M_HASHTYPE_OPAQUE; } M_HASHTYPE_SET(m_new, hash_type); if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); if (hn_ifp != ifp) { const struct ether_header *eh; /* * Non-transparent mode VF is activated. */ /* * Allow tapping on hn(4). */ ETHER_BPF_MTAP(hn_ifp, m_new); /* * Update hn(4)'s stats. */ if_inc_counter(hn_ifp, IFCOUNTER_IPACKETS, 1); if_inc_counter(hn_ifp, IFCOUNTER_IBYTES, m_new->m_pkthdr.len); /* Checked at the beginning of this function. */ KASSERT(m_new->m_len >= ETHER_HDR_LEN, ("not ethernet frame")); eh = mtod(m_new, struct ether_header *); if (ETHER_IS_MULTICAST(eh->ether_dhost)) if_inc_counter(hn_ifp, IFCOUNTER_IMCASTS, 1); } rxr->hn_pkts++; if ((hn_ifp->if_capenable & IFCAP_LRO) && do_lro) { #if defined(INET) || defined(INET6) struct lro_ctrl *lro = &rxr->hn_lro; if (lro->lro_cnt) { rxr->hn_lro_tried++; if (hn_lro_rx(lro, m_new) == 0) { /* DONE! */ return 0; } } #endif } ifp->if_input(ifp, m_new); return (0); } static int hn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct hn_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *)data, ifr_vf; struct ifnet *vf_ifp; int mask, error = 0; struct ifrsskey *ifrk; struct ifrsshash *ifrh; uint32_t mtu; switch (cmd) { case SIOCSIFMTU: if (ifr->ifr_mtu > HN_MTU_MAX) { error = EINVAL; break; } HN_LOCK(sc); if ((sc->hn_flags & HN_FLAG_SYNTH_ATTACHED) == 0) { HN_UNLOCK(sc); break; } if ((sc->hn_caps & HN_CAP_MTU) == 0) { /* Can't change MTU */ HN_UNLOCK(sc); error = EOPNOTSUPP; break; } if (ifp->if_mtu == ifr->ifr_mtu) { HN_UNLOCK(sc); break; } if (hn_xpnt_vf_isready(sc)) { vf_ifp = sc->hn_vf_ifp; ifr_vf = *ifr; strlcpy(ifr_vf.ifr_name, vf_ifp->if_xname, sizeof(ifr_vf.ifr_name)); error = vf_ifp->if_ioctl(vf_ifp, SIOCSIFMTU, (caddr_t)&ifr_vf); if (error) { HN_UNLOCK(sc); if_printf(ifp, "%s SIOCSIFMTU %d failed: %d\n", vf_ifp->if_xname, ifr->ifr_mtu, error); break; } } /* * Suspend this interface before the synthetic parts * are ripped. */ hn_suspend(sc); /* * Detach the synthetics parts, i.e. NVS and RNDIS. */ hn_synth_detach(sc); /* * Reattach the synthetic parts, i.e. NVS and RNDIS, * with the new MTU setting. */ error = hn_synth_attach(sc, ifr->ifr_mtu); if (error) { HN_UNLOCK(sc); break; } error = hn_rndis_get_mtu(sc, &mtu); if (error) mtu = ifr->ifr_mtu; else if (bootverbose) if_printf(ifp, "RNDIS mtu %u\n", mtu); /* * Commit the requested MTU, after the synthetic parts * have been successfully attached. */ if (mtu >= ifr->ifr_mtu) { mtu = ifr->ifr_mtu; } else { if_printf(ifp, "fixup mtu %d -> %u\n", ifr->ifr_mtu, mtu); } ifp->if_mtu = mtu; /* * Synthetic parts' reattach may change the chimney * sending size; update it. */ if (sc->hn_tx_ring[0].hn_chim_size > sc->hn_chim_szmax) hn_set_chim_size(sc, sc->hn_chim_szmax); /* * Make sure that various parameters based on MTU are * still valid, after the MTU change. */ hn_mtu_change_fixup(sc); /* * All done! Resume the interface now. */ hn_resume(sc); if ((sc->hn_flags & HN_FLAG_RXVF) || (sc->hn_xvf_flags & HN_XVFFLAG_ENABLED)) { /* * Since we have reattached the NVS part, * change the datapath to VF again; in case * that it is lost, after the NVS was detached. */ hn_nvs_set_datapath(sc, HN_NVS_DATAPATH_VF); } HN_UNLOCK(sc); break; case SIOCSIFFLAGS: HN_LOCK(sc); if ((sc->hn_flags & HN_FLAG_SYNTH_ATTACHED) == 0) { HN_UNLOCK(sc); break; } if (hn_xpnt_vf_isready(sc)) hn_xpnt_vf_saveifflags(sc); if (ifp->if_flags & IFF_UP) { if (ifp->if_drv_flags & IFF_DRV_RUNNING) { /* * Caller meight hold mutex, e.g. * bpf; use busy-wait for the RNDIS * reply. */ HN_NO_SLEEPING(sc); hn_rxfilter_config(sc); HN_SLEEPING_OK(sc); if (sc->hn_xvf_flags & HN_XVFFLAG_ENABLED) error = hn_xpnt_vf_iocsetflags(sc); } else { hn_init_locked(sc); } } else { if (ifp->if_drv_flags & IFF_DRV_RUNNING) hn_stop(sc, false); } sc->hn_if_flags = ifp->if_flags; HN_UNLOCK(sc); break; case SIOCSIFCAP: HN_LOCK(sc); if (hn_xpnt_vf_isready(sc)) { ifr_vf = *ifr; strlcpy(ifr_vf.ifr_name, sc->hn_vf_ifp->if_xname, sizeof(ifr_vf.ifr_name)); error = hn_xpnt_vf_iocsetcaps(sc, &ifr_vf); HN_UNLOCK(sc); break; } /* * Fix up requested capabilities w/ supported capabilities, * since the supported capabilities could have been changed. */ mask = (ifr->ifr_reqcap & ifp->if_capabilities) ^ ifp->if_capenable; if (mask & IFCAP_TXCSUM) { ifp->if_capenable ^= IFCAP_TXCSUM; if (ifp->if_capenable & IFCAP_TXCSUM) ifp->if_hwassist |= HN_CSUM_IP_HWASSIST(sc); else ifp->if_hwassist &= ~HN_CSUM_IP_HWASSIST(sc); } if (mask & IFCAP_TXCSUM_IPV6) { ifp->if_capenable ^= IFCAP_TXCSUM_IPV6; if (ifp->if_capenable & IFCAP_TXCSUM_IPV6) ifp->if_hwassist |= HN_CSUM_IP6_HWASSIST(sc); else ifp->if_hwassist &= ~HN_CSUM_IP6_HWASSIST(sc); } /* TODO: flip RNDIS offload parameters for RXCSUM. */ if (mask & IFCAP_RXCSUM) ifp->if_capenable ^= IFCAP_RXCSUM; #ifdef foo /* We can't diff IPv6 packets from IPv4 packets on RX path. */ if (mask & IFCAP_RXCSUM_IPV6) ifp->if_capenable ^= IFCAP_RXCSUM_IPV6; #endif if (mask & IFCAP_LRO) ifp->if_capenable ^= IFCAP_LRO; if (mask & IFCAP_TSO4) { ifp->if_capenable ^= IFCAP_TSO4; if (ifp->if_capenable & IFCAP_TSO4) ifp->if_hwassist |= CSUM_IP_TSO; else ifp->if_hwassist &= ~CSUM_IP_TSO; } if (mask & IFCAP_TSO6) { ifp->if_capenable ^= IFCAP_TSO6; if (ifp->if_capenable & IFCAP_TSO6) ifp->if_hwassist |= CSUM_IP6_TSO; else ifp->if_hwassist &= ~CSUM_IP6_TSO; } HN_UNLOCK(sc); break; case SIOCADDMULTI: case SIOCDELMULTI: HN_LOCK(sc); if ((sc->hn_flags & HN_FLAG_SYNTH_ATTACHED) == 0) { HN_UNLOCK(sc); break; } if (ifp->if_drv_flags & IFF_DRV_RUNNING) { /* * Multicast uses mutex; use busy-wait for * the RNDIS reply. */ HN_NO_SLEEPING(sc); hn_rxfilter_config(sc); HN_SLEEPING_OK(sc); } /* XXX vlan(4) style mcast addr maintenance */ if (hn_xpnt_vf_isready(sc)) { int old_if_flags; old_if_flags = sc->hn_vf_ifp->if_flags; hn_xpnt_vf_saveifflags(sc); if ((sc->hn_xvf_flags & HN_XVFFLAG_ENABLED) && ((old_if_flags ^ sc->hn_vf_ifp->if_flags) & IFF_ALLMULTI)) error = hn_xpnt_vf_iocsetflags(sc); } HN_UNLOCK(sc); break; case SIOCSIFMEDIA: case SIOCGIFMEDIA: HN_LOCK(sc); if (hn_xpnt_vf_isready(sc)) { /* * SIOCGIFMEDIA expects ifmediareq, so don't * create and pass ifr_vf to the VF here; just * replace the ifr_name. */ vf_ifp = sc->hn_vf_ifp; strlcpy(ifr->ifr_name, vf_ifp->if_xname, sizeof(ifr->ifr_name)); error = vf_ifp->if_ioctl(vf_ifp, cmd, data); /* Restore the ifr_name. */ strlcpy(ifr->ifr_name, ifp->if_xname, sizeof(ifr->ifr_name)); HN_UNLOCK(sc); break; } HN_UNLOCK(sc); error = ifmedia_ioctl(ifp, ifr, &sc->hn_media, cmd); break; case SIOCGIFRSSHASH: ifrh = (struct ifrsshash *)data; HN_LOCK(sc); if (sc->hn_rx_ring_inuse == 1) { HN_UNLOCK(sc); ifrh->ifrh_func = RSS_FUNC_NONE; ifrh->ifrh_types = 0; break; } if (sc->hn_rss_hash & NDIS_HASH_FUNCTION_TOEPLITZ) ifrh->ifrh_func = RSS_FUNC_TOEPLITZ; else ifrh->ifrh_func = RSS_FUNC_PRIVATE; ifrh->ifrh_types = hn_rss_type_fromndis(sc->hn_rss_hash); HN_UNLOCK(sc); break; case SIOCGIFRSSKEY: ifrk = (struct ifrsskey *)data; HN_LOCK(sc); if (sc->hn_rx_ring_inuse == 1) { HN_UNLOCK(sc); ifrk->ifrk_func = RSS_FUNC_NONE; ifrk->ifrk_keylen = 0; break; } if (sc->hn_rss_hash & NDIS_HASH_FUNCTION_TOEPLITZ) ifrk->ifrk_func = RSS_FUNC_TOEPLITZ; else ifrk->ifrk_func = RSS_FUNC_PRIVATE; ifrk->ifrk_keylen = NDIS_HASH_KEYSIZE_TOEPLITZ; memcpy(ifrk->ifrk_key, sc->hn_rss.rss_key, NDIS_HASH_KEYSIZE_TOEPLITZ); HN_UNLOCK(sc); break; default: error = ether_ioctl(ifp, cmd, data); break; } return (error); } static void hn_stop(struct hn_softc *sc, bool detaching) { struct ifnet *ifp = sc->hn_ifp; int i; HN_LOCK_ASSERT(sc); KASSERT(sc->hn_flags & HN_FLAG_SYNTH_ATTACHED, ("synthetic parts were not attached")); /* Clear RUNNING bit ASAP. */ atomic_clear_int(&ifp->if_drv_flags, IFF_DRV_RUNNING); /* Disable polling. */ hn_polling(sc, 0); if (sc->hn_xvf_flags & HN_XVFFLAG_ENABLED) { KASSERT(sc->hn_vf_ifp != NULL, ("%s: VF is not attached", ifp->if_xname)); /* Mark transparent mode VF as disabled. */ hn_xpnt_vf_setdisable(sc, false /* keep hn_vf_ifp */); /* * NOTE: * Datapath setting must happen _before_ bringing * the VF down. */ hn_nvs_set_datapath(sc, HN_NVS_DATAPATH_SYNTH); /* * Bring the VF down. */ hn_xpnt_vf_saveifflags(sc); sc->hn_vf_ifp->if_flags &= ~IFF_UP; hn_xpnt_vf_iocsetflags(sc); } /* Suspend data transfers. */ hn_suspend_data(sc); /* Clear OACTIVE bit. */ atomic_clear_int(&ifp->if_drv_flags, IFF_DRV_OACTIVE); for (i = 0; i < sc->hn_tx_ring_inuse; ++i) sc->hn_tx_ring[i].hn_oactive = 0; /* * If the non-transparent mode VF is active, make sure * that the RX filter still allows packet reception. */ if (!detaching && (sc->hn_flags & HN_FLAG_RXVF)) hn_rxfilter_config(sc); } static void hn_init_locked(struct hn_softc *sc) { struct ifnet *ifp = sc->hn_ifp; int i; HN_LOCK_ASSERT(sc); if ((sc->hn_flags & HN_FLAG_SYNTH_ATTACHED) == 0) return; if (ifp->if_drv_flags & IFF_DRV_RUNNING) return; /* Configure RX filter */ hn_rxfilter_config(sc); /* Clear OACTIVE bit. */ atomic_clear_int(&ifp->if_drv_flags, IFF_DRV_OACTIVE); for (i = 0; i < sc->hn_tx_ring_inuse; ++i) sc->hn_tx_ring[i].hn_oactive = 0; /* Clear TX 'suspended' bit. */ hn_resume_tx(sc, sc->hn_tx_ring_inuse); if (hn_xpnt_vf_isready(sc)) { /* Initialize transparent VF. */ hn_xpnt_vf_init(sc); } /* Everything is ready; unleash! */ atomic_set_int(&ifp->if_drv_flags, IFF_DRV_RUNNING); /* Re-enable polling if requested. */ if (sc->hn_pollhz > 0) hn_polling(sc, sc->hn_pollhz); } static void hn_init(void *xsc) { struct hn_softc *sc = xsc; HN_LOCK(sc); hn_init_locked(sc); HN_UNLOCK(sc); } #if __FreeBSD_version >= 1100099 static int hn_lro_lenlim_sysctl(SYSCTL_HANDLER_ARGS) { struct hn_softc *sc = arg1; unsigned int lenlim; int error; lenlim = sc->hn_rx_ring[0].hn_lro.lro_length_lim; error = sysctl_handle_int(oidp, &lenlim, 0, req); if (error || req->newptr == NULL) return error; HN_LOCK(sc); if (lenlim < HN_LRO_LENLIM_MIN(sc->hn_ifp) || lenlim > TCP_LRO_LENGTH_MAX) { HN_UNLOCK(sc); return EINVAL; } hn_set_lro_lenlim(sc, lenlim); HN_UNLOCK(sc); return 0; } static int hn_lro_ackcnt_sysctl(SYSCTL_HANDLER_ARGS) { struct hn_softc *sc = arg1; int ackcnt, error, i; /* * lro_ackcnt_lim is append count limit, * +1 to turn it into aggregation limit. */ ackcnt = sc->hn_rx_ring[0].hn_lro.lro_ackcnt_lim + 1; error = sysctl_handle_int(oidp, &ackcnt, 0, req); if (error || req->newptr == NULL) return error; if (ackcnt < 2 || ackcnt > (TCP_LRO_ACKCNT_MAX + 1)) return EINVAL; /* * Convert aggregation limit back to append * count limit. */ --ackcnt; HN_LOCK(sc); for (i = 0; i < sc->hn_rx_ring_cnt; ++i) sc->hn_rx_ring[i].hn_lro.lro_ackcnt_lim = ackcnt; HN_UNLOCK(sc); return 0; } #endif static int hn_trust_hcsum_sysctl(SYSCTL_HANDLER_ARGS) { struct hn_softc *sc = arg1; int hcsum = arg2; int on, error, i; on = 0; if (sc->hn_rx_ring[0].hn_trust_hcsum & hcsum) on = 1; error = sysctl_handle_int(oidp, &on, 0, req); if (error || req->newptr == NULL) return error; HN_LOCK(sc); for (i = 0; i < sc->hn_rx_ring_cnt; ++i) { struct hn_rx_ring *rxr = &sc->hn_rx_ring[i]; if (on) rxr->hn_trust_hcsum |= hcsum; else rxr->hn_trust_hcsum &= ~hcsum; } HN_UNLOCK(sc); return 0; } static int hn_chim_size_sysctl(SYSCTL_HANDLER_ARGS) { struct hn_softc *sc = arg1; int chim_size, error; chim_size = sc->hn_tx_ring[0].hn_chim_size; error = sysctl_handle_int(oidp, &chim_size, 0, req); if (error || req->newptr == NULL) return error; if (chim_size > sc->hn_chim_szmax || chim_size <= 0) return EINVAL; HN_LOCK(sc); hn_set_chim_size(sc, chim_size); HN_UNLOCK(sc); return 0; } #if __FreeBSD_version < 1100095 static int hn_rx_stat_int_sysctl(SYSCTL_HANDLER_ARGS) { struct hn_softc *sc = arg1; int ofs = arg2, i, error; struct hn_rx_ring *rxr; uint64_t stat; stat = 0; for (i = 0; i < sc->hn_rx_ring_cnt; ++i) { rxr = &sc->hn_rx_ring[i]; stat += *((int *)((uint8_t *)rxr + ofs)); } error = sysctl_handle_64(oidp, &stat, 0, req); if (error || req->newptr == NULL) return error; /* Zero out this stat. */ for (i = 0; i < sc->hn_rx_ring_cnt; ++i) { rxr = &sc->hn_rx_ring[i]; *((int *)((uint8_t *)rxr + ofs)) = 0; } return 0; } #else static int hn_rx_stat_u64_sysctl(SYSCTL_HANDLER_ARGS) { struct hn_softc *sc = arg1; int ofs = arg2, i, error; struct hn_rx_ring *rxr; uint64_t stat; stat = 0; for (i = 0; i < sc->hn_rx_ring_cnt; ++i) { rxr = &sc->hn_rx_ring[i]; stat += *((uint64_t *)((uint8_t *)rxr + ofs)); } error = sysctl_handle_64(oidp, &stat, 0, req); if (error || req->newptr == NULL) return error; /* Zero out this stat. */ for (i = 0; i < sc->hn_rx_ring_cnt; ++i) { rxr = &sc->hn_rx_ring[i]; *((uint64_t *)((uint8_t *)rxr + ofs)) = 0; } return 0; } #endif static int hn_rx_stat_ulong_sysctl(SYSCTL_HANDLER_ARGS) { struct hn_softc *sc = arg1; int ofs = arg2, i, error; struct hn_rx_ring *rxr; u_long stat; stat = 0; for (i = 0; i < sc->hn_rx_ring_cnt; ++i) { rxr = &sc->hn_rx_ring[i]; stat += *((u_long *)((uint8_t *)rxr + ofs)); } error = sysctl_handle_long(oidp, &stat, 0, req); if (error || req->newptr == NULL) return error; /* Zero out this stat. */ for (i = 0; i < sc->hn_rx_ring_cnt; ++i) { rxr = &sc->hn_rx_ring[i]; *((u_long *)((uint8_t *)rxr + ofs)) = 0; } return 0; } static int hn_tx_stat_ulong_sysctl(SYSCTL_HANDLER_ARGS) { struct hn_softc *sc = arg1; int ofs = arg2, i, error; struct hn_tx_ring *txr; u_long stat; stat = 0; for (i = 0; i < sc->hn_tx_ring_cnt; ++i) { txr = &sc->hn_tx_ring[i]; stat += *((u_long *)((uint8_t *)txr + ofs)); } error = sysctl_handle_long(oidp, &stat, 0, req); if (error || req->newptr == NULL) return error; /* Zero out this stat. */ for (i = 0; i < sc->hn_tx_ring_cnt; ++i) { txr = &sc->hn_tx_ring[i]; *((u_long *)((uint8_t *)txr + ofs)) = 0; } return 0; } static int hn_tx_conf_int_sysctl(SYSCTL_HANDLER_ARGS) { struct hn_softc *sc = arg1; int ofs = arg2, i, error, conf; struct hn_tx_ring *txr; txr = &sc->hn_tx_ring[0]; conf = *((int *)((uint8_t *)txr + ofs)); error = sysctl_handle_int(oidp, &conf, 0, req); if (error || req->newptr == NULL) return error; HN_LOCK(sc); for (i = 0; i < sc->hn_tx_ring_cnt; ++i) { txr = &sc->hn_tx_ring[i]; *((int *)((uint8_t *)txr + ofs)) = conf; } HN_UNLOCK(sc); return 0; } static int hn_txagg_size_sysctl(SYSCTL_HANDLER_ARGS) { struct hn_softc *sc = arg1; int error, size; size = sc->hn_agg_size; error = sysctl_handle_int(oidp, &size, 0, req); if (error || req->newptr == NULL) return (error); HN_LOCK(sc); sc->hn_agg_size = size; hn_set_txagg(sc); HN_UNLOCK(sc); return (0); } static int hn_txagg_pkts_sysctl(SYSCTL_HANDLER_ARGS) { struct hn_softc *sc = arg1; int error, pkts; pkts = sc->hn_agg_pkts; error = sysctl_handle_int(oidp, &pkts, 0, req); if (error || req->newptr == NULL) return (error); HN_LOCK(sc); sc->hn_agg_pkts = pkts; hn_set_txagg(sc); HN_UNLOCK(sc); return (0); } static int hn_txagg_pktmax_sysctl(SYSCTL_HANDLER_ARGS) { struct hn_softc *sc = arg1; int pkts; pkts = sc->hn_tx_ring[0].hn_agg_pktmax; return (sysctl_handle_int(oidp, &pkts, 0, req)); } static int hn_txagg_align_sysctl(SYSCTL_HANDLER_ARGS) { struct hn_softc *sc = arg1; int align; align = sc->hn_tx_ring[0].hn_agg_align; return (sysctl_handle_int(oidp, &align, 0, req)); } static void hn_chan_polling(struct vmbus_channel *chan, u_int pollhz) { if (pollhz == 0) vmbus_chan_poll_disable(chan); else vmbus_chan_poll_enable(chan, pollhz); } static void hn_polling(struct hn_softc *sc, u_int pollhz) { int nsubch = sc->hn_rx_ring_inuse - 1; HN_LOCK_ASSERT(sc); if (nsubch > 0) { struct vmbus_channel **subch; int i; subch = vmbus_subchan_get(sc->hn_prichan, nsubch); for (i = 0; i < nsubch; ++i) hn_chan_polling(subch[i], pollhz); vmbus_subchan_rel(subch, nsubch); } hn_chan_polling(sc->hn_prichan, pollhz); } static int hn_polling_sysctl(SYSCTL_HANDLER_ARGS) { struct hn_softc *sc = arg1; int pollhz, error; pollhz = sc->hn_pollhz; error = sysctl_handle_int(oidp, &pollhz, 0, req); if (error || req->newptr == NULL) return (error); if (pollhz != 0 && (pollhz < VMBUS_CHAN_POLLHZ_MIN || pollhz > VMBUS_CHAN_POLLHZ_MAX)) return (EINVAL); HN_LOCK(sc); if (sc->hn_pollhz != pollhz) { sc->hn_pollhz = pollhz; if ((sc->hn_ifp->if_drv_flags & IFF_DRV_RUNNING) && (sc->hn_flags & HN_FLAG_SYNTH_ATTACHED)) hn_polling(sc, sc->hn_pollhz); } HN_UNLOCK(sc); return (0); } static int hn_ndis_version_sysctl(SYSCTL_HANDLER_ARGS) { struct hn_softc *sc = arg1; char verstr[16]; snprintf(verstr, sizeof(verstr), "%u.%u", HN_NDIS_VERSION_MAJOR(sc->hn_ndis_ver), HN_NDIS_VERSION_MINOR(sc->hn_ndis_ver)); return sysctl_handle_string(oidp, verstr, sizeof(verstr), req); } static int hn_caps_sysctl(SYSCTL_HANDLER_ARGS) { struct hn_softc *sc = arg1; char caps_str[128]; uint32_t caps; HN_LOCK(sc); caps = sc->hn_caps; HN_UNLOCK(sc); snprintf(caps_str, sizeof(caps_str), "%b", caps, HN_CAP_BITS); return sysctl_handle_string(oidp, caps_str, sizeof(caps_str), req); } static int hn_hwassist_sysctl(SYSCTL_HANDLER_ARGS) { struct hn_softc *sc = arg1; char assist_str[128]; uint32_t hwassist; HN_LOCK(sc); hwassist = sc->hn_ifp->if_hwassist; HN_UNLOCK(sc); snprintf(assist_str, sizeof(assist_str), "%b", hwassist, CSUM_BITS); return sysctl_handle_string(oidp, assist_str, sizeof(assist_str), req); } static int hn_rxfilter_sysctl(SYSCTL_HANDLER_ARGS) { struct hn_softc *sc = arg1; char filter_str[128]; uint32_t filter; HN_LOCK(sc); filter = sc->hn_rx_filter; HN_UNLOCK(sc); snprintf(filter_str, sizeof(filter_str), "%b", filter, NDIS_PACKET_TYPES); return sysctl_handle_string(oidp, filter_str, sizeof(filter_str), req); } #ifndef RSS static int hn_rss_key_sysctl(SYSCTL_HANDLER_ARGS) { struct hn_softc *sc = arg1; int error; HN_LOCK(sc); error = SYSCTL_OUT(req, sc->hn_rss.rss_key, sizeof(sc->hn_rss.rss_key)); if (error || req->newptr == NULL) goto back; if ((sc->hn_flags & HN_FLAG_RXVF) || (hn_xpnt_vf && sc->hn_vf_ifp != NULL)) { /* * RSS key is synchronized w/ VF's, don't allow users * to change it. */ error = EBUSY; goto back; } error = SYSCTL_IN(req, sc->hn_rss.rss_key, sizeof(sc->hn_rss.rss_key)); if (error) goto back; sc->hn_flags |= HN_FLAG_HAS_RSSKEY; if (sc->hn_rx_ring_inuse > 1) { error = hn_rss_reconfig(sc); } else { /* Not RSS capable, at least for now; just save the RSS key. */ error = 0; } back: HN_UNLOCK(sc); return (error); } static int hn_rss_ind_sysctl(SYSCTL_HANDLER_ARGS) { struct hn_softc *sc = arg1; int error; HN_LOCK(sc); error = SYSCTL_OUT(req, sc->hn_rss.rss_ind, sizeof(sc->hn_rss.rss_ind)); if (error || req->newptr == NULL) goto back; /* * Don't allow RSS indirect table change, if this interface is not * RSS capable currently. */ if (sc->hn_rx_ring_inuse == 1) { error = EOPNOTSUPP; goto back; } error = SYSCTL_IN(req, sc->hn_rss.rss_ind, sizeof(sc->hn_rss.rss_ind)); if (error) goto back; sc->hn_flags |= HN_FLAG_HAS_RSSIND; hn_rss_ind_fixup(sc); error = hn_rss_reconfig(sc); back: HN_UNLOCK(sc); return (error); } #endif /* !RSS */ static int hn_rss_hash_sysctl(SYSCTL_HANDLER_ARGS) { struct hn_softc *sc = arg1; char hash_str[128]; uint32_t hash; HN_LOCK(sc); hash = sc->hn_rss_hash; HN_UNLOCK(sc); snprintf(hash_str, sizeof(hash_str), "%b", hash, NDIS_HASH_BITS); return sysctl_handle_string(oidp, hash_str, sizeof(hash_str), req); } static int hn_rss_hcap_sysctl(SYSCTL_HANDLER_ARGS) { struct hn_softc *sc = arg1; char hash_str[128]; uint32_t hash; HN_LOCK(sc); hash = sc->hn_rss_hcap; HN_UNLOCK(sc); snprintf(hash_str, sizeof(hash_str), "%b", hash, NDIS_HASH_BITS); return sysctl_handle_string(oidp, hash_str, sizeof(hash_str), req); } static int hn_rss_mbuf_sysctl(SYSCTL_HANDLER_ARGS) { struct hn_softc *sc = arg1; char hash_str[128]; uint32_t hash; HN_LOCK(sc); hash = sc->hn_rx_ring[0].hn_mbuf_hash; HN_UNLOCK(sc); snprintf(hash_str, sizeof(hash_str), "%b", hash, NDIS_HASH_BITS); return sysctl_handle_string(oidp, hash_str, sizeof(hash_str), req); } static int hn_vf_sysctl(SYSCTL_HANDLER_ARGS) { struct hn_softc *sc = arg1; char vf_name[IFNAMSIZ + 1]; struct ifnet *vf_ifp; HN_LOCK(sc); vf_name[0] = '\0'; vf_ifp = sc->hn_vf_ifp; if (vf_ifp != NULL) snprintf(vf_name, sizeof(vf_name), "%s", vf_ifp->if_xname); HN_UNLOCK(sc); return sysctl_handle_string(oidp, vf_name, sizeof(vf_name), req); } static int hn_rxvf_sysctl(SYSCTL_HANDLER_ARGS) { struct hn_softc *sc = arg1; char vf_name[IFNAMSIZ + 1]; struct ifnet *vf_ifp; HN_LOCK(sc); vf_name[0] = '\0'; vf_ifp = sc->hn_rx_ring[0].hn_rxvf_ifp; if (vf_ifp != NULL) snprintf(vf_name, sizeof(vf_name), "%s", vf_ifp->if_xname); HN_UNLOCK(sc); return sysctl_handle_string(oidp, vf_name, sizeof(vf_name), req); } static int hn_vflist_sysctl(SYSCTL_HANDLER_ARGS) { struct rm_priotracker pt; struct sbuf *sb; int error, i; bool first; error = sysctl_wire_old_buffer(req, 0); if (error != 0) return (error); sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); if (sb == NULL) return (ENOMEM); rm_rlock(&hn_vfmap_lock, &pt); first = true; for (i = 0; i < hn_vfmap_size; ++i) { struct ifnet *ifp; if (hn_vfmap[i] == NULL) continue; ifp = ifnet_byindex(i); if (ifp != NULL) { if (first) sbuf_printf(sb, "%s", ifp->if_xname); else sbuf_printf(sb, " %s", ifp->if_xname); first = false; } } rm_runlock(&hn_vfmap_lock, &pt); error = sbuf_finish(sb); sbuf_delete(sb); return (error); } static int hn_vfmap_sysctl(SYSCTL_HANDLER_ARGS) { struct rm_priotracker pt; struct sbuf *sb; int error, i; bool first; error = sysctl_wire_old_buffer(req, 0); if (error != 0) return (error); sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); if (sb == NULL) return (ENOMEM); rm_rlock(&hn_vfmap_lock, &pt); first = true; for (i = 0; i < hn_vfmap_size; ++i) { struct ifnet *ifp, *hn_ifp; hn_ifp = hn_vfmap[i]; if (hn_ifp == NULL) continue; ifp = ifnet_byindex(i); if (ifp != NULL) { if (first) { sbuf_printf(sb, "%s:%s", ifp->if_xname, hn_ifp->if_xname); } else { sbuf_printf(sb, " %s:%s", ifp->if_xname, hn_ifp->if_xname); } first = false; } } rm_runlock(&hn_vfmap_lock, &pt); error = sbuf_finish(sb); sbuf_delete(sb); return (error); } static int hn_xpnt_vf_accbpf_sysctl(SYSCTL_HANDLER_ARGS) { struct hn_softc *sc = arg1; int error, onoff = 0; if (sc->hn_xvf_flags & HN_XVFFLAG_ACCBPF) onoff = 1; error = sysctl_handle_int(oidp, &onoff, 0, req); if (error || req->newptr == NULL) return (error); HN_LOCK(sc); /* NOTE: hn_vf_lock for hn_transmit() */ rm_wlock(&sc->hn_vf_lock); if (onoff) sc->hn_xvf_flags |= HN_XVFFLAG_ACCBPF; else sc->hn_xvf_flags &= ~HN_XVFFLAG_ACCBPF; rm_wunlock(&sc->hn_vf_lock); HN_UNLOCK(sc); return (0); } static int hn_xpnt_vf_enabled_sysctl(SYSCTL_HANDLER_ARGS) { struct hn_softc *sc = arg1; int enabled = 0; if (sc->hn_xvf_flags & HN_XVFFLAG_ENABLED) enabled = 1; return (sysctl_handle_int(oidp, &enabled, 0, req)); } static int hn_check_iplen(const struct mbuf *m, int hoff) { const struct ip *ip; int len, iphlen, iplen; const struct tcphdr *th; int thoff; /* TCP data offset */ len = hoff + sizeof(struct ip); /* The packet must be at least the size of an IP header. */ if (m->m_pkthdr.len < len) return IPPROTO_DONE; /* The fixed IP header must reside completely in the first mbuf. */ if (m->m_len < len) return IPPROTO_DONE; ip = mtodo(m, hoff); /* Bound check the packet's stated IP header length. */ iphlen = ip->ip_hl << 2; if (iphlen < sizeof(struct ip)) /* minimum header length */ return IPPROTO_DONE; /* The full IP header must reside completely in the one mbuf. */ if (m->m_len < hoff + iphlen) return IPPROTO_DONE; iplen = ntohs(ip->ip_len); /* * Check that the amount of data in the buffers is as * at least much as the IP header would have us expect. */ if (m->m_pkthdr.len < hoff + iplen) return IPPROTO_DONE; /* * Ignore IP fragments. */ if (ntohs(ip->ip_off) & (IP_OFFMASK | IP_MF)) return IPPROTO_DONE; /* * The TCP/IP or UDP/IP header must be entirely contained within * the first fragment of a packet. */ switch (ip->ip_p) { case IPPROTO_TCP: if (iplen < iphlen + sizeof(struct tcphdr)) return IPPROTO_DONE; if (m->m_len < hoff + iphlen + sizeof(struct tcphdr)) return IPPROTO_DONE; th = (const struct tcphdr *)((const uint8_t *)ip + iphlen); thoff = th->th_off << 2; if (thoff < sizeof(struct tcphdr) || thoff + iphlen > iplen) return IPPROTO_DONE; if (m->m_len < hoff + iphlen + thoff) return IPPROTO_DONE; break; case IPPROTO_UDP: if (iplen < iphlen + sizeof(struct udphdr)) return IPPROTO_DONE; if (m->m_len < hoff + iphlen + sizeof(struct udphdr)) return IPPROTO_DONE; break; default: if (iplen < iphlen) return IPPROTO_DONE; break; } return ip->ip_p; } static void hn_rxpkt_proto(const struct mbuf *m_new, int *l3proto, int *l4proto) { const struct ether_header *eh; uint16_t etype; int hoff; hoff = sizeof(*eh); /* Checked at the beginning of this function. */ KASSERT(m_new->m_len >= hoff, ("not ethernet frame")); eh = mtod(m_new, const struct ether_header *); etype = ntohs(eh->ether_type); if (etype == ETHERTYPE_VLAN) { const struct ether_vlan_header *evl; hoff = sizeof(*evl); if (m_new->m_len < hoff) return; evl = mtod(m_new, const struct ether_vlan_header *); etype = ntohs(evl->evl_proto); } *l3proto = etype; if (etype == ETHERTYPE_IP) *l4proto = hn_check_iplen(m_new, hoff); else *l4proto = IPPROTO_DONE; } static int hn_create_rx_data(struct hn_softc *sc, int ring_cnt) { struct sysctl_oid_list *child; struct sysctl_ctx_list *ctx; device_t dev = sc->hn_dev; #if defined(INET) || defined(INET6) #if __FreeBSD_version >= 1100095 int lroent_cnt; #endif #endif int i; /* * Create RXBUF for reception. * * NOTE: * - It is shared by all channels. * - A large enough buffer is allocated, certain version of NVSes * may further limit the usable space. */ sc->hn_rxbuf = hyperv_dmamem_alloc(bus_get_dma_tag(dev), PAGE_SIZE, 0, HN_RXBUF_SIZE, &sc->hn_rxbuf_dma, BUS_DMA_WAITOK | BUS_DMA_ZERO); if (sc->hn_rxbuf == NULL) { device_printf(sc->hn_dev, "allocate rxbuf failed\n"); return (ENOMEM); } sc->hn_rx_ring_cnt = ring_cnt; sc->hn_rx_ring_inuse = sc->hn_rx_ring_cnt; sc->hn_rx_ring = malloc(sizeof(struct hn_rx_ring) * sc->hn_rx_ring_cnt, M_DEVBUF, M_WAITOK | M_ZERO); #if defined(INET) || defined(INET6) #if __FreeBSD_version >= 1100095 lroent_cnt = hn_lro_entry_count; if (lroent_cnt < TCP_LRO_ENTRIES) lroent_cnt = TCP_LRO_ENTRIES; if (bootverbose) device_printf(dev, "LRO: entry count %d\n", lroent_cnt); #endif #endif /* INET || INET6 */ ctx = device_get_sysctl_ctx(dev); child = SYSCTL_CHILDREN(device_get_sysctl_tree(dev)); /* Create dev.hn.UNIT.rx sysctl tree */ sc->hn_rx_sysctl_tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "rx", CTLFLAG_RD | CTLFLAG_MPSAFE, 0, ""); for (i = 0; i < sc->hn_rx_ring_cnt; ++i) { struct hn_rx_ring *rxr = &sc->hn_rx_ring[i]; rxr->hn_br = hyperv_dmamem_alloc(bus_get_dma_tag(dev), PAGE_SIZE, 0, HN_TXBR_SIZE + HN_RXBR_SIZE, &rxr->hn_br_dma, BUS_DMA_WAITOK); if (rxr->hn_br == NULL) { device_printf(dev, "allocate bufring failed\n"); return (ENOMEM); } if (hn_trust_hosttcp) rxr->hn_trust_hcsum |= HN_TRUST_HCSUM_TCP; if (hn_trust_hostudp) rxr->hn_trust_hcsum |= HN_TRUST_HCSUM_UDP; if (hn_trust_hostip) rxr->hn_trust_hcsum |= HN_TRUST_HCSUM_IP; rxr->hn_mbuf_hash = NDIS_HASH_ALL; rxr->hn_ifp = sc->hn_ifp; if (i < sc->hn_tx_ring_cnt) rxr->hn_txr = &sc->hn_tx_ring[i]; rxr->hn_pktbuf_len = HN_PKTBUF_LEN_DEF; rxr->hn_pktbuf = malloc(rxr->hn_pktbuf_len, M_DEVBUF, M_WAITOK); rxr->hn_rx_idx = i; rxr->hn_rxbuf = sc->hn_rxbuf; /* * Initialize LRO. */ #if defined(INET) || defined(INET6) #if __FreeBSD_version >= 1100095 tcp_lro_init_args(&rxr->hn_lro, sc->hn_ifp, lroent_cnt, hn_lro_mbufq_depth); #else tcp_lro_init(&rxr->hn_lro); rxr->hn_lro.ifp = sc->hn_ifp; #endif #if __FreeBSD_version >= 1100099 rxr->hn_lro.lro_length_lim = HN_LRO_LENLIM_DEF; rxr->hn_lro.lro_ackcnt_lim = HN_LRO_ACKCNT_DEF; #endif #endif /* INET || INET6 */ if (sc->hn_rx_sysctl_tree != NULL) { char name[16]; /* * Create per RX ring sysctl tree: * dev.hn.UNIT.rx.RINGID */ snprintf(name, sizeof(name), "%d", i); rxr->hn_rx_sysctl_tree = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(sc->hn_rx_sysctl_tree), OID_AUTO, name, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, ""); if (rxr->hn_rx_sysctl_tree != NULL) { SYSCTL_ADD_ULONG(ctx, SYSCTL_CHILDREN(rxr->hn_rx_sysctl_tree), OID_AUTO, "packets", CTLFLAG_RW, &rxr->hn_pkts, "# of packets received"); SYSCTL_ADD_ULONG(ctx, SYSCTL_CHILDREN(rxr->hn_rx_sysctl_tree), OID_AUTO, "rss_pkts", CTLFLAG_RW, &rxr->hn_rss_pkts, "# of packets w/ RSS info received"); SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(rxr->hn_rx_sysctl_tree), OID_AUTO, "pktbuf_len", CTLFLAG_RD, &rxr->hn_pktbuf_len, 0, "Temporary channel packet buffer length"); } } } SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "lro_queued", CTLTYPE_U64 | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, __offsetof(struct hn_rx_ring, hn_lro.lro_queued), #if __FreeBSD_version < 1100095 hn_rx_stat_int_sysctl, #else hn_rx_stat_u64_sysctl, #endif "LU", "LRO queued"); SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "lro_flushed", CTLTYPE_U64 | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, __offsetof(struct hn_rx_ring, hn_lro.lro_flushed), #if __FreeBSD_version < 1100095 hn_rx_stat_int_sysctl, #else hn_rx_stat_u64_sysctl, #endif "LU", "LRO flushed"); SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "lro_tried", CTLTYPE_ULONG | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, __offsetof(struct hn_rx_ring, hn_lro_tried), hn_rx_stat_ulong_sysctl, "LU", "# of LRO tries"); #if __FreeBSD_version >= 1100099 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "lro_length_lim", CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, hn_lro_lenlim_sysctl, "IU", "Max # of data bytes to be aggregated by LRO"); SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "lro_ackcnt_lim", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, hn_lro_ackcnt_sysctl, "I", "Max # of ACKs to be aggregated by LRO"); #endif SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "trust_hosttcp", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, HN_TRUST_HCSUM_TCP, hn_trust_hcsum_sysctl, "I", "Trust tcp segement verification on host side, " "when csum info is missing"); SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "trust_hostudp", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, HN_TRUST_HCSUM_UDP, hn_trust_hcsum_sysctl, "I", "Trust udp datagram verification on host side, " "when csum info is missing"); SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "trust_hostip", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, HN_TRUST_HCSUM_IP, hn_trust_hcsum_sysctl, "I", "Trust ip packet verification on host side, " "when csum info is missing"); SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "csum_ip", CTLTYPE_ULONG | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, __offsetof(struct hn_rx_ring, hn_csum_ip), hn_rx_stat_ulong_sysctl, "LU", "RXCSUM IP"); SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "csum_tcp", CTLTYPE_ULONG | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, __offsetof(struct hn_rx_ring, hn_csum_tcp), hn_rx_stat_ulong_sysctl, "LU", "RXCSUM TCP"); SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "csum_udp", CTLTYPE_ULONG | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, __offsetof(struct hn_rx_ring, hn_csum_udp), hn_rx_stat_ulong_sysctl, "LU", "RXCSUM UDP"); SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "csum_trusted", CTLTYPE_ULONG | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, __offsetof(struct hn_rx_ring, hn_csum_trusted), hn_rx_stat_ulong_sysctl, "LU", "# of packets that we trust host's csum verification"); SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "small_pkts", CTLTYPE_ULONG | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, __offsetof(struct hn_rx_ring, hn_small_pkts), hn_rx_stat_ulong_sysctl, "LU", "# of small packets received"); SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_ack_failed", CTLTYPE_ULONG | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, __offsetof(struct hn_rx_ring, hn_ack_failed), hn_rx_stat_ulong_sysctl, "LU", "# of RXBUF ack failures"); SYSCTL_ADD_INT(ctx, child, OID_AUTO, "rx_ring_cnt", CTLFLAG_RD, &sc->hn_rx_ring_cnt, 0, "# created RX rings"); SYSCTL_ADD_INT(ctx, child, OID_AUTO, "rx_ring_inuse", CTLFLAG_RD, &sc->hn_rx_ring_inuse, 0, "# used RX rings"); return (0); } static void hn_destroy_rx_data(struct hn_softc *sc) { int i; if (sc->hn_rxbuf != NULL) { if ((sc->hn_flags & HN_FLAG_RXBUF_REF) == 0) hyperv_dmamem_free(&sc->hn_rxbuf_dma, sc->hn_rxbuf); else device_printf(sc->hn_dev, "RXBUF is referenced\n"); sc->hn_rxbuf = NULL; } if (sc->hn_rx_ring_cnt == 0) return; for (i = 0; i < sc->hn_rx_ring_cnt; ++i) { struct hn_rx_ring *rxr = &sc->hn_rx_ring[i]; if (rxr->hn_br == NULL) continue; if ((rxr->hn_rx_flags & HN_RX_FLAG_BR_REF) == 0) { hyperv_dmamem_free(&rxr->hn_br_dma, rxr->hn_br); } else { device_printf(sc->hn_dev, "%dth channel bufring is referenced", i); } rxr->hn_br = NULL; #if defined(INET) || defined(INET6) tcp_lro_free(&rxr->hn_lro); #endif free(rxr->hn_pktbuf, M_DEVBUF); } free(sc->hn_rx_ring, M_DEVBUF); sc->hn_rx_ring = NULL; sc->hn_rx_ring_cnt = 0; sc->hn_rx_ring_inuse = 0; } static int hn_tx_ring_create(struct hn_softc *sc, int id) { struct hn_tx_ring *txr = &sc->hn_tx_ring[id]; device_t dev = sc->hn_dev; bus_dma_tag_t parent_dtag; int error, i; txr->hn_sc = sc; txr->hn_tx_idx = id; #ifndef HN_USE_TXDESC_BUFRING mtx_init(&txr->hn_txlist_spin, "hn txlist", NULL, MTX_SPIN); #endif mtx_init(&txr->hn_tx_lock, "hn tx", NULL, MTX_DEF); txr->hn_txdesc_cnt = HN_TX_DESC_CNT; txr->hn_txdesc = malloc(sizeof(struct hn_txdesc) * txr->hn_txdesc_cnt, M_DEVBUF, M_WAITOK | M_ZERO); #ifndef HN_USE_TXDESC_BUFRING SLIST_INIT(&txr->hn_txlist); #else txr->hn_txdesc_br = buf_ring_alloc(txr->hn_txdesc_cnt, M_DEVBUF, M_WAITOK, &txr->hn_tx_lock); #endif if (hn_tx_taskq_mode == HN_TX_TASKQ_M_EVTTQ) { txr->hn_tx_taskq = VMBUS_GET_EVENT_TASKQ( device_get_parent(dev), dev, HN_RING_IDX2CPU(sc, id)); } else { txr->hn_tx_taskq = sc->hn_tx_taskqs[id % hn_tx_taskq_cnt]; } #ifdef HN_IFSTART_SUPPORT if (hn_use_if_start) { txr->hn_txeof = hn_start_txeof; TASK_INIT(&txr->hn_tx_task, 0, hn_start_taskfunc, txr); TASK_INIT(&txr->hn_txeof_task, 0, hn_start_txeof_taskfunc, txr); } else #endif { int br_depth; txr->hn_txeof = hn_xmit_txeof; TASK_INIT(&txr->hn_tx_task, 0, hn_xmit_taskfunc, txr); TASK_INIT(&txr->hn_txeof_task, 0, hn_xmit_txeof_taskfunc, txr); br_depth = hn_get_txswq_depth(txr); txr->hn_mbuf_br = buf_ring_alloc(br_depth, M_DEVBUF, M_WAITOK, &txr->hn_tx_lock); } txr->hn_direct_tx_size = hn_direct_tx_size; /* * Always schedule transmission instead of trying to do direct * transmission. This one gives the best performance so far. */ txr->hn_sched_tx = 1; parent_dtag = bus_get_dma_tag(dev); /* DMA tag for RNDIS packet messages. */ error = bus_dma_tag_create(parent_dtag, /* parent */ HN_RNDIS_PKT_ALIGN, /* alignment */ HN_RNDIS_PKT_BOUNDARY, /* boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ HN_RNDIS_PKT_LEN, /* maxsize */ 1, /* nsegments */ HN_RNDIS_PKT_LEN, /* maxsegsize */ 0, /* flags */ NULL, /* lockfunc */ NULL, /* lockfuncarg */ &txr->hn_tx_rndis_dtag); if (error) { device_printf(dev, "failed to create rndis dmatag\n"); return error; } /* DMA tag for data. */ error = bus_dma_tag_create(parent_dtag, /* parent */ 1, /* alignment */ HN_TX_DATA_BOUNDARY, /* boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ HN_TX_DATA_MAXSIZE, /* maxsize */ HN_TX_DATA_SEGCNT_MAX, /* nsegments */ HN_TX_DATA_SEGSIZE, /* maxsegsize */ 0, /* flags */ NULL, /* lockfunc */ NULL, /* lockfuncarg */ &txr->hn_tx_data_dtag); if (error) { device_printf(dev, "failed to create data dmatag\n"); return error; } for (i = 0; i < txr->hn_txdesc_cnt; ++i) { struct hn_txdesc *txd = &txr->hn_txdesc[i]; txd->txr = txr; txd->chim_index = HN_NVS_CHIM_IDX_INVALID; STAILQ_INIT(&txd->agg_list); /* * Allocate and load RNDIS packet message. */ error = bus_dmamem_alloc(txr->hn_tx_rndis_dtag, (void **)&txd->rndis_pkt, BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, &txd->rndis_pkt_dmap); if (error) { device_printf(dev, "failed to allocate rndis_packet_msg, %d\n", i); return error; } error = bus_dmamap_load(txr->hn_tx_rndis_dtag, txd->rndis_pkt_dmap, txd->rndis_pkt, HN_RNDIS_PKT_LEN, hyperv_dma_map_paddr, &txd->rndis_pkt_paddr, BUS_DMA_NOWAIT); if (error) { device_printf(dev, "failed to load rndis_packet_msg, %d\n", i); bus_dmamem_free(txr->hn_tx_rndis_dtag, txd->rndis_pkt, txd->rndis_pkt_dmap); return error; } /* DMA map for TX data. */ error = bus_dmamap_create(txr->hn_tx_data_dtag, 0, &txd->data_dmap); if (error) { device_printf(dev, "failed to allocate tx data dmamap\n"); bus_dmamap_unload(txr->hn_tx_rndis_dtag, txd->rndis_pkt_dmap); bus_dmamem_free(txr->hn_tx_rndis_dtag, txd->rndis_pkt, txd->rndis_pkt_dmap); return error; } /* All set, put it to list */ txd->flags |= HN_TXD_FLAG_ONLIST; #ifndef HN_USE_TXDESC_BUFRING SLIST_INSERT_HEAD(&txr->hn_txlist, txd, link); #else buf_ring_enqueue(txr->hn_txdesc_br, txd); #endif } txr->hn_txdesc_avail = txr->hn_txdesc_cnt; if (sc->hn_tx_sysctl_tree != NULL) { struct sysctl_oid_list *child; struct sysctl_ctx_list *ctx; char name[16]; /* * Create per TX ring sysctl tree: * dev.hn.UNIT.tx.RINGID */ ctx = device_get_sysctl_ctx(dev); child = SYSCTL_CHILDREN(sc->hn_tx_sysctl_tree); snprintf(name, sizeof(name), "%d", id); txr->hn_tx_sysctl_tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, name, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, ""); if (txr->hn_tx_sysctl_tree != NULL) { child = SYSCTL_CHILDREN(txr->hn_tx_sysctl_tree); #ifdef HN_DEBUG SYSCTL_ADD_INT(ctx, child, OID_AUTO, "txdesc_avail", CTLFLAG_RD, &txr->hn_txdesc_avail, 0, "# of available TX descs"); #endif #ifdef HN_IFSTART_SUPPORT if (!hn_use_if_start) #endif { SYSCTL_ADD_INT(ctx, child, OID_AUTO, "oactive", CTLFLAG_RD, &txr->hn_oactive, 0, "over active"); } SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "packets", CTLFLAG_RW, &txr->hn_pkts, "# of packets transmitted"); SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "sends", CTLFLAG_RW, &txr->hn_sends, "# of sends"); } } return 0; } static void hn_txdesc_dmamap_destroy(struct hn_txdesc *txd) { struct hn_tx_ring *txr = txd->txr; KASSERT(txd->m == NULL, ("still has mbuf installed")); KASSERT((txd->flags & HN_TXD_FLAG_DMAMAP) == 0, ("still dma mapped")); bus_dmamap_unload(txr->hn_tx_rndis_dtag, txd->rndis_pkt_dmap); bus_dmamem_free(txr->hn_tx_rndis_dtag, txd->rndis_pkt, txd->rndis_pkt_dmap); bus_dmamap_destroy(txr->hn_tx_data_dtag, txd->data_dmap); } static void hn_txdesc_gc(struct hn_tx_ring *txr, struct hn_txdesc *txd) { KASSERT(txd->refs == 0 || txd->refs == 1, ("invalid txd refs %d", txd->refs)); /* Aggregated txds will be freed by their aggregating txd. */ if (txd->refs > 0 && (txd->flags & HN_TXD_FLAG_ONAGG) == 0) { int freed; freed = hn_txdesc_put(txr, txd); KASSERT(freed, ("can't free txdesc")); } } static void hn_tx_ring_destroy(struct hn_tx_ring *txr) { int i; if (txr->hn_txdesc == NULL) return; /* * NOTE: * Because the freeing of aggregated txds will be deferred * to the aggregating txd, two passes are used here: * - The first pass GCes any pending txds. This GC is necessary, * since if the channels are revoked, hypervisor will not * deliver send-done for all pending txds. * - The second pass frees the busdma stuffs, i.e. after all txds * were freed. */ for (i = 0; i < txr->hn_txdesc_cnt; ++i) hn_txdesc_gc(txr, &txr->hn_txdesc[i]); for (i = 0; i < txr->hn_txdesc_cnt; ++i) hn_txdesc_dmamap_destroy(&txr->hn_txdesc[i]); if (txr->hn_tx_data_dtag != NULL) bus_dma_tag_destroy(txr->hn_tx_data_dtag); if (txr->hn_tx_rndis_dtag != NULL) bus_dma_tag_destroy(txr->hn_tx_rndis_dtag); #ifdef HN_USE_TXDESC_BUFRING buf_ring_free(txr->hn_txdesc_br, M_DEVBUF); #endif free(txr->hn_txdesc, M_DEVBUF); txr->hn_txdesc = NULL; if (txr->hn_mbuf_br != NULL) buf_ring_free(txr->hn_mbuf_br, M_DEVBUF); #ifndef HN_USE_TXDESC_BUFRING mtx_destroy(&txr->hn_txlist_spin); #endif mtx_destroy(&txr->hn_tx_lock); } static int hn_create_tx_data(struct hn_softc *sc, int ring_cnt) { struct sysctl_oid_list *child; struct sysctl_ctx_list *ctx; int i; /* * Create TXBUF for chimney sending. * * NOTE: It is shared by all channels. */ sc->hn_chim = hyperv_dmamem_alloc(bus_get_dma_tag(sc->hn_dev), PAGE_SIZE, 0, HN_CHIM_SIZE, &sc->hn_chim_dma, BUS_DMA_WAITOK | BUS_DMA_ZERO); if (sc->hn_chim == NULL) { device_printf(sc->hn_dev, "allocate txbuf failed\n"); return (ENOMEM); } sc->hn_tx_ring_cnt = ring_cnt; sc->hn_tx_ring_inuse = sc->hn_tx_ring_cnt; sc->hn_tx_ring = malloc(sizeof(struct hn_tx_ring) * sc->hn_tx_ring_cnt, M_DEVBUF, M_WAITOK | M_ZERO); ctx = device_get_sysctl_ctx(sc->hn_dev); child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->hn_dev)); /* Create dev.hn.UNIT.tx sysctl tree */ sc->hn_tx_sysctl_tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "tx", CTLFLAG_RD | CTLFLAG_MPSAFE, 0, ""); for (i = 0; i < sc->hn_tx_ring_cnt; ++i) { int error; error = hn_tx_ring_create(sc, i); if (error) return error; } SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "no_txdescs", CTLTYPE_ULONG | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, __offsetof(struct hn_tx_ring, hn_no_txdescs), hn_tx_stat_ulong_sysctl, "LU", "# of times short of TX descs"); SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "send_failed", CTLTYPE_ULONG | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, __offsetof(struct hn_tx_ring, hn_send_failed), hn_tx_stat_ulong_sysctl, "LU", "# of hyper-v sending failure"); SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "txdma_failed", CTLTYPE_ULONG | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, __offsetof(struct hn_tx_ring, hn_txdma_failed), hn_tx_stat_ulong_sysctl, "LU", "# of TX DMA failure"); SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "agg_flush_failed", CTLTYPE_ULONG | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, __offsetof(struct hn_tx_ring, hn_flush_failed), hn_tx_stat_ulong_sysctl, "LU", "# of packet transmission aggregation flush failure"); SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "tx_collapsed", CTLTYPE_ULONG | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, __offsetof(struct hn_tx_ring, hn_tx_collapsed), hn_tx_stat_ulong_sysctl, "LU", "# of TX mbuf collapsed"); SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "tx_chimney", CTLTYPE_ULONG | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, __offsetof(struct hn_tx_ring, hn_tx_chimney), hn_tx_stat_ulong_sysctl, "LU", "# of chimney send"); SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "tx_chimney_tried", CTLTYPE_ULONG | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, __offsetof(struct hn_tx_ring, hn_tx_chimney_tried), hn_tx_stat_ulong_sysctl, "LU", "# of chimney send tries"); SYSCTL_ADD_INT(ctx, child, OID_AUTO, "txdesc_cnt", CTLFLAG_RD, &sc->hn_tx_ring[0].hn_txdesc_cnt, 0, "# of total TX descs"); SYSCTL_ADD_INT(ctx, child, OID_AUTO, "tx_chimney_max", CTLFLAG_RD, &sc->hn_chim_szmax, 0, "Chimney send packet size upper boundary"); SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "tx_chimney_size", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, hn_chim_size_sysctl, "I", "Chimney send packet size limit"); SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "direct_tx_size", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, __offsetof(struct hn_tx_ring, hn_direct_tx_size), hn_tx_conf_int_sysctl, "I", "Size of the packet for direct transmission"); SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "sched_tx", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, __offsetof(struct hn_tx_ring, hn_sched_tx), hn_tx_conf_int_sysctl, "I", "Always schedule transmission " "instead of doing direct transmission"); SYSCTL_ADD_INT(ctx, child, OID_AUTO, "tx_ring_cnt", CTLFLAG_RD, &sc->hn_tx_ring_cnt, 0, "# created TX rings"); SYSCTL_ADD_INT(ctx, child, OID_AUTO, "tx_ring_inuse", CTLFLAG_RD, &sc->hn_tx_ring_inuse, 0, "# used TX rings"); SYSCTL_ADD_INT(ctx, child, OID_AUTO, "agg_szmax", CTLFLAG_RD, &sc->hn_tx_ring[0].hn_agg_szmax, 0, "Applied packet transmission aggregation size"); SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "agg_pktmax", CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, hn_txagg_pktmax_sysctl, "I", "Applied packet transmission aggregation packets"); SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "agg_align", CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, hn_txagg_align_sysctl, "I", "Applied packet transmission aggregation alignment"); return 0; } static void hn_set_chim_size(struct hn_softc *sc, int chim_size) { int i; for (i = 0; i < sc->hn_tx_ring_cnt; ++i) sc->hn_tx_ring[i].hn_chim_size = chim_size; } static void hn_set_tso_maxsize(struct hn_softc *sc, int tso_maxlen, int mtu) { struct ifnet *ifp = sc->hn_ifp; u_int hw_tsomax; int tso_minlen; HN_LOCK_ASSERT(sc); if ((ifp->if_capabilities & (IFCAP_TSO4 | IFCAP_TSO6)) == 0) return; KASSERT(sc->hn_ndis_tso_sgmin >= 2, ("invalid NDIS tso sgmin %d", sc->hn_ndis_tso_sgmin)); tso_minlen = sc->hn_ndis_tso_sgmin * mtu; KASSERT(sc->hn_ndis_tso_szmax >= tso_minlen && sc->hn_ndis_tso_szmax <= IP_MAXPACKET, ("invalid NDIS tso szmax %d", sc->hn_ndis_tso_szmax)); if (tso_maxlen < tso_minlen) tso_maxlen = tso_minlen; else if (tso_maxlen > IP_MAXPACKET) tso_maxlen = IP_MAXPACKET; if (tso_maxlen > sc->hn_ndis_tso_szmax) tso_maxlen = sc->hn_ndis_tso_szmax; hw_tsomax = tso_maxlen - (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN); if (hn_xpnt_vf_isready(sc)) { if (hw_tsomax > sc->hn_vf_ifp->if_hw_tsomax) hw_tsomax = sc->hn_vf_ifp->if_hw_tsomax; } ifp->if_hw_tsomax = hw_tsomax; if (bootverbose) if_printf(ifp, "TSO size max %u\n", ifp->if_hw_tsomax); } static void hn_fixup_tx_data(struct hn_softc *sc) { uint64_t csum_assist; int i; hn_set_chim_size(sc, sc->hn_chim_szmax); if (hn_tx_chimney_size > 0 && hn_tx_chimney_size < sc->hn_chim_szmax) hn_set_chim_size(sc, hn_tx_chimney_size); csum_assist = 0; if (sc->hn_caps & HN_CAP_IPCS) csum_assist |= CSUM_IP; if (sc->hn_caps & HN_CAP_TCP4CS) csum_assist |= CSUM_IP_TCP; if ((sc->hn_caps & HN_CAP_UDP4CS) && hn_enable_udp4cs) csum_assist |= CSUM_IP_UDP; if (sc->hn_caps & HN_CAP_TCP6CS) csum_assist |= CSUM_IP6_TCP; if ((sc->hn_caps & HN_CAP_UDP6CS) && hn_enable_udp6cs) csum_assist |= CSUM_IP6_UDP; for (i = 0; i < sc->hn_tx_ring_cnt; ++i) sc->hn_tx_ring[i].hn_csum_assist = csum_assist; if (sc->hn_caps & HN_CAP_HASHVAL) { /* * Support HASHVAL pktinfo on TX path. */ if (bootverbose) if_printf(sc->hn_ifp, "support HASHVAL pktinfo\n"); for (i = 0; i < sc->hn_tx_ring_cnt; ++i) sc->hn_tx_ring[i].hn_tx_flags |= HN_TX_FLAG_HASHVAL; } } static void hn_fixup_rx_data(struct hn_softc *sc) { if (sc->hn_caps & HN_CAP_UDPHASH) { int i; for (i = 0; i < sc->hn_rx_ring_cnt; ++i) sc->hn_rx_ring[i].hn_rx_flags |= HN_RX_FLAG_UDP_HASH; } } static void hn_destroy_tx_data(struct hn_softc *sc) { int i; if (sc->hn_chim != NULL) { if ((sc->hn_flags & HN_FLAG_CHIM_REF) == 0) { hyperv_dmamem_free(&sc->hn_chim_dma, sc->hn_chim); } else { device_printf(sc->hn_dev, "chimney sending buffer is referenced"); } sc->hn_chim = NULL; } if (sc->hn_tx_ring_cnt == 0) return; for (i = 0; i < sc->hn_tx_ring_cnt; ++i) hn_tx_ring_destroy(&sc->hn_tx_ring[i]); free(sc->hn_tx_ring, M_DEVBUF); sc->hn_tx_ring = NULL; sc->hn_tx_ring_cnt = 0; sc->hn_tx_ring_inuse = 0; } #ifdef HN_IFSTART_SUPPORT static void hn_start_taskfunc(void *xtxr, int pending __unused) { struct hn_tx_ring *txr = xtxr; mtx_lock(&txr->hn_tx_lock); hn_start_locked(txr, 0); mtx_unlock(&txr->hn_tx_lock); } static int hn_start_locked(struct hn_tx_ring *txr, int len) { struct hn_softc *sc = txr->hn_sc; struct ifnet *ifp = sc->hn_ifp; int sched = 0; KASSERT(hn_use_if_start, ("hn_start_locked is called, when if_start is disabled")); KASSERT(txr == &sc->hn_tx_ring[0], ("not the first TX ring")); mtx_assert(&txr->hn_tx_lock, MA_OWNED); KASSERT(txr->hn_agg_txd == NULL, ("lingering aggregating txdesc")); if (__predict_false(txr->hn_suspended)) return (0); if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != IFF_DRV_RUNNING) return (0); while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) { struct hn_txdesc *txd; struct mbuf *m_head; int error; IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); if (m_head == NULL) break; if (len > 0 && m_head->m_pkthdr.len > len) { /* * This sending could be time consuming; let callers * dispatch this packet sending (and sending of any * following up packets) to tx taskqueue. */ IFQ_DRV_PREPEND(&ifp->if_snd, m_head); sched = 1; break; } #if defined(INET6) || defined(INET) if (m_head->m_pkthdr.csum_flags & CSUM_TSO) { m_head = hn_tso_fixup(m_head); if (__predict_false(m_head == NULL)) { if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); continue; } } else if (m_head->m_pkthdr.csum_flags & (CSUM_IP_UDP | CSUM_IP_TCP | CSUM_IP6_UDP | CSUM_IP6_TCP)) { m_head = hn_set_hlen(m_head); if (__predict_false(m_head == NULL)) { if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); continue; } } #endif txd = hn_txdesc_get(txr); if (txd == NULL) { txr->hn_no_txdescs++; IFQ_DRV_PREPEND(&ifp->if_snd, m_head); atomic_set_int(&ifp->if_drv_flags, IFF_DRV_OACTIVE); break; } error = hn_encap(ifp, txr, txd, &m_head); if (error) { /* Both txd and m_head are freed */ KASSERT(txr->hn_agg_txd == NULL, ("encap failed w/ pending aggregating txdesc")); continue; } if (txr->hn_agg_pktleft == 0) { if (txr->hn_agg_txd != NULL) { KASSERT(m_head == NULL, ("pending mbuf for aggregating txdesc")); error = hn_flush_txagg(ifp, txr); if (__predict_false(error)) { atomic_set_int(&ifp->if_drv_flags, IFF_DRV_OACTIVE); break; } } else { KASSERT(m_head != NULL, ("mbuf was freed")); error = hn_txpkt(ifp, txr, txd); if (__predict_false(error)) { /* txd is freed, but m_head is not */ IFQ_DRV_PREPEND(&ifp->if_snd, m_head); atomic_set_int(&ifp->if_drv_flags, IFF_DRV_OACTIVE); break; } } } #ifdef INVARIANTS else { KASSERT(txr->hn_agg_txd != NULL, ("no aggregating txdesc")); KASSERT(m_head == NULL, ("pending mbuf for aggregating txdesc")); } #endif } /* Flush pending aggerated transmission. */ if (txr->hn_agg_txd != NULL) hn_flush_txagg(ifp, txr); return (sched); } static void hn_start(struct ifnet *ifp) { struct hn_softc *sc = ifp->if_softc; struct hn_tx_ring *txr = &sc->hn_tx_ring[0]; if (txr->hn_sched_tx) goto do_sched; if (mtx_trylock(&txr->hn_tx_lock)) { int sched; sched = hn_start_locked(txr, txr->hn_direct_tx_size); mtx_unlock(&txr->hn_tx_lock); if (!sched) return; } do_sched: taskqueue_enqueue(txr->hn_tx_taskq, &txr->hn_tx_task); } static void hn_start_txeof_taskfunc(void *xtxr, int pending __unused) { struct hn_tx_ring *txr = xtxr; mtx_lock(&txr->hn_tx_lock); atomic_clear_int(&txr->hn_sc->hn_ifp->if_drv_flags, IFF_DRV_OACTIVE); hn_start_locked(txr, 0); mtx_unlock(&txr->hn_tx_lock); } static void hn_start_txeof(struct hn_tx_ring *txr) { struct hn_softc *sc = txr->hn_sc; struct ifnet *ifp = sc->hn_ifp; KASSERT(txr == &sc->hn_tx_ring[0], ("not the first TX ring")); if (txr->hn_sched_tx) goto do_sched; if (mtx_trylock(&txr->hn_tx_lock)) { int sched; atomic_clear_int(&ifp->if_drv_flags, IFF_DRV_OACTIVE); sched = hn_start_locked(txr, txr->hn_direct_tx_size); mtx_unlock(&txr->hn_tx_lock); if (sched) { taskqueue_enqueue(txr->hn_tx_taskq, &txr->hn_tx_task); } } else { do_sched: /* * Release the OACTIVE earlier, with the hope, that * others could catch up. The task will clear the * flag again with the hn_tx_lock to avoid possible * races. */ atomic_clear_int(&ifp->if_drv_flags, IFF_DRV_OACTIVE); taskqueue_enqueue(txr->hn_tx_taskq, &txr->hn_txeof_task); } } #endif /* HN_IFSTART_SUPPORT */ static int hn_xmit(struct hn_tx_ring *txr, int len) { struct hn_softc *sc = txr->hn_sc; struct ifnet *ifp = sc->hn_ifp; struct mbuf *m_head; int sched = 0; mtx_assert(&txr->hn_tx_lock, MA_OWNED); #ifdef HN_IFSTART_SUPPORT KASSERT(hn_use_if_start == 0, ("hn_xmit is called, when if_start is enabled")); #endif KASSERT(txr->hn_agg_txd == NULL, ("lingering aggregating txdesc")); if (__predict_false(txr->hn_suspended)) return (0); if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || txr->hn_oactive) return (0); while ((m_head = drbr_peek(ifp, txr->hn_mbuf_br)) != NULL) { struct hn_txdesc *txd; int error; if (len > 0 && m_head->m_pkthdr.len > len) { /* * This sending could be time consuming; let callers * dispatch this packet sending (and sending of any * following up packets) to tx taskqueue. */ drbr_putback(ifp, txr->hn_mbuf_br, m_head); sched = 1; break; } txd = hn_txdesc_get(txr); if (txd == NULL) { txr->hn_no_txdescs++; drbr_putback(ifp, txr->hn_mbuf_br, m_head); txr->hn_oactive = 1; break; } error = hn_encap(ifp, txr, txd, &m_head); if (error) { /* Both txd and m_head are freed; discard */ KASSERT(txr->hn_agg_txd == NULL, ("encap failed w/ pending aggregating txdesc")); drbr_advance(ifp, txr->hn_mbuf_br); continue; } if (txr->hn_agg_pktleft == 0) { if (txr->hn_agg_txd != NULL) { KASSERT(m_head == NULL, ("pending mbuf for aggregating txdesc")); error = hn_flush_txagg(ifp, txr); if (__predict_false(error)) { txr->hn_oactive = 1; break; } } else { KASSERT(m_head != NULL, ("mbuf was freed")); error = hn_txpkt(ifp, txr, txd); if (__predict_false(error)) { /* txd is freed, but m_head is not */ drbr_putback(ifp, txr->hn_mbuf_br, m_head); txr->hn_oactive = 1; break; } } } #ifdef INVARIANTS else { KASSERT(txr->hn_agg_txd != NULL, ("no aggregating txdesc")); KASSERT(m_head == NULL, ("pending mbuf for aggregating txdesc")); } #endif /* Sent */ drbr_advance(ifp, txr->hn_mbuf_br); } /* Flush pending aggerated transmission. */ if (txr->hn_agg_txd != NULL) hn_flush_txagg(ifp, txr); return (sched); } static int hn_transmit(struct ifnet *ifp, struct mbuf *m) { struct hn_softc *sc = ifp->if_softc; struct hn_tx_ring *txr; int error, idx = 0; if (sc->hn_xvf_flags & HN_XVFFLAG_ENABLED) { struct rm_priotracker pt; rm_rlock(&sc->hn_vf_lock, &pt); if (__predict_true(sc->hn_xvf_flags & HN_XVFFLAG_ENABLED)) { struct mbuf *m_bpf = NULL; int obytes, omcast; obytes = m->m_pkthdr.len; omcast = (m->m_flags & M_MCAST) != 0; if (sc->hn_xvf_flags & HN_XVFFLAG_ACCBPF) { if (bpf_peers_present(ifp->if_bpf)) { m_bpf = m_copypacket(m, M_NOWAIT); if (m_bpf == NULL) { /* * Failed to grab a shallow * copy; tap now. */ ETHER_BPF_MTAP(ifp, m); } } } else { ETHER_BPF_MTAP(ifp, m); } error = sc->hn_vf_ifp->if_transmit(sc->hn_vf_ifp, m); rm_runlock(&sc->hn_vf_lock, &pt); if (m_bpf != NULL) { if (!error) ETHER_BPF_MTAP(ifp, m_bpf); m_freem(m_bpf); } if (error == ENOBUFS) { if_inc_counter(ifp, IFCOUNTER_OQDROPS, 1); } else if (error) { if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); } else { if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); if_inc_counter(ifp, IFCOUNTER_OBYTES, obytes); if (omcast) { if_inc_counter(ifp, IFCOUNTER_OMCASTS, omcast); } } return (error); } rm_runlock(&sc->hn_vf_lock, &pt); } #if defined(INET6) || defined(INET) /* * Perform TSO packet header fixup or get l2/l3 header length now, * since packet headers should be cache-hot. */ if (m->m_pkthdr.csum_flags & CSUM_TSO) { m = hn_tso_fixup(m); if (__predict_false(m == NULL)) { if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); return EIO; } } else if (m->m_pkthdr.csum_flags & (CSUM_IP_UDP | CSUM_IP_TCP | CSUM_IP6_UDP | CSUM_IP6_TCP)) { m = hn_set_hlen(m); if (__predict_false(m == NULL)) { if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); return EIO; } } #endif /* * Select the TX ring based on flowid */ if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) { #ifdef RSS uint32_t bid; if (rss_hash2bucket(m->m_pkthdr.flowid, M_HASHTYPE_GET(m), &bid) == 0) idx = bid % sc->hn_tx_ring_inuse; else #endif { #if defined(INET6) || defined(INET) int tcpsyn = 0; if (m->m_pkthdr.len < 128 && (m->m_pkthdr.csum_flags & (CSUM_IP_TCP | CSUM_IP6_TCP)) && (m->m_pkthdr.csum_flags & CSUM_TSO) == 0) { m = hn_check_tcpsyn(m, &tcpsyn); if (__predict_false(m == NULL)) { if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); return (EIO); } } #else const int tcpsyn = 0; #endif if (tcpsyn) idx = 0; else idx = m->m_pkthdr.flowid % sc->hn_tx_ring_inuse; } } txr = &sc->hn_tx_ring[idx]; error = drbr_enqueue(ifp, txr->hn_mbuf_br, m); if (error) { if_inc_counter(ifp, IFCOUNTER_OQDROPS, 1); return error; } if (txr->hn_oactive) return 0; if (txr->hn_sched_tx) goto do_sched; if (mtx_trylock(&txr->hn_tx_lock)) { int sched; sched = hn_xmit(txr, txr->hn_direct_tx_size); mtx_unlock(&txr->hn_tx_lock); if (!sched) return 0; } do_sched: taskqueue_enqueue(txr->hn_tx_taskq, &txr->hn_tx_task); return 0; } static void hn_tx_ring_qflush(struct hn_tx_ring *txr) { struct mbuf *m; mtx_lock(&txr->hn_tx_lock); while ((m = buf_ring_dequeue_sc(txr->hn_mbuf_br)) != NULL) m_freem(m); mtx_unlock(&txr->hn_tx_lock); } static void hn_xmit_qflush(struct ifnet *ifp) { struct hn_softc *sc = ifp->if_softc; struct rm_priotracker pt; int i; for (i = 0; i < sc->hn_tx_ring_inuse; ++i) hn_tx_ring_qflush(&sc->hn_tx_ring[i]); if_qflush(ifp); rm_rlock(&sc->hn_vf_lock, &pt); if (sc->hn_xvf_flags & HN_XVFFLAG_ENABLED) sc->hn_vf_ifp->if_qflush(sc->hn_vf_ifp); rm_runlock(&sc->hn_vf_lock, &pt); } static void hn_xmit_txeof(struct hn_tx_ring *txr) { if (txr->hn_sched_tx) goto do_sched; if (mtx_trylock(&txr->hn_tx_lock)) { int sched; txr->hn_oactive = 0; sched = hn_xmit(txr, txr->hn_direct_tx_size); mtx_unlock(&txr->hn_tx_lock); if (sched) { taskqueue_enqueue(txr->hn_tx_taskq, &txr->hn_tx_task); } } else { do_sched: /* * Release the oactive earlier, with the hope, that * others could catch up. The task will clear the * oactive again with the hn_tx_lock to avoid possible * races. */ txr->hn_oactive = 0; taskqueue_enqueue(txr->hn_tx_taskq, &txr->hn_txeof_task); } } static void hn_xmit_taskfunc(void *xtxr, int pending __unused) { struct hn_tx_ring *txr = xtxr; mtx_lock(&txr->hn_tx_lock); hn_xmit(txr, 0); mtx_unlock(&txr->hn_tx_lock); } static void hn_xmit_txeof_taskfunc(void *xtxr, int pending __unused) { struct hn_tx_ring *txr = xtxr; mtx_lock(&txr->hn_tx_lock); txr->hn_oactive = 0; hn_xmit(txr, 0); mtx_unlock(&txr->hn_tx_lock); } static int hn_chan_attach(struct hn_softc *sc, struct vmbus_channel *chan) { struct vmbus_chan_br cbr; struct hn_rx_ring *rxr; struct hn_tx_ring *txr = NULL; int idx, error; idx = vmbus_chan_subidx(chan); /* * Link this channel to RX/TX ring. */ KASSERT(idx >= 0 && idx < sc->hn_rx_ring_inuse, ("invalid channel index %d, should > 0 && < %d", idx, sc->hn_rx_ring_inuse)); rxr = &sc->hn_rx_ring[idx]; KASSERT((rxr->hn_rx_flags & HN_RX_FLAG_ATTACHED) == 0, ("RX ring %d already attached", idx)); rxr->hn_rx_flags |= HN_RX_FLAG_ATTACHED; rxr->hn_chan = chan; if (bootverbose) { if_printf(sc->hn_ifp, "link RX ring %d to chan%u\n", idx, vmbus_chan_id(chan)); } if (idx < sc->hn_tx_ring_inuse) { txr = &sc->hn_tx_ring[idx]; KASSERT((txr->hn_tx_flags & HN_TX_FLAG_ATTACHED) == 0, ("TX ring %d already attached", idx)); txr->hn_tx_flags |= HN_TX_FLAG_ATTACHED; txr->hn_chan = chan; if (bootverbose) { if_printf(sc->hn_ifp, "link TX ring %d to chan%u\n", idx, vmbus_chan_id(chan)); } } /* Bind this channel to a proper CPU. */ vmbus_chan_cpu_set(chan, HN_RING_IDX2CPU(sc, idx)); /* * Open this channel */ cbr.cbr = rxr->hn_br; cbr.cbr_paddr = rxr->hn_br_dma.hv_paddr; cbr.cbr_txsz = HN_TXBR_SIZE; cbr.cbr_rxsz = HN_RXBR_SIZE; error = vmbus_chan_open_br(chan, &cbr, NULL, 0, hn_chan_callback, rxr); if (error) { if (error == EISCONN) { if_printf(sc->hn_ifp, "bufring is connected after " "chan%u open failure\n", vmbus_chan_id(chan)); rxr->hn_rx_flags |= HN_RX_FLAG_BR_REF; } else { if_printf(sc->hn_ifp, "open chan%u failed: %d\n", vmbus_chan_id(chan), error); } } return (error); } static void hn_chan_detach(struct hn_softc *sc, struct vmbus_channel *chan) { struct hn_rx_ring *rxr; int idx, error; idx = vmbus_chan_subidx(chan); /* * Link this channel to RX/TX ring. */ KASSERT(idx >= 0 && idx < sc->hn_rx_ring_inuse, ("invalid channel index %d, should > 0 && < %d", idx, sc->hn_rx_ring_inuse)); rxr = &sc->hn_rx_ring[idx]; KASSERT((rxr->hn_rx_flags & HN_RX_FLAG_ATTACHED), ("RX ring %d is not attached", idx)); rxr->hn_rx_flags &= ~HN_RX_FLAG_ATTACHED; if (idx < sc->hn_tx_ring_inuse) { struct hn_tx_ring *txr = &sc->hn_tx_ring[idx]; KASSERT((txr->hn_tx_flags & HN_TX_FLAG_ATTACHED), ("TX ring %d is not attached attached", idx)); txr->hn_tx_flags &= ~HN_TX_FLAG_ATTACHED; } /* * Close this channel. * * NOTE: * Channel closing does _not_ destroy the target channel. */ error = vmbus_chan_close_direct(chan); if (error == EISCONN) { if_printf(sc->hn_ifp, "chan%u bufring is connected " "after being closed\n", vmbus_chan_id(chan)); rxr->hn_rx_flags |= HN_RX_FLAG_BR_REF; } else if (error) { if_printf(sc->hn_ifp, "chan%u close failed: %d\n", vmbus_chan_id(chan), error); } } static int hn_attach_subchans(struct hn_softc *sc) { struct vmbus_channel **subchans; int subchan_cnt = sc->hn_rx_ring_inuse - 1; int i, error = 0; KASSERT(subchan_cnt > 0, ("no sub-channels")); /* Attach the sub-channels. */ subchans = vmbus_subchan_get(sc->hn_prichan, subchan_cnt); for (i = 0; i < subchan_cnt; ++i) { int error1; error1 = hn_chan_attach(sc, subchans[i]); if (error1) { error = error1; /* Move on; all channels will be detached later. */ } } vmbus_subchan_rel(subchans, subchan_cnt); if (error) { if_printf(sc->hn_ifp, "sub-channels attach failed: %d\n", error); } else { if (bootverbose) { if_printf(sc->hn_ifp, "%d sub-channels attached\n", subchan_cnt); } } return (error); } static void hn_detach_allchans(struct hn_softc *sc) { struct vmbus_channel **subchans; int subchan_cnt = sc->hn_rx_ring_inuse - 1; int i; if (subchan_cnt == 0) goto back; /* Detach the sub-channels. */ subchans = vmbus_subchan_get(sc->hn_prichan, subchan_cnt); for (i = 0; i < subchan_cnt; ++i) hn_chan_detach(sc, subchans[i]); vmbus_subchan_rel(subchans, subchan_cnt); back: /* * Detach the primary channel, _after_ all sub-channels * are detached. */ hn_chan_detach(sc, sc->hn_prichan); /* Wait for sub-channels to be destroyed, if any. */ vmbus_subchan_drain(sc->hn_prichan); #ifdef INVARIANTS for (i = 0; i < sc->hn_rx_ring_cnt; ++i) { KASSERT((sc->hn_rx_ring[i].hn_rx_flags & HN_RX_FLAG_ATTACHED) == 0, ("%dth RX ring is still attached", i)); } for (i = 0; i < sc->hn_tx_ring_cnt; ++i) { KASSERT((sc->hn_tx_ring[i].hn_tx_flags & HN_TX_FLAG_ATTACHED) == 0, ("%dth TX ring is still attached", i)); } #endif } static int hn_synth_alloc_subchans(struct hn_softc *sc, int *nsubch) { struct vmbus_channel **subchans; int nchan, rxr_cnt, error; nchan = *nsubch + 1; if (nchan == 1) { /* * Multiple RX/TX rings are not requested. */ *nsubch = 0; return (0); } /* * Query RSS capabilities, e.g. # of RX rings, and # of indirect * table entries. */ error = hn_rndis_query_rsscaps(sc, &rxr_cnt); if (error) { /* No RSS; this is benign. */ *nsubch = 0; return (0); } if (bootverbose) { if_printf(sc->hn_ifp, "RX rings offered %u, requested %d\n", rxr_cnt, nchan); } if (nchan > rxr_cnt) nchan = rxr_cnt; if (nchan == 1) { if_printf(sc->hn_ifp, "only 1 channel is supported, no vRSS\n"); *nsubch = 0; return (0); } /* * Allocate sub-channels from NVS. */ *nsubch = nchan - 1; error = hn_nvs_alloc_subchans(sc, nsubch); if (error || *nsubch == 0) { /* Failed to allocate sub-channels. */ *nsubch = 0; return (0); } /* * Wait for all sub-channels to become ready before moving on. */ subchans = vmbus_subchan_get(sc->hn_prichan, *nsubch); vmbus_subchan_rel(subchans, *nsubch); return (0); } static bool hn_synth_attachable(const struct hn_softc *sc) { int i; if (sc->hn_flags & HN_FLAG_ERRORS) return (false); for (i = 0; i < sc->hn_rx_ring_cnt; ++i) { const struct hn_rx_ring *rxr = &sc->hn_rx_ring[i]; if (rxr->hn_rx_flags & HN_RX_FLAG_BR_REF) return (false); } return (true); } /* * Make sure that the RX filter is zero after the successful * RNDIS initialization. * * NOTE: * Under certain conditions on certain versions of Hyper-V, * the RNDIS rxfilter is _not_ zero on the hypervisor side * after the successful RNDIS initialization, which breaks * the assumption of any following code (well, it breaks the * RNDIS API contract actually). Clear the RNDIS rxfilter * explicitly, drain packets sneaking through, and drain the * interrupt taskqueues scheduled due to the stealth packets. */ static void hn_rndis_init_fixat(struct hn_softc *sc, int nchan) { hn_disable_rx(sc); hn_drain_rxtx(sc, nchan); } static int hn_synth_attach(struct hn_softc *sc, int mtu) { #define ATTACHED_NVS 0x0002 #define ATTACHED_RNDIS 0x0004 struct ndis_rssprm_toeplitz *rss = &sc->hn_rss; int error, nsubch, nchan = 1, i, rndis_inited; uint32_t old_caps, attached = 0; KASSERT((sc->hn_flags & HN_FLAG_SYNTH_ATTACHED) == 0, ("synthetic parts were attached")); if (!hn_synth_attachable(sc)) return (ENXIO); /* Save capabilities for later verification. */ old_caps = sc->hn_caps; sc->hn_caps = 0; /* Clear RSS stuffs. */ sc->hn_rss_ind_size = 0; sc->hn_rss_hash = 0; sc->hn_rss_hcap = 0; /* * Attach the primary channel _before_ attaching NVS and RNDIS. */ error = hn_chan_attach(sc, sc->hn_prichan); if (error) goto failed; /* * Attach NVS. */ error = hn_nvs_attach(sc, mtu); if (error) goto failed; attached |= ATTACHED_NVS; /* * Attach RNDIS _after_ NVS is attached. */ error = hn_rndis_attach(sc, mtu, &rndis_inited); if (rndis_inited) attached |= ATTACHED_RNDIS; if (error) goto failed; /* * Make sure capabilities are not changed. */ if (device_is_attached(sc->hn_dev) && old_caps != sc->hn_caps) { if_printf(sc->hn_ifp, "caps mismatch old 0x%08x, new 0x%08x\n", old_caps, sc->hn_caps); error = ENXIO; goto failed; } /* * Allocate sub-channels for multi-TX/RX rings. * * NOTE: * The # of RX rings that can be used is equivalent to the # of * channels to be requested. */ nsubch = sc->hn_rx_ring_cnt - 1; error = hn_synth_alloc_subchans(sc, &nsubch); if (error) goto failed; /* NOTE: _Full_ synthetic parts detach is required now. */ sc->hn_flags |= HN_FLAG_SYNTH_ATTACHED; /* * Set the # of TX/RX rings that could be used according to * the # of channels that NVS offered. */ nchan = nsubch + 1; hn_set_ring_inuse(sc, nchan); if (nchan == 1) { /* Only the primary channel can be used; done */ goto back; } /* * Attach the sub-channels. * * NOTE: hn_set_ring_inuse() _must_ have been called. */ error = hn_attach_subchans(sc); if (error) goto failed; /* * Configure RSS key and indirect table _after_ all sub-channels * are attached. */ if ((sc->hn_flags & HN_FLAG_HAS_RSSKEY) == 0) { /* * RSS key is not set yet; set it to the default RSS key. */ if (bootverbose) if_printf(sc->hn_ifp, "setup default RSS key\n"); #ifdef RSS rss_getkey(rss->rss_key); #else memcpy(rss->rss_key, hn_rss_key_default, sizeof(rss->rss_key)); #endif sc->hn_flags |= HN_FLAG_HAS_RSSKEY; } if ((sc->hn_flags & HN_FLAG_HAS_RSSIND) == 0) { /* * RSS indirect table is not set yet; set it up in round- * robin fashion. */ if (bootverbose) { if_printf(sc->hn_ifp, "setup default RSS indirect " "table\n"); } for (i = 0; i < NDIS_HASH_INDCNT; ++i) { uint32_t subidx; #ifdef RSS subidx = rss_get_indirection_to_bucket(i); #else subidx = i; #endif rss->rss_ind[i] = subidx % nchan; } sc->hn_flags |= HN_FLAG_HAS_RSSIND; } else { /* * # of usable channels may be changed, so we have to * make sure that all entries in RSS indirect table * are valid. * * NOTE: hn_set_ring_inuse() _must_ have been called. */ hn_rss_ind_fixup(sc); } sc->hn_rss_hash = sc->hn_rss_hcap; if ((sc->hn_flags & HN_FLAG_RXVF) || (sc->hn_xvf_flags & HN_XVFFLAG_ENABLED)) { /* NOTE: Don't reconfigure RSS; will do immediately. */ hn_vf_rss_fixup(sc, false); } error = hn_rndis_conf_rss(sc, NDIS_RSS_FLAG_NONE); if (error) goto failed; back: /* * Fixup transmission aggregation setup. */ hn_set_txagg(sc); hn_rndis_init_fixat(sc, nchan); return (0); failed: if (sc->hn_flags & HN_FLAG_SYNTH_ATTACHED) { hn_rndis_init_fixat(sc, nchan); hn_synth_detach(sc); } else { if (attached & ATTACHED_RNDIS) { hn_rndis_init_fixat(sc, nchan); hn_rndis_detach(sc); } if (attached & ATTACHED_NVS) hn_nvs_detach(sc); hn_chan_detach(sc, sc->hn_prichan); /* Restore old capabilities. */ sc->hn_caps = old_caps; } return (error); #undef ATTACHED_RNDIS #undef ATTACHED_NVS } /* * NOTE: * The interface must have been suspended though hn_suspend(), before * this function get called. */ static void hn_synth_detach(struct hn_softc *sc) { KASSERT(sc->hn_flags & HN_FLAG_SYNTH_ATTACHED, ("synthetic parts were not attached")); /* Detach the RNDIS first. */ hn_rndis_detach(sc); /* Detach NVS. */ hn_nvs_detach(sc); /* Detach all of the channels. */ hn_detach_allchans(sc); if (vmbus_current_version >= VMBUS_VERSION_WIN10 && sc->hn_rxbuf_gpadl != 0) { /* * Host is post-Win2016, disconnect RXBUF from primary channel here. */ int error; error = vmbus_chan_gpadl_disconnect(sc->hn_prichan, sc->hn_rxbuf_gpadl); if (error) { if_printf(sc->hn_ifp, "rxbuf gpadl disconn failed: %d\n", error); sc->hn_flags |= HN_FLAG_RXBUF_REF; } sc->hn_rxbuf_gpadl = 0; } if (vmbus_current_version >= VMBUS_VERSION_WIN10 && sc->hn_chim_gpadl != 0) { /* * Host is post-Win2016, disconnect chimney sending buffer from * primary channel here. */ int error; error = vmbus_chan_gpadl_disconnect(sc->hn_prichan, sc->hn_chim_gpadl); if (error) { if_printf(sc->hn_ifp, "chim gpadl disconn failed: %d\n", error); sc->hn_flags |= HN_FLAG_CHIM_REF; } sc->hn_chim_gpadl = 0; } sc->hn_flags &= ~HN_FLAG_SYNTH_ATTACHED; } static void hn_set_ring_inuse(struct hn_softc *sc, int ring_cnt) { KASSERT(ring_cnt > 0 && ring_cnt <= sc->hn_rx_ring_cnt, ("invalid ring count %d", ring_cnt)); if (sc->hn_tx_ring_cnt > ring_cnt) sc->hn_tx_ring_inuse = ring_cnt; else sc->hn_tx_ring_inuse = sc->hn_tx_ring_cnt; sc->hn_rx_ring_inuse = ring_cnt; #ifdef RSS if (sc->hn_rx_ring_inuse != rss_getnumbuckets()) { if_printf(sc->hn_ifp, "# of RX rings (%d) does not match " "# of RSS buckets (%d)\n", sc->hn_rx_ring_inuse, rss_getnumbuckets()); } #endif if (bootverbose) { if_printf(sc->hn_ifp, "%d TX ring, %d RX ring\n", sc->hn_tx_ring_inuse, sc->hn_rx_ring_inuse); } } static void hn_chan_drain(struct hn_softc *sc, struct vmbus_channel *chan) { /* * NOTE: * The TX bufring will not be drained by the hypervisor, * if the primary channel is revoked. */ while (!vmbus_chan_rx_empty(chan) || (!vmbus_chan_is_revoked(sc->hn_prichan) && !vmbus_chan_tx_empty(chan))) pause("waitch", 1); vmbus_chan_intr_drain(chan); } static void hn_disable_rx(struct hn_softc *sc) { /* * Disable RX by clearing RX filter forcefully. */ sc->hn_rx_filter = NDIS_PACKET_TYPE_NONE; hn_rndis_set_rxfilter(sc, sc->hn_rx_filter); /* ignore error */ /* * Give RNDIS enough time to flush all pending data packets. */ pause("waitrx", (200 * hz) / 1000); } /* * NOTE: * RX/TX _must_ have been suspended/disabled, before this function * is called. */ static void hn_drain_rxtx(struct hn_softc *sc, int nchan) { struct vmbus_channel **subch = NULL; int nsubch; /* * Drain RX/TX bufrings and interrupts. */ nsubch = nchan - 1; if (nsubch > 0) subch = vmbus_subchan_get(sc->hn_prichan, nsubch); if (subch != NULL) { int i; for (i = 0; i < nsubch; ++i) hn_chan_drain(sc, subch[i]); } hn_chan_drain(sc, sc->hn_prichan); if (subch != NULL) vmbus_subchan_rel(subch, nsubch); } static void hn_suspend_data(struct hn_softc *sc) { struct hn_tx_ring *txr; int i; HN_LOCK_ASSERT(sc); /* * Suspend TX. */ for (i = 0; i < sc->hn_tx_ring_inuse; ++i) { txr = &sc->hn_tx_ring[i]; mtx_lock(&txr->hn_tx_lock); txr->hn_suspended = 1; mtx_unlock(&txr->hn_tx_lock); /* No one is able send more packets now. */ /* * Wait for all pending sends to finish. * * NOTE: * We will _not_ receive all pending send-done, if the * primary channel is revoked. */ while (hn_tx_ring_pending(txr) && !vmbus_chan_is_revoked(sc->hn_prichan)) pause("hnwtx", 1 /* 1 tick */); } /* * Disable RX. */ hn_disable_rx(sc); /* * Drain RX/TX. */ hn_drain_rxtx(sc, sc->hn_rx_ring_inuse); /* * Drain any pending TX tasks. * * NOTE: * The above hn_drain_rxtx() can dispatch TX tasks, so the TX * tasks will have to be drained _after_ the above hn_drain_rxtx(). */ for (i = 0; i < sc->hn_tx_ring_inuse; ++i) { txr = &sc->hn_tx_ring[i]; taskqueue_drain(txr->hn_tx_taskq, &txr->hn_tx_task); taskqueue_drain(txr->hn_tx_taskq, &txr->hn_txeof_task); } } static void hn_suspend_mgmt_taskfunc(void *xsc, int pending __unused) { ((struct hn_softc *)xsc)->hn_mgmt_taskq = NULL; } static void hn_suspend_mgmt(struct hn_softc *sc) { struct task task; HN_LOCK_ASSERT(sc); /* * Make sure that hn_mgmt_taskq0 can nolonger be accessed * through hn_mgmt_taskq. */ TASK_INIT(&task, 0, hn_suspend_mgmt_taskfunc, sc); vmbus_chan_run_task(sc->hn_prichan, &task); /* * Make sure that all pending management tasks are completed. */ taskqueue_drain(sc->hn_mgmt_taskq0, &sc->hn_netchg_init); taskqueue_drain_timeout(sc->hn_mgmt_taskq0, &sc->hn_netchg_status); taskqueue_drain_all(sc->hn_mgmt_taskq0); } static void hn_suspend(struct hn_softc *sc) { /* Disable polling. */ hn_polling(sc, 0); /* * If the non-transparent mode VF is activated, the synthetic * device is receiving packets, so the data path of the * synthetic device must be suspended. */ if ((sc->hn_ifp->if_drv_flags & IFF_DRV_RUNNING) || (sc->hn_flags & HN_FLAG_RXVF)) hn_suspend_data(sc); hn_suspend_mgmt(sc); } static void hn_resume_tx(struct hn_softc *sc, int tx_ring_cnt) { int i; KASSERT(tx_ring_cnt <= sc->hn_tx_ring_cnt, ("invalid TX ring count %d", tx_ring_cnt)); for (i = 0; i < tx_ring_cnt; ++i) { struct hn_tx_ring *txr = &sc->hn_tx_ring[i]; mtx_lock(&txr->hn_tx_lock); txr->hn_suspended = 0; mtx_unlock(&txr->hn_tx_lock); } } static void hn_resume_data(struct hn_softc *sc) { int i; HN_LOCK_ASSERT(sc); /* * Re-enable RX. */ hn_rxfilter_config(sc); /* * Make sure to clear suspend status on "all" TX rings, * since hn_tx_ring_inuse can be changed after * hn_suspend_data(). */ hn_resume_tx(sc, sc->hn_tx_ring_cnt); #ifdef HN_IFSTART_SUPPORT if (!hn_use_if_start) #endif { /* * Flush unused drbrs, since hn_tx_ring_inuse may be * reduced. */ for (i = sc->hn_tx_ring_inuse; i < sc->hn_tx_ring_cnt; ++i) hn_tx_ring_qflush(&sc->hn_tx_ring[i]); } /* * Kick start TX. */ for (i = 0; i < sc->hn_tx_ring_inuse; ++i) { struct hn_tx_ring *txr = &sc->hn_tx_ring[i]; /* * Use txeof task, so that any pending oactive can be * cleared properly. */ taskqueue_enqueue(txr->hn_tx_taskq, &txr->hn_txeof_task); } } static void hn_resume_mgmt(struct hn_softc *sc) { sc->hn_mgmt_taskq = sc->hn_mgmt_taskq0; /* * Kick off network change detection, if it was pending. * If no network change was pending, start link status * checks, which is more lightweight than network change * detection. */ if (sc->hn_link_flags & HN_LINK_FLAG_NETCHG) hn_change_network(sc); else hn_update_link_status(sc); } static void hn_resume(struct hn_softc *sc) { /* * If the non-transparent mode VF is activated, the synthetic * device have to receive packets, so the data path of the * synthetic device must be resumed. */ if ((sc->hn_ifp->if_drv_flags & IFF_DRV_RUNNING) || (sc->hn_flags & HN_FLAG_RXVF)) hn_resume_data(sc); /* * Don't resume link status change if VF is attached/activated. * - In the non-transparent VF mode, the synthetic device marks * link down until the VF is deactivated; i.e. VF is down. * - In transparent VF mode, VF's media status is used until * the VF is detached. */ if ((sc->hn_flags & HN_FLAG_RXVF) == 0 && !(hn_xpnt_vf && sc->hn_vf_ifp != NULL)) hn_resume_mgmt(sc); /* * Re-enable polling if this interface is running and * the polling is requested. */ if ((sc->hn_ifp->if_drv_flags & IFF_DRV_RUNNING) && sc->hn_pollhz > 0) hn_polling(sc, sc->hn_pollhz); } static void hn_rndis_rx_status(struct hn_softc *sc, const void *data, int dlen) { const struct rndis_status_msg *msg; int ofs; if (dlen < sizeof(*msg)) { if_printf(sc->hn_ifp, "invalid RNDIS status\n"); return; } msg = data; switch (msg->rm_status) { case RNDIS_STATUS_MEDIA_CONNECT: case RNDIS_STATUS_MEDIA_DISCONNECT: hn_update_link_status(sc); break; case RNDIS_STATUS_TASK_OFFLOAD_CURRENT_CONFIG: case RNDIS_STATUS_LINK_SPEED_CHANGE: /* Not really useful; ignore. */ break; case RNDIS_STATUS_NETWORK_CHANGE: ofs = RNDIS_STBUFOFFSET_ABS(msg->rm_stbufoffset); if (dlen < ofs + msg->rm_stbuflen || msg->rm_stbuflen < sizeof(uint32_t)) { if_printf(sc->hn_ifp, "network changed\n"); } else { uint32_t change; memcpy(&change, ((const uint8_t *)msg) + ofs, sizeof(change)); if_printf(sc->hn_ifp, "network changed, change %u\n", change); } hn_change_network(sc); break; default: if_printf(sc->hn_ifp, "unknown RNDIS status 0x%08x\n", msg->rm_status); break; } } static int hn_rndis_rxinfo(const void *info_data, int info_dlen, struct hn_rxinfo *info) { const struct rndis_pktinfo *pi = info_data; uint32_t mask = 0; while (info_dlen != 0) { const void *data; uint32_t dlen; if (__predict_false(info_dlen < sizeof(*pi))) return (EINVAL); if (__predict_false(info_dlen < pi->rm_size)) return (EINVAL); info_dlen -= pi->rm_size; if (__predict_false(pi->rm_size & RNDIS_PKTINFO_SIZE_ALIGNMASK)) return (EINVAL); if (__predict_false(pi->rm_size < pi->rm_pktinfooffset)) return (EINVAL); dlen = pi->rm_size - pi->rm_pktinfooffset; data = pi->rm_data; switch (pi->rm_type) { case NDIS_PKTINFO_TYPE_VLAN: if (__predict_false(dlen < NDIS_VLAN_INFO_SIZE)) return (EINVAL); info->vlan_info = *((const uint32_t *)data); mask |= HN_RXINFO_VLAN; break; case NDIS_PKTINFO_TYPE_CSUM: if (__predict_false(dlen < NDIS_RXCSUM_INFO_SIZE)) return (EINVAL); info->csum_info = *((const uint32_t *)data); mask |= HN_RXINFO_CSUM; break; case HN_NDIS_PKTINFO_TYPE_HASHVAL: if (__predict_false(dlen < HN_NDIS_HASH_VALUE_SIZE)) return (EINVAL); info->hash_value = *((const uint32_t *)data); mask |= HN_RXINFO_HASHVAL; break; case HN_NDIS_PKTINFO_TYPE_HASHINF: if (__predict_false(dlen < HN_NDIS_HASH_INFO_SIZE)) return (EINVAL); info->hash_info = *((const uint32_t *)data); mask |= HN_RXINFO_HASHINF; break; default: goto next; } if (mask == HN_RXINFO_ALL) { /* All found; done */ break; } next: pi = (const struct rndis_pktinfo *) ((const uint8_t *)pi + pi->rm_size); } /* * Final fixup. * - If there is no hash value, invalidate the hash info. */ if ((mask & HN_RXINFO_HASHVAL) == 0) info->hash_info = HN_NDIS_HASH_INFO_INVALID; return (0); } static __inline bool hn_rndis_check_overlap(int off, int len, int check_off, int check_len) { if (off < check_off) { if (__predict_true(off + len <= check_off)) return (false); } else if (off > check_off) { if (__predict_true(check_off + check_len <= off)) return (false); } return (true); } static void hn_rndis_rx_data(struct hn_rx_ring *rxr, const void *data, int dlen) { const struct rndis_packet_msg *pkt; struct hn_rxinfo info; int data_off, pktinfo_off, data_len, pktinfo_len; /* * Check length. */ if (__predict_false(dlen < sizeof(*pkt))) { if_printf(rxr->hn_ifp, "invalid RNDIS packet msg\n"); return; } pkt = data; if (__predict_false(dlen < pkt->rm_len)) { if_printf(rxr->hn_ifp, "truncated RNDIS packet msg, " "dlen %d, msglen %u\n", dlen, pkt->rm_len); return; } if (__predict_false(pkt->rm_len < pkt->rm_datalen + pkt->rm_oobdatalen + pkt->rm_pktinfolen)) { if_printf(rxr->hn_ifp, "invalid RNDIS packet msglen, " "msglen %u, data %u, oob %u, pktinfo %u\n", pkt->rm_len, pkt->rm_datalen, pkt->rm_oobdatalen, pkt->rm_pktinfolen); return; } if (__predict_false(pkt->rm_datalen == 0)) { if_printf(rxr->hn_ifp, "invalid RNDIS packet msg, no data\n"); return; } /* * Check offests. */ #define IS_OFFSET_INVALID(ofs) \ ((ofs) < RNDIS_PACKET_MSG_OFFSET_MIN || \ ((ofs) & RNDIS_PACKET_MSG_OFFSET_ALIGNMASK)) /* XXX Hyper-V does not meet data offset alignment requirement */ if (__predict_false(pkt->rm_dataoffset < RNDIS_PACKET_MSG_OFFSET_MIN)) { if_printf(rxr->hn_ifp, "invalid RNDIS packet msg, " "data offset %u\n", pkt->rm_dataoffset); return; } if (__predict_false(pkt->rm_oobdataoffset > 0 && IS_OFFSET_INVALID(pkt->rm_oobdataoffset))) { if_printf(rxr->hn_ifp, "invalid RNDIS packet msg, " "oob offset %u\n", pkt->rm_oobdataoffset); return; } if (__predict_true(pkt->rm_pktinfooffset > 0) && __predict_false(IS_OFFSET_INVALID(pkt->rm_pktinfooffset))) { if_printf(rxr->hn_ifp, "invalid RNDIS packet msg, " "pktinfo offset %u\n", pkt->rm_pktinfooffset); return; } #undef IS_OFFSET_INVALID data_off = RNDIS_PACKET_MSG_OFFSET_ABS(pkt->rm_dataoffset); data_len = pkt->rm_datalen; pktinfo_off = RNDIS_PACKET_MSG_OFFSET_ABS(pkt->rm_pktinfooffset); pktinfo_len = pkt->rm_pktinfolen; /* * Check OOB coverage. */ if (__predict_false(pkt->rm_oobdatalen != 0)) { int oob_off, oob_len; if_printf(rxr->hn_ifp, "got oobdata\n"); oob_off = RNDIS_PACKET_MSG_OFFSET_ABS(pkt->rm_oobdataoffset); oob_len = pkt->rm_oobdatalen; if (__predict_false(oob_off + oob_len > pkt->rm_len)) { if_printf(rxr->hn_ifp, "invalid RNDIS packet msg, " "oob overflow, msglen %u, oob abs %d len %d\n", pkt->rm_len, oob_off, oob_len); return; } /* * Check against data. */ if (hn_rndis_check_overlap(oob_off, oob_len, data_off, data_len)) { if_printf(rxr->hn_ifp, "invalid RNDIS packet msg, " "oob overlaps data, oob abs %d len %d, " "data abs %d len %d\n", oob_off, oob_len, data_off, data_len); return; } /* * Check against pktinfo. */ if (pktinfo_len != 0 && hn_rndis_check_overlap(oob_off, oob_len, pktinfo_off, pktinfo_len)) { if_printf(rxr->hn_ifp, "invalid RNDIS packet msg, " "oob overlaps pktinfo, oob abs %d len %d, " "pktinfo abs %d len %d\n", oob_off, oob_len, pktinfo_off, pktinfo_len); return; } } /* * Check per-packet-info coverage and find useful per-packet-info. */ info.vlan_info = HN_NDIS_VLAN_INFO_INVALID; info.csum_info = HN_NDIS_RXCSUM_INFO_INVALID; info.hash_info = HN_NDIS_HASH_INFO_INVALID; if (__predict_true(pktinfo_len != 0)) { bool overlap; int error; if (__predict_false(pktinfo_off + pktinfo_len > pkt->rm_len)) { if_printf(rxr->hn_ifp, "invalid RNDIS packet msg, " "pktinfo overflow, msglen %u, " "pktinfo abs %d len %d\n", pkt->rm_len, pktinfo_off, pktinfo_len); return; } /* * Check packet info coverage. */ overlap = hn_rndis_check_overlap(pktinfo_off, pktinfo_len, data_off, data_len); if (__predict_false(overlap)) { if_printf(rxr->hn_ifp, "invalid RNDIS packet msg, " "pktinfo overlap data, pktinfo abs %d len %d, " "data abs %d len %d\n", pktinfo_off, pktinfo_len, data_off, data_len); return; } /* * Find useful per-packet-info. */ error = hn_rndis_rxinfo(((const uint8_t *)pkt) + pktinfo_off, pktinfo_len, &info); if (__predict_false(error)) { if_printf(rxr->hn_ifp, "invalid RNDIS packet msg " "pktinfo\n"); return; } } if (__predict_false(data_off + data_len > pkt->rm_len)) { if_printf(rxr->hn_ifp, "invalid RNDIS packet msg, " "data overflow, msglen %u, data abs %d len %d\n", pkt->rm_len, data_off, data_len); return; } hn_rxpkt(rxr, ((const uint8_t *)pkt) + data_off, data_len, &info); } static __inline void hn_rndis_rxpkt(struct hn_rx_ring *rxr, const void *data, int dlen) { const struct rndis_msghdr *hdr; if (__predict_false(dlen < sizeof(*hdr))) { if_printf(rxr->hn_ifp, "invalid RNDIS msg\n"); return; } hdr = data; if (__predict_true(hdr->rm_type == REMOTE_NDIS_PACKET_MSG)) { /* Hot data path. */ hn_rndis_rx_data(rxr, data, dlen); /* Done! */ return; } if (hdr->rm_type == REMOTE_NDIS_INDICATE_STATUS_MSG) hn_rndis_rx_status(rxr->hn_ifp->if_softc, data, dlen); else hn_rndis_rx_ctrl(rxr->hn_ifp->if_softc, data, dlen); } static void hn_nvs_handle_notify(struct hn_softc *sc, const struct vmbus_chanpkt_hdr *pkt) { const struct hn_nvs_hdr *hdr; if (VMBUS_CHANPKT_DATALEN(pkt) < sizeof(*hdr)) { if_printf(sc->hn_ifp, "invalid nvs notify\n"); return; } hdr = VMBUS_CHANPKT_CONST_DATA(pkt); if (hdr->nvs_type == HN_NVS_TYPE_TXTBL_NOTE) { /* Useless; ignore */ return; } if_printf(sc->hn_ifp, "got notify, nvs type %u\n", hdr->nvs_type); } static void hn_nvs_handle_comp(struct hn_softc *sc, struct vmbus_channel *chan, const struct vmbus_chanpkt_hdr *pkt) { struct hn_nvs_sendctx *sndc; sndc = (struct hn_nvs_sendctx *)(uintptr_t)pkt->cph_xactid; sndc->hn_cb(sndc, sc, chan, VMBUS_CHANPKT_CONST_DATA(pkt), VMBUS_CHANPKT_DATALEN(pkt)); /* * NOTE: * 'sndc' CAN NOT be accessed anymore, since it can be freed by * its callback. */ } static void hn_nvs_handle_rxbuf(struct hn_rx_ring *rxr, struct vmbus_channel *chan, const struct vmbus_chanpkt_hdr *pkthdr) { const struct vmbus_chanpkt_rxbuf *pkt; const struct hn_nvs_hdr *nvs_hdr; int count, i, hlen; if (__predict_false(VMBUS_CHANPKT_DATALEN(pkthdr) < sizeof(*nvs_hdr))) { if_printf(rxr->hn_ifp, "invalid nvs RNDIS\n"); return; } nvs_hdr = VMBUS_CHANPKT_CONST_DATA(pkthdr); /* Make sure that this is a RNDIS message. */ if (__predict_false(nvs_hdr->nvs_type != HN_NVS_TYPE_RNDIS)) { if_printf(rxr->hn_ifp, "nvs type %u, not RNDIS\n", nvs_hdr->nvs_type); return; } hlen = VMBUS_CHANPKT_GETLEN(pkthdr->cph_hlen); if (__predict_false(hlen < sizeof(*pkt))) { if_printf(rxr->hn_ifp, "invalid rxbuf chanpkt\n"); return; } pkt = (const struct vmbus_chanpkt_rxbuf *)pkthdr; if (__predict_false(pkt->cp_rxbuf_id != HN_NVS_RXBUF_SIG)) { if_printf(rxr->hn_ifp, "invalid rxbuf_id 0x%08x\n", pkt->cp_rxbuf_id); return; } count = pkt->cp_rxbuf_cnt; if (__predict_false(hlen < __offsetof(struct vmbus_chanpkt_rxbuf, cp_rxbuf[count]))) { if_printf(rxr->hn_ifp, "invalid rxbuf_cnt %d\n", count); return; } /* Each range represents 1 RNDIS pkt that contains 1 Ethernet frame */ for (i = 0; i < count; ++i) { int ofs, len; ofs = pkt->cp_rxbuf[i].rb_ofs; len = pkt->cp_rxbuf[i].rb_len; if (__predict_false(ofs + len > HN_RXBUF_SIZE)) { if_printf(rxr->hn_ifp, "%dth RNDIS msg overflow rxbuf, " "ofs %d, len %d\n", i, ofs, len); continue; } hn_rndis_rxpkt(rxr, rxr->hn_rxbuf + ofs, len); } /* * Ack the consumed RXBUF associated w/ this channel packet, * so that this RXBUF can be recycled by the hypervisor. */ hn_nvs_ack_rxbuf(rxr, chan, pkt->cp_hdr.cph_xactid); } static void hn_nvs_ack_rxbuf(struct hn_rx_ring *rxr, struct vmbus_channel *chan, uint64_t tid) { struct hn_nvs_rndis_ack ack; int retries, error; ack.nvs_type = HN_NVS_TYPE_RNDIS_ACK; ack.nvs_status = HN_NVS_STATUS_OK; retries = 0; again: error = vmbus_chan_send(chan, VMBUS_CHANPKT_TYPE_COMP, VMBUS_CHANPKT_FLAG_NONE, &ack, sizeof(ack), tid); if (__predict_false(error == EAGAIN)) { /* * NOTE: * This should _not_ happen in real world, since the * consumption of the TX bufring from the TX path is * controlled. */ if (rxr->hn_ack_failed == 0) if_printf(rxr->hn_ifp, "RXBUF ack retry\n"); rxr->hn_ack_failed++; retries++; if (retries < 10) { DELAY(100); goto again; } /* RXBUF leaks! */ if_printf(rxr->hn_ifp, "RXBUF ack failed\n"); } } static void hn_chan_callback(struct vmbus_channel *chan, void *xrxr) { struct hn_rx_ring *rxr = xrxr; struct hn_softc *sc = rxr->hn_ifp->if_softc; for (;;) { struct vmbus_chanpkt_hdr *pkt = rxr->hn_pktbuf; int error, pktlen; pktlen = rxr->hn_pktbuf_len; error = vmbus_chan_recv_pkt(chan, pkt, &pktlen); if (__predict_false(error == ENOBUFS)) { void *nbuf; int nlen; /* * Expand channel packet buffer. * * XXX * Use M_WAITOK here, since allocation failure * is fatal. */ nlen = rxr->hn_pktbuf_len * 2; while (nlen < pktlen) nlen *= 2; nbuf = malloc(nlen, M_DEVBUF, M_WAITOK); if_printf(rxr->hn_ifp, "expand pktbuf %d -> %d\n", rxr->hn_pktbuf_len, nlen); free(rxr->hn_pktbuf, M_DEVBUF); rxr->hn_pktbuf = nbuf; rxr->hn_pktbuf_len = nlen; /* Retry! */ continue; } else if (__predict_false(error == EAGAIN)) { /* No more channel packets; done! */ break; } KASSERT(!error, ("vmbus_chan_recv_pkt failed: %d", error)); switch (pkt->cph_type) { case VMBUS_CHANPKT_TYPE_COMP: hn_nvs_handle_comp(sc, chan, pkt); break; case VMBUS_CHANPKT_TYPE_RXBUF: hn_nvs_handle_rxbuf(rxr, chan, pkt); break; case VMBUS_CHANPKT_TYPE_INBAND: hn_nvs_handle_notify(sc, pkt); break; default: if_printf(rxr->hn_ifp, "unknown chan pkt %u\n", pkt->cph_type); break; } } hn_chan_rollup(rxr, rxr->hn_txr); } static void hn_sysinit(void *arg __unused) { int i; hn_udpcs_fixup = counter_u64_alloc(M_WAITOK); #ifdef HN_IFSTART_SUPPORT /* * Don't use ifnet.if_start if transparent VF mode is requested; * mainly due to the IFF_DRV_OACTIVE flag. */ if (hn_xpnt_vf && hn_use_if_start) { hn_use_if_start = 0; printf("hn: tranparent VF mode, if_transmit will be used, " "instead of if_start\n"); } #endif if (hn_xpnt_vf_attwait < HN_XPNT_VF_ATTWAIT_MIN) { printf("hn: invalid transparent VF attach routing " "wait timeout %d, reset to %d\n", hn_xpnt_vf_attwait, HN_XPNT_VF_ATTWAIT_MIN); hn_xpnt_vf_attwait = HN_XPNT_VF_ATTWAIT_MIN; } /* * Initialize VF map. */ rm_init_flags(&hn_vfmap_lock, "hn_vfmap", RM_SLEEPABLE); hn_vfmap_size = HN_VFMAP_SIZE_DEF; hn_vfmap = malloc(sizeof(struct ifnet *) * hn_vfmap_size, M_DEVBUF, M_WAITOK | M_ZERO); /* * Fix the # of TX taskqueues. */ if (hn_tx_taskq_cnt <= 0) hn_tx_taskq_cnt = 1; else if (hn_tx_taskq_cnt > mp_ncpus) hn_tx_taskq_cnt = mp_ncpus; /* * Fix the TX taskqueue mode. */ switch (hn_tx_taskq_mode) { case HN_TX_TASKQ_M_INDEP: case HN_TX_TASKQ_M_GLOBAL: case HN_TX_TASKQ_M_EVTTQ: break; default: hn_tx_taskq_mode = HN_TX_TASKQ_M_INDEP; break; } if (vm_guest != VM_GUEST_HV) return; if (hn_tx_taskq_mode != HN_TX_TASKQ_M_GLOBAL) return; hn_tx_taskque = malloc(hn_tx_taskq_cnt * sizeof(struct taskqueue *), M_DEVBUF, M_WAITOK); for (i = 0; i < hn_tx_taskq_cnt; ++i) { hn_tx_taskque[i] = taskqueue_create("hn_tx", M_WAITOK, taskqueue_thread_enqueue, &hn_tx_taskque[i]); taskqueue_start_threads(&hn_tx_taskque[i], 1, PI_NET, "hn tx%d", i); } } SYSINIT(hn_sysinit, SI_SUB_DRIVERS, SI_ORDER_SECOND, hn_sysinit, NULL); static void hn_sysuninit(void *arg __unused) { if (hn_tx_taskque != NULL) { int i; for (i = 0; i < hn_tx_taskq_cnt; ++i) taskqueue_free(hn_tx_taskque[i]); free(hn_tx_taskque, M_DEVBUF); } if (hn_vfmap != NULL) free(hn_vfmap, M_DEVBUF); rm_destroy(&hn_vfmap_lock); counter_u64_free(hn_udpcs_fixup); } SYSUNINIT(hn_sysuninit, SI_SUB_DRIVERS, SI_ORDER_SECOND, hn_sysuninit, NULL);