/*-
* Copyright (c) 2015 Ruslan Bukin
* All rights reserved.
*
* This software was developed by the University of Cambridge Computer
* Laboratory with support from ARM Ltd.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include
__FBSDID("$FreeBSD$");
#include
#include
#include
#include
#include
#include
#include "opt_acpi.h"
static int arm64_npmcs;
struct arm64_event_code_map {
enum pmc_event pe_ev;
uint8_t pe_code;
};
/*
* Per-processor information.
*/
struct arm64_cpu {
struct pmc_hw *pc_arm64pmcs;
};
static struct arm64_cpu **arm64_pcpu;
/*
* Interrupt Enable Set Register
*/
static __inline void
arm64_interrupt_enable(uint32_t pmc)
{
uint32_t reg;
reg = (1 << pmc);
WRITE_SPECIALREG(pmintenset_el1, reg);
isb();
}
/*
* Interrupt Clear Set Register
*/
static __inline void
arm64_interrupt_disable(uint32_t pmc)
{
uint32_t reg;
reg = (1 << pmc);
WRITE_SPECIALREG(pmintenclr_el1, reg);
isb();
}
/*
* Counter Set Enable Register
*/
static __inline void
arm64_counter_enable(unsigned int pmc)
{
uint32_t reg;
reg = (1 << pmc);
WRITE_SPECIALREG(pmcntenset_el0, reg);
isb();
}
/*
* Counter Clear Enable Register
*/
static __inline void
arm64_counter_disable(unsigned int pmc)
{
uint32_t reg;
reg = (1 << pmc);
WRITE_SPECIALREG(pmcntenclr_el0, reg);
isb();
}
/*
* Performance Monitors Control Register
*/
static uint32_t
arm64_pmcr_read(void)
{
uint32_t reg;
reg = READ_SPECIALREG(pmcr_el0);
return (reg);
}
static void
arm64_pmcr_write(uint32_t reg)
{
WRITE_SPECIALREG(pmcr_el0, reg);
isb();
}
/*
* Performance Count Register N
*/
static uint32_t
arm64_pmcn_read(unsigned int pmc)
{
KASSERT(pmc < arm64_npmcs, ("%s: illegal PMC number %d", __func__, pmc));
WRITE_SPECIALREG(pmselr_el0, pmc);
isb();
return (READ_SPECIALREG(pmxevcntr_el0));
}
static void
arm64_pmcn_write(unsigned int pmc, uint32_t reg)
{
KASSERT(pmc < arm64_npmcs, ("%s: illegal PMC number %d", __func__, pmc));
WRITE_SPECIALREG(pmselr_el0, pmc);
WRITE_SPECIALREG(pmxevcntr_el0, reg);
isb();
}
static int
arm64_allocate_pmc(int cpu, int ri, struct pmc *pm,
const struct pmc_op_pmcallocate *a)
{
uint32_t config;
enum pmc_event pe;
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
("[arm64,%d] illegal CPU value %d", __LINE__, cpu));
KASSERT(ri >= 0 && ri < arm64_npmcs,
("[arm64,%d] illegal row index %d", __LINE__, ri));
if (a->pm_class != PMC_CLASS_ARMV8) {
return (EINVAL);
}
pe = a->pm_ev;
/* Adjust the config value if needed. */
config = a->pm_md.pm_md_config;
if ((a->pm_md.pm_md_flags & PM_MD_RAW_EVENT) == 0) {
config = (uint32_t)pe - PMC_EV_ARMV8_FIRST;
if (config > (PMC_EV_ARMV8_LAST - PMC_EV_ARMV8_FIRST))
return (EINVAL);
}
switch (a->pm_caps & (PMC_CAP_SYSTEM | PMC_CAP_USER)) {
case PMC_CAP_SYSTEM:
config |= PMEVTYPER_U;
break;
case PMC_CAP_USER:
config |= PMEVTYPER_P;
break;
default:
/*
* Trace both USER and SYSTEM if none are specified
* (default setting) or if both flags are specified
* (user explicitly requested both qualifiers).
*/
break;
}
pm->pm_md.pm_arm64.pm_arm64_evsel = config;
PMCDBG2(MDP, ALL, 2, "arm64-allocate ri=%d -> config=0x%x", ri, config);
return (0);
}
static int
arm64_read_pmc(int cpu, int ri, struct pmc *pm, pmc_value_t *v)
{
pmc_value_t tmp;
register_t s;
int reg;
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
("[arm64,%d] illegal CPU value %d", __LINE__, cpu));
KASSERT(ri >= 0 && ri < arm64_npmcs,
("[arm64,%d] illegal row index %d", __LINE__, ri));
/*
* Ensure we don't get interrupted while updating the overflow count.
*/
s = intr_disable();
tmp = arm64_pmcn_read(ri);
reg = (1 << ri);
if ((READ_SPECIALREG(pmovsclr_el0) & reg) != 0) {
/* Clear Overflow Flag */
WRITE_SPECIALREG(pmovsclr_el0, reg);
pm->pm_pcpu_state[cpu].pps_overflowcnt++;
/* Reread counter in case we raced. */
tmp = arm64_pmcn_read(ri);
}
tmp += 0x100000000llu * pm->pm_pcpu_state[cpu].pps_overflowcnt;
intr_restore(s);
PMCDBG2(MDP, REA, 2, "arm64-read id=%d -> %jd", ri, tmp);
if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm))) {
/*
* Clamp value to 0 if the counter just overflowed,
* otherwise the returned reload count would wrap to a
* huge value.
*/
if ((tmp & (1ull << 63)) == 0)
tmp = 0;
else
tmp = ARMV8_PERFCTR_VALUE_TO_RELOAD_COUNT(tmp);
}
*v = tmp;
return (0);
}
static int
arm64_write_pmc(int cpu, int ri, struct pmc *pm, pmc_value_t v)
{
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
("[arm64,%d] illegal CPU value %d", __LINE__, cpu));
KASSERT(ri >= 0 && ri < arm64_npmcs,
("[arm64,%d] illegal row-index %d", __LINE__, ri));
if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
v = ARMV8_RELOAD_COUNT_TO_PERFCTR_VALUE(v);
PMCDBG3(MDP, WRI, 1, "arm64-write cpu=%d ri=%d v=%jx", cpu, ri, v);
pm->pm_pcpu_state[cpu].pps_overflowcnt = v >> 32;
arm64_pmcn_write(ri, v);
return (0);
}
static int
arm64_config_pmc(int cpu, int ri, struct pmc *pm)
{
struct pmc_hw *phw;
PMCDBG3(MDP, CFG, 1, "cpu=%d ri=%d pm=%p", cpu, ri, pm);
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
("[arm64,%d] illegal CPU value %d", __LINE__, cpu));
KASSERT(ri >= 0 && ri < arm64_npmcs,
("[arm64,%d] illegal row-index %d", __LINE__, ri));
phw = &arm64_pcpu[cpu]->pc_arm64pmcs[ri];
KASSERT(pm == NULL || phw->phw_pmc == NULL,
("[arm64,%d] pm=%p phw->pm=%p hwpmc not unconfigured",
__LINE__, pm, phw->phw_pmc));
phw->phw_pmc = pm;
return (0);
}
static int
arm64_start_pmc(int cpu, int ri, struct pmc *pm)
{
uint32_t config;
config = pm->pm_md.pm_arm64.pm_arm64_evsel;
/*
* Configure the event selection.
*/
WRITE_SPECIALREG(pmselr_el0, ri);
WRITE_SPECIALREG(pmxevtyper_el0, config);
isb();
/*
* Enable the PMC.
*/
arm64_interrupt_enable(ri);
arm64_counter_enable(ri);
return (0);
}
static int
arm64_stop_pmc(int cpu, int ri, struct pmc *pm __unused)
{
/*
* Disable the PMCs.
*/
arm64_counter_disable(ri);
arm64_interrupt_disable(ri);
return (0);
}
static int
arm64_release_pmc(int cpu, int ri, struct pmc *pmc)
{
struct pmc_hw *phw __diagused;
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
("[arm64,%d] illegal CPU value %d", __LINE__, cpu));
KASSERT(ri >= 0 && ri < arm64_npmcs,
("[arm64,%d] illegal row-index %d", __LINE__, ri));
phw = &arm64_pcpu[cpu]->pc_arm64pmcs[ri];
KASSERT(phw->phw_pmc == NULL,
("[arm64,%d] PHW pmc %p non-NULL", __LINE__, phw->phw_pmc));
return (0);
}
static int
arm64_intr(struct trapframe *tf)
{
int retval, ri;
struct pmc *pm;
int error;
int reg, cpu;
cpu = curcpu;
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
("[arm64,%d] CPU %d out of range", __LINE__, cpu));
PMCDBG3(MDP,INT,1, "cpu=%d tf=%p um=%d", cpu, (void *)tf,
TRAPF_USERMODE(tf));
retval = 0;
for (ri = 0; ri < arm64_npmcs; ri++) {
pm = arm64_pcpu[cpu]->pc_arm64pmcs[ri].phw_pmc;
if (pm == NULL)
continue;
/* Check if counter is overflowed */
reg = (1 << ri);
if ((READ_SPECIALREG(pmovsclr_el0) & reg) == 0)
continue;
/* Clear Overflow Flag */
WRITE_SPECIALREG(pmovsclr_el0, reg);
isb();
retval = 1; /* Found an interrupting PMC. */
pm->pm_pcpu_state[cpu].pps_overflowcnt += 1;
if (!PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
continue;
if (pm->pm_state != PMC_STATE_RUNNING)
continue;
error = pmc_process_interrupt(PMC_HR, pm, tf);
if (error)
arm64_stop_pmc(cpu, ri, pm);
/* Reload sampling count */
arm64_write_pmc(cpu, ri, pm, pm->pm_sc.pm_reloadcount);
}
return (retval);
}
static int
arm64_describe(int cpu, int ri, struct pmc_info *pi, struct pmc **ppmc)
{
struct pmc_hw *phw;
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
("[arm64,%d], illegal CPU %d", __LINE__, cpu));
KASSERT(ri >= 0 && ri < arm64_npmcs,
("[arm64,%d] row-index %d out of range", __LINE__, ri));
phw = &arm64_pcpu[cpu]->pc_arm64pmcs[ri];
snprintf(pi->pm_name, sizeof(pi->pm_name), "ARMV8-%d", ri);
pi->pm_class = PMC_CLASS_ARMV8;
if (phw->phw_state & PMC_PHW_FLAG_IS_ENABLED) {
pi->pm_enabled = TRUE;
*ppmc = phw->phw_pmc;
} else {
pi->pm_enabled = FALSE;
*ppmc = NULL;
}
return (0);
}
static int
arm64_get_config(int cpu, int ri, struct pmc **ppm)
{
*ppm = arm64_pcpu[cpu]->pc_arm64pmcs[ri].phw_pmc;
return (0);
}
static int
arm64_pcpu_init(struct pmc_mdep *md, int cpu)
{
struct arm64_cpu *pac;
struct pmc_hw *phw;
struct pmc_cpu *pc;
uint64_t pmcr;
int first_ri;
int i;
KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
("[arm64,%d] wrong cpu number %d", __LINE__, cpu));
PMCDBG0(MDP, INI, 1, "arm64-pcpu-init");
arm64_pcpu[cpu] = pac = malloc(sizeof(struct arm64_cpu), M_PMC,
M_WAITOK | M_ZERO);
pac->pc_arm64pmcs = malloc(sizeof(struct pmc_hw) * arm64_npmcs,
M_PMC, M_WAITOK | M_ZERO);
pc = pmc_pcpu[cpu];
first_ri = md->pmd_classdep[PMC_MDEP_CLASS_INDEX_ARMV8].pcd_ri;
KASSERT(pc != NULL, ("[arm64,%d] NULL per-cpu pointer", __LINE__));
for (i = 0, phw = pac->pc_arm64pmcs; i < arm64_npmcs; i++, phw++) {
phw->phw_state = PMC_PHW_FLAG_IS_ENABLED |
PMC_PHW_CPU_TO_STATE(cpu) | PMC_PHW_INDEX_TO_STATE(i);
phw->phw_pmc = NULL;
pc->pc_hwpmcs[i + first_ri] = phw;
}
/*
* Disable all counters and overflow interrupts. Upon reset they are in
* an undefined state.
*
* Don't issue an isb here, just wait for the one in arm64_pmcr_write()
* to make the writes visible.
*/
WRITE_SPECIALREG(pmcntenclr_el0, 0xffffffff);
WRITE_SPECIALREG(pmintenclr_el1, 0xffffffff);
/* Enable unit */
pmcr = arm64_pmcr_read();
pmcr |= PMCR_E;
arm64_pmcr_write(pmcr);
return (0);
}
static int
arm64_pcpu_fini(struct pmc_mdep *md, int cpu)
{
uint32_t pmcr;
PMCDBG0(MDP, INI, 1, "arm64-pcpu-fini");
pmcr = arm64_pmcr_read();
pmcr &= ~PMCR_E;
arm64_pmcr_write(pmcr);
free(arm64_pcpu[cpu]->pc_arm64pmcs, M_PMC);
free(arm64_pcpu[cpu], M_PMC);
arm64_pcpu[cpu] = NULL;
return (0);
}
struct pmc_mdep *
pmc_arm64_initialize(void)
{
struct pmc_mdep *pmc_mdep;
struct pmc_classdep *pcd;
int classes, idcode, impcode;
int reg;
uint64_t midr;
reg = arm64_pmcr_read();
arm64_npmcs = (reg & PMCR_N_MASK) >> PMCR_N_SHIFT;
impcode = (reg & PMCR_IMP_MASK) >> PMCR_IMP_SHIFT;
idcode = (reg & PMCR_IDCODE_MASK) >> PMCR_IDCODE_SHIFT;
PMCDBG1(MDP, INI, 1, "arm64-init npmcs=%d", arm64_npmcs);
/*
* Write the CPU model to kern.hwpmc.cpuid.
*
* We zero the variant and revision fields.
*
* TODO: how to handle differences between cores due to big.LITTLE?
* For now, just use MIDR from CPU 0.
*/
midr = (uint64_t)(pcpu_find(0)->pc_midr);
midr &= ~(CPU_VAR_MASK | CPU_REV_MASK);
snprintf(pmc_cpuid, sizeof(pmc_cpuid), "0x%016lx", midr);
/*
* Allocate space for pointers to PMC HW descriptors and for
* the MDEP structure used by MI code.
*/
arm64_pcpu = malloc(sizeof(struct arm64_cpu *) * pmc_cpu_max(),
M_PMC, M_WAITOK | M_ZERO);
/* One AArch64 CPU class */
classes = 1;
#ifdef DEV_ACPI
/* Query presence of optional classes and set max class. */
if (pmc_cmn600_nclasses() > 0)
classes = MAX(classes, PMC_MDEP_CLASS_INDEX_CMN600);
if (pmc_dmc620_nclasses() > 0)
classes = MAX(classes, PMC_MDEP_CLASS_INDEX_DMC620_C);
#endif
pmc_mdep = pmc_mdep_alloc(classes);
switch(impcode) {
case PMCR_IMP_ARM:
switch (idcode) {
case PMCR_IDCODE_CORTEX_A76:
case PMCR_IDCODE_NEOVERSE_N1:
pmc_mdep->pmd_cputype = PMC_CPU_ARMV8_CORTEX_A76;
break;
case PMCR_IDCODE_CORTEX_A57:
case PMCR_IDCODE_CORTEX_A72:
pmc_mdep->pmd_cputype = PMC_CPU_ARMV8_CORTEX_A57;
break;
default:
case PMCR_IDCODE_CORTEX_A53:
pmc_mdep->pmd_cputype = PMC_CPU_ARMV8_CORTEX_A53;
break;
}
break;
default:
pmc_mdep->pmd_cputype = PMC_CPU_ARMV8_CORTEX_A53;
break;
}
pcd = &pmc_mdep->pmd_classdep[PMC_MDEP_CLASS_INDEX_ARMV8];
pcd->pcd_caps = ARMV8_PMC_CAPS;
pcd->pcd_class = PMC_CLASS_ARMV8;
pcd->pcd_num = arm64_npmcs;
pcd->pcd_ri = pmc_mdep->pmd_npmc;
pcd->pcd_width = 32;
pcd->pcd_allocate_pmc = arm64_allocate_pmc;
pcd->pcd_config_pmc = arm64_config_pmc;
pcd->pcd_pcpu_fini = arm64_pcpu_fini;
pcd->pcd_pcpu_init = arm64_pcpu_init;
pcd->pcd_describe = arm64_describe;
pcd->pcd_get_config = arm64_get_config;
pcd->pcd_read_pmc = arm64_read_pmc;
pcd->pcd_release_pmc = arm64_release_pmc;
pcd->pcd_start_pmc = arm64_start_pmc;
pcd->pcd_stop_pmc = arm64_stop_pmc;
pcd->pcd_write_pmc = arm64_write_pmc;
pmc_mdep->pmd_intr = arm64_intr;
pmc_mdep->pmd_npmc += arm64_npmcs;
#ifdef DEV_ACPI
if (pmc_cmn600_nclasses() > 0)
pmc_cmn600_initialize(pmc_mdep);
if (pmc_dmc620_nclasses() > 0) {
pmc_dmc620_initialize_cd2(pmc_mdep);
pmc_dmc620_initialize_c(pmc_mdep);
}
#endif
return (pmc_mdep);
}
void
pmc_arm64_finalize(struct pmc_mdep *md)
{
PMCDBG0(MDP, INI, 1, "arm64-finalize");
free(arm64_pcpu, M_PMC);
}