/*- * Copyright (c) 2015 Ruslan Bukin * All rights reserved. * * This software was developed by the University of Cambridge Computer * Laboratory with support from ARM Ltd. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include #include #include #include #include #include "opt_acpi.h" static int arm64_npmcs; struct arm64_event_code_map { enum pmc_event pe_ev; uint8_t pe_code; }; /* * Per-processor information. */ struct arm64_cpu { struct pmc_hw *pc_arm64pmcs; }; static struct arm64_cpu **arm64_pcpu; /* * Interrupt Enable Set Register */ static __inline void arm64_interrupt_enable(uint32_t pmc) { uint32_t reg; reg = (1 << pmc); WRITE_SPECIALREG(pmintenset_el1, reg); isb(); } /* * Interrupt Clear Set Register */ static __inline void arm64_interrupt_disable(uint32_t pmc) { uint32_t reg; reg = (1 << pmc); WRITE_SPECIALREG(pmintenclr_el1, reg); isb(); } /* * Counter Set Enable Register */ static __inline void arm64_counter_enable(unsigned int pmc) { uint32_t reg; reg = (1 << pmc); WRITE_SPECIALREG(pmcntenset_el0, reg); isb(); } /* * Counter Clear Enable Register */ static __inline void arm64_counter_disable(unsigned int pmc) { uint32_t reg; reg = (1 << pmc); WRITE_SPECIALREG(pmcntenclr_el0, reg); isb(); } /* * Performance Monitors Control Register */ static uint32_t arm64_pmcr_read(void) { uint32_t reg; reg = READ_SPECIALREG(pmcr_el0); return (reg); } static void arm64_pmcr_write(uint32_t reg) { WRITE_SPECIALREG(pmcr_el0, reg); isb(); } /* * Performance Count Register N */ static uint32_t arm64_pmcn_read(unsigned int pmc) { KASSERT(pmc < arm64_npmcs, ("%s: illegal PMC number %d", __func__, pmc)); WRITE_SPECIALREG(pmselr_el0, pmc); isb(); return (READ_SPECIALREG(pmxevcntr_el0)); } static void arm64_pmcn_write(unsigned int pmc, uint32_t reg) { KASSERT(pmc < arm64_npmcs, ("%s: illegal PMC number %d", __func__, pmc)); WRITE_SPECIALREG(pmselr_el0, pmc); WRITE_SPECIALREG(pmxevcntr_el0, reg); isb(); } static int arm64_allocate_pmc(int cpu, int ri, struct pmc *pm, const struct pmc_op_pmcallocate *a) { uint32_t config; enum pmc_event pe; KASSERT(cpu >= 0 && cpu < pmc_cpu_max(), ("[arm64,%d] illegal CPU value %d", __LINE__, cpu)); KASSERT(ri >= 0 && ri < arm64_npmcs, ("[arm64,%d] illegal row index %d", __LINE__, ri)); if (a->pm_class != PMC_CLASS_ARMV8) { return (EINVAL); } pe = a->pm_ev; if ((a->pm_flags & PMC_F_EV_PMU) != 0) { config = a->pm_md.pm_md_config; } else { config = (uint32_t)pe - PMC_EV_ARMV8_FIRST; if (config > (PMC_EV_ARMV8_LAST - PMC_EV_ARMV8_FIRST)) return (EINVAL); } switch (a->pm_caps & (PMC_CAP_SYSTEM | PMC_CAP_USER)) { case PMC_CAP_SYSTEM: config |= PMEVTYPER_U; break; case PMC_CAP_USER: config |= PMEVTYPER_P; break; default: /* * Trace both USER and SYSTEM if none are specified * (default setting) or if both flags are specified * (user explicitly requested both qualifiers). */ break; } pm->pm_md.pm_arm64.pm_arm64_evsel = config; PMCDBG2(MDP, ALL, 2, "arm64-allocate ri=%d -> config=0x%x", ri, config); return (0); } static int arm64_read_pmc(int cpu, int ri, struct pmc *pm, pmc_value_t *v) { pmc_value_t tmp; register_t s; int reg; KASSERT(cpu >= 0 && cpu < pmc_cpu_max(), ("[arm64,%d] illegal CPU value %d", __LINE__, cpu)); KASSERT(ri >= 0 && ri < arm64_npmcs, ("[arm64,%d] illegal row index %d", __LINE__, ri)); /* * Ensure we don't get interrupted while updating the overflow count. */ s = intr_disable(); tmp = arm64_pmcn_read(ri); reg = (1 << ri); if ((READ_SPECIALREG(pmovsclr_el0) & reg) != 0) { /* Clear Overflow Flag */ WRITE_SPECIALREG(pmovsclr_el0, reg); pm->pm_pcpu_state[cpu].pps_overflowcnt++; /* Reread counter in case we raced. */ tmp = arm64_pmcn_read(ri); } tmp += 0x100000000llu * pm->pm_pcpu_state[cpu].pps_overflowcnt; intr_restore(s); PMCDBG2(MDP, REA, 2, "arm64-read id=%d -> %jd", ri, tmp); if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm))) { /* * Clamp value to 0 if the counter just overflowed, * otherwise the returned reload count would wrap to a * huge value. */ if ((tmp & (1ull << 63)) == 0) tmp = 0; else tmp = ARMV8_PERFCTR_VALUE_TO_RELOAD_COUNT(tmp); } *v = tmp; return (0); } static int arm64_write_pmc(int cpu, int ri, struct pmc *pm, pmc_value_t v) { KASSERT(cpu >= 0 && cpu < pmc_cpu_max(), ("[arm64,%d] illegal CPU value %d", __LINE__, cpu)); KASSERT(ri >= 0 && ri < arm64_npmcs, ("[arm64,%d] illegal row-index %d", __LINE__, ri)); if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm))) v = ARMV8_RELOAD_COUNT_TO_PERFCTR_VALUE(v); PMCDBG3(MDP, WRI, 1, "arm64-write cpu=%d ri=%d v=%jx", cpu, ri, v); pm->pm_pcpu_state[cpu].pps_overflowcnt = v >> 32; arm64_pmcn_write(ri, v); return (0); } static int arm64_config_pmc(int cpu, int ri, struct pmc *pm) { struct pmc_hw *phw; PMCDBG3(MDP, CFG, 1, "cpu=%d ri=%d pm=%p", cpu, ri, pm); KASSERT(cpu >= 0 && cpu < pmc_cpu_max(), ("[arm64,%d] illegal CPU value %d", __LINE__, cpu)); KASSERT(ri >= 0 && ri < arm64_npmcs, ("[arm64,%d] illegal row-index %d", __LINE__, ri)); phw = &arm64_pcpu[cpu]->pc_arm64pmcs[ri]; KASSERT(pm == NULL || phw->phw_pmc == NULL, ("[arm64,%d] pm=%p phw->pm=%p hwpmc not unconfigured", __LINE__, pm, phw->phw_pmc)); phw->phw_pmc = pm; return (0); } static int arm64_start_pmc(int cpu, int ri, struct pmc *pm) { uint32_t config; config = pm->pm_md.pm_arm64.pm_arm64_evsel; /* * Configure the event selection. */ WRITE_SPECIALREG(pmselr_el0, ri); WRITE_SPECIALREG(pmxevtyper_el0, config); isb(); /* * Enable the PMC. */ arm64_interrupt_enable(ri); arm64_counter_enable(ri); return (0); } static int arm64_stop_pmc(int cpu, int ri, struct pmc *pm __unused) { /* * Disable the PMCs. */ arm64_counter_disable(ri); arm64_interrupt_disable(ri); return (0); } static int arm64_release_pmc(int cpu, int ri, struct pmc *pmc) { struct pmc_hw *phw __diagused; KASSERT(cpu >= 0 && cpu < pmc_cpu_max(), ("[arm64,%d] illegal CPU value %d", __LINE__, cpu)); KASSERT(ri >= 0 && ri < arm64_npmcs, ("[arm64,%d] illegal row-index %d", __LINE__, ri)); phw = &arm64_pcpu[cpu]->pc_arm64pmcs[ri]; KASSERT(phw->phw_pmc == NULL, ("[arm64,%d] PHW pmc %p non-NULL", __LINE__, phw->phw_pmc)); return (0); } static int arm64_intr(struct trapframe *tf) { int retval, ri; struct pmc *pm; int error; int reg, cpu; cpu = curcpu; KASSERT(cpu >= 0 && cpu < pmc_cpu_max(), ("[arm64,%d] CPU %d out of range", __LINE__, cpu)); PMCDBG3(MDP,INT,1, "cpu=%d tf=%p um=%d", cpu, (void *)tf, TRAPF_USERMODE(tf)); retval = 0; for (ri = 0; ri < arm64_npmcs; ri++) { pm = arm64_pcpu[cpu]->pc_arm64pmcs[ri].phw_pmc; if (pm == NULL) continue; /* Check if counter is overflowed */ reg = (1 << ri); if ((READ_SPECIALREG(pmovsclr_el0) & reg) == 0) continue; /* Clear Overflow Flag */ WRITE_SPECIALREG(pmovsclr_el0, reg); isb(); retval = 1; /* Found an interrupting PMC. */ pm->pm_pcpu_state[cpu].pps_overflowcnt += 1; if (!PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm))) continue; if (pm->pm_state != PMC_STATE_RUNNING) continue; error = pmc_process_interrupt(PMC_HR, pm, tf); if (error) arm64_stop_pmc(cpu, ri, pm); /* Reload sampling count */ arm64_write_pmc(cpu, ri, pm, pm->pm_sc.pm_reloadcount); } return (retval); } static int arm64_describe(int cpu, int ri, struct pmc_info *pi, struct pmc **ppmc) { struct pmc_hw *phw; KASSERT(cpu >= 0 && cpu < pmc_cpu_max(), ("[arm64,%d], illegal CPU %d", __LINE__, cpu)); KASSERT(ri >= 0 && ri < arm64_npmcs, ("[arm64,%d] row-index %d out of range", __LINE__, ri)); phw = &arm64_pcpu[cpu]->pc_arm64pmcs[ri]; snprintf(pi->pm_name, sizeof(pi->pm_name), "ARMV8-%d", ri); pi->pm_class = PMC_CLASS_ARMV8; if (phw->phw_state & PMC_PHW_FLAG_IS_ENABLED) { pi->pm_enabled = TRUE; *ppmc = phw->phw_pmc; } else { pi->pm_enabled = FALSE; *ppmc = NULL; } return (0); } static int arm64_get_config(int cpu, int ri, struct pmc **ppm) { *ppm = arm64_pcpu[cpu]->pc_arm64pmcs[ri].phw_pmc; return (0); } static int arm64_pcpu_init(struct pmc_mdep *md, int cpu) { struct arm64_cpu *pac; struct pmc_hw *phw; struct pmc_cpu *pc; uint64_t pmcr; int first_ri; int i; KASSERT(cpu >= 0 && cpu < pmc_cpu_max(), ("[arm64,%d] wrong cpu number %d", __LINE__, cpu)); PMCDBG0(MDP, INI, 1, "arm64-pcpu-init"); arm64_pcpu[cpu] = pac = malloc(sizeof(struct arm64_cpu), M_PMC, M_WAITOK | M_ZERO); pac->pc_arm64pmcs = malloc(sizeof(struct pmc_hw) * arm64_npmcs, M_PMC, M_WAITOK | M_ZERO); pc = pmc_pcpu[cpu]; first_ri = md->pmd_classdep[PMC_MDEP_CLASS_INDEX_ARMV8].pcd_ri; KASSERT(pc != NULL, ("[arm64,%d] NULL per-cpu pointer", __LINE__)); for (i = 0, phw = pac->pc_arm64pmcs; i < arm64_npmcs; i++, phw++) { phw->phw_state = PMC_PHW_FLAG_IS_ENABLED | PMC_PHW_CPU_TO_STATE(cpu) | PMC_PHW_INDEX_TO_STATE(i); phw->phw_pmc = NULL; pc->pc_hwpmcs[i + first_ri] = phw; } /* * Disable all counters and overflow interrupts. Upon reset they are in * an undefined state. * * Don't issue an isb here, just wait for the one in arm64_pmcr_write() * to make the writes visible. */ WRITE_SPECIALREG(pmcntenclr_el0, 0xffffffff); WRITE_SPECIALREG(pmintenclr_el1, 0xffffffff); /* Enable unit */ pmcr = arm64_pmcr_read(); pmcr |= PMCR_E; arm64_pmcr_write(pmcr); return (0); } static int arm64_pcpu_fini(struct pmc_mdep *md, int cpu) { uint32_t pmcr; PMCDBG0(MDP, INI, 1, "arm64-pcpu-fini"); pmcr = arm64_pmcr_read(); pmcr &= ~PMCR_E; arm64_pmcr_write(pmcr); free(arm64_pcpu[cpu]->pc_arm64pmcs, M_PMC); free(arm64_pcpu[cpu], M_PMC); arm64_pcpu[cpu] = NULL; return (0); } struct pmc_mdep * pmc_arm64_initialize(void) { struct pmc_mdep *pmc_mdep; struct pmc_classdep *pcd; int classes, idcode, impcode; int reg; uint64_t midr; reg = arm64_pmcr_read(); arm64_npmcs = (reg & PMCR_N_MASK) >> PMCR_N_SHIFT; impcode = (reg & PMCR_IMP_MASK) >> PMCR_IMP_SHIFT; idcode = (reg & PMCR_IDCODE_MASK) >> PMCR_IDCODE_SHIFT; PMCDBG1(MDP, INI, 1, "arm64-init npmcs=%d", arm64_npmcs); /* * Write the CPU model to kern.hwpmc.cpuid. * * We zero the variant and revision fields. * * TODO: how to handle differences between cores due to big.LITTLE? * For now, just use MIDR from CPU 0. */ midr = (uint64_t)(pcpu_find(0)->pc_midr); midr &= ~(CPU_VAR_MASK | CPU_REV_MASK); snprintf(pmc_cpuid, sizeof(pmc_cpuid), "0x%016lx", midr); /* * Allocate space for pointers to PMC HW descriptors and for * the MDEP structure used by MI code. */ arm64_pcpu = malloc(sizeof(struct arm64_cpu *) * pmc_cpu_max(), M_PMC, M_WAITOK | M_ZERO); /* One AArch64 CPU class */ classes = 1; #ifdef DEV_ACPI /* Query presence of optional classes and set max class. */ if (pmc_cmn600_nclasses() > 0) classes = MAX(classes, PMC_MDEP_CLASS_INDEX_CMN600); if (pmc_dmc620_nclasses() > 0) classes = MAX(classes, PMC_MDEP_CLASS_INDEX_DMC620_C); #endif pmc_mdep = pmc_mdep_alloc(classes); switch(impcode) { case PMCR_IMP_ARM: switch (idcode) { case PMCR_IDCODE_CORTEX_A76: case PMCR_IDCODE_NEOVERSE_N1: pmc_mdep->pmd_cputype = PMC_CPU_ARMV8_CORTEX_A76; break; case PMCR_IDCODE_CORTEX_A57: case PMCR_IDCODE_CORTEX_A72: pmc_mdep->pmd_cputype = PMC_CPU_ARMV8_CORTEX_A57; break; default: case PMCR_IDCODE_CORTEX_A53: pmc_mdep->pmd_cputype = PMC_CPU_ARMV8_CORTEX_A53; break; } break; default: pmc_mdep->pmd_cputype = PMC_CPU_ARMV8_CORTEX_A53; break; } pcd = &pmc_mdep->pmd_classdep[PMC_MDEP_CLASS_INDEX_ARMV8]; pcd->pcd_caps = ARMV8_PMC_CAPS; pcd->pcd_class = PMC_CLASS_ARMV8; pcd->pcd_num = arm64_npmcs; pcd->pcd_ri = pmc_mdep->pmd_npmc; pcd->pcd_width = 32; pcd->pcd_allocate_pmc = arm64_allocate_pmc; pcd->pcd_config_pmc = arm64_config_pmc; pcd->pcd_pcpu_fini = arm64_pcpu_fini; pcd->pcd_pcpu_init = arm64_pcpu_init; pcd->pcd_describe = arm64_describe; pcd->pcd_get_config = arm64_get_config; pcd->pcd_read_pmc = arm64_read_pmc; pcd->pcd_release_pmc = arm64_release_pmc; pcd->pcd_start_pmc = arm64_start_pmc; pcd->pcd_stop_pmc = arm64_stop_pmc; pcd->pcd_write_pmc = arm64_write_pmc; pmc_mdep->pmd_intr = arm64_intr; pmc_mdep->pmd_npmc += arm64_npmcs; #ifdef DEV_ACPI if (pmc_cmn600_nclasses() > 0) pmc_cmn600_initialize(pmc_mdep); if (pmc_dmc620_nclasses() > 0) { pmc_dmc620_initialize_cd2(pmc_mdep); pmc_dmc620_initialize_c(pmc_mdep); } #endif return (pmc_mdep); } void pmc_arm64_finalize(struct pmc_mdep *md) { PMCDBG0(MDP, INI, 1, "arm64-finalize"); for (int i = 0; i < pmc_cpu_max(); i++) KASSERT(arm64_pcpu[i] == NULL, ("[arm64,%d] non-null pcpu cpu %d", __LINE__, i)); free(arm64_pcpu, M_PMC); }