/*- * Copyright (C) 2001 Eduardo Horvath. * Copyright (c) 2001-2003 Thomas Moestl * Copyright (c) 2007 Marius Strobl * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: NetBSD: gem.c,v 1.21 2002/06/01 23:50:58 lukem Exp */ #include __FBSDID("$FreeBSD$"); /* * Driver for Apple GMAC, Sun ERI and Sun GEM Ethernet controllers */ #if 0 #define GEM_DEBUG #endif #if 0 /* XXX: In case of emergency, re-enable this. */ #define GEM_RINT_TIMEOUT #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include CTASSERT(powerof2(GEM_NRXDESC) && GEM_NRXDESC >= 32 && GEM_NRXDESC <= 8192); CTASSERT(powerof2(GEM_NTXDESC) && GEM_NTXDESC >= 32 && GEM_NTXDESC <= 8192); #define TRIES 10000 /* * The GEM hardware support basic TCP/UDP checksum offloading. However, * the hardware doesn't compensate the checksum for UDP datagram which * can yield to 0x0. As a safe guard, UDP checksum offload is disabled * by default. It can be reactivated by setting special link option * link0 with ifconfig(8). */ #define GEM_CSUM_FEATURES (CSUM_TCP) static int gem_add_rxbuf(struct gem_softc *sc, int idx); static int gem_bitwait(struct gem_softc *sc, bus_addr_t r, uint32_t clr, uint32_t set); static void gem_cddma_callback(void *xsc, bus_dma_segment_t *segs, int nsegs, int error); static struct mbuf *gem_defrag(struct mbuf *m0, int how, int maxfrags); static int gem_disable_rx(struct gem_softc *sc); static int gem_disable_tx(struct gem_softc *sc); static void gem_eint(struct gem_softc *sc, u_int status); static void gem_init(void *xsc); static void gem_init_locked(struct gem_softc *sc); static void gem_init_regs(struct gem_softc *sc); static int gem_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data); static int gem_load_txmbuf(struct gem_softc *sc, struct mbuf **m_head); static int gem_meminit(struct gem_softc *sc); static void gem_mifinit(struct gem_softc *sc); static void gem_reset(struct gem_softc *sc); static int gem_reset_rx(struct gem_softc *sc); static void gem_reset_rxdma(struct gem_softc *sc); static int gem_reset_tx(struct gem_softc *sc); static u_int gem_ringsize(u_int sz); static void gem_rint(struct gem_softc *sc); #ifdef GEM_RINT_TIMEOUT static void gem_rint_timeout(void *arg); #endif static __inline void gem_rxcksum(struct mbuf *m, uint64_t flags); static void gem_rxdrain(struct gem_softc *sc); static void gem_setladrf(struct gem_softc *sc); static void gem_start(struct ifnet *ifp); static void gem_start_locked(struct ifnet *ifp); static void gem_stop(struct ifnet *ifp, int disable); static void gem_tick(void *arg); static void gem_tint(struct gem_softc *sc); static __inline void gem_txcksum(struct gem_softc *sc, struct mbuf *m, uint64_t *cflags); static int gem_watchdog(struct gem_softc *sc); devclass_t gem_devclass; DRIVER_MODULE(miibus, gem, miibus_driver, miibus_devclass, 0, 0); MODULE_DEPEND(gem, miibus, 1, 1, 1); #ifdef GEM_DEBUG #include #define KTR_GEM KTR_CT2 #endif int gem_attach(struct gem_softc *sc) { struct gem_txsoft *txs; struct ifnet *ifp; int error, i; uint32_t v; ifp = sc->sc_ifp = if_alloc(IFT_ETHER); if (ifp == NULL) return (ENOSPC); callout_init_mtx(&sc->sc_tick_ch, &sc->sc_mtx, 0); #ifdef GEM_RINT_TIMEOUT callout_init_mtx(&sc->sc_rx_ch, &sc->sc_mtx, 0); #endif /* Make sure the chip is stopped. */ ifp->if_softc = sc; gem_reset(sc); error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL, &sc->sc_pdmatag); if (error) goto fail_ifnet; error = bus_dma_tag_create(sc->sc_pdmatag, 1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1, MCLBYTES, BUS_DMA_ALLOCNOW, NULL, NULL, &sc->sc_rdmatag); if (error) goto fail_ptag; error = bus_dma_tag_create(sc->sc_pdmatag, 1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES * GEM_NTXSEGS, GEM_NTXSEGS, MCLBYTES, BUS_DMA_ALLOCNOW, NULL, NULL, &sc->sc_tdmatag); if (error) goto fail_rtag; error = bus_dma_tag_create(sc->sc_pdmatag, PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct gem_control_data), 1, sizeof(struct gem_control_data), 0, NULL, NULL, &sc->sc_cdmatag); if (error) goto fail_ttag; /* * Allocate the control data structures, create and load the * DMA map for it. */ if ((error = bus_dmamem_alloc(sc->sc_cdmatag, (void **)&sc->sc_control_data, BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->sc_cddmamap))) { device_printf(sc->sc_dev, "unable to allocate control data, error = %d\n", error); goto fail_ctag; } sc->sc_cddma = 0; if ((error = bus_dmamap_load(sc->sc_cdmatag, sc->sc_cddmamap, sc->sc_control_data, sizeof(struct gem_control_data), gem_cddma_callback, sc, 0)) != 0 || sc->sc_cddma == 0) { device_printf(sc->sc_dev, "unable to load control data DMA map, error = %d\n", error); goto fail_cmem; } /* * Initialize the transmit job descriptors. */ STAILQ_INIT(&sc->sc_txfreeq); STAILQ_INIT(&sc->sc_txdirtyq); /* * Create the transmit buffer DMA maps. */ error = ENOMEM; for (i = 0; i < GEM_TXQUEUELEN; i++) { txs = &sc->sc_txsoft[i]; txs->txs_mbuf = NULL; txs->txs_ndescs = 0; if ((error = bus_dmamap_create(sc->sc_tdmatag, 0, &txs->txs_dmamap)) != 0) { device_printf(sc->sc_dev, "unable to create TX DMA map %d, error = %d\n", i, error); goto fail_txd; } STAILQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q); } /* * Create the receive buffer DMA maps. */ for (i = 0; i < GEM_NRXDESC; i++) { if ((error = bus_dmamap_create(sc->sc_rdmatag, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) { device_printf(sc->sc_dev, "unable to create RX DMA map %d, error = %d\n", i, error); goto fail_rxd; } sc->sc_rxsoft[i].rxs_mbuf = NULL; } /* Bad things will happen when touching this register on ERI. */ if (sc->sc_variant != GEM_SUN_ERI) bus_write_4(sc->sc_res[0], GEM_MII_DATAPATH_MODE, GEM_MII_DATAPATH_MII); gem_mifinit(sc); /* * Look for an external PHY. */ error = ENXIO; v = bus_read_4(sc->sc_res[0], GEM_MIF_CONFIG); if ((v & GEM_MIF_CONFIG_MDI1) != 0) { v |= GEM_MIF_CONFIG_PHY_SEL; bus_write_4(sc->sc_res[0], GEM_MIF_CONFIG, v); switch (sc->sc_variant) { case GEM_SUN_ERI: sc->sc_phyad = GEM_PHYAD_EXTERNAL; break; default: sc->sc_phyad = -1; break; } error = mii_phy_probe(sc->sc_dev, &sc->sc_miibus, gem_mediachange, gem_mediastatus); } /* * Fall back on an internal PHY if no external PHY was found. */ if (error != 0 && (v & GEM_MIF_CONFIG_MDI0) != 0) { v &= ~GEM_MIF_CONFIG_PHY_SEL; bus_write_4(sc->sc_res[0], GEM_MIF_CONFIG, v); switch (sc->sc_variant) { case GEM_SUN_ERI: case GEM_APPLE_K2_GMAC: sc->sc_phyad = GEM_PHYAD_INTERNAL; break; case GEM_APPLE_GMAC: sc->sc_phyad = GEM_PHYAD_EXTERNAL; break; default: sc->sc_phyad = -1; break; } error = mii_phy_probe(sc->sc_dev, &sc->sc_miibus, gem_mediachange, gem_mediastatus); } /* * Try the external PCS SERDES if we didn't find any PHYs. */ if (error != 0 && sc->sc_variant == GEM_SUN_GEM) { bus_write_4(sc->sc_res[0], GEM_MII_DATAPATH_MODE, GEM_MII_DATAPATH_SERDES); bus_write_4(sc->sc_res[0], GEM_MII_SLINK_CONTROL, GEM_MII_SLINK_LOOPBACK | GEM_MII_SLINK_EN_SYNC_D); bus_write_4(sc->sc_res[0], GEM_MII_CONFIG, GEM_MII_CONFIG_ENABLE); sc->sc_flags |= GEM_SERDES; sc->sc_phyad = GEM_PHYAD_EXTERNAL; error = mii_phy_probe(sc->sc_dev, &sc->sc_miibus, gem_mediachange, gem_mediastatus); } if (error != 0) { device_printf(sc->sc_dev, "PHY probe failed: %d\n", error); goto fail_rxd; } sc->sc_mii = device_get_softc(sc->sc_miibus); /* * From this point forward, the attachment cannot fail. A failure * before this point releases all resources that may have been * allocated. */ /* Get RX FIFO size */ sc->sc_rxfifosize = 64 * bus_read_4(sc->sc_res[0], GEM_RX_FIFO_SIZE); /* Get TX FIFO size */ v = bus_read_4(sc->sc_res[0], GEM_TX_FIFO_SIZE); device_printf(sc->sc_dev, "%ukB RX FIFO, %ukB TX FIFO\n", sc->sc_rxfifosize / 1024, v / 16); sc->sc_csum_features = GEM_CSUM_FEATURES; /* Initialize ifnet structure. */ ifp->if_softc = sc; if_initname(ifp, device_get_name(sc->sc_dev), device_get_unit(sc->sc_dev)); ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_start = gem_start; ifp->if_ioctl = gem_ioctl; ifp->if_init = gem_init; IFQ_SET_MAXLEN(&ifp->if_snd, GEM_TXQUEUELEN); ifp->if_snd.ifq_drv_maxlen = GEM_TXQUEUELEN; IFQ_SET_READY(&ifp->if_snd); /* Attach the interface. */ ether_ifattach(ifp, sc->sc_enaddr); /* * Tell the upper layer(s) we support long frames/checksum offloads. */ ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header); ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_HWCSUM; ifp->if_hwassist |= sc->sc_csum_features; ifp->if_capenable |= IFCAP_VLAN_MTU | IFCAP_HWCSUM; return (0); /* * Free any resources we've allocated during the failed attach * attempt. Do this in reverse order and fall through. */ fail_rxd: for (i = 0; i < GEM_NRXDESC; i++) if (sc->sc_rxsoft[i].rxs_dmamap != NULL) bus_dmamap_destroy(sc->sc_rdmatag, sc->sc_rxsoft[i].rxs_dmamap); fail_txd: for (i = 0; i < GEM_TXQUEUELEN; i++) if (sc->sc_txsoft[i].txs_dmamap != NULL) bus_dmamap_destroy(sc->sc_tdmatag, sc->sc_txsoft[i].txs_dmamap); bus_dmamap_unload(sc->sc_cdmatag, sc->sc_cddmamap); fail_cmem: bus_dmamem_free(sc->sc_cdmatag, sc->sc_control_data, sc->sc_cddmamap); fail_ctag: bus_dma_tag_destroy(sc->sc_cdmatag); fail_ttag: bus_dma_tag_destroy(sc->sc_tdmatag); fail_rtag: bus_dma_tag_destroy(sc->sc_rdmatag); fail_ptag: bus_dma_tag_destroy(sc->sc_pdmatag); fail_ifnet: if_free(ifp); return (error); } void gem_detach(struct gem_softc *sc) { struct ifnet *ifp = sc->sc_ifp; int i; GEM_LOCK(sc); gem_stop(ifp, 1); GEM_UNLOCK(sc); callout_drain(&sc->sc_tick_ch); #ifdef GEM_RINT_TIMEOUT callout_drain(&sc->sc_rx_ch); #endif ether_ifdetach(ifp); if_free(ifp); device_delete_child(sc->sc_dev, sc->sc_miibus); for (i = 0; i < GEM_NRXDESC; i++) if (sc->sc_rxsoft[i].rxs_dmamap != NULL) bus_dmamap_destroy(sc->sc_rdmatag, sc->sc_rxsoft[i].rxs_dmamap); for (i = 0; i < GEM_TXQUEUELEN; i++) if (sc->sc_txsoft[i].txs_dmamap != NULL) bus_dmamap_destroy(sc->sc_tdmatag, sc->sc_txsoft[i].txs_dmamap); GEM_CDSYNC(sc, BUS_DMASYNC_POSTREAD); GEM_CDSYNC(sc, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_cdmatag, sc->sc_cddmamap); bus_dmamem_free(sc->sc_cdmatag, sc->sc_control_data, sc->sc_cddmamap); bus_dma_tag_destroy(sc->sc_cdmatag); bus_dma_tag_destroy(sc->sc_tdmatag); bus_dma_tag_destroy(sc->sc_rdmatag); bus_dma_tag_destroy(sc->sc_pdmatag); } void gem_suspend(struct gem_softc *sc) { struct ifnet *ifp = sc->sc_ifp; GEM_LOCK(sc); gem_stop(ifp, 0); GEM_UNLOCK(sc); } void gem_resume(struct gem_softc *sc) { struct ifnet *ifp = sc->sc_ifp; GEM_LOCK(sc); /* * On resume all registers have to be initialized again like * after power-on. */ sc->sc_flags &= ~GEM_INITED; if (ifp->if_flags & IFF_UP) gem_init_locked(sc); GEM_UNLOCK(sc); } static __inline void gem_txcksum(struct gem_softc *sc, struct mbuf *m, uint64_t *cflags) { char *p; struct ip *ip; struct mbuf *m0; uint64_t offset, offset2; m0 = m; offset = sizeof(struct ip) + ETHER_HDR_LEN; for(; m && m->m_len == 0; m = m->m_next) ; if (m == NULL || m->m_len < ETHER_HDR_LEN) { device_printf(sc->sc_dev, "%s: m_len < ETHER_HDR_LEN\n", __func__); /* Checksum will be corrupted. */ m = m0; goto sendit; } if (m->m_len < ETHER_HDR_LEN + sizeof(uint32_t)) { if (m->m_len != ETHER_HDR_LEN) { device_printf(sc->sc_dev, "%s: m_len != ETHER_HDR_LEN\n", __func__); /* Checksum will be corrupted. */ m = m0; goto sendit; } for(m = m->m_next; m && m->m_len == 0; m = m->m_next) ; if (m == NULL) { /* Checksum will be corrupted. */ m = m0; goto sendit; } ip = mtod(m, struct ip *); } else { p = mtod(m, uint8_t *); p += ETHER_HDR_LEN; ip = (struct ip *)p; } offset = (ip->ip_hl << 2) + ETHER_HDR_LEN; sendit: offset2 = m->m_pkthdr.csum_data; *cflags = offset << GEM_TD_CXSUM_STARTSHFT; *cflags |= ((offset + offset2) << GEM_TD_CXSUM_STUFFSHFT); *cflags |= GEM_TD_CXSUM_ENABLE; } static __inline void gem_rxcksum(struct mbuf *m, uint64_t flags) { struct ether_header *eh; struct ip *ip; struct udphdr *uh; uint16_t *opts; int32_t hlen, len, pktlen; uint32_t temp32; uint16_t cksum; pktlen = m->m_pkthdr.len; if (pktlen < sizeof(struct ether_header) + sizeof(struct ip)) return; eh = mtod(m, struct ether_header *); if (eh->ether_type != htons(ETHERTYPE_IP)) return; ip = (struct ip *)(eh + 1); if (ip->ip_v != IPVERSION) return; hlen = ip->ip_hl << 2; pktlen -= sizeof(struct ether_header); if (hlen < sizeof(struct ip)) return; if (ntohs(ip->ip_len) < hlen) return; if (ntohs(ip->ip_len) != pktlen) return; if (ip->ip_off & htons(IP_MF | IP_OFFMASK)) return; /* Cannot handle fragmented packet. */ switch (ip->ip_p) { case IPPROTO_TCP: if (pktlen < (hlen + sizeof(struct tcphdr))) return; break; case IPPROTO_UDP: if (pktlen < (hlen + sizeof(struct udphdr))) return; uh = (struct udphdr *)((uint8_t *)ip + hlen); if (uh->uh_sum == 0) return; /* no checksum */ break; default: return; } cksum = ~(flags & GEM_RD_CHECKSUM); /* checksum fixup for IP options */ len = hlen - sizeof(struct ip); if (len > 0) { opts = (uint16_t *)(ip + 1); for (; len > 0; len -= sizeof(uint16_t), opts++) { temp32 = cksum - *opts; temp32 = (temp32 >> 16) + (temp32 & 65535); cksum = temp32 & 65535; } } m->m_pkthdr.csum_flags |= CSUM_DATA_VALID; m->m_pkthdr.csum_data = cksum; } static void gem_cddma_callback(void *xsc, bus_dma_segment_t *segs, int nsegs, int error) { struct gem_softc *sc = xsc; if (error != 0) return; if (nsegs != 1) panic("%s: bad control buffer segment count", __func__); sc->sc_cddma = segs[0].ds_addr; } static void gem_tick(void *arg) { struct gem_softc *sc = arg; struct ifnet *ifp; GEM_LOCK_ASSERT(sc, MA_OWNED); ifp = sc->sc_ifp; /* * Unload collision counters. */ ifp->if_collisions += bus_read_4(sc->sc_res[0], GEM_MAC_NORM_COLL_CNT) + bus_read_4(sc->sc_res[0], GEM_MAC_FIRST_COLL_CNT) + bus_read_4(sc->sc_res[0], GEM_MAC_EXCESS_COLL_CNT) + bus_read_4(sc->sc_res[0], GEM_MAC_LATE_COLL_CNT); /* * then clear the hardware counters. */ bus_write_4(sc->sc_res[0], GEM_MAC_NORM_COLL_CNT, 0); bus_write_4(sc->sc_res[0], GEM_MAC_FIRST_COLL_CNT, 0); bus_write_4(sc->sc_res[0], GEM_MAC_EXCESS_COLL_CNT, 0); bus_write_4(sc->sc_res[0], GEM_MAC_LATE_COLL_CNT, 0); mii_tick(sc->sc_mii); if (gem_watchdog(sc) == EJUSTRETURN) return; callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc); } static int gem_bitwait(struct gem_softc *sc, bus_addr_t r, uint32_t clr, uint32_t set) { int i; uint32_t reg; for (i = TRIES; i--; DELAY(100)) { reg = bus_read_4(sc->sc_res[0], r); if ((reg & clr) == 0 && (reg & set) == set) return (1); } return (0); } static void gem_reset(sc) struct gem_softc *sc; { #ifdef GEM_DEBUG CTR2(KTR_GEM, "%s: %s", device_get_name(sc->sc_dev), __func__); #endif gem_reset_rx(sc); gem_reset_tx(sc); /* Do a full reset. */ bus_write_4(sc->sc_res[0], GEM_RESET, GEM_RESET_RX | GEM_RESET_TX); bus_barrier(sc->sc_res[0], GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE); if (!gem_bitwait(sc, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX, 0)) device_printf(sc->sc_dev, "cannot reset device\n"); } static void gem_rxdrain(struct gem_softc *sc) { struct gem_rxsoft *rxs; int i; for (i = 0; i < GEM_NRXDESC; i++) { rxs = &sc->sc_rxsoft[i]; if (rxs->rxs_mbuf != NULL) { bus_dmamap_sync(sc->sc_rdmatag, rxs->rxs_dmamap, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->sc_rdmatag, rxs->rxs_dmamap); m_freem(rxs->rxs_mbuf); rxs->rxs_mbuf = NULL; } } } static void gem_stop(struct ifnet *ifp, int disable) { struct gem_softc *sc = ifp->if_softc; struct gem_txsoft *txs; #ifdef GEM_DEBUG CTR2(KTR_GEM, "%s: %s", device_get_name(sc->sc_dev), __func__); #endif callout_stop(&sc->sc_tick_ch); #ifdef GEM_RINT_TIMEOUT callout_stop(&sc->sc_rx_ch); #endif /* XXX should we reset these instead? */ gem_disable_tx(sc); gem_disable_rx(sc); /* * Release any queued transmit buffers. */ while ((txs = STAILQ_FIRST(&sc->sc_txdirtyq)) != NULL) { STAILQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q); if (txs->txs_ndescs != 0) { bus_dmamap_sync(sc->sc_tdmatag, txs->txs_dmamap, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_tdmatag, txs->txs_dmamap); if (txs->txs_mbuf != NULL) { m_freem(txs->txs_mbuf); txs->txs_mbuf = NULL; } } STAILQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q); } if (disable) gem_rxdrain(sc); /* * Mark the interface down and cancel the watchdog timer. */ ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); sc->sc_flags &= ~GEM_LINK; sc->sc_wdog_timer = 0; } static int gem_reset_rx(struct gem_softc *sc) { /* * Resetting while DMA is in progress can cause a bus hang, so we * disable DMA first. */ gem_disable_rx(sc); bus_write_4(sc->sc_res[0], GEM_RX_CONFIG, 0); bus_barrier(sc->sc_res[0], GEM_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE); if (!gem_bitwait(sc, GEM_RX_CONFIG, GEM_RX_CONFIG_RXDMA_EN, 0)) device_printf(sc->sc_dev, "cannot disable RX DMA\n"); /* Finally, reset the ERX */ bus_write_4(sc->sc_res[0], GEM_RESET, GEM_RESET_RX); bus_barrier(sc->sc_res[0], GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE); if (!gem_bitwait(sc, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX, 0)) { device_printf(sc->sc_dev, "cannot reset receiver\n"); return (1); } return (0); } /* * Reset the receiver DMA engine. * * Intended to be used in case of GEM_INTR_RX_TAG_ERR, GEM_MAC_RX_OVERFLOW * etc in order to reset the receiver DMA engine only and not do a full * reset which amongst others also downs the link and clears the FIFOs. */ static void gem_reset_rxdma(struct gem_softc *sc) { int i; if (gem_reset_rx(sc) != 0) return (gem_init_locked(sc)); for (i = 0; i < GEM_NRXDESC; i++) if (sc->sc_rxsoft[i].rxs_mbuf != NULL) GEM_UPDATE_RXDESC(sc, i); sc->sc_rxptr = 0; GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE); GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD); /* NOTE: we use only 32-bit DMA addresses here. */ bus_write_4(sc->sc_res[0], GEM_RX_RING_PTR_HI, 0); bus_write_4(sc->sc_res[0], GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0)); bus_write_4(sc->sc_res[0], GEM_RX_KICK, GEM_NRXDESC - 4); bus_write_4(sc->sc_res[0], GEM_RX_CONFIG, gem_ringsize(GEM_NRXDESC /* XXX */) | ((ETHER_HDR_LEN + sizeof(struct ip)) << GEM_RX_CONFIG_CXM_START_SHFT) | (GEM_THRSH_1024 << GEM_RX_CONFIG_FIFO_THRS_SHIFT) | (2 << GEM_RX_CONFIG_FBOFF_SHFT)); bus_write_4(sc->sc_res[0], GEM_RX_BLANKING, (6 << GEM_RX_BLANKING_TIME_SHIFT) | 6); bus_write_4(sc->sc_res[0], GEM_RX_PAUSE_THRESH, (3 * sc->sc_rxfifosize / 256) | ((sc->sc_rxfifosize / 256) << 12)); bus_write_4(sc->sc_res[0], GEM_RX_CONFIG, bus_read_4(sc->sc_res[0], GEM_RX_CONFIG) | GEM_RX_CONFIG_RXDMA_EN); bus_write_4(sc->sc_res[0], GEM_MAC_RX_MASK, GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT); bus_write_4(sc->sc_res[0], GEM_MAC_RX_CONFIG, bus_read_4(sc->sc_res[0], GEM_MAC_RX_CONFIG) | GEM_MAC_RX_ENABLE); } static int gem_reset_tx(struct gem_softc *sc) { /* * Resetting while DMA is in progress can cause a bus hang, so we * disable DMA first. */ gem_disable_tx(sc); bus_write_4(sc->sc_res[0], GEM_TX_CONFIG, 0); bus_barrier(sc->sc_res[0], GEM_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE); if (!gem_bitwait(sc, GEM_TX_CONFIG, GEM_TX_CONFIG_TXDMA_EN, 0)) device_printf(sc->sc_dev, "cannot disable TX DMA\n"); /* Finally, reset the ETX */ bus_write_4(sc->sc_res[0], GEM_RESET, GEM_RESET_TX); bus_barrier(sc->sc_res[0], GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE); if (!gem_bitwait(sc, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX, 0)) { device_printf(sc->sc_dev, "cannot reset transmitter\n"); return (1); } return (0); } static int gem_disable_rx(struct gem_softc *sc) { uint32_t cfg; cfg = bus_read_4(sc->sc_res[0], GEM_MAC_RX_CONFIG); cfg &= ~GEM_MAC_RX_ENABLE; bus_write_4(sc->sc_res[0], GEM_MAC_RX_CONFIG, cfg); bus_barrier(sc->sc_res[0], GEM_MAC_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE); return (gem_bitwait(sc, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0)); } /* * disable transmitter. */ static int gem_disable_tx(struct gem_softc *sc) { uint32_t cfg; cfg = bus_read_4(sc->sc_res[0], GEM_MAC_TX_CONFIG); cfg &= ~GEM_MAC_TX_ENABLE; bus_write_4(sc->sc_res[0], GEM_MAC_TX_CONFIG, cfg); bus_barrier(sc->sc_res[0], GEM_MAC_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE); return (gem_bitwait(sc, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0)); } static int gem_meminit(sc) struct gem_softc *sc; { struct gem_rxsoft *rxs; int error, i; /* * Initialize the transmit descriptor ring. */ for (i = 0; i < GEM_NTXDESC; i++) { sc->sc_txdescs[i].gd_flags = 0; sc->sc_txdescs[i].gd_addr = 0; } sc->sc_txfree = GEM_MAXTXFREE; sc->sc_txnext = 0; sc->sc_txwin = 0; /* * Initialize the receive descriptor and receive job * descriptor rings. */ for (i = 0; i < GEM_NRXDESC; i++) { rxs = &sc->sc_rxsoft[i]; if (rxs->rxs_mbuf == NULL) { if ((error = gem_add_rxbuf(sc, i)) != 0) { device_printf(sc->sc_dev, "unable to allocate or map RX buffer %d, " "error = %d\n", i, error); /* * XXX we should attempt to run with fewer * receive buffers instead of just failing. */ gem_rxdrain(sc); return (1); } } else GEM_INIT_RXDESC(sc, i); } sc->sc_rxptr = 0; GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE); GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD); return (0); } static u_int gem_ringsize(u_int sz) { switch (sz) { case 32: return (GEM_RING_SZ_32); case 64: return (GEM_RING_SZ_64); case 128: return (GEM_RING_SZ_128); case 256: return (GEM_RING_SZ_256); case 512: return (GEM_RING_SZ_512); case 1024: return (GEM_RING_SZ_1024); case 2048: return (GEM_RING_SZ_2048); case 4096: return (GEM_RING_SZ_4096); case 8192: return (GEM_RING_SZ_8192); default: printf("%s: invalid ring size %d\n", __func__, sz); return (GEM_RING_SZ_32); } } static void gem_init(void *xsc) { struct gem_softc *sc = xsc; GEM_LOCK(sc); gem_init_locked(sc); GEM_UNLOCK(sc); } /* * Initialization of interface; set up initialization block * and transmit/receive descriptor rings. */ static void gem_init_locked(struct gem_softc *sc) { struct ifnet *ifp = sc->sc_ifp; uint32_t v; GEM_LOCK_ASSERT(sc, MA_OWNED); #ifdef GEM_DEBUG CTR2(KTR_GEM, "%s: %s: calling stop", device_get_name(sc->sc_dev), __func__); #endif /* * Initialization sequence. The numbered steps below correspond * to the sequence outlined in section 6.3.5.1 in the Ethernet * Channel Engine manual (part of the PCIO manual). * See also the STP2002-STQ document from Sun Microsystems. */ /* step 1 & 2. Reset the Ethernet Channel. */ gem_stop(sc->sc_ifp, 0); gem_reset(sc); #ifdef GEM_DEBUG CTR2(KTR_GEM, "%s: %s: restarting", device_get_name(sc->sc_dev), __func__); #endif /* Re-initialize the MIF. */ gem_mifinit(sc); /* step 3. Setup data structures in host memory. */ if (gem_meminit(sc) != 0) return; /* step 4. TX MAC registers & counters */ gem_init_regs(sc); /* step 5. RX MAC registers & counters */ gem_setladrf(sc); /* step 6 & 7. Program Descriptor Ring Base Addresses. */ /* NOTE: we use only 32-bit DMA addresses here. */ bus_write_4(sc->sc_res[0], GEM_TX_RING_PTR_HI, 0); bus_write_4(sc->sc_res[0], GEM_TX_RING_PTR_LO, GEM_CDTXADDR(sc, 0)); bus_write_4(sc->sc_res[0], GEM_RX_RING_PTR_HI, 0); bus_write_4(sc->sc_res[0], GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0)); #ifdef GEM_DEBUG CTR3(KTR_GEM, "loading RX ring %lx, TX ring %lx, cddma %lx", GEM_CDRXADDR(sc, 0), GEM_CDTXADDR(sc, 0), sc->sc_cddma); #endif /* step 8. Global Configuration & Interrupt Mask */ bus_write_4(sc->sc_res[0], GEM_INTMASK, ~(GEM_INTR_TX_INTME | GEM_INTR_TX_EMPTY | GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF | GEM_INTR_RX_TAG_ERR | GEM_INTR_PERR | GEM_INTR_BERR #ifdef GEM_DEBUG | GEM_INTR_PCS | GEM_INTR_MIF #endif )); bus_write_4(sc->sc_res[0], GEM_MAC_RX_MASK, GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT); bus_write_4(sc->sc_res[0], GEM_MAC_TX_MASK, GEM_MAC_TX_XMIT_DONE | GEM_MAC_TX_DEFER_EXP); #ifdef GEM_DEBUG bus_write_4(sc->sc_res[0], GEM_MAC_CONTROL_MASK, ~(GEM_MAC_PAUSED | GEM_MAC_PAUSE | GEM_MAC_RESUME)); #else bus_write_4(sc->sc_res[0], GEM_MAC_CONTROL_MASK, GEM_MAC_PAUSED | GEM_MAC_PAUSE | GEM_MAC_RESUME); #endif /* step 9. ETX Configuration: use mostly default values. */ /* Enable DMA. */ v = gem_ringsize(GEM_NTXDESC /* XXX */); bus_write_4(sc->sc_res[0], GEM_TX_CONFIG, v | GEM_TX_CONFIG_TXDMA_EN | ((0x400 << 10) & GEM_TX_CONFIG_TXFIFO_TH)); /* step 10. ERX Configuration */ /* Encode Receive Descriptor ring size. */ v = gem_ringsize(GEM_NRXDESC /* XXX */); /* RX TCP/UDP checksum offset */ v |= ((ETHER_HDR_LEN + sizeof(struct ip)) << GEM_RX_CONFIG_CXM_START_SHFT); /* Enable DMA. */ bus_write_4(sc->sc_res[0], GEM_RX_CONFIG, v | (GEM_THRSH_1024 << GEM_RX_CONFIG_FIFO_THRS_SHIFT) | (2 << GEM_RX_CONFIG_FBOFF_SHFT) | GEM_RX_CONFIG_RXDMA_EN); bus_write_4(sc->sc_res[0], GEM_RX_BLANKING, (6 << GEM_RX_BLANKING_TIME_SHIFT) | 6); /* * The following value is for an OFF Threshold of about 3/4 full * and an ON Threshold of 1/4 full. */ bus_write_4(sc->sc_res[0], GEM_RX_PAUSE_THRESH, (3 * sc->sc_rxfifosize / 256) | ((sc->sc_rxfifosize / 256) << 12)); /* step 11. Configure Media. */ /* step 12. RX_MAC Configuration Register */ v = bus_read_4(sc->sc_res[0], GEM_MAC_RX_CONFIG); v |= GEM_MAC_RX_STRIP_CRC; bus_write_4(sc->sc_res[0], GEM_MAC_RX_CONFIG, 0); bus_barrier(sc->sc_res[0], GEM_MAC_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE); if (!gem_bitwait(sc, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0)) device_printf(sc->sc_dev, "cannot disable RX MAC\n"); bus_write_4(sc->sc_res[0], GEM_MAC_RX_CONFIG, v); /* step 14. Issue Transmit Pending command. */ /* step 15. Give the reciever a swift kick. */ bus_write_4(sc->sc_res[0], GEM_RX_KICK, GEM_NRXDESC - 4); ifp->if_drv_flags |= IFF_DRV_RUNNING; ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; sc->sc_ifflags = ifp->if_flags; sc->sc_flags &= ~GEM_LINK; mii_mediachg(sc->sc_mii); /* Start the one second timer. */ sc->sc_wdog_timer = 0; callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc); } /* * This is a copy of ath_defrag(ath(4)). * * Defragment an mbuf chain, returning at most maxfrags separate * mbufs+clusters. If this is not possible NULL is returned and * the original mbuf chain is left in it's present (potentially * modified) state. We use two techniques: collapsing consecutive * mbufs and replacing consecutive mbufs by a cluster. */ static struct mbuf * gem_defrag(struct mbuf *m0, int how, int maxfrags) { struct mbuf *m, *n, *n2, **prev; u_int curfrags; /* * Calculate the current number of frags. */ curfrags = 0; for (m = m0; m != NULL; m = m->m_next) curfrags++; /* * First, try to collapse mbufs. Note that we always collapse * towards the front so we don't need to deal with moving the * pkthdr. This may be suboptimal if the first mbuf has much * less data than the following. */ m = m0; again: for (;;) { n = m->m_next; if (n == NULL) break; if ((m->m_flags & M_RDONLY) == 0 && n->m_len < M_TRAILINGSPACE(m)) { bcopy(mtod(n, void *), mtod(m, char *) + m->m_len, n->m_len); m->m_len += n->m_len; m->m_next = n->m_next; m_free(n); if (--curfrags <= maxfrags) return (m0); } else m = n; } KASSERT(maxfrags > 1, ("maxfrags %u, but normal collapse failed", maxfrags)); /* * Collapse consecutive mbufs to a cluster. */ prev = &m0->m_next; /* NB: not the first mbuf. */ while ((n = *prev) != NULL) { if ((n2 = n->m_next) != NULL && n->m_len + n2->m_len < MCLBYTES) { m = m_getcl(how, MT_DATA, 0); if (m == NULL) goto bad; bcopy(mtod(n, void *), mtod(m, void *), n->m_len); bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len, n2->m_len); m->m_len = n->m_len + n2->m_len; m->m_next = n2->m_next; *prev = m; m_free(n); m_free(n2); if (--curfrags <= maxfrags) /* +1 cl -2 mbufs */ return (m0); /* * Still not there, try the normal collapse * again before we allocate another cluster. */ goto again; } prev = &n->m_next; } /* * No place where we can collapse to a cluster; punt. * This can occur if, for example, you request 2 frags * but the packet requires that both be clusters (we * never reallocate the first mbuf to avoid moving the * packet header). */ bad: return (NULL); } static int gem_load_txmbuf(struct gem_softc *sc, struct mbuf **m_head) { bus_dma_segment_t txsegs[GEM_NTXSEGS]; struct gem_txsoft *txs; struct mbuf *m; uint64_t cflags, flags; int error, nexttx, nsegs, seg; /* Get a work queue entry. */ if ((txs = STAILQ_FIRST(&sc->sc_txfreeq)) == NULL) { /* Ran out of descriptors. */ return (ENOBUFS); } error = bus_dmamap_load_mbuf_sg(sc->sc_tdmatag, txs->txs_dmamap, *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT); if (error == EFBIG) { m = gem_defrag(*m_head, M_DONTWAIT, GEM_NTXSEGS); if (m == NULL) { m_freem(*m_head); *m_head = NULL; return (ENOBUFS); } *m_head = m; error = bus_dmamap_load_mbuf_sg(sc->sc_tdmatag, txs->txs_dmamap, *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT); if (error != 0) { m_freem(*m_head); *m_head = NULL; return (error); } } else if (error != 0) return (error); if (nsegs == 0) { m_freem(*m_head); *m_head = NULL; return (EIO); } /* * Ensure we have enough descriptors free to describe * the packet. Note, we always reserve one descriptor * at the end of the ring as a termination point, in * order to prevent wrap-around. */ if (nsegs > sc->sc_txfree - 1) { txs->txs_ndescs = 0; bus_dmamap_unload(sc->sc_tdmatag, txs->txs_dmamap); return (ENOBUFS); } flags = cflags = 0; if (((*m_head)->m_pkthdr.csum_flags & sc->sc_csum_features) != 0) gem_txcksum(sc, *m_head, &cflags); txs->txs_ndescs = nsegs; txs->txs_firstdesc = sc->sc_txnext; nexttx = txs->txs_firstdesc; for (seg = 0; seg < nsegs; seg++, nexttx = GEM_NEXTTX(nexttx)) { #ifdef GEM_DEBUG CTR6(KTR_GEM, "%s: mapping seg %d (txd %d), len %lx, addr %#lx (%#lx)", __func__, seg, nexttx, txsegs[seg].ds_len, txsegs[seg].ds_addr, GEM_DMA_WRITE(sc, txsegs[seg].ds_addr)); #endif sc->sc_txdescs[nexttx].gd_addr = GEM_DMA_WRITE(sc, txsegs[seg].ds_addr); KASSERT(txsegs[seg].ds_len < GEM_TD_BUFSIZE, ("%s: segment size too large!", __func__)); flags = txsegs[seg].ds_len & GEM_TD_BUFSIZE; sc->sc_txdescs[nexttx].gd_flags = GEM_DMA_WRITE(sc, flags | cflags); txs->txs_lastdesc = nexttx; } /* Set EOP on the last descriptor. */ #ifdef GEM_DEBUG CTR3(KTR_GEM, "%s: end of packet at segment %d, TX %d", __func__, seg, nexttx); #endif sc->sc_txdescs[txs->txs_lastdesc].gd_flags |= GEM_DMA_WRITE(sc, GEM_TD_END_OF_PACKET); /* Lastly set SOP on the first descriptor. */ #ifdef GEM_DEBUG CTR3(KTR_GEM, "%s: start of packet at segment %d, TX %d", __func__, seg, nexttx); #endif if (++sc->sc_txwin > GEM_NTXSEGS * 2 / 3) { sc->sc_txwin = 0; flags |= GEM_TD_INTERRUPT_ME; sc->sc_txdescs[txs->txs_firstdesc].gd_flags |= GEM_DMA_WRITE(sc, GEM_TD_INTERRUPT_ME | GEM_TD_START_OF_PACKET); } else sc->sc_txdescs[txs->txs_firstdesc].gd_flags |= GEM_DMA_WRITE(sc, GEM_TD_START_OF_PACKET); /* Sync the DMA map. */ bus_dmamap_sync(sc->sc_tdmatag, txs->txs_dmamap, BUS_DMASYNC_PREWRITE); #ifdef GEM_DEBUG CTR4(KTR_GEM, "%s: setting firstdesc=%d, lastdesc=%d, ndescs=%d", __func__, txs->txs_firstdesc, txs->txs_lastdesc, txs->txs_ndescs); #endif STAILQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q); STAILQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q); txs->txs_mbuf = *m_head; sc->sc_txnext = GEM_NEXTTX(txs->txs_lastdesc); sc->sc_txfree -= txs->txs_ndescs; return (0); } static void gem_init_regs(struct gem_softc *sc) { const u_char *laddr = IF_LLADDR(sc->sc_ifp); /* These registers are not cleared on reset. */ if ((sc->sc_flags & GEM_INITED) == 0) { /* magic values */ bus_write_4(sc->sc_res[0], GEM_MAC_IPG0, 0); bus_write_4(sc->sc_res[0], GEM_MAC_IPG1, 8); bus_write_4(sc->sc_res[0], GEM_MAC_IPG2, 4); bus_write_4(sc->sc_res[0], GEM_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN); /* max frame and max burst size */ bus_write_4(sc->sc_res[0], GEM_MAC_MAC_MAX_FRAME, (ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN) | (0x2000 << 16)); bus_write_4(sc->sc_res[0], GEM_MAC_PREAMBLE_LEN, 0x7); bus_write_4(sc->sc_res[0], GEM_MAC_JAM_SIZE, 0x4); bus_write_4(sc->sc_res[0], GEM_MAC_ATTEMPT_LIMIT, 0x10); /* dunno... */ bus_write_4(sc->sc_res[0], GEM_MAC_CONTROL_TYPE, 0x8088); bus_write_4(sc->sc_res[0], GEM_MAC_RANDOM_SEED, ((laddr[5] << 8) | laddr[4]) & 0x3ff); /* secondary MAC address: 0:0:0:0:0:0 */ bus_write_4(sc->sc_res[0], GEM_MAC_ADDR3, 0); bus_write_4(sc->sc_res[0], GEM_MAC_ADDR4, 0); bus_write_4(sc->sc_res[0], GEM_MAC_ADDR5, 0); /* MAC control address: 01:80:c2:00:00:01 */ bus_write_4(sc->sc_res[0], GEM_MAC_ADDR6, 0x0001); bus_write_4(sc->sc_res[0], GEM_MAC_ADDR7, 0xc200); bus_write_4(sc->sc_res[0], GEM_MAC_ADDR8, 0x0180); /* MAC filter address: 0:0:0:0:0:0 */ bus_write_4(sc->sc_res[0], GEM_MAC_ADDR_FILTER0, 0); bus_write_4(sc->sc_res[0], GEM_MAC_ADDR_FILTER1, 0); bus_write_4(sc->sc_res[0], GEM_MAC_ADDR_FILTER2, 0); bus_write_4(sc->sc_res[0], GEM_MAC_ADR_FLT_MASK1_2, 0); bus_write_4(sc->sc_res[0], GEM_MAC_ADR_FLT_MASK0, 0); sc->sc_flags |= GEM_INITED; } /* Counters need to be zeroed. */ bus_write_4(sc->sc_res[0], GEM_MAC_NORM_COLL_CNT, 0); bus_write_4(sc->sc_res[0], GEM_MAC_FIRST_COLL_CNT, 0); bus_write_4(sc->sc_res[0], GEM_MAC_EXCESS_COLL_CNT, 0); bus_write_4(sc->sc_res[0], GEM_MAC_LATE_COLL_CNT, 0); bus_write_4(sc->sc_res[0], GEM_MAC_DEFER_TMR_CNT, 0); bus_write_4(sc->sc_res[0], GEM_MAC_PEAK_ATTEMPTS, 0); bus_write_4(sc->sc_res[0], GEM_MAC_RX_FRAME_COUNT, 0); bus_write_4(sc->sc_res[0], GEM_MAC_RX_LEN_ERR_CNT, 0); bus_write_4(sc->sc_res[0], GEM_MAC_RX_ALIGN_ERR, 0); bus_write_4(sc->sc_res[0], GEM_MAC_RX_CRC_ERR_CNT, 0); bus_write_4(sc->sc_res[0], GEM_MAC_RX_CODE_VIOL, 0); /* Set XOFF PAUSE time. */ bus_write_4(sc->sc_res[0], GEM_MAC_SEND_PAUSE_CMD, 0x1BF0); /* * Set the internal arbitration to "infinite" bursts of the * maximum length of 31 * 64 bytes so DMA transfers aren't * split up in cache line size chunks. This greatly improves * especially RX performance. * Enable silicon bug workarounds for the Apple variants. */ bus_write_4(sc->sc_res[0], GEM_CONFIG, GEM_CONFIG_TXDMA_LIMIT | GEM_CONFIG_RXDMA_LIMIT | GEM_CONFIG_BURST_INF | (GEM_IS_APPLE(sc) ? GEM_CONFIG_RONPAULBIT | GEM_CONFIG_BUG2FIX : 0)); /* Set the station address. */ bus_write_4(sc->sc_res[0], GEM_MAC_ADDR0, (laddr[4] << 8) | laddr[5]); bus_write_4(sc->sc_res[0], GEM_MAC_ADDR1, (laddr[2] << 8) | laddr[3]); bus_write_4(sc->sc_res[0], GEM_MAC_ADDR2, (laddr[0] << 8) | laddr[1]); /* Enable MII outputs. */ bus_write_4(sc->sc_res[0], GEM_MAC_XIF_CONFIG, GEM_MAC_XIF_TX_MII_ENA); } static void gem_start(struct ifnet *ifp) { struct gem_softc *sc = ifp->if_softc; GEM_LOCK(sc); gem_start_locked(ifp); GEM_UNLOCK(sc); } static void gem_start_locked(struct ifnet *ifp) { struct gem_softc *sc = ifp->if_softc; struct mbuf *m; int ntx; if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != IFF_DRV_RUNNING || (sc->sc_flags & GEM_LINK) == 0) return; #ifdef GEM_DEBUG CTR4(KTR_GEM, "%s: %s: txfree %d, txnext %d", device_get_name(sc->sc_dev), __func__, sc->sc_txfree, sc->sc_txnext); #endif ntx = 0; for (; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) && sc->sc_txfree > 1;) { IFQ_DRV_DEQUEUE(&ifp->if_snd, m); if (m == NULL) break; if (gem_load_txmbuf(sc, &m) != 0) { if (m == NULL) break; ifp->if_drv_flags |= IFF_DRV_OACTIVE; IFQ_DRV_PREPEND(&ifp->if_snd, m); break; } ntx++; /* Kick the transmitter. */ #ifdef GEM_DEBUG CTR3(KTR_GEM, "%s: %s: kicking TX %d", device_get_name(sc->sc_dev), __func__, sc->sc_txnext); #endif GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE); bus_write_4(sc->sc_res[0], GEM_TX_KICK, sc->sc_txnext); BPF_MTAP(ifp, m); } if (ntx > 0) { #ifdef GEM_DEBUG CTR2(KTR_GEM, "%s: packets enqueued, OWN on %d", device_get_name(sc->sc_dev), sc->sc_txnext); #endif /* Set a watchdog timer in case the chip flakes out. */ sc->sc_wdog_timer = 5; #ifdef GEM_DEBUG CTR3(KTR_GEM, "%s: %s: watchdog %d", device_get_name(sc->sc_dev), __func__, sc->sc_wdog_timer); #endif } } static void gem_tint(struct gem_softc *sc) { struct ifnet *ifp = sc->sc_ifp; struct gem_txsoft *txs; int txlast, progress; #ifdef GEM_DEBUG int i; CTR2(KTR_GEM, "%s: %s", device_get_name(sc->sc_dev), __func__); #endif /* * Go through our TX list and free mbufs for those * frames that have been transmitted. */ progress = 0; GEM_CDSYNC(sc, BUS_DMASYNC_POSTREAD); while ((txs = STAILQ_FIRST(&sc->sc_txdirtyq)) != NULL) { #ifdef GEM_DEBUG if ((ifp->if_flags & IFF_DEBUG) != 0) { printf(" txsoft %p transmit chain:\n", txs); for (i = txs->txs_firstdesc;; i = GEM_NEXTTX(i)) { printf("descriptor %d: ", i); printf("gd_flags: 0x%016llx\t", (long long)GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_flags)); printf("gd_addr: 0x%016llx\n", (long long)GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_addr)); if (i == txs->txs_lastdesc) break; } } #endif /* * In theory, we could harvest some descriptors before * the ring is empty, but that's a bit complicated. * * GEM_TX_COMPLETION points to the last descriptor * processed + 1. */ txlast = bus_read_4(sc->sc_res[0], GEM_TX_COMPLETION); #ifdef GEM_DEBUG CTR4(KTR_GEM, "%s: txs->txs_firstdesc = %d, " "txs->txs_lastdesc = %d, txlast = %d", __func__, txs->txs_firstdesc, txs->txs_lastdesc, txlast); #endif if (txs->txs_firstdesc <= txs->txs_lastdesc) { if ((txlast >= txs->txs_firstdesc) && (txlast <= txs->txs_lastdesc)) break; } else { /* Ick -- this command wraps. */ if ((txlast >= txs->txs_firstdesc) || (txlast <= txs->txs_lastdesc)) break; } #ifdef GEM_DEBUG CTR1(KTR_GEM, "%s: releasing a descriptor", __func__); #endif STAILQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q); sc->sc_txfree += txs->txs_ndescs; bus_dmamap_sync(sc->sc_tdmatag, txs->txs_dmamap, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_tdmatag, txs->txs_dmamap); if (txs->txs_mbuf != NULL) { m_freem(txs->txs_mbuf); txs->txs_mbuf = NULL; } STAILQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q); ifp->if_opackets++; progress = 1; } #ifdef GEM_DEBUG CTR4(KTR_GEM, "%s: GEM_TX_STATE_MACHINE %x GEM_TX_DATA_PTR %llx " "GEM_TX_COMPLETION %x", __func__, bus_read_4(sc->sc_res[0], GEM_TX_STATE_MACHINE), ((long long)bus_read_4(sc->sc_res[0], GEM_TX_DATA_PTR_HI) << 32) | bus_read_4(sc->sc_res[0], GEM_TX_DATA_PTR_LO), bus_read_4(sc->sc_res[0], GEM_TX_COMPLETION)); #endif if (progress) { if (sc->sc_txfree == GEM_NTXDESC - 1) sc->sc_txwin = 0; /* * We freed some descriptors, so reset IFF_DRV_OACTIVE * and restart. */ ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; sc->sc_wdog_timer = STAILQ_EMPTY(&sc->sc_txdirtyq) ? 0 : 5; if (ifp->if_drv_flags & IFF_DRV_RUNNING && !IFQ_DRV_IS_EMPTY(&ifp->if_snd)) gem_start_locked(ifp); } #ifdef GEM_DEBUG CTR3(KTR_GEM, "%s: %s: watchdog %d", device_get_name(sc->sc_dev), __func__, sc->sc_wdog_timer); #endif } #ifdef GEM_RINT_TIMEOUT static void gem_rint_timeout(void *arg) { struct gem_softc *sc = arg; GEM_LOCK_ASSERT(sc, MA_OWNED); gem_rint(sc); } #endif static void gem_rint(struct gem_softc *sc) { struct ifnet *ifp = sc->sc_ifp; struct mbuf *m; uint64_t rxstat; uint32_t rxcomp; #ifdef GEM_RINT_TIMEOUT callout_stop(&sc->sc_rx_ch); #endif #ifdef GEM_DEBUG CTR2(KTR_GEM, "%s: %s", device_get_name(sc->sc_dev), __func__); #endif /* * Read the completion register once. This limits * how long the following loop can execute. */ rxcomp = bus_read_4(sc->sc_res[0], GEM_RX_COMPLETION); #ifdef GEM_DEBUG CTR3(KTR_GEM, "%s: sc->rxptr %d, complete %d", __func__, sc->sc_rxptr, rxcomp); #endif GEM_CDSYNC(sc, BUS_DMASYNC_POSTREAD); for (; sc->sc_rxptr != rxcomp;) { m = sc->sc_rxsoft[sc->sc_rxptr].rxs_mbuf; rxstat = GEM_DMA_READ(sc, sc->sc_rxdescs[sc->sc_rxptr].gd_flags); if (rxstat & GEM_RD_OWN) { #ifdef GEM_RINT_TIMEOUT /* * The descriptor is still marked as owned, although * it is supposed to have completed. This has been * observed on some machines. Just exiting here * might leave the packet sitting around until another * one arrives to trigger a new interrupt, which is * generally undesirable, so set up a timeout. */ callout_reset(&sc->sc_rx_ch, GEM_RXOWN_TICKS, gem_rint_timeout, sc); #endif m = NULL; goto kickit; } if (rxstat & GEM_RD_BAD_CRC) { ifp->if_ierrors++; device_printf(sc->sc_dev, "receive error: CRC error\n"); GEM_INIT_RXDESC(sc, sc->sc_rxptr); m = NULL; goto kickit; } #ifdef GEM_DEBUG if ((ifp->if_flags & IFF_DEBUG) != 0) { printf(" rxsoft %p descriptor %d: ", &sc->sc_rxsoft[sc->sc_rxptr], sc->sc_rxptr); printf("gd_flags: 0x%016llx\t", (long long)GEM_DMA_READ(sc, sc->sc_rxdescs[sc->sc_rxptr].gd_flags)); printf("gd_addr: 0x%016llx\n", (long long)GEM_DMA_READ(sc, sc->sc_rxdescs[sc->sc_rxptr].gd_addr)); } #endif /* * Allocate a new mbuf cluster. If that fails, we are * out of memory, and must drop the packet and recycle * the buffer that's already attached to this descriptor. */ if (gem_add_rxbuf(sc, sc->sc_rxptr) != 0) { ifp->if_ierrors++; GEM_INIT_RXDESC(sc, sc->sc_rxptr); m = NULL; } kickit: /* * Update the RX kick register. This register has to point * to the descriptor after the last valid one (before the * current batch) and must be incremented in multiples of * 4 (because the DMA engine fetches/updates descriptors * in batches of 4). */ sc->sc_rxptr = GEM_NEXTRX(sc->sc_rxptr); if ((sc->sc_rxptr % 4) == 0) { GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE); bus_write_4(sc->sc_res[0], GEM_RX_KICK, (sc->sc_rxptr + GEM_NRXDESC - 4) & GEM_NRXDESC_MASK); } if (m == NULL) { if (rxstat & GEM_RD_OWN) break; continue; } ifp->if_ipackets++; m->m_data += 2; /* We're already off by two */ m->m_pkthdr.rcvif = ifp; m->m_pkthdr.len = m->m_len = GEM_RD_BUFLEN(rxstat); if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) gem_rxcksum(m, rxstat); /* Pass it on. */ GEM_UNLOCK(sc); (*ifp->if_input)(ifp, m); GEM_LOCK(sc); } #ifdef GEM_DEBUG CTR3(KTR_GEM, "%s: done sc->rxptr %d, complete %d", __func__, sc->sc_rxptr, bus_read_4(sc->sc_res[0], GEM_RX_COMPLETION)); #endif } static int gem_add_rxbuf(struct gem_softc *sc, int idx) { struct gem_rxsoft *rxs = &sc->sc_rxsoft[idx]; struct mbuf *m; bus_dma_segment_t segs[1]; int error, nsegs; m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); if (m == NULL) return (ENOBUFS); m->m_len = m->m_pkthdr.len = m->m_ext.ext_size; #ifdef GEM_DEBUG /* Bzero the packet to check DMA. */ memset(m->m_ext.ext_buf, 0, m->m_ext.ext_size); #endif if (rxs->rxs_mbuf != NULL) { bus_dmamap_sync(sc->sc_rdmatag, rxs->rxs_dmamap, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->sc_rdmatag, rxs->rxs_dmamap); } error = bus_dmamap_load_mbuf_sg(sc->sc_rdmatag, rxs->rxs_dmamap, m, segs, &nsegs, BUS_DMA_NOWAIT); KASSERT(nsegs == 1, ("Too many segments returned!")); if (error != 0) { device_printf(sc->sc_dev, "cannot load RS DMA map %d, error = %d\n", idx, error); m_freem(m); return (error); } /* If nsegs is wrong then the stack is corrupt. */ rxs->rxs_mbuf = m; rxs->rxs_paddr = segs[0].ds_addr; bus_dmamap_sync(sc->sc_rdmatag, rxs->rxs_dmamap, BUS_DMASYNC_PREREAD); GEM_INIT_RXDESC(sc, idx); return (0); } static void gem_eint(struct gem_softc *sc, u_int status) { sc->sc_ifp->if_ierrors++; if ((status & GEM_INTR_RX_TAG_ERR) != 0) { gem_reset_rxdma(sc); return; } device_printf(sc->sc_dev, "%s: status=%x\n", __func__, status); } void gem_intr(void *v) { struct gem_softc *sc = v; uint32_t status, status2; GEM_LOCK(sc); status = bus_read_4(sc->sc_res[0], GEM_STATUS); #ifdef GEM_DEBUG CTR4(KTR_GEM, "%s: %s: cplt %x, status %x", device_get_name(sc->sc_dev), __func__, (status >> 19), (u_int)status); /* * PCS interrupts must be cleared, otherwise no traffic is passed! */ if ((status & GEM_INTR_PCS) != 0) { status2 = bus_read_4(sc->sc_res[0], GEM_MII_INTERRUP_STATUS) | bus_read_4(sc->sc_res[0], GEM_MII_INTERRUP_STATUS); if ((status2 & GEM_MII_INTERRUP_LINK) != 0) device_printf(sc->sc_dev, "%s: PCS link status changed\n", __func__); } if ((status & GEM_MAC_CONTROL_STATUS) != 0) { status2 = bus_read_4(sc->sc_res[0], GEM_MAC_CONTROL_STATUS); if ((status2 & GEM_MAC_PAUSED) != 0) device_printf(sc->sc_dev, "%s: PAUSE received (PAUSE time %d slots)\n", __func__, GEM_MAC_PAUSE_TIME(status2)); if ((status2 & GEM_MAC_PAUSE) != 0) device_printf(sc->sc_dev, "%s: transited to PAUSE state\n", __func__); if ((status2 & GEM_MAC_RESUME) != 0) device_printf(sc->sc_dev, "%s: transited to non-PAUSE state\n", __func__); } if ((status & GEM_INTR_MIF) != 0) device_printf(sc->sc_dev, "%s: MIF interrupt\n", __func__); #endif if ((status & (GEM_INTR_RX_TAG_ERR | GEM_INTR_PERR | GEM_INTR_BERR)) != 0) gem_eint(sc, status); if ((status & (GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF)) != 0) gem_rint(sc); if ((status & (GEM_INTR_TX_EMPTY | GEM_INTR_TX_INTME)) != 0) gem_tint(sc); if (status & GEM_INTR_TX_MAC) { status2 = bus_read_4(sc->sc_res[0], GEM_MAC_TX_STATUS); if ((status2 & ~(GEM_MAC_TX_XMIT_DONE | GEM_MAC_TX_DEFER_EXP)) != 0) device_printf(sc->sc_dev, "MAC TX fault, status %x\n", status2); if ((status2 & (GEM_MAC_TX_UNDERRUN | GEM_MAC_TX_PKT_TOO_LONG)) != 0) gem_init_locked(sc); } if (status & GEM_INTR_RX_MAC) { status2 = bus_read_4(sc->sc_res[0], GEM_MAC_RX_STATUS); /* * At least with GEM_SUN_GEM and some GEM_SUN_ERI * revisions GEM_MAC_RX_OVERFLOW happen often due to a * silicon bug so handle them silently. Moreover, it's * likely that the receiver has hung so we reset it. */ if ((status2 & GEM_MAC_RX_OVERFLOW) != 0) { sc->sc_ifp->if_ierrors++; gem_reset_rxdma(sc); } else if ((status2 & ~(GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT)) != 0) device_printf(sc->sc_dev, "MAC RX fault, status %x\n", status2); } GEM_UNLOCK(sc); } static int gem_watchdog(struct gem_softc *sc) { GEM_LOCK_ASSERT(sc, MA_OWNED); #ifdef GEM_DEBUG CTR4(KTR_GEM, "%s: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x GEM_MAC_RX_CONFIG %x", __func__, bus_read_4(sc->sc_res[0], GEM_RX_CONFIG), bus_read_4(sc->sc_res[0], GEM_MAC_RX_STATUS), bus_read_4(sc->sc_res[0], GEM_MAC_RX_CONFIG)); CTR4(KTR_GEM, "%s: GEM_TX_CONFIG %x GEM_MAC_TX_STATUS %x GEM_MAC_TX_CONFIG %x", __func__, bus_read_4(sc->sc_res[0], GEM_TX_CONFIG), bus_read_4(sc->sc_res[0], GEM_MAC_TX_STATUS), bus_read_4(sc->sc_res[0], GEM_MAC_TX_CONFIG)); #endif if (sc->sc_wdog_timer == 0 || --sc->sc_wdog_timer != 0) return (0); if ((sc->sc_flags & GEM_LINK) != 0) device_printf(sc->sc_dev, "device timeout\n"); else if (bootverbose) device_printf(sc->sc_dev, "device timeout (no link)\n"); ++sc->sc_ifp->if_oerrors; /* Try to get more packets going. */ gem_init_locked(sc); return (EJUSTRETURN); } static void gem_mifinit(struct gem_softc *sc) { /* Configure the MIF in frame mode */ bus_write_4(sc->sc_res[0], GEM_MIF_CONFIG, bus_read_4(sc->sc_res[0], GEM_MIF_CONFIG) & ~GEM_MIF_CONFIG_BB_ENA); } /* * MII interface * * The GEM MII interface supports at least three different operating modes: * * Bitbang mode is implemented using data, clock and output enable registers. * * Frame mode is implemented by loading a complete frame into the frame * register and polling the valid bit for completion. * * Polling mode uses the frame register but completion is indicated by * an interrupt. * */ int gem_mii_readreg(device_t dev, int phy, int reg) { struct gem_softc *sc; int n; uint32_t v; #ifdef GEM_DEBUG_PHY printf("%s: phy %d reg %d\n", __func__, phy, reg); #endif sc = device_get_softc(dev); if (sc->sc_phyad != -1 && phy != sc->sc_phyad) return (0); if ((sc->sc_flags & GEM_SERDES) != 0) { switch (reg) { case MII_BMCR: reg = GEM_MII_CONTROL; break; case MII_BMSR: reg = GEM_MII_STATUS; break; case MII_PHYIDR1: case MII_PHYIDR2: return (0); case MII_ANAR: reg = GEM_MII_ANAR; break; case MII_ANLPAR: reg = GEM_MII_ANLPAR; break; case MII_EXTSR: return (EXTSR_1000XFDX | EXTSR_1000XHDX); default: device_printf(sc->sc_dev, "%s: unhandled register %d\n", __func__, reg); return (0); } return (bus_read_4(sc->sc_res[0], reg)); } /* Construct the frame command. */ v = GEM_MIF_FRAME_READ | (phy << GEM_MIF_PHY_SHIFT) | (reg << GEM_MIF_REG_SHIFT); bus_write_4(sc->sc_res[0], GEM_MIF_FRAME, v); for (n = 0; n < 100; n++) { DELAY(1); v = bus_read_4(sc->sc_res[0], GEM_MIF_FRAME); if (v & GEM_MIF_FRAME_TA0) return (v & GEM_MIF_FRAME_DATA); } device_printf(sc->sc_dev, "%s: timed out\n", __func__); return (0); } int gem_mii_writereg(device_t dev, int phy, int reg, int val) { struct gem_softc *sc; int n; uint32_t v; #ifdef GEM_DEBUG_PHY printf("%s: phy %d reg %d val %x\n", phy, reg, val, __func__); #endif sc = device_get_softc(dev); if (sc->sc_phyad != -1 && phy != sc->sc_phyad) return (0); if ((sc->sc_flags & GEM_SERDES) != 0) { switch (reg) { case MII_BMCR: reg = GEM_MII_CONTROL; break; case MII_BMSR: reg = GEM_MII_STATUS; break; case MII_ANAR: bus_write_4(sc->sc_res[0], GEM_MII_CONFIG, 0); bus_barrier(sc->sc_res[0], GEM_MII_CONFIG, 4, BUS_SPACE_BARRIER_WRITE); bus_write_4(sc->sc_res[0], GEM_MII_ANAR, val); bus_write_4(sc->sc_res[0], GEM_MII_SLINK_CONTROL, GEM_MII_SLINK_LOOPBACK | GEM_MII_SLINK_EN_SYNC_D); bus_write_4(sc->sc_res[0], GEM_MII_CONFIG, GEM_MII_CONFIG_ENABLE); return (0); case MII_ANLPAR: reg = GEM_MII_ANLPAR; break; default: device_printf(sc->sc_dev, "%s: unhandled register %d\n", __func__, reg); return (0); } bus_write_4(sc->sc_res[0], reg, val); return (0); } /* Construct the frame command. */ v = GEM_MIF_FRAME_WRITE | (phy << GEM_MIF_PHY_SHIFT) | (reg << GEM_MIF_REG_SHIFT) | (val & GEM_MIF_FRAME_DATA); bus_write_4(sc->sc_res[0], GEM_MIF_FRAME, v); for (n = 0; n < 100; n++) { DELAY(1); v = bus_read_4(sc->sc_res[0], GEM_MIF_FRAME); if (v & GEM_MIF_FRAME_TA0) return (1); } device_printf(sc->sc_dev, "%s: timed out\n", __func__); return (0); } void gem_mii_statchg(device_t dev) { struct gem_softc *sc; int gigabit; uint32_t rxcfg, txcfg, v; sc = device_get_softc(dev); #ifdef GEM_DEBUG if ((sc->sc_ifp->if_flags & IFF_DEBUG) != 0) device_printf(sc->sc_dev, "%s: status change: PHY = %d\n", __func__, sc->sc_phyad); #endif if ((sc->sc_mii->mii_media_status & IFM_ACTIVE) != 0 && IFM_SUBTYPE(sc->sc_mii->mii_media_active) != IFM_NONE) sc->sc_flags |= GEM_LINK; else sc->sc_flags &= ~GEM_LINK; switch (IFM_SUBTYPE(sc->sc_mii->mii_media_active)) { case IFM_1000_SX: case IFM_1000_LX: case IFM_1000_CX: case IFM_1000_T: gigabit = 1; break; default: gigabit = 0; } /* * The configuration done here corresponds to the steps F) and * G) and as far as enabling of RX and TX MAC goes also step H) * of the initialization sequence outlined in section 3.2.1 of * the GEM Gigabit Ethernet ASIC Specification. */ rxcfg = bus_read_4(sc->sc_res[0], GEM_MAC_RX_CONFIG); rxcfg &= ~(GEM_MAC_RX_CARR_EXTEND | GEM_MAC_RX_ENABLE); txcfg = GEM_MAC_TX_ENA_IPG0 | GEM_MAC_TX_NGU | GEM_MAC_TX_NGU_LIMIT; if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) != 0) txcfg |= GEM_MAC_TX_IGN_CARRIER | GEM_MAC_TX_IGN_COLLIS; else if (gigabit != 0) { rxcfg |= GEM_MAC_RX_CARR_EXTEND; txcfg |= GEM_MAC_TX_CARR_EXTEND; } bus_write_4(sc->sc_res[0], GEM_MAC_TX_CONFIG, 0); bus_barrier(sc->sc_res[0], GEM_MAC_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE); if (!gem_bitwait(sc, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0)) device_printf(sc->sc_dev, "cannot disable TX MAC\n"); bus_write_4(sc->sc_res[0], GEM_MAC_TX_CONFIG, txcfg); bus_write_4(sc->sc_res[0], GEM_MAC_RX_CONFIG, 0); bus_barrier(sc->sc_res[0], GEM_MAC_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE); if (!gem_bitwait(sc, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0)) device_printf(sc->sc_dev, "cannot disable RX MAC\n"); bus_write_4(sc->sc_res[0], GEM_MAC_RX_CONFIG, rxcfg); v = bus_read_4(sc->sc_res[0], GEM_MAC_CONTROL_CONFIG) & ~(GEM_MAC_CC_RX_PAUSE | GEM_MAC_CC_TX_PAUSE); #ifdef notyet if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0) v |= GEM_MAC_CC_RX_PAUSE; if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0) v |= GEM_MAC_CC_TX_PAUSE; #endif bus_write_4(sc->sc_res[0], GEM_MAC_CONTROL_CONFIG, v); if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) == 0 && gigabit != 0) bus_write_4(sc->sc_res[0], GEM_MAC_SLOT_TIME, GEM_MAC_SLOT_TIME_CARR_EXTEND); else bus_write_4(sc->sc_res[0], GEM_MAC_SLOT_TIME, GEM_MAC_SLOT_TIME_NORMAL); /* XIF Configuration */ v = GEM_MAC_XIF_LINK_LED; v |= GEM_MAC_XIF_TX_MII_ENA; if ((sc->sc_flags & GEM_SERDES) == 0) { if ((bus_read_4(sc->sc_res[0], GEM_MIF_CONFIG) & GEM_MIF_CONFIG_PHY_SEL) != 0 && (IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) == 0) /* External MII needs echo disable if half duplex. */ v |= GEM_MAC_XIF_ECHO_DISABL; else /* * Internal MII needs buffer enable. * XXX buffer enable makes only sense for an * external PHY. */ v |= GEM_MAC_XIF_MII_BUF_ENA; } if (gigabit != 0) v |= GEM_MAC_XIF_GMII_MODE; if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) != 0) v |= GEM_MAC_XIF_FDPLX_LED; bus_write_4(sc->sc_res[0], GEM_MAC_XIF_CONFIG, v); if ((sc->sc_ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 && (sc->sc_flags & GEM_LINK) != 0) { bus_write_4(sc->sc_res[0], GEM_MAC_TX_CONFIG, txcfg | GEM_MAC_TX_ENABLE); bus_write_4(sc->sc_res[0], GEM_MAC_RX_CONFIG, rxcfg | GEM_MAC_RX_ENABLE); } } int gem_mediachange(struct ifnet *ifp) { struct gem_softc *sc = ifp->if_softc; int error; /* XXX add support for serial media. */ GEM_LOCK(sc); error = mii_mediachg(sc->sc_mii); GEM_UNLOCK(sc); return (error); } void gem_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr) { struct gem_softc *sc = ifp->if_softc; GEM_LOCK(sc); if ((ifp->if_flags & IFF_UP) == 0) { GEM_UNLOCK(sc); return; } mii_pollstat(sc->sc_mii); ifmr->ifm_active = sc->sc_mii->mii_media_active; ifmr->ifm_status = sc->sc_mii->mii_media_status; GEM_UNLOCK(sc); } static int gem_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct gem_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *)data; int error; error = 0; switch (cmd) { case SIOCSIFFLAGS: GEM_LOCK(sc); if ((ifp->if_flags & IFF_UP) != 0) { if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 && ((ifp->if_flags ^ sc->sc_ifflags) & (IFF_ALLMULTI | IFF_PROMISC)) != 0) gem_setladrf(sc); else gem_init_locked(sc); } else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) gem_stop(ifp, 0); if ((ifp->if_flags & IFF_LINK0) != 0) sc->sc_csum_features |= CSUM_UDP; else sc->sc_csum_features &= ~CSUM_UDP; if ((ifp->if_capenable & IFCAP_TXCSUM) != 0) ifp->if_hwassist = sc->sc_csum_features; sc->sc_ifflags = ifp->if_flags; GEM_UNLOCK(sc); break; case SIOCADDMULTI: case SIOCDELMULTI: GEM_LOCK(sc); gem_setladrf(sc); GEM_UNLOCK(sc); break; case SIOCGIFMEDIA: case SIOCSIFMEDIA: error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii->mii_media, cmd); break; case SIOCSIFCAP: GEM_LOCK(sc); ifp->if_capenable = ifr->ifr_reqcap; if ((ifp->if_capenable & IFCAP_TXCSUM) != 0) ifp->if_hwassist = sc->sc_csum_features; else ifp->if_hwassist = 0; GEM_UNLOCK(sc); break; default: error = ether_ioctl(ifp, cmd, data); break; } return (error); } static void gem_setladrf(struct gem_softc *sc) { struct ifnet *ifp = sc->sc_ifp; struct ifmultiaddr *inm; int i; uint32_t hash[16]; uint32_t crc, v; GEM_LOCK_ASSERT(sc, MA_OWNED); /* Get the current RX configuration. */ v = bus_read_4(sc->sc_res[0], GEM_MAC_RX_CONFIG); /* * Turn off promiscuous mode, promiscuous group mode (all multicast), * and hash filter. Depending on the case, the right bit will be * enabled. */ v &= ~(GEM_MAC_RX_PROMISCUOUS | GEM_MAC_RX_HASH_FILTER | GEM_MAC_RX_PROMISC_GRP); bus_write_4(sc->sc_res[0], GEM_MAC_RX_CONFIG, v); bus_barrier(sc->sc_res[0], GEM_MAC_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE); if (!gem_bitwait(sc, GEM_MAC_RX_CONFIG, GEM_MAC_RX_HASH_FILTER, 0)) device_printf(sc->sc_dev, "cannot disable RX hash filter\n"); if ((ifp->if_flags & IFF_PROMISC) != 0) { v |= GEM_MAC_RX_PROMISCUOUS; goto chipit; } if ((ifp->if_flags & IFF_ALLMULTI) != 0) { v |= GEM_MAC_RX_PROMISC_GRP; goto chipit; } /* * Set up multicast address filter by passing all multicast * addresses through a crc generator, and then using the high * order 8 bits as an index into the 256 bit logical address * filter. The high order 4 bits selects the word, while the * other 4 bits select the bit within the word (where bit 0 * is the MSB). */ /* Clear the hash table. */ memset(hash, 0, sizeof(hash)); IF_ADDR_LOCK(ifp); TAILQ_FOREACH(inm, &ifp->if_multiaddrs, ifma_link) { if (inm->ifma_addr->sa_family != AF_LINK) continue; crc = ether_crc32_le(LLADDR((struct sockaddr_dl *) inm->ifma_addr), ETHER_ADDR_LEN); /* We just want the 8 most significant bits. */ crc >>= 24; /* Set the corresponding bit in the filter. */ hash[crc >> 4] |= 1 << (15 - (crc & 15)); } IF_ADDR_UNLOCK(ifp); v |= GEM_MAC_RX_HASH_FILTER; /* Now load the hash table into the chip (if we are using it). */ for (i = 0; i < 16; i++) bus_write_4(sc->sc_res[0], GEM_MAC_HASH0 + i * (GEM_MAC_HASH1 - GEM_MAC_HASH0), hash[i]); chipit: bus_write_4(sc->sc_res[0], GEM_MAC_RX_CONFIG, v); }