/*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2004-2005 HighPoint Technologies, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef __KERNEL__ #define __KERNEL__ #endif #include #include #include #include #ifdef DEBUG #ifdef DEBUG_LEVEL int hpt_dbg_level = DEBUG_LEVEL; #else int hpt_dbg_level = 0; #endif #endif #define MV_ERROR printf /* * CAM SIM entry points */ static int hpt_probe (device_t dev); static void launch_worker_thread(void); static int hpt_attach(device_t dev); static int hpt_detach(device_t dev); static int hpt_shutdown(device_t dev); static void hpt_poll(struct cam_sim *sim); static void hpt_intr(void *arg); static void hpt_async(void *callback_arg, u_int32_t code, struct cam_path *path, void *arg); static void hpt_action(struct cam_sim *sim, union ccb *ccb); static device_method_t driver_methods[] = { /* Device interface */ DEVMETHOD(device_probe, hpt_probe), DEVMETHOD(device_attach, hpt_attach), DEVMETHOD(device_detach, hpt_detach), DEVMETHOD(device_shutdown, hpt_shutdown), DEVMETHOD_END }; static driver_t hpt_pci_driver = { __str(PROC_DIR_NAME), driver_methods, sizeof(IAL_ADAPTER_T) }; #define __DRIVER_MODULE(p1, p2, p3, p4, p5) DRIVER_MODULE(p1, p2, p3, p4, p5) __DRIVER_MODULE(PROC_DIR_NAME, pci, hpt_pci_driver, 0, 0); MODULE_DEPEND(PROC_DIR_NAME, cam, 1, 1, 1); #define ccb_ccb_ptr spriv_ptr0 #define ccb_adapter ccb_h.spriv_ptr1 static void SetInquiryData(PINQUIRYDATA inquiryData, PVDevice pVDev); static void HPTLIBAPI OsSendCommand (_VBUS_ARG union ccb * ccb); static void HPTLIBAPI fOsCommandDone(_VBUS_ARG PCommand pCmd); static void ccb_done(union ccb *ccb); static void hpt_queue_ccb(union ccb **ccb_Q, union ccb *ccb); static void hpt_free_ccb(union ccb **ccb_Q, union ccb *ccb); static void hpt_intr_locked(IAL_ADAPTER_T *pAdapter); static void hptmv_free_edma_queues(IAL_ADAPTER_T *pAdapter); static void hptmv_free_channel(IAL_ADAPTER_T *pAdapter, MV_U8 channelNum); static void handleEdmaError(_VBUS_ARG PCommand pCmd); static int hptmv_init_channel(IAL_ADAPTER_T *pAdapter, MV_U8 channelNum); static int fResetActiveCommands(PVBus _vbus_p); static void fRegisterVdevice(IAL_ADAPTER_T *pAdapter); static int hptmv_allocate_edma_queues(IAL_ADAPTER_T *pAdapter); static void hptmv_handle_event_disconnect(void *data); static void hptmv_handle_event_connect(void *data); static int start_channel(IAL_ADAPTER_T *pAdapter, MV_U8 channelNum); static void init_vdev_params(IAL_ADAPTER_T *pAdapter, MV_U8 channel); static int hptmv_parse_identify_results(MV_SATA_CHANNEL *pMvSataChannel); static int HPTLIBAPI fOsBuildSgl(_VBUS_ARG PCommand pCmd, FPSCAT_GATH pSg, int logical); static MV_BOOLEAN CommandCompletionCB(MV_SATA_ADAPTER *pMvSataAdapter, MV_U8 channelNum, MV_COMPLETION_TYPE comp_type, MV_VOID_PTR commandId, MV_U16 responseFlags, MV_U32 timeStamp, MV_STORAGE_DEVICE_REGISTERS *registerStruct); static MV_BOOLEAN hptmv_event_notify(MV_SATA_ADAPTER *pMvSataAdapter, MV_EVENT_TYPE eventType, MV_U32 param1, MV_U32 param2); #define ccb_ccb_ptr spriv_ptr0 #define ccb_adapter ccb_h.spriv_ptr1 static struct sx hptmv_list_lock; SX_SYSINIT(hptmv_list_lock, &hptmv_list_lock, "hptmv list"); IAL_ADAPTER_T *gIal_Adapter = NULL; IAL_ADAPTER_T *pCurAdapter = NULL; static MV_SATA_CHANNEL gMvSataChannels[MAX_VBUS][MV_SATA_CHANNELS_NUM]; typedef struct st_HPT_DPC { IAL_ADAPTER_T *pAdapter; void (*dpc)(IAL_ADAPTER_T *, void *, UCHAR); void *arg; UCHAR flags; } ST_HPT_DPC; #define MAX_DPC 16 UCHAR DPC_Request_Nums = 0; static ST_HPT_DPC DpcQueue[MAX_DPC]; static int DpcQueue_First=0; static int DpcQueue_Last = 0; static struct mtx DpcQueue_Lock; MTX_SYSINIT(hpmtv_dpc_lock, &DpcQueue_Lock, "hptmv dpc", MTX_DEF); char DRIVER_VERSION[] = "v1.16"; /******************************************************************************* * Name: hptmv_free_channel * * Description: free allocated queues for the given channel * * Parameters: pMvSataAdapter - pointer to the RR18xx controller this * channel connected to. * channelNum - channel number. * ******************************************************************************/ static void hptmv_free_channel(IAL_ADAPTER_T *pAdapter, MV_U8 channelNum) { HPT_ASSERT(channelNum < MV_SATA_CHANNELS_NUM); pAdapter->mvSataAdapter.sataChannel[channelNum] = NULL; } static void failDevice(PVDevice pVDev) { PVBus _vbus_p = pVDev->pVBus; IAL_ADAPTER_T *pAdapter = (IAL_ADAPTER_T *)_vbus_p->OsExt; pVDev->u.disk.df_on_line = 0; pVDev->vf_online = 0; if (pVDev->pfnDeviceFailed) CallWhenIdle(_VBUS_P (DPC_PROC)pVDev->pfnDeviceFailed, pVDev); fNotifyGUI(ET_DEVICE_REMOVED, pVDev); #ifndef FOR_DEMO if (pAdapter->ver_601==2 && !pAdapter->beeping) { pAdapter->beeping = 1; BeepOn(pAdapter->mvSataAdapter.adapterIoBaseAddress); set_fail_led(&pAdapter->mvSataAdapter, pVDev->u.disk.mv->channelNumber, 1); } #endif } int MvSataResetChannel(MV_SATA_ADAPTER *pMvSataAdapter, MV_U8 channel); static void handleEdmaError(_VBUS_ARG PCommand pCmd) { PDevice pDevice = &pCmd->pVDevice->u.disk; MV_SATA_ADAPTER * pSataAdapter = pDevice->mv->mvSataAdapter; if (!pDevice->df_on_line) { KdPrint(("Device is offline")); pCmd->Result = RETURN_BAD_DEVICE; CallAfterReturn(_VBUS_P (DPC_PROC)pCmd->pfnCompletion, pCmd); return; } if (pCmd->RetryCount++>5) { hpt_printk(("too many retries on channel(%d)\n", pDevice->mv->channelNumber)); failed: failDevice(pCmd->pVDevice); pCmd->Result = RETURN_IDE_ERROR; CallAfterReturn(_VBUS_P (DPC_PROC)pCmd->pfnCompletion, pCmd); return; } /* reset the channel and retry the command */ if (MvSataResetChannel(pSataAdapter, pDevice->mv->channelNumber)) goto failed; fNotifyGUI(ET_DEVICE_ERROR, Map2pVDevice(pDevice)); hpt_printk(("Retry on channel(%d)\n", pDevice->mv->channelNumber)); fDeviceSendCommand(_VBUS_P pCmd); } /**************************************************************** * Name: hptmv_init_channel * * Description: allocate request and response queues for the EDMA of the * given channel and sets other fields. * * Parameters: * pAdapter - pointer to the emulated adapter data structure * channelNum - channel number. * Return: 0 on success, otherwise on failure ****************************************************************/ static int hptmv_init_channel(IAL_ADAPTER_T *pAdapter, MV_U8 channelNum) { MV_SATA_CHANNEL *pMvSataChannel; dma_addr_t req_dma_addr; dma_addr_t rsp_dma_addr; if (channelNum >= MV_SATA_CHANNELS_NUM) { MV_ERROR("RR18xx[%d]: Bad channelNum=%d", pAdapter->mvSataAdapter.adapterId, channelNum); return -1; } pMvSataChannel = &gMvSataChannels[pAdapter->mvSataAdapter.adapterId][channelNum]; pAdapter->mvSataAdapter.sataChannel[channelNum] = pMvSataChannel; pMvSataChannel->channelNumber = channelNum; pMvSataChannel->lba48Address = MV_FALSE; pMvSataChannel->maxReadTransfer = MV_FALSE; pMvSataChannel->requestQueue = (struct mvDmaRequestQueueEntry *) (pAdapter->requestsArrayBaseAlignedAddr + (channelNum * MV_EDMA_REQUEST_QUEUE_SIZE)); req_dma_addr = pAdapter->requestsArrayBaseDmaAlignedAddr + (channelNum * MV_EDMA_REQUEST_QUEUE_SIZE); KdPrint(("requestQueue addr is 0x%llX", (HPT_U64)(ULONG_PTR)req_dma_addr)); /* check the 1K alignment of the request queue*/ if (req_dma_addr & 0x3ff) { MV_ERROR("RR18xx[%d]: request queue allocated isn't 1 K aligned," " dma_addr=%llx channel=%d\n", pAdapter->mvSataAdapter.adapterId, (HPT_U64)(ULONG_PTR)req_dma_addr, channelNum); return -1; } pMvSataChannel->requestQueuePciLowAddress = req_dma_addr; pMvSataChannel->requestQueuePciHiAddress = 0; KdPrint(("RR18xx[%d,%d]: request queue allocated: 0x%p", pAdapter->mvSataAdapter.adapterId, channelNum, pMvSataChannel->requestQueue)); pMvSataChannel->responseQueue = (struct mvDmaResponseQueueEntry *) (pAdapter->responsesArrayBaseAlignedAddr + (channelNum * MV_EDMA_RESPONSE_QUEUE_SIZE)); rsp_dma_addr = pAdapter->responsesArrayBaseDmaAlignedAddr + (channelNum * MV_EDMA_RESPONSE_QUEUE_SIZE); /* check the 256 alignment of the response queue*/ if (rsp_dma_addr & 0xff) { MV_ERROR("RR18xx[%d,%d]: response queue allocated isn't 256 byte " "aligned, dma_addr=%llx\n", pAdapter->mvSataAdapter.adapterId, channelNum, (HPT_U64)(ULONG_PTR)rsp_dma_addr); return -1; } pMvSataChannel->responseQueuePciLowAddress = rsp_dma_addr; pMvSataChannel->responseQueuePciHiAddress = 0; KdPrint(("RR18xx[%d,%d]: response queue allocated: 0x%p", pAdapter->mvSataAdapter.adapterId, channelNum, pMvSataChannel->responseQueue)); pAdapter->mvChannel[channelNum].online = MV_TRUE; return 0; } /****************************************************************************** * Name: hptmv_parse_identify_results * * Description: this functions parses the identify command results, checks * that the connected deives can be accesed by RR18xx EDMA, * and updates the channel structure accordingly. * * Parameters: pMvSataChannel, pointer to the channel data structure. * * Returns: =0 ->success, < 0 ->failure. * ******************************************************************************/ static int hptmv_parse_identify_results(MV_SATA_CHANNEL *pMvSataChannel) { MV_U16 *iden = pMvSataChannel->identifyDevice; /*LBA addressing*/ if (! (iden[IDEN_CAPACITY_1_OFFSET] & 0x200)) { KdPrint(("IAL Error in IDENTIFY info: LBA not supported\n")); return -1; } else { KdPrint(("%25s - %s\n", "Capabilities", "LBA supported")); } /*DMA support*/ if (! (iden[IDEN_CAPACITY_1_OFFSET] & 0x100)) { KdPrint(("IAL Error in IDENTIFY info: DMA not supported\n")); return -1; } else { KdPrint(("%25s - %s\n", "Capabilities", "DMA supported")); } /* PIO */ if ((iden[IDEN_VALID] & 2) == 0) { KdPrint(("IAL Error in IDENTIFY info: not able to find PIO mode\n")); return -1; } KdPrint(("%25s - 0x%02x\n", "PIO modes supported", iden[IDEN_PIO_MODE_SPPORTED] & 0xff)); /*UDMA*/ if ((iden[IDEN_VALID] & 4) == 0) { KdPrint(("IAL Error in IDENTIFY info: not able to find UDMA mode\n")); return -1; } /* 48 bit address */ if ((iden[IDEN_SUPPORTED_COMMANDS2] & 0x400)) { KdPrint(("%25s - %s\n", "LBA48 addressing", "supported")); pMvSataChannel->lba48Address = MV_TRUE; } else { KdPrint(("%25s - %s\n", "LBA48 addressing", "Not supported")); pMvSataChannel->lba48Address = MV_FALSE; } return 0; } static void init_vdev_params(IAL_ADAPTER_T *pAdapter, MV_U8 channel) { PVDevice pVDev = &pAdapter->VDevices[channel]; MV_SATA_CHANNEL *pMvSataChannel = pAdapter->mvSataAdapter.sataChannel[channel]; MV_U16_PTR IdentifyData = pMvSataChannel->identifyDevice; pMvSataChannel->outstandingCommands = 0; pVDev->u.disk.mv = pMvSataChannel; pVDev->u.disk.df_on_line = 1; pVDev->u.disk.pVBus = &pAdapter->VBus; pVDev->pVBus = &pAdapter->VBus; #ifdef SUPPORT_48BIT_LBA if (pMvSataChannel->lba48Address == MV_TRUE) pVDev->u.disk.dDeRealCapacity = ((IdentifyData[101]<<16) | IdentifyData[100]) - 1; else #endif if(IdentifyData[53] & 1) { pVDev->u.disk.dDeRealCapacity = (((IdentifyData[58]<<16 | IdentifyData[57]) < (IdentifyData[61]<<16 | IdentifyData[60])) ? (IdentifyData[61]<<16 | IdentifyData[60]) : (IdentifyData[58]<<16 | IdentifyData[57])) - 1; } else pVDev->u.disk.dDeRealCapacity = (IdentifyData[61]<<16 | IdentifyData[60]) - 1; pVDev->u.disk.bDeUsable_Mode = pVDev->u.disk.bDeModeSetting = pAdapter->mvChannel[channel].maxPioModeSupported - MV_ATA_TRANSFER_PIO_0; if (pAdapter->mvChannel[channel].maxUltraDmaModeSupported!=0xFF) { pVDev->u.disk.bDeUsable_Mode = pVDev->u.disk.bDeModeSetting = pAdapter->mvChannel[channel].maxUltraDmaModeSupported - MV_ATA_TRANSFER_UDMA_0 + 8; } } static void device_change(IAL_ADAPTER_T *pAdapter , MV_U8 channelIndex, int plugged) { PVDevice pVDev; MV_SATA_ADAPTER *pMvSataAdapter = &pAdapter->mvSataAdapter; MV_SATA_CHANNEL *pMvSataChannel = pMvSataAdapter->sataChannel[channelIndex]; if (!pMvSataChannel) return; if (plugged) { pVDev = &(pAdapter->VDevices[channelIndex]); init_vdev_params(pAdapter, channelIndex); pVDev->VDeviceType = pVDev->u.disk.df_atapi? VD_ATAPI : pVDev->u.disk.df_removable_drive? VD_REMOVABLE : VD_SINGLE_DISK; pVDev->VDeviceCapacity = pVDev->u.disk.dDeRealCapacity-SAVE_FOR_RAID_INFO; pVDev->pfnSendCommand = pfnSendCommand[pVDev->VDeviceType]; pVDev->pfnDeviceFailed = pfnDeviceFailed[pVDev->VDeviceType]; pVDev->vf_online = 1; #ifdef SUPPORT_ARRAY if(pVDev->pParent) { int iMember; for(iMember = 0; iMember < pVDev->pParent->u.array.bArnMember; iMember++) if((PVDevice)pVDev->pParent->u.array.pMember[iMember] == pVDev) pVDev->pParent->u.array.pMember[iMember] = NULL; pVDev->pParent = NULL; } #endif fNotifyGUI(ET_DEVICE_PLUGGED,pVDev); fCheckBootable(pVDev); RegisterVDevice(pVDev); #ifndef FOR_DEMO if (pAdapter->beeping) { pAdapter->beeping = 0; BeepOff(pAdapter->mvSataAdapter.adapterIoBaseAddress); } #endif } else { pVDev = &(pAdapter->VDevices[channelIndex]); failDevice(pVDev); } } static int start_channel(IAL_ADAPTER_T *pAdapter, MV_U8 channelNum) { MV_SATA_ADAPTER *pMvSataAdapter = &pAdapter->mvSataAdapter; MV_SATA_CHANNEL *pMvSataChannel = pMvSataAdapter->sataChannel[channelNum]; MV_CHANNEL *pChannelInfo = &(pAdapter->mvChannel[channelNum]); MV_U32 udmaMode,pioMode; KdPrint(("RR18xx [%d]: start channel (%d)", pMvSataAdapter->adapterId, channelNum)); /* Software reset channel */ if (mvStorageDevATASoftResetDevice(pMvSataAdapter, channelNum) == MV_FALSE) { MV_ERROR("RR18xx [%d,%d]: failed to perform Software reset\n", pMvSataAdapter->adapterId, channelNum); return -1; } /* Hardware reset channel */ if (mvSataChannelHardReset(pMvSataAdapter, channelNum) == MV_FALSE) { /* If failed, try again - this is when trying to hardreset a channel */ /* when drive is just spinning up */ StallExec(5000000); /* wait 5 sec before trying again */ if (mvSataChannelHardReset(pMvSataAdapter, channelNum) == MV_FALSE) { MV_ERROR("RR18xx [%d,%d]: failed to perform Hard reset\n", pMvSataAdapter->adapterId, channelNum); return -1; } } /* identify device*/ if (mvStorageDevATAIdentifyDevice(pMvSataAdapter, channelNum) == MV_FALSE) { MV_ERROR("RR18xx [%d,%d]: failed to perform ATA Identify command\n" , pMvSataAdapter->adapterId, channelNum); return -1; } if (hptmv_parse_identify_results(pMvSataChannel)) { MV_ERROR("RR18xx [%d,%d]: Error in parsing ATA Identify message\n" , pMvSataAdapter->adapterId, channelNum); return -1; } /* mvStorageDevATASetFeatures */ /* Disable 8 bit PIO in case CFA enabled */ if (pMvSataChannel->identifyDevice[86] & 4) { KdPrint(("RR18xx [%d]: Disable 8 bit PIO (CFA enabled) \n", pMvSataAdapter->adapterId)); if (mvStorageDevATASetFeatures(pMvSataAdapter, channelNum, MV_ATA_SET_FEATURES_DISABLE_8_BIT_PIO, 0, 0, 0, 0) == MV_FALSE) { MV_ERROR("RR18xx [%d]: channel %d: mvStorageDevATASetFeatures" " failed\n", pMvSataAdapter->adapterId, channelNum); return -1; } } /* Write cache */ #ifdef ENABLE_WRITE_CACHE if (pMvSataChannel->identifyDevice[82] & 0x20) { if (!(pMvSataChannel->identifyDevice[85] & 0x20)) /* if not enabled by default */ { if (mvStorageDevATASetFeatures(pMvSataAdapter, channelNum, MV_ATA_SET_FEATURES_ENABLE_WCACHE, 0, 0, 0, 0) == MV_FALSE) { MV_ERROR("RR18xx [%d]: channel %d: mvStorageDevATASetFeatures failed\n", pMvSataAdapter->adapterId, channelNum); return -1; } } KdPrint(("RR18xx [%d]: channel %d, write cache enabled\n", pMvSataAdapter->adapterId, channelNum)); } else { KdPrint(("RR18xx [%d]: channel %d, write cache not supported\n", pMvSataAdapter->adapterId, channelNum)); } #else /* disable write cache */ { if (pMvSataChannel->identifyDevice[85] & 0x20) { KdPrint(("RR18xx [%d]: channel =%d, disable write cache\n", pMvSataAdapter->adapterId, channelNum)); if (mvStorageDevATASetFeatures(pMvSataAdapter, channelNum, MV_ATA_SET_FEATURES_DISABLE_WCACHE, 0, 0, 0, 0) == MV_FALSE) { MV_ERROR("RR18xx [%d]: channel %d: mvStorageDevATASetFeatures failed\n", pMvSataAdapter->adapterId, channelNum); return -1; } } KdPrint(("RR18xx [%d]: channel=%d, write cache disabled\n", pMvSataAdapter->adapterId, channelNum)); } #endif /* Set transfer mode */ KdPrint(("RR18xx [%d] Set transfer mode XFER_PIO_SLOW\n", pMvSataAdapter->adapterId)); if (mvStorageDevATASetFeatures(pMvSataAdapter, channelNum, MV_ATA_SET_FEATURES_TRANSFER, MV_ATA_TRANSFER_PIO_SLOW, 0, 0, 0) == MV_FALSE) { MV_ERROR("RR18xx [%d] channel %d: Set Features failed\n", pMvSataAdapter->adapterId, channelNum); return -1; } if (pMvSataChannel->identifyDevice[IDEN_PIO_MODE_SPPORTED] & 1) { pioMode = MV_ATA_TRANSFER_PIO_4; } else if (pMvSataChannel->identifyDevice[IDEN_PIO_MODE_SPPORTED] & 2) { pioMode = MV_ATA_TRANSFER_PIO_3; } else { MV_ERROR("IAL Error in IDENTIFY info: PIO modes 3 and 4 not supported\n"); pioMode = MV_ATA_TRANSFER_PIO_SLOW; } KdPrint(("RR18xx [%d] Set transfer mode XFER_PIO_4\n", pMvSataAdapter->adapterId)); pAdapter->mvChannel[channelNum].maxPioModeSupported = pioMode; if (mvStorageDevATASetFeatures(pMvSataAdapter, channelNum, MV_ATA_SET_FEATURES_TRANSFER, pioMode, 0, 0, 0) == MV_FALSE) { MV_ERROR("RR18xx [%d] channel %d: Set Features failed\n", pMvSataAdapter->adapterId, channelNum); return -1; } udmaMode = MV_ATA_TRANSFER_UDMA_0; if (pMvSataChannel->identifyDevice[IDEN_UDMA_MODE] & 0x40) { udmaMode = MV_ATA_TRANSFER_UDMA_6; } else if (pMvSataChannel->identifyDevice[IDEN_UDMA_MODE] & 0x20) { udmaMode = MV_ATA_TRANSFER_UDMA_5; } else if (pMvSataChannel->identifyDevice[IDEN_UDMA_MODE] & 0x10) { udmaMode = MV_ATA_TRANSFER_UDMA_4; } else if (pMvSataChannel->identifyDevice[IDEN_UDMA_MODE] & 8) { udmaMode = MV_ATA_TRANSFER_UDMA_3; } else if (pMvSataChannel->identifyDevice[IDEN_UDMA_MODE] & 4) { udmaMode = MV_ATA_TRANSFER_UDMA_2; } KdPrint(("RR18xx [%d] Set transfer mode XFER_UDMA_%d\n", pMvSataAdapter->adapterId, udmaMode & 0xf)); pChannelInfo->maxUltraDmaModeSupported = udmaMode; /*if (mvStorageDevATASetFeatures(pMvSataAdapter, channelNum, MV_ATA_SET_FEATURES_TRANSFER, udmaMode, 0, 0, 0) == MV_FALSE) { MV_ERROR("RR18xx [%d] channel %d: Set Features failed\n", pMvSataAdapter->adapterId, channelNum); return -1; }*/ if (pChannelInfo->maxUltraDmaModeSupported == 0xFF) return TRUE; else do { if (mvStorageDevATASetFeatures(pMvSataAdapter, channelNum, MV_ATA_SET_FEATURES_TRANSFER, pChannelInfo->maxUltraDmaModeSupported, 0, 0, 0) == MV_FALSE) { if (pChannelInfo->maxUltraDmaModeSupported > MV_ATA_TRANSFER_UDMA_0) { if (mvStorageDevATASoftResetDevice(pMvSataAdapter, channelNum) == MV_FALSE) { MV_REG_WRITE_BYTE(pMvSataAdapter->adapterIoBaseAddress, pMvSataChannel->eDmaRegsOffset + 0x11c, /* command reg */ MV_ATA_COMMAND_IDLE_IMMEDIATE); mvMicroSecondsDelay(10000); mvSataChannelHardReset(pMvSataAdapter, channelNum); if (mvStorageDevATASoftResetDevice(pMvSataAdapter, channelNum) == MV_FALSE) return FALSE; } if (mvSataChannelHardReset(pMvSataAdapter, channelNum) == MV_FALSE) return FALSE; pChannelInfo->maxUltraDmaModeSupported--; continue; } else return FALSE; } break; }while (1); /* Read look ahead */ #ifdef ENABLE_READ_AHEAD if (pMvSataChannel->identifyDevice[82] & 0x40) { if (!(pMvSataChannel->identifyDevice[85] & 0x40)) /* if not enabled by default */ { if (mvStorageDevATASetFeatures(pMvSataAdapter, channelNum, MV_ATA_SET_FEATURES_ENABLE_RLA, 0, 0, 0, 0) == MV_FALSE) { MV_ERROR("RR18xx [%d] channel %d: Set Features failed\n", pMvSataAdapter->adapterId, channelNum); return -1; } } KdPrint(("RR18xx [%d]: channel=%d, read look ahead enabled\n", pMvSataAdapter->adapterId, channelNum)); } else { KdPrint(("RR18xx [%d]: channel %d, Read Look Ahead not supported\n", pMvSataAdapter->adapterId, channelNum)); } #else { if (pMvSataChannel->identifyDevice[86] & 0x20) { KdPrint(("RR18xx [%d]:channel %d, disable read look ahead\n", pMvSataAdapter->adapterId, channelNum)); if (mvStorageDevATASetFeatures(pMvSataAdapter, channelNum, MV_ATA_SET_FEATURES_DISABLE_RLA, 0, 0, 0, 0) == MV_FALSE) { MV_ERROR("RR18xx [%d]:channel %d: ATA Set Features failed\n", pMvSataAdapter->adapterId, channelNum); return -1; } } KdPrint(("RR18xx [%d]:channel %d, read look ahead disabled\n", pMvSataAdapter->adapterId, channelNum)); } #endif { KdPrint(("RR18xx [%d]: channel %d config EDMA, Non Queued Mode\n", pMvSataAdapter->adapterId, channelNum)); if (mvSataConfigEdmaMode(pMvSataAdapter, channelNum, MV_EDMA_MODE_NOT_QUEUED, 0) == MV_FALSE) { MV_ERROR("RR18xx [%d] channel %d Error: mvSataConfigEdmaMode failed\n", pMvSataAdapter->adapterId, channelNum); return -1; } } /* Enable EDMA */ if (mvSataEnableChannelDma(pMvSataAdapter, channelNum) == MV_FALSE) { MV_ERROR("RR18xx [%d] Failed to enable DMA, channel=%d\n", pMvSataAdapter->adapterId, channelNum); return -1; } MV_ERROR("RR18xx [%d,%d]: channel started successfully\n", pMvSataAdapter->adapterId, channelNum); #ifndef FOR_DEMO set_fail_led(pMvSataAdapter, channelNum, 0); #endif return 0; } static void hptmv_handle_event(void * data, int flag) { IAL_ADAPTER_T *pAdapter = (IAL_ADAPTER_T *)data; MV_SATA_ADAPTER *pMvSataAdapter = &pAdapter->mvSataAdapter; MV_U8 channelIndex; mtx_assert(&pAdapter->lock, MA_OWNED); /* mvOsSemTake(&pMvSataAdapter->semaphore); */ for (channelIndex = 0; channelIndex < MV_SATA_CHANNELS_NUM; channelIndex++) { switch(pAdapter->sataEvents[channelIndex]) { case SATA_EVENT_CHANNEL_CONNECTED: /* Handle only connects */ if (flag == 1) break; KdPrint(("RR18xx [%d,%d]: new device connected\n", pMvSataAdapter->adapterId, channelIndex)); hptmv_init_channel(pAdapter, channelIndex); if (mvSataConfigureChannel( pMvSataAdapter, channelIndex) == MV_FALSE) { MV_ERROR("RR18xx [%d,%d] Failed to configure\n", pMvSataAdapter->adapterId, channelIndex); hptmv_free_channel(pAdapter, channelIndex); } else { /*mvSataChannelHardReset(pMvSataAdapter, channel);*/ if (start_channel( pAdapter, channelIndex)) { MV_ERROR("RR18xx [%d,%d]Failed to start channel\n", pMvSataAdapter->adapterId, channelIndex); hptmv_free_channel(pAdapter, channelIndex); } else { device_change(pAdapter, channelIndex, TRUE); } } pAdapter->sataEvents[channelIndex] = SATA_EVENT_NO_CHANGE; break; case SATA_EVENT_CHANNEL_DISCONNECTED: /* Handle only disconnects */ if (flag == 0) break; KdPrint(("RR18xx [%d,%d]: device disconnected\n", pMvSataAdapter->adapterId, channelIndex)); /* Flush pending commands */ if(pMvSataAdapter->sataChannel[channelIndex]) { _VBUS_INST(&pAdapter->VBus) mvSataFlushDmaQueue (pMvSataAdapter, channelIndex, MV_FLUSH_TYPE_CALLBACK); CheckPendingCall(_VBUS_P0); mvSataRemoveChannel(pMvSataAdapter,channelIndex); hptmv_free_channel(pAdapter, channelIndex); pMvSataAdapter->sataChannel[channelIndex] = NULL; KdPrint(("RR18xx [%d,%d]: channel removed\n", pMvSataAdapter->adapterId, channelIndex)); if (pAdapter->outstandingCommands==0 && DPC_Request_Nums==0) Check_Idle_Call(pAdapter); } else { KdPrint(("RR18xx [%d,%d]: channel already removed!!\n", pMvSataAdapter->adapterId, channelIndex)); } pAdapter->sataEvents[channelIndex] = SATA_EVENT_NO_CHANGE; break; case SATA_EVENT_NO_CHANGE: break; default: break; } } /* mvOsSemRelease(&pMvSataAdapter->semaphore); */ } #define EVENT_CONNECT 1 #define EVENT_DISCONNECT 0 static void hptmv_handle_event_connect(void *data) { hptmv_handle_event (data, 0); } static void hptmv_handle_event_disconnect(void *data) { hptmv_handle_event (data, 1); } static MV_BOOLEAN hptmv_event_notify(MV_SATA_ADAPTER *pMvSataAdapter, MV_EVENT_TYPE eventType, MV_U32 param1, MV_U32 param2) { IAL_ADAPTER_T *pAdapter = pMvSataAdapter->IALData; switch (eventType) { case MV_EVENT_TYPE_SATA_CABLE: { MV_U8 channel = param2; if (param1 == EVENT_CONNECT) { pAdapter->sataEvents[channel] = SATA_EVENT_CHANNEL_CONNECTED; KdPrint(("RR18xx [%d,%d]: device connected event received\n", pMvSataAdapter->adapterId, channel)); /* Delete previous timers (if multiple drives connected in the same time */ callout_reset(&pAdapter->event_timer_connect, 10 * hz, hptmv_handle_event_connect, pAdapter); } else if (param1 == EVENT_DISCONNECT) { pAdapter->sataEvents[channel] = SATA_EVENT_CHANNEL_DISCONNECTED; KdPrint(("RR18xx [%d,%d]: device disconnected event received \n", pMvSataAdapter->adapterId, channel)); device_change(pAdapter, channel, FALSE); /* Delete previous timers (if multiple drives disconnected in the same time */ /*callout_reset(&pAdapter->event_timer_disconnect, 10 * hz, hptmv_handle_event_disconnect, pAdapter); */ /*It is not necessary to wait, handle it directly*/ hptmv_handle_event_disconnect(pAdapter); } else { MV_ERROR("RR18xx: illegal value for param1(%d) at " "connect/disconnect event, host=%d\n", param1, pMvSataAdapter->adapterId ); } } break; case MV_EVENT_TYPE_ADAPTER_ERROR: KdPrint(("RR18xx: DEVICE error event received, pci cause " "reg=%x, don't how to handle this\n", param1)); return MV_TRUE; default: MV_ERROR("RR18xx[%d]: unknown event type (%d)\n", pMvSataAdapter->adapterId, eventType); return MV_FALSE; } return MV_TRUE; } static int hptmv_allocate_edma_queues(IAL_ADAPTER_T *pAdapter) { pAdapter->requestsArrayBaseAddr = (MV_U8 *)contigmalloc(REQUESTS_ARRAY_SIZE, M_DEVBUF, M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0ul); if (pAdapter->requestsArrayBaseAddr == NULL) { MV_ERROR("RR18xx[%d]: Failed to allocate memory for EDMA request" " queues\n", pAdapter->mvSataAdapter.adapterId); return -1; } pAdapter->requestsArrayBaseDmaAddr = fOsPhysicalAddress(pAdapter->requestsArrayBaseAddr); pAdapter->requestsArrayBaseAlignedAddr = pAdapter->requestsArrayBaseAddr; pAdapter->requestsArrayBaseAlignedAddr += MV_EDMA_REQUEST_QUEUE_SIZE; pAdapter->requestsArrayBaseAlignedAddr = (MV_U8 *) (((ULONG_PTR)pAdapter->requestsArrayBaseAlignedAddr) & ~(ULONG_PTR)(MV_EDMA_REQUEST_QUEUE_SIZE - 1)); pAdapter->requestsArrayBaseDmaAlignedAddr = pAdapter->requestsArrayBaseDmaAddr; pAdapter->requestsArrayBaseDmaAlignedAddr += MV_EDMA_REQUEST_QUEUE_SIZE; pAdapter->requestsArrayBaseDmaAlignedAddr &= ~(ULONG_PTR)(MV_EDMA_REQUEST_QUEUE_SIZE - 1); if ((pAdapter->requestsArrayBaseDmaAlignedAddr - pAdapter->requestsArrayBaseDmaAddr) != (pAdapter->requestsArrayBaseAlignedAddr - pAdapter->requestsArrayBaseAddr)) { MV_ERROR("RR18xx[%d]: Error in Request Quueues Alignment\n", pAdapter->mvSataAdapter.adapterId); contigfree(pAdapter->requestsArrayBaseAddr, REQUESTS_ARRAY_SIZE, M_DEVBUF); return -1; } /* response queues */ pAdapter->responsesArrayBaseAddr = (MV_U8 *)contigmalloc(RESPONSES_ARRAY_SIZE, M_DEVBUF, M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0ul); if (pAdapter->responsesArrayBaseAddr == NULL) { MV_ERROR("RR18xx[%d]: Failed to allocate memory for EDMA response" " queues\n", pAdapter->mvSataAdapter.adapterId); contigfree(pAdapter->requestsArrayBaseAddr, RESPONSES_ARRAY_SIZE, M_DEVBUF); return -1; } pAdapter->responsesArrayBaseDmaAddr = fOsPhysicalAddress(pAdapter->responsesArrayBaseAddr); pAdapter->responsesArrayBaseAlignedAddr = pAdapter->responsesArrayBaseAddr; pAdapter->responsesArrayBaseAlignedAddr += MV_EDMA_RESPONSE_QUEUE_SIZE; pAdapter->responsesArrayBaseAlignedAddr = (MV_U8 *) (((ULONG_PTR)pAdapter->responsesArrayBaseAlignedAddr) & ~(ULONG_PTR)(MV_EDMA_RESPONSE_QUEUE_SIZE - 1)); pAdapter->responsesArrayBaseDmaAlignedAddr = pAdapter->responsesArrayBaseDmaAddr; pAdapter->responsesArrayBaseDmaAlignedAddr += MV_EDMA_RESPONSE_QUEUE_SIZE; pAdapter->responsesArrayBaseDmaAlignedAddr &= ~(ULONG_PTR)(MV_EDMA_RESPONSE_QUEUE_SIZE - 1); if ((pAdapter->responsesArrayBaseDmaAlignedAddr - pAdapter->responsesArrayBaseDmaAddr) != (pAdapter->responsesArrayBaseAlignedAddr - pAdapter->responsesArrayBaseAddr)) { MV_ERROR("RR18xx[%d]: Error in Response Queues Alignment\n", pAdapter->mvSataAdapter.adapterId); contigfree(pAdapter->requestsArrayBaseAddr, REQUESTS_ARRAY_SIZE, M_DEVBUF); contigfree(pAdapter->responsesArrayBaseAddr, RESPONSES_ARRAY_SIZE, M_DEVBUF); return -1; } return 0; } static void hptmv_free_edma_queues(IAL_ADAPTER_T *pAdapter) { contigfree(pAdapter->requestsArrayBaseAddr, REQUESTS_ARRAY_SIZE, M_DEVBUF); contigfree(pAdapter->responsesArrayBaseAddr, RESPONSES_ARRAY_SIZE, M_DEVBUF); } static PVOID AllocatePRDTable(IAL_ADAPTER_T *pAdapter) { PVOID ret; if (pAdapter->pFreePRDLink) { KdPrint(("pAdapter->pFreePRDLink:%p\n",pAdapter->pFreePRDLink)); ret = pAdapter->pFreePRDLink; pAdapter->pFreePRDLink = *(void**)ret; return ret; } return NULL; } static void FreePRDTable(IAL_ADAPTER_T *pAdapter, PVOID PRDTable) { *(void**)PRDTable = pAdapter->pFreePRDLink; pAdapter->pFreePRDLink = PRDTable; } extern PVDevice fGetFirstChild(PVDevice pLogical); extern void fResetBootMark(PVDevice pLogical); static void fRegisterVdevice(IAL_ADAPTER_T *pAdapter) { PVDevice pPhysical, pLogical; PVBus pVBus; int i,j; for(i=0;iVDevices[i]); pLogical = pPhysical; while (pLogical->pParent) pLogical = pLogical->pParent; if (pLogical->vf_online==0) { pPhysical->vf_bootmark = pLogical->vf_bootmark = 0; continue; } if (pLogical->VDeviceType==VD_SPARE || pPhysical!=fGetFirstChild(pLogical)) continue; pVBus = &pAdapter->VBus; if(pVBus) { j=0; while(jpVDevice[j]) j++; if(jpVDevice[j] = pLogical; pLogical->pVBus = pVBus; if (j>0 && pLogical->vf_bootmark) { if (pVBus->pVDevice[0]->vf_bootmark) { fResetBootMark(pLogical); } else { do { pVBus->pVDevice[j] = pVBus->pVDevice[j-1]; } while (--j); pVBus->pVDevice[0] = pLogical; } } } } } } PVDevice GetSpareDisk(_VBUS_ARG PVDevice pArray) { IAL_ADAPTER_T *pAdapter = (IAL_ADAPTER_T *)pArray->pVBus->OsExt; LBA_T capacity = LongDiv(pArray->VDeviceCapacity, pArray->u.array.bArnMember-1); LBA_T thiscap, maxcap = MAX_LBA_T; PVDevice pVDevice, pFind = NULL; int i; for(i=0;iVDevices[i]; if(!pVDevice) continue; thiscap = pArray->vf_format_v2? pVDevice->u.disk.dDeRealCapacity : pVDevice->VDeviceCapacity; /* find the smallest usable spare disk */ if (pVDevice->VDeviceType==VD_SPARE && pVDevice->u.disk.df_on_line && thiscap < maxcap && thiscap >= capacity) { maxcap = pVDevice->VDeviceCapacity; pFind = pVDevice; } } return pFind; } /****************************************************************** * IO ATA Command *******************************************************************/ int HPTLIBAPI fDeReadWrite(PDevice pDev, ULONG Lba, UCHAR Cmd, void *tmpBuffer) { return mvReadWrite(pDev->mv, Lba, Cmd, tmpBuffer); } void HPTLIBAPI fDeSelectMode(PDevice pDev, UCHAR NewMode) { MV_SATA_CHANNEL *pSataChannel = pDev->mv; MV_SATA_ADAPTER *pSataAdapter = pSataChannel->mvSataAdapter; MV_U8 channelIndex = pSataChannel->channelNumber; UCHAR mvMode; /* 508x don't use MW-DMA? */ if (NewMode>4 && NewMode<8) NewMode = 4; pDev->bDeModeSetting = NewMode; if (NewMode<=4) mvMode = MV_ATA_TRANSFER_PIO_0 + NewMode; else mvMode = MV_ATA_TRANSFER_UDMA_0 + (NewMode-8); /*To fix 88i8030 bug*/ if (mvMode > MV_ATA_TRANSFER_UDMA_0 && mvMode < MV_ATA_TRANSFER_UDMA_4) mvMode = MV_ATA_TRANSFER_UDMA_0; mvSataDisableChannelDma(pSataAdapter, channelIndex); /* Flush pending commands */ mvSataFlushDmaQueue (pSataAdapter, channelIndex, MV_FLUSH_TYPE_NONE); if (mvStorageDevATASetFeatures(pSataAdapter, channelIndex, MV_ATA_SET_FEATURES_TRANSFER, mvMode, 0, 0, 0) == MV_FALSE) { KdPrint(("channel %d: Set Features failed\n", channelIndex)); } /* Enable EDMA */ if (mvSataEnableChannelDma(pSataAdapter, channelIndex) == MV_FALSE) KdPrint(("Failed to enable DMA, channel=%d", channelIndex)); } int HPTLIBAPI fDeSetTCQ(PDevice pDev, int enable, int depth) { MV_SATA_CHANNEL *pSataChannel = pDev->mv; MV_SATA_ADAPTER *pSataAdapter = pSataChannel->mvSataAdapter; MV_U8 channelIndex = pSataChannel->channelNumber; IAL_ADAPTER_T *pAdapter = pSataAdapter->IALData; MV_CHANNEL *channelInfo = &(pAdapter->mvChannel[channelIndex]); int dmaActive = pSataChannel->queueCommandsEnabled; int ret = 0; if (dmaActive) { mvSataDisableChannelDma(pSataAdapter, channelIndex); mvSataFlushDmaQueue(pSataAdapter,channelIndex,MV_FLUSH_TYPE_CALLBACK); } if (enable) { if (pSataChannel->queuedDMA == MV_EDMA_MODE_NOT_QUEUED && (pSataChannel->identifyDevice[IDEN_SUPPORTED_COMMANDS2] & (0x2))) { UCHAR depth = ((pSataChannel->identifyDevice[IDEN_QUEUE_DEPTH]) & 0x1f) + 1; channelInfo->queueDepth = (depth==32)? 31 : depth; mvSataConfigEdmaMode(pSataAdapter, channelIndex, MV_EDMA_MODE_QUEUED, depth); ret = 1; } } else { if (pSataChannel->queuedDMA != MV_EDMA_MODE_NOT_QUEUED) { channelInfo->queueDepth = 2; mvSataConfigEdmaMode(pSataAdapter, channelIndex, MV_EDMA_MODE_NOT_QUEUED, 0); ret = 1; } } if (dmaActive) mvSataEnableChannelDma(pSataAdapter,channelIndex); return ret; } int HPTLIBAPI fDeSetNCQ(PDevice pDev, int enable, int depth) { return 0; } int HPTLIBAPI fDeSetWriteCache(PDevice pDev, int enable) { MV_SATA_CHANNEL *pSataChannel = pDev->mv; MV_SATA_ADAPTER *pSataAdapter = pSataChannel->mvSataAdapter; MV_U8 channelIndex = pSataChannel->channelNumber; IAL_ADAPTER_T *pAdapter = pSataAdapter->IALData; MV_CHANNEL *channelInfo = &(pAdapter->mvChannel[channelIndex]); int dmaActive = pSataChannel->queueCommandsEnabled; int ret = 0; if (dmaActive) { mvSataDisableChannelDma(pSataAdapter, channelIndex); mvSataFlushDmaQueue(pSataAdapter,channelIndex,MV_FLUSH_TYPE_CALLBACK); } if ((pSataChannel->identifyDevice[82] & (0x20))) { if (enable) { if (mvStorageDevATASetFeatures(pSataAdapter, channelIndex, MV_ATA_SET_FEATURES_ENABLE_WCACHE, 0, 0, 0, 0)) { channelInfo->writeCacheEnabled = MV_TRUE; ret = 1; } } else { if (mvStorageDevATASetFeatures(pSataAdapter, channelIndex, MV_ATA_SET_FEATURES_DISABLE_WCACHE, 0, 0, 0, 0)) { channelInfo->writeCacheEnabled = MV_FALSE; ret = 1; } } } if (dmaActive) mvSataEnableChannelDma(pSataAdapter,channelIndex); return ret; } int HPTLIBAPI fDeSetReadAhead(PDevice pDev, int enable) { MV_SATA_CHANNEL *pSataChannel = pDev->mv; MV_SATA_ADAPTER *pSataAdapter = pSataChannel->mvSataAdapter; MV_U8 channelIndex = pSataChannel->channelNumber; IAL_ADAPTER_T *pAdapter = pSataAdapter->IALData; MV_CHANNEL *channelInfo = &(pAdapter->mvChannel[channelIndex]); int dmaActive = pSataChannel->queueCommandsEnabled; int ret = 0; if (dmaActive) { mvSataDisableChannelDma(pSataAdapter, channelIndex); mvSataFlushDmaQueue(pSataAdapter,channelIndex,MV_FLUSH_TYPE_CALLBACK); } if ((pSataChannel->identifyDevice[82] & (0x40))) { if (enable) { if (mvStorageDevATASetFeatures(pSataAdapter, channelIndex, MV_ATA_SET_FEATURES_ENABLE_RLA, 0, 0, 0, 0)) { channelInfo->readAheadEnabled = MV_TRUE; ret = 1; } } else { if (mvStorageDevATASetFeatures(pSataAdapter, channelIndex, MV_ATA_SET_FEATURES_DISABLE_RLA, 0, 0, 0, 0)) { channelInfo->readAheadEnabled = MV_FALSE; ret = 1; } } } if (dmaActive) mvSataEnableChannelDma(pSataAdapter,channelIndex); return ret; } #ifdef SUPPORT_ARRAY #define IdeRegisterVDevice fCheckArray #else void IdeRegisterVDevice(PDevice pDev) { PVDevice pVDev = Map2pVDevice(pDev); pVDev->VDeviceType = pDev->df_atapi? VD_ATAPI : pDev->df_removable_drive? VD_REMOVABLE : VD_SINGLE_DISK; pVDev->vf_online = 1; pVDev->VDeviceCapacity = pDev->dDeRealCapacity; pVDev->pfnSendCommand = pfnSendCommand[pVDev->VDeviceType]; pVDev->pfnDeviceFailed = pfnDeviceFailed[pVDev->VDeviceType]; } #endif static __inline PBUS_DMAMAP dmamap_get(struct IALAdapter * pAdapter) { PBUS_DMAMAP p = pAdapter->pbus_dmamap_list; if (p) pAdapter->pbus_dmamap_list = p-> next; return p; } static __inline void dmamap_put(PBUS_DMAMAP p) { p->next = p->pAdapter->pbus_dmamap_list; p->pAdapter->pbus_dmamap_list = p; } static int num_adapters = 0; static int init_adapter(IAL_ADAPTER_T *pAdapter) { PVBus _vbus_p = &pAdapter->VBus; MV_SATA_ADAPTER *pMvSataAdapter; int i, channel, rid; PVDevice pVDev; mtx_init(&pAdapter->lock, "hptsleeplock", NULL, MTX_DEF); callout_init_mtx(&pAdapter->event_timer_connect, &pAdapter->lock, 0); callout_init_mtx(&pAdapter->event_timer_disconnect, &pAdapter->lock, 0); sx_xlock(&hptmv_list_lock); pAdapter->next = 0; if(gIal_Adapter == NULL){ gIal_Adapter = pAdapter; pCurAdapter = gIal_Adapter; } else { pCurAdapter->next = pAdapter; pCurAdapter = pAdapter; } sx_xunlock(&hptmv_list_lock); pAdapter->outstandingCommands = 0; pMvSataAdapter = &(pAdapter->mvSataAdapter); _vbus_p->OsExt = (void *)pAdapter; pMvSataAdapter->IALData = pAdapter; if (bus_dma_tag_create(bus_get_dma_tag(pAdapter->hpt_dev),/* parent */ 4, /* alignment */ BUS_SPACE_MAXADDR_32BIT+1, /* boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ PAGE_SIZE * (MAX_SG_DESCRIPTORS-1), /* maxsize */ MAX_SG_DESCRIPTORS, /* nsegments */ 0x10000, /* maxsegsize */ BUS_DMA_WAITOK, /* flags */ busdma_lock_mutex, /* lockfunc */ &pAdapter->lock, /* lockfuncarg */ &pAdapter->io_dma_parent /* tag */)) { return ENXIO; } if (hptmv_allocate_edma_queues(pAdapter)) { MV_ERROR("RR18xx: Failed to allocate memory for EDMA queues\n"); return ENOMEM; } /* also map EPROM address */ rid = 0x10; if (!(pAdapter->mem_res = bus_alloc_resource_any(pAdapter->hpt_dev, SYS_RES_MEMORY, &rid, RF_ACTIVE)) || !(pMvSataAdapter->adapterIoBaseAddress = rman_get_virtual(pAdapter->mem_res))) { MV_ERROR("RR18xx: Failed to remap memory space\n"); hptmv_free_edma_queues(pAdapter); return ENXIO; } else { KdPrint(("RR18xx: io base address 0x%p\n", pMvSataAdapter->adapterIoBaseAddress)); } pMvSataAdapter->adapterId = num_adapters++; /* get the revision ID */ pMvSataAdapter->pciConfigRevisionId = pci_read_config(pAdapter->hpt_dev, PCIR_REVID, 1); pMvSataAdapter->pciConfigDeviceId = pci_get_device(pAdapter->hpt_dev); /* init RR18xx */ pMvSataAdapter->intCoalThre[0]= 1; pMvSataAdapter->intCoalThre[1]= 1; pMvSataAdapter->intTimeThre[0] = 1; pMvSataAdapter->intTimeThre[1] = 1; pMvSataAdapter->pciCommand = 0x0107E371; pMvSataAdapter->pciSerrMask = 0xd77fe6ul; pMvSataAdapter->pciInterruptMask = 0xd77fe6ul; pMvSataAdapter->mvSataEventNotify = hptmv_event_notify; if (mvSataInitAdapter(pMvSataAdapter) == MV_FALSE) { MV_ERROR("RR18xx[%d]: core failed to initialize the adapter\n", pMvSataAdapter->adapterId); unregister: bus_release_resource(pAdapter->hpt_dev, SYS_RES_MEMORY, rid, pAdapter->mem_res); hptmv_free_edma_queues(pAdapter); return ENXIO; } pAdapter->ver_601 = pMvSataAdapter->pcbVersion; #ifndef FOR_DEMO set_fail_leds(pMvSataAdapter, 0); #endif /* setup command blocks */ KdPrint(("Allocate command blocks\n")); _vbus_(pFreeCommands) = 0; pAdapter->pCommandBlocks = malloc(sizeof(struct _Command) * MAX_COMMAND_BLOCKS_FOR_EACH_VBUS, M_DEVBUF, M_NOWAIT); KdPrint(("pCommandBlocks:%p\n",pAdapter->pCommandBlocks)); if (!pAdapter->pCommandBlocks) { MV_ERROR("insufficient memory\n"); goto unregister; } for (i=0; ipCommandBlocks[i])); } /*Set up the bus_dmamap*/ pAdapter->pbus_dmamap = (PBUS_DMAMAP)malloc (sizeof(struct _BUS_DMAMAP) * MAX_QUEUE_COMM, M_DEVBUF, M_NOWAIT); if(!pAdapter->pbus_dmamap) { MV_ERROR("insufficient memory\n"); free(pAdapter->pCommandBlocks, M_DEVBUF); goto unregister; } memset((void *)pAdapter->pbus_dmamap, 0, sizeof(struct _BUS_DMAMAP) * MAX_QUEUE_COMM); pAdapter->pbus_dmamap_list = 0; for (i=0; i < MAX_QUEUE_COMM; i++) { PBUS_DMAMAP pmap = &(pAdapter->pbus_dmamap[i]); pmap->pAdapter = pAdapter; dmamap_put(pmap); if(bus_dmamap_create(pAdapter->io_dma_parent, 0, &pmap->dma_map)) { MV_ERROR("Can not allocate dma map\n"); free(pAdapter->pCommandBlocks, M_DEVBUF); free(pAdapter->pbus_dmamap, M_DEVBUF); goto unregister; } callout_init_mtx(&pmap->timeout, &pAdapter->lock, 0); } /* setup PRD Tables */ KdPrint(("Allocate PRD Tables\n")); pAdapter->pFreePRDLink = 0; pAdapter->prdTableAddr = (PUCHAR)contigmalloc( (PRD_ENTRIES_SIZE*PRD_TABLES_FOR_VBUS + 32), M_DEVBUF, M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0ul); KdPrint(("prdTableAddr:%p\n",pAdapter->prdTableAddr)); if (!pAdapter->prdTableAddr) { MV_ERROR("insufficient PRD Tables\n"); goto unregister; } pAdapter->prdTableAlignedAddr = (PUCHAR)(((ULONG_PTR)pAdapter->prdTableAddr + 0x1f) & ~(ULONG_PTR)0x1fL); { PUCHAR PRDTable = pAdapter->prdTableAlignedAddr; for (i=0; ipFreePRDLink=%p\n",i,pAdapter->pFreePRDLink)); */ FreePRDTable(pAdapter, PRDTable); PRDTable += PRD_ENTRIES_SIZE; } } /* enable the adapter interrupts */ /* configure and start the connected channels*/ for (channel = 0; channel < MV_SATA_CHANNELS_NUM; channel++) { pAdapter->mvChannel[channel].online = MV_FALSE; if (mvSataIsStorageDeviceConnected(pMvSataAdapter, channel) == MV_TRUE) { KdPrint(("RR18xx[%d]: channel %d is connected\n", pMvSataAdapter->adapterId, channel)); if (hptmv_init_channel(pAdapter, channel) == 0) { if (mvSataConfigureChannel(pMvSataAdapter, channel) == MV_FALSE) { MV_ERROR("RR18xx[%d]: Failed to configure channel" " %d\n",pMvSataAdapter->adapterId, channel); hptmv_free_channel(pAdapter, channel); } else { if (start_channel(pAdapter, channel)) { MV_ERROR("RR18xx[%d]: Failed to start channel," " channel=%d\n",pMvSataAdapter->adapterId, channel); hptmv_free_channel(pAdapter, channel); } pAdapter->mvChannel[channel].online = MV_TRUE; /* mvSataChannelSetEdmaLoopBackMode(pMvSataAdapter, channel, MV_TRUE);*/ } } } KdPrint(("pAdapter->mvChannel[channel].online:%x, channel:%d\n", pAdapter->mvChannel[channel].online, channel)); } #ifdef SUPPORT_ARRAY for(i = MAX_ARRAY_DEVICE - 1; i >= 0; i--) { pVDev = ArrayTables(i); mArFreeArrayTable(pVDev); } #endif KdPrint(("Initialize Devices\n")); for (channel = 0; channel < MV_SATA_CHANNELS_NUM; channel++) { MV_SATA_CHANNEL *pMvSataChannel = pMvSataAdapter->sataChannel[channel]; if (pMvSataChannel) { init_vdev_params(pAdapter, channel); IdeRegisterVDevice(&pAdapter->VDevices[channel].u.disk); } } #ifdef SUPPORT_ARRAY CheckArrayCritical(_VBUS_P0); #endif _vbus_p->nInstances = 1; fRegisterVdevice(pAdapter); for (channel=0;channelpVDevice[channel]; if (pVDev && pVDev->vf_online) fCheckBootable(pVDev); } #if defined(SUPPORT_ARRAY) && defined(_RAID5N_) init_raid5_memory(_VBUS_P0); _vbus_(r5).enable_write_back = 1; printf("RR18xx: RAID5 write-back %s\n", _vbus_(r5).enable_write_back? "enabled" : "disabled"); #endif mvSataUnmaskAdapterInterrupt(pMvSataAdapter); return 0; } int MvSataResetChannel(MV_SATA_ADAPTER *pMvSataAdapter, MV_U8 channel) { IAL_ADAPTER_T *pAdapter = (IAL_ADAPTER_T *)pMvSataAdapter->IALData; mvSataDisableChannelDma(pMvSataAdapter, channel); /* Flush pending commands */ mvSataFlushDmaQueue (pMvSataAdapter, channel, MV_FLUSH_TYPE_CALLBACK); /* Software reset channel */ if (mvStorageDevATASoftResetDevice(pMvSataAdapter, channel) == MV_FALSE) { MV_ERROR("RR18xx [%d,%d]: failed to perform Software reset\n", pMvSataAdapter->adapterId, channel); hptmv_free_channel(pAdapter, channel); return -1; } /* Hardware reset channel */ if (mvSataChannelHardReset(pMvSataAdapter, channel)== MV_FALSE) { MV_ERROR("RR18xx [%d,%d] Failed to Hard reser the SATA channel\n", pMvSataAdapter->adapterId, channel); hptmv_free_channel(pAdapter, channel); return -1; } if (mvSataIsStorageDeviceConnected(pMvSataAdapter, channel) == MV_FALSE) { MV_ERROR("RR18xx [%d,%d] Failed to Connect Device\n", pMvSataAdapter->adapterId, channel); hptmv_free_channel(pAdapter, channel); return -1; }else { MV_ERROR("channel %d: perform recalibrate command", channel); if (!mvStorageDevATAExecuteNonUDMACommand(pMvSataAdapter, channel, MV_NON_UDMA_PROTOCOL_NON_DATA, MV_FALSE, NULL, /* pBuffer*/ 0, /* count */ 0, /*features*/ /* sectorCount */ 0, 0, /* lbaLow */ 0, /* lbaMid */ /* lbaHigh */ 0, 0, /* device */ /* command */ 0x10)) MV_ERROR("channel %d: recalibrate failed", channel); /* Set transfer mode */ if((mvStorageDevATASetFeatures(pMvSataAdapter, channel, MV_ATA_SET_FEATURES_TRANSFER, MV_ATA_TRANSFER_PIO_SLOW, 0, 0, 0) == MV_FALSE) || (mvStorageDevATASetFeatures(pMvSataAdapter, channel, MV_ATA_SET_FEATURES_TRANSFER, pAdapter->mvChannel[channel].maxPioModeSupported, 0, 0, 0) == MV_FALSE) || (mvStorageDevATASetFeatures(pMvSataAdapter, channel, MV_ATA_SET_FEATURES_TRANSFER, pAdapter->mvChannel[channel].maxUltraDmaModeSupported, 0, 0, 0) == MV_FALSE) ) { MV_ERROR("channel %d: Set Features failed", channel); hptmv_free_channel(pAdapter, channel); return -1; } /* Enable EDMA */ if (mvSataEnableChannelDma(pMvSataAdapter, channel) == MV_FALSE) { MV_ERROR("Failed to enable DMA, channel=%d", channel); hptmv_free_channel(pAdapter, channel); return -1; } } return 0; } static int fResetActiveCommands(PVBus _vbus_p) { MV_SATA_ADAPTER *pMvSataAdapter = &((IAL_ADAPTER_T *)_vbus_p->OsExt)->mvSataAdapter; MV_U8 channel; for (channel=0;channel< MV_SATA_CHANNELS_NUM;channel++) { if (pMvSataAdapter->sataChannel[channel] && pMvSataAdapter->sataChannel[channel]->outstandingCommands) MvSataResetChannel(pMvSataAdapter,channel); } return 0; } void fCompleteAllCommandsSynchronously(PVBus _vbus_p) { UINT cont; ULONG ticks = 0; MV_U8 channel; MV_SATA_ADAPTER *pMvSataAdapter = &((IAL_ADAPTER_T *)_vbus_p->OsExt)->mvSataAdapter; MV_SATA_CHANNEL *pMvSataChannel; do { check_cmds: cont = 0; CheckPendingCall(_VBUS_P0); #ifdef _RAID5N_ dataxfer_poll(); xor_poll(); #endif for (channel=0;channel< MV_SATA_CHANNELS_NUM;channel++) { pMvSataChannel = pMvSataAdapter->sataChannel[channel]; if (pMvSataChannel && pMvSataChannel->outstandingCommands) { while (pMvSataChannel->outstandingCommands) { if (!mvSataInterruptServiceRoutine(pMvSataAdapter)) { StallExec(1000); if (ticks++ > 3000) { MvSataResetChannel(pMvSataAdapter,channel); goto check_cmds; } } else ticks = 0; } cont = 1; } } } while (cont); } void fResetVBus(_VBUS_ARG0) { KdPrint(("fMvResetBus(%p)", _vbus_p)); /* some commands may already finished. */ CheckPendingCall(_VBUS_P0); fResetActiveCommands(_vbus_p); /* * the other pending commands may still be finished successfully. */ fCompleteAllCommandsSynchronously(_vbus_p); /* Now there should be no pending commands. No more action needed. */ CheckIdleCall(_VBUS_P0); KdPrint(("fMvResetBus() done")); } /*No rescan function*/ void fRescanAllDevice(_VBUS_ARG0) { } static MV_BOOLEAN CommandCompletionCB(MV_SATA_ADAPTER *pMvSataAdapter, MV_U8 channelNum, MV_COMPLETION_TYPE comp_type, MV_VOID_PTR commandId, MV_U16 responseFlags, MV_U32 timeStamp, MV_STORAGE_DEVICE_REGISTERS *registerStruct) { PCommand pCmd = (PCommand) commandId; _VBUS_INST(pCmd->pVDevice->pVBus) if (pCmd->uScratch.sata_param.prdAddr) FreePRDTable(pMvSataAdapter->IALData,pCmd->uScratch.sata_param.prdAddr); switch (comp_type) { case MV_COMPLETION_TYPE_NORMAL: pCmd->Result = RETURN_SUCCESS; break; case MV_COMPLETION_TYPE_ABORT: pCmd->Result = RETURN_BUS_RESET; break; case MV_COMPLETION_TYPE_ERROR: MV_ERROR("IAL: COMPLETION ERROR, adapter %d, channel %d, flags=%x\n", pMvSataAdapter->adapterId, channelNum, responseFlags); if (responseFlags & 4) { MV_ERROR("ATA regs: error %x, sector count %x, LBA low %x, LBA mid %x," " LBA high %x, device %x, status %x\n", registerStruct->errorRegister, registerStruct->sectorCountRegister, registerStruct->lbaLowRegister, registerStruct->lbaMidRegister, registerStruct->lbaHighRegister, registerStruct->deviceRegister, registerStruct->statusRegister); } /*We can't do handleEdmaError directly here, because CommandCompletionCB is called by * mv's ISR, if we retry the command, than the internel data structure may be destroyed*/ pCmd->uScratch.sata_param.responseFlags = responseFlags; pCmd->uScratch.sata_param.bIdeStatus = registerStruct->statusRegister; pCmd->uScratch.sata_param.errorRegister = registerStruct->errorRegister; pCmd->pVDevice->u.disk.QueueLength--; CallAfterReturn(_VBUS_P (DPC_PROC)handleEdmaError,pCmd); return TRUE; default: MV_ERROR(" Unknown completion type (%d)\n", comp_type); return MV_FALSE; } if (pCmd->uCmd.Ide.Command == IDE_COMMAND_VERIFY && pCmd->uScratch.sata_param.cmd_priv > 1) { pCmd->uScratch.sata_param.cmd_priv --; return TRUE; } pCmd->pVDevice->u.disk.QueueLength--; CallAfterReturn(_VBUS_P (DPC_PROC)pCmd->pfnCompletion, pCmd); return TRUE; } void fDeviceSendCommand(_VBUS_ARG PCommand pCmd) { MV_SATA_EDMA_PRD_ENTRY *pPRDTable = 0; MV_SATA_ADAPTER *pMvSataAdapter; MV_SATA_CHANNEL *pMvSataChannel; PVDevice pVDevice = pCmd->pVDevice; PDevice pDevice = &pVDevice->u.disk; LBA_T Lba = pCmd->uCmd.Ide.Lba; USHORT nSector = pCmd->uCmd.Ide.nSectors; MV_QUEUE_COMMAND_RESULT result; MV_QUEUE_COMMAND_INFO commandInfo; MV_UDMA_COMMAND_PARAMS *pUdmaParams = &commandInfo.commandParams.udmaCommand; MV_NONE_UDMA_COMMAND_PARAMS *pNoUdmaParams = &commandInfo.commandParams.NoneUdmaCommand; MV_BOOLEAN is48bit; MV_U8 channel; int i=0; DECLARE_BUFFER(FPSCAT_GATH, tmpSg); if (!pDevice->df_on_line) { MV_ERROR("Device is offline"); pCmd->Result = RETURN_BAD_DEVICE; CallAfterReturn(_VBUS_P (DPC_PROC)pCmd->pfnCompletion, pCmd); return; } pDevice->HeadPosition = pCmd->uCmd.Ide.Lba + pCmd->uCmd.Ide.nSectors; pMvSataChannel = pDevice->mv; pMvSataAdapter = pMvSataChannel->mvSataAdapter; channel = pMvSataChannel->channelNumber; /* old RAID0 has hidden lba. Remember to clear dDeHiddenLba when delete array! */ Lba += pDevice->dDeHiddenLba; /* check LBA */ if (Lba+nSector-1 > pDevice->dDeRealCapacity) { pCmd->Result = RETURN_INVALID_REQUEST; CallAfterReturn(_VBUS_P (DPC_PROC)pCmd->pfnCompletion, pCmd); return; } /* * always use 48bit LBA if drive supports it. * Some Seagate drives report error if you use a 28-bit command * to access sector 0xfffffff. */ is48bit = pMvSataChannel->lba48Address; switch (pCmd->uCmd.Ide.Command) { case IDE_COMMAND_READ: case IDE_COMMAND_WRITE: if (pDevice->bDeModeSetting<8) goto pio; commandInfo.type = MV_QUEUED_COMMAND_TYPE_UDMA; pUdmaParams->isEXT = is48bit; pUdmaParams->numOfSectors = nSector; pUdmaParams->lowLBAAddress = Lba; pUdmaParams->highLBAAddress = 0; pUdmaParams->prdHighAddr = 0; pUdmaParams->callBack = CommandCompletionCB; pUdmaParams->commandId = (MV_VOID_PTR )pCmd; if(pCmd->uCmd.Ide.Command == IDE_COMMAND_READ) pUdmaParams->readWrite = MV_UDMA_TYPE_READ; else pUdmaParams->readWrite = MV_UDMA_TYPE_WRITE; if (pCmd->pSgTable && pCmd->cf_physical_sg) { FPSCAT_GATH sg1=tmpSg, sg2=pCmd->pSgTable; do { *sg1++=*sg2; } while ((sg2++->wSgFlag & SG_FLAG_EOT)==0); } else { if (!pCmd->pfnBuildSgl || !pCmd->pfnBuildSgl(_VBUS_P pCmd, tmpSg, 0)) { pio: mvSataDisableChannelDma(pMvSataAdapter, channel); mvSataFlushDmaQueue(pMvSataAdapter, channel, MV_FLUSH_TYPE_CALLBACK); if (pCmd->pSgTable && pCmd->cf_physical_sg==0) { FPSCAT_GATH sg1=tmpSg, sg2=pCmd->pSgTable; do { *sg1++=*sg2; } while ((sg2++->wSgFlag & SG_FLAG_EOT)==0); } else { if (!pCmd->pfnBuildSgl || !pCmd->pfnBuildSgl(_VBUS_P pCmd, tmpSg, 1)) { pCmd->Result = RETURN_NEED_LOGICAL_SG; goto finish_cmd; } } do { ULONG size = tmpSg->wSgSize? tmpSg->wSgSize : 0x10000; ULONG_PTR addr = tmpSg->dSgAddress; if (size & 0x1ff) { pCmd->Result = RETURN_INVALID_REQUEST; goto finish_cmd; } if (mvStorageDevATAExecuteNonUDMACommand(pMvSataAdapter, channel, (pCmd->cf_data_out)?MV_NON_UDMA_PROTOCOL_PIO_DATA_OUT:MV_NON_UDMA_PROTOCOL_PIO_DATA_IN, is48bit, (MV_U16_PTR)addr, size >> 1, /* count */ 0, /* features N/A */ (MV_U16)(size>>9), /*sector count*/ (MV_U16)( (is48bit? (MV_U16)((Lba >> 16) & 0xFF00) : 0 ) | (UCHAR)(Lba & 0xFF) ), /*lbalow*/ (MV_U16)((Lba >> 8) & 0xFF), /* lbaMid */ (MV_U16)((Lba >> 16) & 0xFF),/* lbaHigh */ (MV_U8)(0x40 | (is48bit ? 0 : (UCHAR)(Lba >> 24) & 0xFF )),/* device */ (MV_U8)(is48bit ? (pCmd->cf_data_in?IDE_COMMAND_READ_EXT:IDE_COMMAND_WRITE_EXT):pCmd->uCmd.Ide.Command) )==MV_FALSE) { pCmd->Result = RETURN_IDE_ERROR; goto finish_cmd; } Lba += size>>9; if(Lba & 0xF0000000) is48bit = MV_TRUE; } while ((tmpSg++->wSgFlag & SG_FLAG_EOT)==0); pCmd->Result = RETURN_SUCCESS; finish_cmd: mvSataEnableChannelDma(pMvSataAdapter,channel); CallAfterReturn(_VBUS_P (DPC_PROC)pCmd->pfnCompletion, pCmd); return; } } pPRDTable = (MV_SATA_EDMA_PRD_ENTRY *) AllocatePRDTable(pMvSataAdapter->IALData); KdPrint(("pPRDTable:%p\n",pPRDTable)); if (!pPRDTable) { pCmd->Result = RETURN_DEVICE_BUSY; CallAfterReturn(_VBUS_P (DPC_PROC)pCmd->pfnCompletion, pCmd); HPT_ASSERT(0); return; } do{ pPRDTable[i].highBaseAddr = (sizeof(tmpSg->dSgAddress)>4 ? (MV_U32)(tmpSg->dSgAddress>>32) : 0); pPRDTable[i].flags = (MV_U16)tmpSg->wSgFlag; pPRDTable[i].byteCount = (MV_U16)tmpSg->wSgSize; pPRDTable[i].lowBaseAddr = (MV_U32)tmpSg->dSgAddress; pPRDTable[i].reserved = 0; i++; }while((tmpSg++->wSgFlag & SG_FLAG_EOT)==0); pUdmaParams->prdLowAddr = (ULONG)fOsPhysicalAddress(pPRDTable); if ((pUdmaParams->numOfSectors == 256) && (pMvSataChannel->lba48Address == MV_FALSE)) { pUdmaParams->numOfSectors = 0; } pCmd->uScratch.sata_param.prdAddr = (PVOID)pPRDTable; result = mvSataQueueCommand(pMvSataAdapter, channel, &commandInfo); if (result != MV_QUEUE_COMMAND_RESULT_OK) { queue_failed: switch (result) { case MV_QUEUE_COMMAND_RESULT_BAD_LBA_ADDRESS: MV_ERROR("IAL Error: Edma Queue command failed. Bad LBA " "LBA[31:0](0x%08x)\n", pUdmaParams->lowLBAAddress); pCmd->Result = RETURN_IDE_ERROR; break; case MV_QUEUE_COMMAND_RESULT_QUEUED_MODE_DISABLED: MV_ERROR("IAL Error: Edma Queue command failed. EDMA" " disabled adapter %d channel %d\n", pMvSataAdapter->adapterId, channel); mvSataEnableChannelDma(pMvSataAdapter,channel); pCmd->Result = RETURN_IDE_ERROR; break; case MV_QUEUE_COMMAND_RESULT_FULL: MV_ERROR("IAL Error: Edma Queue command failed. Queue is" " Full adapter %d channel %d\n", pMvSataAdapter->adapterId, channel); pCmd->Result = RETURN_DEVICE_BUSY; break; case MV_QUEUE_COMMAND_RESULT_BAD_PARAMS: MV_ERROR("IAL Error: Edma Queue command failed. (Bad " "Params), pMvSataAdapter: %p, pSataChannel: %p.\n", pMvSataAdapter, pMvSataAdapter->sataChannel[channel]); pCmd->Result = RETURN_IDE_ERROR; break; default: MV_ERROR("IAL Error: Bad result value (%d) from queue" " command\n", result); pCmd->Result = RETURN_IDE_ERROR; } if(pPRDTable) FreePRDTable(pMvSataAdapter->IALData,pPRDTable); CallAfterReturn(_VBUS_P (DPC_PROC)pCmd->pfnCompletion, pCmd); } pDevice->QueueLength++; return; case IDE_COMMAND_VERIFY: commandInfo.type = MV_QUEUED_COMMAND_TYPE_NONE_UDMA; pNoUdmaParams->bufPtr = NULL; pNoUdmaParams->callBack = CommandCompletionCB; pNoUdmaParams->commandId = (MV_VOID_PTR)pCmd; pNoUdmaParams->count = 0; pNoUdmaParams->features = 0; pNoUdmaParams->protocolType = MV_NON_UDMA_PROTOCOL_NON_DATA; pCmd->uScratch.sata_param.cmd_priv = 1; if (pMvSataChannel->lba48Address == MV_TRUE){ pNoUdmaParams->command = MV_ATA_COMMAND_READ_VERIFY_SECTORS_EXT; pNoUdmaParams->isEXT = MV_TRUE; pNoUdmaParams->lbaHigh = (MV_U16)((Lba & 0xff0000) >> 16); pNoUdmaParams->lbaMid = (MV_U16)((Lba & 0xff00) >> 8); pNoUdmaParams->lbaLow = (MV_U16)(((Lba & 0xff000000) >> 16)| (Lba & 0xff)); pNoUdmaParams->sectorCount = nSector; pNoUdmaParams->device = 0x40; result = mvSataQueueCommand(pMvSataAdapter, channel, &commandInfo); if (result != MV_QUEUE_COMMAND_RESULT_OK){ goto queue_failed; } return; } else{ pNoUdmaParams->command = MV_ATA_COMMAND_READ_VERIFY_SECTORS; pNoUdmaParams->isEXT = MV_FALSE; pNoUdmaParams->lbaHigh = (MV_U16)((Lba & 0xff0000) >> 16); pNoUdmaParams->lbaMid = (MV_U16)((Lba & 0xff00) >> 8); pNoUdmaParams->lbaLow = (MV_U16)(Lba & 0xff); pNoUdmaParams->sectorCount = 0xff & nSector; pNoUdmaParams->device = (MV_U8)(0x40 | ((Lba & 0xf000000) >> 24)); pNoUdmaParams->callBack = CommandCompletionCB; result = mvSataQueueCommand(pMvSataAdapter, channel, &commandInfo); /*FIXME: how about the commands already queued? but marvel also forgets to consider this*/ if (result != MV_QUEUE_COMMAND_RESULT_OK){ goto queue_failed; } } break; default: pCmd->Result = RETURN_INVALID_REQUEST; CallAfterReturn(_VBUS_P (DPC_PROC)pCmd->pfnCompletion, pCmd); break; } } /********************************************************** * * Probe the hostadapter. * **********************************************************/ static int hpt_probe(device_t dev) { if ((pci_get_vendor(dev) == MV_SATA_VENDOR_ID) && (pci_get_device(dev) == MV_SATA_DEVICE_ID_5081 #ifdef FOR_DEMO || pci_get_device(dev) == MV_SATA_DEVICE_ID_5080 #endif )) { KdPrintI((CONTROLLER_NAME " found\n")); device_set_desc(dev, CONTROLLER_NAME); return (BUS_PROBE_DEFAULT); } else return(ENXIO); } /*********************************************************** * * Auto configuration: attach and init a host adapter. * ***********************************************************/ static int hpt_attach(device_t dev) { IAL_ADAPTER_T * pAdapter = device_get_softc(dev); int rid; union ccb *ccb; struct cam_devq *devq; struct cam_sim *hpt_vsim; device_printf(dev, "%s Version %s \n", DRIVER_NAME, DRIVER_VERSION); pAdapter->hpt_dev = dev; rid = init_adapter(pAdapter); if (rid) return rid; rid = 0; if ((pAdapter->hpt_irq = bus_alloc_resource_any(pAdapter->hpt_dev, SYS_RES_IRQ, &rid, RF_SHAREABLE | RF_ACTIVE)) == NULL) { hpt_printk(("can't allocate interrupt\n")); return(ENXIO); } if (bus_setup_intr(pAdapter->hpt_dev, pAdapter->hpt_irq, INTR_TYPE_CAM | INTR_MPSAFE, NULL, hpt_intr, pAdapter, &pAdapter->hpt_intr)) { hpt_printk(("can't set up interrupt\n")); free(pAdapter, M_DEVBUF); return(ENXIO); } ccb = xpt_alloc_ccb(); ccb->ccb_h.pinfo.priority = 1; ccb->ccb_h.pinfo.index = CAM_UNQUEUED_INDEX; /* * Create the device queue for our SIM(s). */ if((devq = cam_simq_alloc(8/*MAX_QUEUE_COMM*/)) == NULL) { KdPrint(("ENXIO\n")); return ENOMEM; } /* * Construct our SIM entry */ hpt_vsim = cam_sim_alloc(hpt_action, hpt_poll, __str(PROC_DIR_NAME), pAdapter, device_get_unit(pAdapter->hpt_dev), &pAdapter->lock, 1, 8, devq); if (hpt_vsim == NULL) { cam_simq_free(devq); return ENOMEM; } mtx_lock(&pAdapter->lock); if (xpt_bus_register(hpt_vsim, dev, 0) != CAM_SUCCESS) { cam_sim_free(hpt_vsim, /*free devq*/ TRUE); mtx_unlock(&pAdapter->lock); hpt_vsim = NULL; return ENXIO; } if(xpt_create_path(&pAdapter->path, /*periph */ NULL, cam_sim_path(hpt_vsim), CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD) != CAM_REQ_CMP) { xpt_bus_deregister(cam_sim_path(hpt_vsim)); cam_sim_free(hpt_vsim, /*free_devq*/TRUE); mtx_unlock(&pAdapter->lock); hpt_vsim = NULL; return ENXIO; } mtx_unlock(&pAdapter->lock); xpt_setup_ccb(&(ccb->ccb_h), pAdapter->path, /*priority*/5); ccb->ccb_h.func_code = XPT_SASYNC_CB; ccb->csa.event_enable = AC_LOST_DEVICE; ccb->csa.callback = hpt_async; ccb->csa.callback_arg = hpt_vsim; xpt_action((union ccb *)ccb); xpt_free_ccb(ccb); if (device_get_unit(dev) == 0) { /* Start the work thread. XXX */ launch_worker_thread(); } return 0; } static int hpt_detach(device_t dev) { return (EBUSY); } /*************************************************************** * The poll function is used to simulate the interrupt when * the interrupt subsystem is not functioning. * ***************************************************************/ static void hpt_poll(struct cam_sim *sim) { hpt_intr_locked((void *)cam_sim_softc(sim)); } /**************************************************************** * Name: hpt_intr * Description: Interrupt handler. ****************************************************************/ static void hpt_intr(void *arg) { IAL_ADAPTER_T *pAdapter; pAdapter = arg; mtx_lock(&pAdapter->lock); hpt_intr_locked(pAdapter); mtx_unlock(&pAdapter->lock); } static void hpt_intr_locked(IAL_ADAPTER_T *pAdapter) { mtx_assert(&pAdapter->lock, MA_OWNED); /* KdPrintI(("----- Entering Isr() -----\n")); */ if (mvSataInterruptServiceRoutine(&pAdapter->mvSataAdapter) == MV_TRUE) { _VBUS_INST(&pAdapter->VBus) CheckPendingCall(_VBUS_P0); } /* KdPrintI(("----- Leaving Isr() -----\n")); */ } /********************************************************** * Asynchronous Events *********************************************************/ #if (!defined(UNREFERENCED_PARAMETER)) #define UNREFERENCED_PARAMETER(x) (void)(x) #endif static void hpt_async(void * callback_arg, u_int32_t code, struct cam_path * path, void * arg) { /* debug XXXX */ panic("Here"); UNREFERENCED_PARAMETER(callback_arg); UNREFERENCED_PARAMETER(code); UNREFERENCED_PARAMETER(path); UNREFERENCED_PARAMETER(arg); } static void FlushAdapter(IAL_ADAPTER_T *pAdapter) { int i; hpt_printk(("flush all devices\n")); /* flush all devices */ for (i=0; iVBus.pVDevice[i]; if(pVDev) fFlushVDev(pVDev); } } static int hpt_shutdown(device_t dev) { IAL_ADAPTER_T *pAdapter; pAdapter = device_get_softc(dev); EVENTHANDLER_DEREGISTER(shutdown_final, pAdapter->eh); mtx_lock(&pAdapter->lock); FlushAdapter(pAdapter); mtx_unlock(&pAdapter->lock); /* give the flush some time to happen, *otherwise "shutdown -p now" will make file system corrupted */ DELAY(1000 * 1000 * 5); return 0; } void Check_Idle_Call(IAL_ADAPTER_T *pAdapter) { _VBUS_INST(&pAdapter->VBus) if (mWaitingForIdle(_VBUS_P0)) { CheckIdleCall(_VBUS_P0); #ifdef SUPPORT_ARRAY { int i; PVDevice pArray; for(i = 0; i < MAX_ARRAY_PER_VBUS; i++){ if ((pArray=ArrayTables(i))->u.array.dArStamp==0) continue; else if (pArray->u.array.rf_auto_rebuild) { KdPrint(("auto rebuild.\n")); pArray->u.array.rf_auto_rebuild = 0; hpt_queue_dpc((HPT_DPC)hpt_rebuild_data_block, pAdapter, pArray, DUPLICATE); } } } #endif } /* launch the awaiting commands blocked by mWaitingForIdle */ while(pAdapter->pending_Q!= NULL) { _VBUS_INST(&pAdapter->VBus) union ccb *ccb = (union ccb *)pAdapter->pending_Q->ccb_h.ccb_ccb_ptr; hpt_free_ccb(&pAdapter->pending_Q, ccb); CallAfterReturn(_VBUS_P (DPC_PROC)OsSendCommand, ccb); } } static void ccb_done(union ccb *ccb) { PBUS_DMAMAP pmap = (PBUS_DMAMAP)ccb->ccb_adapter; IAL_ADAPTER_T * pAdapter = pmap->pAdapter; KdPrintI(("ccb_done: ccb %p status %x\n", ccb, ccb->ccb_h.status)); dmamap_put(pmap); xpt_done(ccb); pAdapter->outstandingCommands--; if (pAdapter->outstandingCommands == 0) { if(DPC_Request_Nums == 0) Check_Idle_Call(pAdapter); wakeup(pAdapter); } } /**************************************************************** * Name: hpt_action * Description: Process a queued command from the CAM layer. * Parameters: sim - Pointer to SIM object * ccb - Pointer to SCSI command structure. ****************************************************************/ void hpt_action(struct cam_sim *sim, union ccb *ccb) { IAL_ADAPTER_T * pAdapter = (IAL_ADAPTER_T *) cam_sim_softc(sim); PBUS_DMAMAP pmap; _VBUS_INST(&pAdapter->VBus) mtx_assert(&pAdapter->lock, MA_OWNED); CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("hpt_action\n")); KdPrint(("hpt_action(%lx,%lx{%x})\n", (u_long)sim, (u_long)ccb, ccb->ccb_h.func_code)); switch (ccb->ccb_h.func_code) { case XPT_SCSI_IO: /* Execute the requested I/O operation */ { /* ccb->ccb_h.path_id is not our bus id - don't check it */ if (ccb->ccb_h.target_lun) { ccb->ccb_h.status = CAM_LUN_INVALID; xpt_done(ccb); return; } if (ccb->ccb_h.target_id >= MAX_VDEVICE_PER_VBUS || pAdapter->VBus.pVDevice[ccb->ccb_h.target_id]==0) { ccb->ccb_h.status = CAM_TID_INVALID; xpt_done(ccb); return; } if (pAdapter->outstandingCommands==0 && DPC_Request_Nums==0) Check_Idle_Call(pAdapter); pmap = dmamap_get(pAdapter); HPT_ASSERT(pmap); ccb->ccb_adapter = pmap; memset((void *)pmap->psg, 0, sizeof(pmap->psg)); if (mWaitingForIdle(_VBUS_P0)) hpt_queue_ccb(&pAdapter->pending_Q, ccb); else OsSendCommand(_VBUS_P ccb); /* KdPrint(("leave scsiio\n")); */ break; } case XPT_RESET_BUS: KdPrint(("reset bus\n")); fResetVBus(_VBUS_P0); xpt_done(ccb); break; case XPT_RESET_DEV: /* Bus Device Reset the specified SCSI device */ case XPT_ABORT: /* Abort the specified CCB */ case XPT_TERM_IO: /* Terminate the I/O process */ /* XXX Implement */ ccb->ccb_h.status = CAM_REQ_INVALID; xpt_done(ccb); break; case XPT_GET_TRAN_SETTINGS: case XPT_SET_TRAN_SETTINGS: /* XXX Implement */ ccb->ccb_h.status = CAM_FUNC_NOTAVAIL; xpt_done(ccb); break; case XPT_CALC_GEOMETRY: cam_calc_geometry(&ccb->ccg, 1); xpt_done(ccb); break; case XPT_PATH_INQ: /* Path routing inquiry */ { struct ccb_pathinq *cpi = &ccb->cpi; cpi->version_num = 1; /* XXX??? */ cpi->hba_inquiry = PI_SDTR_ABLE; cpi->target_sprt = 0; /* Not necessary to reset bus */ cpi->hba_misc = PIM_NOBUSRESET; cpi->hba_eng_cnt = 0; cpi->max_target = MAX_VDEVICE_PER_VBUS; cpi->max_lun = 0; cpi->initiator_id = MAX_VDEVICE_PER_VBUS; cpi->bus_id = cam_sim_bus(sim); cpi->base_transfer_speed = 3300; strlcpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); strlcpy(cpi->hba_vid, "HPT ", HBA_IDLEN); strlcpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN); cpi->unit_number = cam_sim_unit(sim); cpi->transport = XPORT_SPI; cpi->transport_version = 2; cpi->protocol = PROTO_SCSI; cpi->protocol_version = SCSI_REV_2; cpi->ccb_h.status = CAM_REQ_CMP; xpt_done(ccb); break; } default: KdPrint(("invalid cmd\n")); ccb->ccb_h.status = CAM_REQ_INVALID; xpt_done(ccb); break; } /* KdPrint(("leave hpt_action..............\n")); */ } /* shall be called at lock_driver() */ static void hpt_queue_ccb(union ccb **ccb_Q, union ccb *ccb) { if(*ccb_Q == NULL) ccb->ccb_h.ccb_ccb_ptr = ccb; else { ccb->ccb_h.ccb_ccb_ptr = (*ccb_Q)->ccb_h.ccb_ccb_ptr; (*ccb_Q)->ccb_h.ccb_ccb_ptr = (char *)ccb; } *ccb_Q = ccb; } /* shall be called at lock_driver() */ static void hpt_free_ccb(union ccb **ccb_Q, union ccb *ccb) { union ccb *TempCCB; TempCCB = *ccb_Q; if(ccb->ccb_h.ccb_ccb_ptr == ccb) /*it means SCpnt is the last one in CURRCMDs*/ *ccb_Q = NULL; else { while(TempCCB->ccb_h.ccb_ccb_ptr != (char *)ccb) TempCCB = (union ccb *)TempCCB->ccb_h.ccb_ccb_ptr; TempCCB->ccb_h.ccb_ccb_ptr = ccb->ccb_h.ccb_ccb_ptr; if(*ccb_Q == ccb) *ccb_Q = TempCCB; } } #ifdef SUPPORT_ARRAY /*************************************************************************** * Function: hpt_worker_thread * Description: Do background rebuilding. Execute in kernel thread context. * Returns: None ***************************************************************************/ static void hpt_worker_thread(void) { for(;;) { mtx_lock(&DpcQueue_Lock); while (DpcQueue_First!=DpcQueue_Last) { ST_HPT_DPC p; p = DpcQueue[DpcQueue_First]; DpcQueue_First++; DpcQueue_First %= MAX_DPC; DPC_Request_Nums++; mtx_unlock(&DpcQueue_Lock); p.dpc(p.pAdapter, p.arg, p.flags); mtx_lock(&p.pAdapter->lock); mtx_lock(&DpcQueue_Lock); DPC_Request_Nums--; /* since we may have prevented Check_Idle_Call, do it here */ if (DPC_Request_Nums==0) { if (p.pAdapter->outstandingCommands == 0) { _VBUS_INST(&p.pAdapter->VBus); Check_Idle_Call(p.pAdapter); CheckPendingCall(_VBUS_P0); } } mtx_unlock(&p.pAdapter->lock); mtx_unlock(&DpcQueue_Lock); /*Schedule out*/ if (SIGISMEMBER(curproc->p_siglist, SIGSTOP)) { /* abort rebuilding process. */ IAL_ADAPTER_T *pAdapter; PVDevice pArray; PVBus _vbus_p; int i; sx_slock(&hptmv_list_lock); pAdapter = gIal_Adapter; while(pAdapter != NULL){ mtx_lock(&pAdapter->lock); _vbus_p = &pAdapter->VBus; for (i=0;iu.array.dArStamp==0) continue; else if (pArray->u.array.rf_rebuilding || pArray->u.array.rf_verifying || pArray->u.array.rf_initializing) { pArray->u.array.rf_abort_rebuild = 1; } } mtx_unlock(&pAdapter->lock); pAdapter = pAdapter->next; } sx_sunlock(&hptmv_list_lock); } mtx_lock(&DpcQueue_Lock); } mtx_unlock(&DpcQueue_Lock); /*Remove this debug option*/ /* #ifdef DEBUG if (SIGISMEMBER(curproc->p_siglist, SIGSTOP)) pause("hptrdy", 2*hz); #endif */ kproc_suspend_check(curproc); pause("-", 2*hz); /* wait for something to do */ } } static struct proc *hptdaemonproc; static struct kproc_desc hpt_kp = { "hpt_wt", hpt_worker_thread, &hptdaemonproc }; /*Start this thread in the hpt_attach, to prevent kernel from loading it without our controller.*/ static void launch_worker_thread(void) { IAL_ADAPTER_T *pAdapTemp; kproc_start(&hpt_kp); sx_slock(&hptmv_list_lock); for (pAdapTemp = gIal_Adapter; pAdapTemp; pAdapTemp = pAdapTemp->next) { _VBUS_INST(&pAdapTemp->VBus) int i; PVDevice pVDev; for(i = 0; i < MAX_ARRAY_PER_VBUS; i++) if ((pVDev=ArrayTables(i))->u.array.dArStamp==0) continue; else{ if (pVDev->u.array.rf_need_rebuild && !pVDev->u.array.rf_rebuilding) hpt_queue_dpc((HPT_DPC)hpt_rebuild_data_block, pAdapTemp, pVDev, (UCHAR)((pVDev->u.array.CriticalMembers || pVDev->VDeviceType == VD_RAID_1)? DUPLICATE : REBUILD_PARITY)); } } sx_sunlock(&hptmv_list_lock); /* * hpt_worker_thread needs to be suspended after shutdown sync, when fs sync finished. */ EVENTHANDLER_REGISTER(shutdown_post_sync, kproc_shutdown, hptdaemonproc, SHUTDOWN_PRI_LAST); } /* *SYSINIT(hptwt, SI_SUB_KTHREAD_IDLE, SI_ORDER_FIRST, launch_worker_thread, NULL); */ #endif /********************************************************************************/ int HPTLIBAPI fOsBuildSgl(_VBUS_ARG PCommand pCmd, FPSCAT_GATH pSg, int logical) { union ccb *ccb = (union ccb *)pCmd->pOrgCommand; if (logical) { pSg->dSgAddress = (ULONG_PTR)(UCHAR *)ccb->csio.data_ptr; pSg->wSgSize = ccb->csio.dxfer_len; pSg->wSgFlag = SG_FLAG_EOT; return TRUE; } /* since we have provided physical sg, nobody will ask us to build physical sg */ HPT_ASSERT(0); return FALSE; } /*******************************************************************************/ ULONG HPTLIBAPI GetStamp(void) { /* * the system variable, ticks, can't be used since it hasn't yet been active * when our driver starts (ticks==0, it's a invalid stamp value) */ ULONG stamp; do { stamp = random(); } while (stamp==0); return stamp; } static void SetInquiryData(PINQUIRYDATA inquiryData, PVDevice pVDev) { int i; IDENTIFY_DATA2 *pIdentify = (IDENTIFY_DATA2*)pVDev->u.disk.mv->identifyDevice; inquiryData->DeviceType = T_DIRECT; /*DIRECT_ACCESS_DEVICE*/ inquiryData->AdditionalLength = (UCHAR)(sizeof(INQUIRYDATA) - 5); #ifndef SERIAL_CMDS inquiryData->CommandQueue = 1; #endif switch(pVDev->VDeviceType) { case VD_SINGLE_DISK: case VD_ATAPI: case VD_REMOVABLE: /* Set the removable bit, if applicable. */ if ((pVDev->u.disk.df_removable_drive) || (pIdentify->GeneralConfiguration & 0x80)) inquiryData->RemovableMedia = 1; /* Fill in vendor identification fields. */ for (i = 0; i < 20; i += 2) { inquiryData->VendorId[i] = ((PUCHAR)pIdentify->ModelNumber)[i + 1]; inquiryData->VendorId[i+1] = ((PUCHAR)pIdentify->ModelNumber)[i]; } /* Initialize unused portion of product id. */ for (i = 0; i < 4; i++) inquiryData->ProductId[12+i] = ' '; /* firmware revision */ for (i = 0; i < 4; i += 2) { inquiryData->ProductRevisionLevel[i] = ((PUCHAR)pIdentify->FirmwareRevision)[i+1]; inquiryData->ProductRevisionLevel[i+1] = ((PUCHAR)pIdentify->FirmwareRevision)[i]; } break; default: memcpy(&inquiryData->VendorId, "RR18xx ", 8); #ifdef SUPPORT_ARRAY switch(pVDev->VDeviceType){ case VD_RAID_0: if ((pVDev->u.array.pMember[0] && mIsArray(pVDev->u.array.pMember[0])) || (pVDev->u.array.pMember[1] && mIsArray(pVDev->u.array.pMember[1]))) memcpy(&inquiryData->ProductId, "RAID 1/0 Array ", 16); else memcpy(&inquiryData->ProductId, "RAID 0 Array ", 16); break; case VD_RAID_1: if ((pVDev->u.array.pMember[0] && mIsArray(pVDev->u.array.pMember[0])) || (pVDev->u.array.pMember[1] && mIsArray(pVDev->u.array.pMember[1]))) memcpy(&inquiryData->ProductId, "RAID 0/1 Array ", 16); else memcpy(&inquiryData->ProductId, "RAID 1 Array ", 16); break; case VD_RAID_5: memcpy(&inquiryData->ProductId, "RAID 5 Array ", 16); break; case VD_JBOD: memcpy(&inquiryData->ProductId, "JBOD Array ", 16); break; } #endif memcpy(&inquiryData->ProductRevisionLevel, "3.00", 4); break; } } static void hpt_timeout(void *arg) { PBUS_DMAMAP pmap = (PBUS_DMAMAP)((union ccb *)arg)->ccb_adapter; IAL_ADAPTER_T *pAdapter = pmap->pAdapter; _VBUS_INST(&pAdapter->VBus) mtx_assert(&pAdapter->lock, MA_OWNED); fResetVBus(_VBUS_P0); } static void hpt_io_dmamap_callback(void *arg, bus_dma_segment_t *segs, int nsegs, int error) { PCommand pCmd = (PCommand)arg; union ccb *ccb = pCmd->pOrgCommand; struct ccb_hdr *ccb_h = &ccb->ccb_h; PBUS_DMAMAP pmap = (PBUS_DMAMAP) ccb->ccb_adapter; IAL_ADAPTER_T *pAdapter = pmap->pAdapter; PVDevice pVDev = pAdapter->VBus.pVDevice[ccb_h->target_id]; FPSCAT_GATH psg = pCmd->pSgTable; int idx; _VBUS_INST(pVDev->pVBus) HPT_ASSERT(pCmd->cf_physical_sg); if (error) panic("busdma error"); HPT_ASSERT(nsegs<= MAX_SG_DESCRIPTORS); if (nsegs != 0) { for (idx = 0; idx < nsegs; idx++, psg++) { psg->dSgAddress = (ULONG_PTR)(UCHAR *)segs[idx].ds_addr; psg->wSgSize = segs[idx].ds_len; psg->wSgFlag = (idx == nsegs-1)? SG_FLAG_EOT: 0; /* KdPrint(("psg[%d]:add=%p,size=%x,flag=%x\n", idx, psg->dSgAddress,psg->wSgSize,psg->wSgFlag)); */ } /* psg[-1].wSgFlag = SG_FLAG_EOT; */ if (pCmd->cf_data_in) { bus_dmamap_sync(pAdapter->io_dma_parent, pmap->dma_map, BUS_DMASYNC_PREREAD); } else if (pCmd->cf_data_out) { bus_dmamap_sync(pAdapter->io_dma_parent, pmap->dma_map, BUS_DMASYNC_PREWRITE); } } callout_reset(&pmap->timeout, 20 * hz, hpt_timeout, ccb); pVDev->pfnSendCommand(_VBUS_P pCmd); CheckPendingCall(_VBUS_P0); } static void HPTLIBAPI OsSendCommand(_VBUS_ARG union ccb *ccb) { PBUS_DMAMAP pmap = (PBUS_DMAMAP)ccb->ccb_adapter; IAL_ADAPTER_T *pAdapter = pmap->pAdapter; struct ccb_hdr *ccb_h = &ccb->ccb_h; struct ccb_scsiio *csio = &ccb->csio; PVDevice pVDev = pAdapter->VBus.pVDevice[ccb_h->target_id]; KdPrintI(("OsSendCommand: ccb %p cdb %x-%x-%x\n", ccb, *(ULONG *)&ccb->csio.cdb_io.cdb_bytes[0], *(ULONG *)&ccb->csio.cdb_io.cdb_bytes[4], *(ULONG *)&ccb->csio.cdb_io.cdb_bytes[8] )); pAdapter->outstandingCommands++; if (pVDev == NULL || pVDev->vf_online == 0) { ccb->ccb_h.status = CAM_REQ_INVALID; ccb_done(ccb); goto Command_Complished; } switch(ccb->csio.cdb_io.cdb_bytes[0]) { case TEST_UNIT_READY: case START_STOP_UNIT: case SYNCHRONIZE_CACHE: /* FALLTHROUGH */ ccb->ccb_h.status = CAM_REQ_CMP; break; case INQUIRY: ZeroMemory(ccb->csio.data_ptr, ccb->csio.dxfer_len); SetInquiryData((PINQUIRYDATA)ccb->csio.data_ptr, pVDev); ccb_h->status = CAM_REQ_CMP; break; case READ_CAPACITY: { UCHAR *rbuf=csio->data_ptr; unsigned int cap; if (pVDev->VDeviceCapacity > 0xfffffffful) { cap = 0xfffffffful; } else { cap = pVDev->VDeviceCapacity - 1; } rbuf[0] = (UCHAR)(cap>>24); rbuf[1] = (UCHAR)(cap>>16); rbuf[2] = (UCHAR)(cap>>8); rbuf[3] = (UCHAR)cap; /* Claim 512 byte blocks (big-endian). */ rbuf[4] = 0; rbuf[5] = 0; rbuf[6] = 2; rbuf[7] = 0; ccb_h->status = CAM_REQ_CMP; break; } case 0x9e: /*SERVICE_ACTION_IN*/ { UCHAR *rbuf = csio->data_ptr; LBA_T cap = pVDev->VDeviceCapacity - 1; rbuf[0] = (UCHAR)(cap>>56); rbuf[1] = (UCHAR)(cap>>48); rbuf[2] = (UCHAR)(cap>>40); rbuf[3] = (UCHAR)(cap>>32); rbuf[4] = (UCHAR)(cap>>24); rbuf[5] = (UCHAR)(cap>>16); rbuf[6] = (UCHAR)(cap>>8); rbuf[7] = (UCHAR)cap; rbuf[8] = 0; rbuf[9] = 0; rbuf[10] = 2; rbuf[11] = 0; ccb_h->status = CAM_REQ_CMP; break; } case READ_6: case WRITE_6: case READ_10: case WRITE_10: case 0x88: /* READ_16 */ case 0x8a: /* WRITE_16 */ case 0x13: case 0x2f: { UCHAR Cdb[16]; UCHAR CdbLength; _VBUS_INST(pVDev->pVBus) PCommand pCmd = AllocateCommand(_VBUS_P0); int error; HPT_ASSERT(pCmd); CdbLength = csio->cdb_len; if ((ccb->ccb_h.flags & CAM_CDB_POINTER) != 0) { if ((ccb->ccb_h.flags & CAM_CDB_PHYS) == 0) { bcopy(csio->cdb_io.cdb_ptr, Cdb, CdbLength); } else { KdPrintE(("ERROR!!!\n")); ccb->ccb_h.status = CAM_REQ_INVALID; break; } } else { bcopy(csio->cdb_io.cdb_bytes, Cdb, CdbLength); } pCmd->pOrgCommand = ccb; pCmd->pVDevice = pVDev; pCmd->pfnCompletion = fOsCommandDone; pCmd->pfnBuildSgl = fOsBuildSgl; pCmd->pSgTable = pmap->psg; switch (Cdb[0]) { case READ_6: case WRITE_6: case 0x13: pCmd->uCmd.Ide.Lba = ((ULONG)Cdb[1] << 16) | ((ULONG)Cdb[2] << 8) | (ULONG)Cdb[3]; pCmd->uCmd.Ide.nSectors = (USHORT) Cdb[4]; break; case 0x88: /* READ_16 */ case 0x8a: /* WRITE_16 */ pCmd->uCmd.Ide.Lba = (HPT_U64)Cdb[2] << 56 | (HPT_U64)Cdb[3] << 48 | (HPT_U64)Cdb[4] << 40 | (HPT_U64)Cdb[5] << 32 | (HPT_U64)Cdb[6] << 24 | (HPT_U64)Cdb[7] << 16 | (HPT_U64)Cdb[8] << 8 | (HPT_U64)Cdb[9]; pCmd->uCmd.Ide.nSectors = (USHORT)Cdb[12] << 8 | (USHORT)Cdb[13]; break; default: pCmd->uCmd.Ide.Lba = (ULONG)Cdb[5] | ((ULONG)Cdb[4] << 8) | ((ULONG)Cdb[3] << 16) | ((ULONG)Cdb[2] << 24); pCmd->uCmd.Ide.nSectors = (USHORT) Cdb[8] | ((USHORT)Cdb[7]<<8); break; } switch (Cdb[0]) { case READ_6: case READ_10: case 0x88: /* READ_16 */ pCmd->uCmd.Ide.Command = IDE_COMMAND_READ; pCmd->cf_data_in = 1; break; case WRITE_6: case WRITE_10: case 0x8a: /* WRITE_16 */ pCmd->uCmd.Ide.Command = IDE_COMMAND_WRITE; pCmd->cf_data_out = 1; break; case 0x13: case 0x2f: pCmd->uCmd.Ide.Command = IDE_COMMAND_VERIFY; break; } /*///////////////////////// */ pCmd->cf_physical_sg = 1; error = bus_dmamap_load_ccb(pAdapter->io_dma_parent, pmap->dma_map, ccb, hpt_io_dmamap_callback, pCmd, BUS_DMA_WAITOK ); KdPrint(("bus_dmamap_load return %d\n", error)); if (error && error!=EINPROGRESS) { hpt_printk(("bus_dmamap_load error %d\n", error)); FreeCommand(_VBUS_P pCmd); ccb->ccb_h.status = CAM_REQ_CMP_ERR; dmamap_put(pmap); pAdapter->outstandingCommands--; if (pAdapter->outstandingCommands == 0) wakeup(pAdapter); xpt_done(ccb); } goto Command_Complished; } default: ccb->ccb_h.status = CAM_REQ_INVALID; break; } ccb_done(ccb); Command_Complished: CheckPendingCall(_VBUS_P0); return; } static void HPTLIBAPI fOsCommandDone(_VBUS_ARG PCommand pCmd) { union ccb *ccb = pCmd->pOrgCommand; PBUS_DMAMAP pmap = (PBUS_DMAMAP)ccb->ccb_adapter; IAL_ADAPTER_T *pAdapter = pmap->pAdapter; KdPrint(("fOsCommandDone(pcmd=%p, result=%d)\n", pCmd, pCmd->Result)); callout_stop(&pmap->timeout); switch(pCmd->Result) { case RETURN_SUCCESS: ccb->ccb_h.status = CAM_REQ_CMP; break; case RETURN_BAD_DEVICE: ccb->ccb_h.status = CAM_DEV_NOT_THERE; break; case RETURN_DEVICE_BUSY: ccb->ccb_h.status = CAM_BUSY; break; case RETURN_INVALID_REQUEST: ccb->ccb_h.status = CAM_REQ_INVALID; break; case RETURN_SELECTION_TIMEOUT: ccb->ccb_h.status = CAM_SEL_TIMEOUT; break; case RETURN_RETRY: ccb->ccb_h.status = CAM_BUSY; break; default: ccb->ccb_h.status = CAM_SCSI_STATUS_ERROR; break; } if (pCmd->cf_data_in) { bus_dmamap_sync(pAdapter->io_dma_parent, pmap->dma_map, BUS_DMASYNC_POSTREAD); } else if (pCmd->cf_data_out) { bus_dmamap_sync(pAdapter->io_dma_parent, pmap->dma_map, BUS_DMASYNC_POSTWRITE); } bus_dmamap_unload(pAdapter->io_dma_parent, pmap->dma_map); FreeCommand(_VBUS_P pCmd); ccb_done(ccb); } int hpt_queue_dpc(HPT_DPC dpc, IAL_ADAPTER_T * pAdapter, void *arg, UCHAR flags) { int p; mtx_lock(&DpcQueue_Lock); p = (DpcQueue_Last + 1) % MAX_DPC; if (p==DpcQueue_First) { KdPrint(("DPC Queue full!\n")); mtx_unlock(&DpcQueue_Lock); return -1; } DpcQueue[DpcQueue_Last].dpc = dpc; DpcQueue[DpcQueue_Last].pAdapter = pAdapter; DpcQueue[DpcQueue_Last].arg = arg; DpcQueue[DpcQueue_Last].flags = flags; DpcQueue_Last = p; mtx_unlock(&DpcQueue_Lock); return 0; } #ifdef _RAID5N_ /* * Allocate memory above 16M, otherwise we may eat all low memory for ISA devices. * How about the memory for 5081 request/response array and PRD table? */ void *os_alloc_page(_VBUS_ARG0) { return (void *)contigmalloc(0x1000, M_DEVBUF, M_NOWAIT, 0x1000000, 0xffffffff, PAGE_SIZE, 0ul); } void *os_alloc_dma_page(_VBUS_ARG0) { return (void *)contigmalloc(0x1000, M_DEVBUF, M_NOWAIT, 0x1000000, 0xffffffff, PAGE_SIZE, 0ul); } void os_free_page(_VBUS_ARG void *p) { contigfree(p, 0x1000, M_DEVBUF); } void os_free_dma_page(_VBUS_ARG void *p) { contigfree(p, 0x1000, M_DEVBUF); } void DoXor1(ULONG *p0, ULONG *p1, ULONG *p2, UINT nBytes) { UINT i; for (i = 0; i < nBytes / 4; i++) *p0++ = *p1++ ^ *p2++; } void DoXor2(ULONG *p0, ULONG *p2, UINT nBytes) { UINT i; for (i = 0; i < nBytes / 4; i++) *p0++ ^= *p2++; } #endif