/*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 1995, David Greenman * Copyright (c) 2001 Jonathan Lemon * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice unmodified, this list of conditions, and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * */ #include __FBSDID("$FreeBSD$"); /* * Intel EtherExpress Pro/100B PCI Fast Ethernet driver */ #ifdef HAVE_KERNEL_OPTION_HEADERS #include "opt_device_polling.h" #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* for PCIM_CMD_xxx */ #include #include #include #include #include MODULE_DEPEND(fxp, pci, 1, 1, 1); MODULE_DEPEND(fxp, ether, 1, 1, 1); MODULE_DEPEND(fxp, miibus, 1, 1, 1); #include "miibus_if.h" /* * NOTE! On !x86 we typically have an alignment constraint. The * card DMAs the packet immediately following the RFA. However, * the first thing in the packet is a 14-byte Ethernet header. * This means that the packet is misaligned. To compensate, * we actually offset the RFA 2 bytes into the cluster. This * alignes the packet after the Ethernet header at a 32-bit * boundary. HOWEVER! This means that the RFA is misaligned! */ #define RFA_ALIGNMENT_FUDGE 2 /* * Set initial transmit threshold at 64 (512 bytes). This is * increased by 64 (512 bytes) at a time, to maximum of 192 * (1536 bytes), if an underrun occurs. */ static int tx_threshold = 64; /* * The configuration byte map has several undefined fields which * must be one or must be zero. Set up a template for these bits. * The actual configuration is performed in fxp_init_body. * * See struct fxp_cb_config for the bit definitions. */ static const u_char fxp_cb_config_template[] = { 0x0, 0x0, /* cb_status */ 0x0, 0x0, /* cb_command */ 0x0, 0x0, 0x0, 0x0, /* link_addr */ 0x0, /* 0 */ 0x0, /* 1 */ 0x0, /* 2 */ 0x0, /* 3 */ 0x0, /* 4 */ 0x0, /* 5 */ 0x32, /* 6 */ 0x0, /* 7 */ 0x0, /* 8 */ 0x0, /* 9 */ 0x6, /* 10 */ 0x0, /* 11 */ 0x0, /* 12 */ 0x0, /* 13 */ 0xf2, /* 14 */ 0x48, /* 15 */ 0x0, /* 16 */ 0x40, /* 17 */ 0xf0, /* 18 */ 0x0, /* 19 */ 0x3f, /* 20 */ 0x5, /* 21 */ 0x0, /* 22 */ 0x0, /* 23 */ 0x0, /* 24 */ 0x0, /* 25 */ 0x0, /* 26 */ 0x0, /* 27 */ 0x0, /* 28 */ 0x0, /* 29 */ 0x0, /* 30 */ 0x0 /* 31 */ }; /* * Claim various Intel PCI device identifiers for this driver. The * sub-vendor and sub-device field are extensively used to identify * particular variants, but we don't currently differentiate between * them. */ static const struct fxp_ident fxp_ident_table[] = { { 0x8086, 0x1029, -1, 0, "Intel 82559 PCI/CardBus Pro/100" }, { 0x8086, 0x1030, -1, 0, "Intel 82559 Pro/100 Ethernet" }, { 0x8086, 0x1031, -1, 3, "Intel 82801CAM (ICH3) Pro/100 VE Ethernet" }, { 0x8086, 0x1032, -1, 3, "Intel 82801CAM (ICH3) Pro/100 VE Ethernet" }, { 0x8086, 0x1033, -1, 3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" }, { 0x8086, 0x1034, -1, 3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" }, { 0x8086, 0x1035, -1, 3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" }, { 0x8086, 0x1036, -1, 3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" }, { 0x8086, 0x1037, -1, 3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" }, { 0x8086, 0x1038, -1, 3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" }, { 0x8086, 0x1039, -1, 4, "Intel 82801DB (ICH4) Pro/100 VE Ethernet" }, { 0x8086, 0x103A, -1, 4, "Intel 82801DB (ICH4) Pro/100 Ethernet" }, { 0x8086, 0x103B, -1, 4, "Intel 82801DB (ICH4) Pro/100 VM Ethernet" }, { 0x8086, 0x103C, -1, 4, "Intel 82801DB (ICH4) Pro/100 Ethernet" }, { 0x8086, 0x103D, -1, 4, "Intel 82801DB (ICH4) Pro/100 VE Ethernet" }, { 0x8086, 0x103E, -1, 4, "Intel 82801DB (ICH4) Pro/100 VM Ethernet" }, { 0x8086, 0x1050, -1, 5, "Intel 82801BA (D865) Pro/100 VE Ethernet" }, { 0x8086, 0x1051, -1, 5, "Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" }, { 0x8086, 0x1059, -1, 0, "Intel 82551QM Pro/100 M Mobile Connection" }, { 0x8086, 0x1064, -1, 6, "Intel 82562EZ (ICH6)" }, { 0x8086, 0x1065, -1, 6, "Intel 82562ET/EZ/GT/GZ PRO/100 VE Ethernet" }, { 0x8086, 0x1068, -1, 6, "Intel 82801FBM (ICH6-M) Pro/100 VE Ethernet" }, { 0x8086, 0x1069, -1, 6, "Intel 82562EM/EX/GX Pro/100 Ethernet" }, { 0x8086, 0x1091, -1, 7, "Intel 82562GX Pro/100 Ethernet" }, { 0x8086, 0x1092, -1, 7, "Intel Pro/100 VE Network Connection" }, { 0x8086, 0x1093, -1, 7, "Intel Pro/100 VM Network Connection" }, { 0x8086, 0x1094, -1, 7, "Intel Pro/100 946GZ (ICH7) Network Connection" }, { 0x8086, 0x1209, -1, 0, "Intel 82559ER Embedded 10/100 Ethernet" }, { 0x8086, 0x1229, 0x01, 0, "Intel 82557 Pro/100 Ethernet" }, { 0x8086, 0x1229, 0x02, 0, "Intel 82557 Pro/100 Ethernet" }, { 0x8086, 0x1229, 0x03, 0, "Intel 82557 Pro/100 Ethernet" }, { 0x8086, 0x1229, 0x04, 0, "Intel 82558 Pro/100 Ethernet" }, { 0x8086, 0x1229, 0x05, 0, "Intel 82558 Pro/100 Ethernet" }, { 0x8086, 0x1229, 0x06, 0, "Intel 82559 Pro/100 Ethernet" }, { 0x8086, 0x1229, 0x07, 0, "Intel 82559 Pro/100 Ethernet" }, { 0x8086, 0x1229, 0x08, 0, "Intel 82559 Pro/100 Ethernet" }, { 0x8086, 0x1229, 0x09, 0, "Intel 82559ER Pro/100 Ethernet" }, { 0x8086, 0x1229, 0x0c, 0, "Intel 82550 Pro/100 Ethernet" }, { 0x8086, 0x1229, 0x0d, 0, "Intel 82550C Pro/100 Ethernet" }, { 0x8086, 0x1229, 0x0e, 0, "Intel 82550 Pro/100 Ethernet" }, { 0x8086, 0x1229, 0x0f, 0, "Intel 82551 Pro/100 Ethernet" }, { 0x8086, 0x1229, 0x10, 0, "Intel 82551 Pro/100 Ethernet" }, { 0x8086, 0x1229, -1, 0, "Intel 82557/8/9 Pro/100 Ethernet" }, { 0x8086, 0x2449, -1, 2, "Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" }, { 0x8086, 0x27dc, -1, 7, "Intel 82801GB (ICH7) 10/100 Ethernet" }, { 0, 0, -1, 0, NULL }, }; #ifdef FXP_IP_CSUM_WAR #define FXP_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP) #else #define FXP_CSUM_FEATURES (CSUM_TCP | CSUM_UDP) #endif static int fxp_probe(device_t dev); static int fxp_attach(device_t dev); static int fxp_detach(device_t dev); static int fxp_shutdown(device_t dev); static int fxp_suspend(device_t dev); static int fxp_resume(device_t dev); static const struct fxp_ident *fxp_find_ident(device_t dev); static void fxp_intr(void *xsc); static void fxp_rxcsum(struct fxp_softc *sc, if_t ifp, struct mbuf *m, uint16_t status, int pos); static int fxp_intr_body(struct fxp_softc *sc, if_t ifp, uint8_t statack, int count); static void fxp_init(void *xsc); static void fxp_init_body(struct fxp_softc *sc, int); static void fxp_tick(void *xsc); static void fxp_start(if_t ifp); static void fxp_start_body(if_t ifp); static int fxp_encap(struct fxp_softc *sc, struct mbuf **m_head); static void fxp_txeof(struct fxp_softc *sc); static void fxp_stop(struct fxp_softc *sc); static void fxp_release(struct fxp_softc *sc); static int fxp_ioctl(if_t ifp, u_long command, caddr_t data); static void fxp_watchdog(struct fxp_softc *sc); static void fxp_add_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp); static void fxp_discard_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp); static int fxp_new_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp); static void fxp_mc_addrs(struct fxp_softc *sc); static void fxp_mc_setup(struct fxp_softc *sc); static uint16_t fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize); static void fxp_eeprom_putword(struct fxp_softc *sc, int offset, uint16_t data); static void fxp_autosize_eeprom(struct fxp_softc *sc); static void fxp_load_eeprom(struct fxp_softc *sc); static void fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words); static void fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words); static int fxp_ifmedia_upd(if_t ifp); static void fxp_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr); static int fxp_serial_ifmedia_upd(if_t ifp); static void fxp_serial_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr); static int fxp_miibus_readreg(device_t dev, int phy, int reg); static int fxp_miibus_writereg(device_t dev, int phy, int reg, int value); static void fxp_miibus_statchg(device_t dev); static void fxp_load_ucode(struct fxp_softc *sc); static void fxp_update_stats(struct fxp_softc *sc); static void fxp_sysctl_node(struct fxp_softc *sc); static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high); static int sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS); static int sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS); static void fxp_scb_wait(struct fxp_softc *sc); static void fxp_scb_cmd(struct fxp_softc *sc, int cmd); static void fxp_dma_wait(struct fxp_softc *sc, volatile uint16_t *status, bus_dma_tag_t dmat, bus_dmamap_t map); static device_method_t fxp_methods[] = { /* Device interface */ DEVMETHOD(device_probe, fxp_probe), DEVMETHOD(device_attach, fxp_attach), DEVMETHOD(device_detach, fxp_detach), DEVMETHOD(device_shutdown, fxp_shutdown), DEVMETHOD(device_suspend, fxp_suspend), DEVMETHOD(device_resume, fxp_resume), /* MII interface */ DEVMETHOD(miibus_readreg, fxp_miibus_readreg), DEVMETHOD(miibus_writereg, fxp_miibus_writereg), DEVMETHOD(miibus_statchg, fxp_miibus_statchg), DEVMETHOD_END }; static driver_t fxp_driver = { "fxp", fxp_methods, sizeof(struct fxp_softc), }; DRIVER_MODULE_ORDERED(fxp, pci, fxp_driver, NULL, NULL, SI_ORDER_ANY); MODULE_PNP_INFO("U16:vendor;U16:device", pci, fxp, fxp_ident_table, nitems(fxp_ident_table) - 1); DRIVER_MODULE(miibus, fxp, miibus_driver, NULL, NULL); static struct resource_spec fxp_res_spec_mem[] = { { SYS_RES_MEMORY, FXP_PCI_MMBA, RF_ACTIVE }, { SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE }, { -1, 0 } }; static struct resource_spec fxp_res_spec_io[] = { { SYS_RES_IOPORT, FXP_PCI_IOBA, RF_ACTIVE }, { SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE }, { -1, 0 } }; /* * Wait for the previous command to be accepted (but not necessarily * completed). */ static void fxp_scb_wait(struct fxp_softc *sc) { union { uint16_t w; uint8_t b[2]; } flowctl; int i = 10000; while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i) DELAY(2); if (i == 0) { flowctl.b[0] = CSR_READ_1(sc, FXP_CSR_FC_THRESH); flowctl.b[1] = CSR_READ_1(sc, FXP_CSR_FC_STATUS); device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n", CSR_READ_1(sc, FXP_CSR_SCB_COMMAND), CSR_READ_1(sc, FXP_CSR_SCB_STATACK), CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS), flowctl.w); } } static void fxp_scb_cmd(struct fxp_softc *sc, int cmd) { if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) { CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP); fxp_scb_wait(sc); } CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd); } static void fxp_dma_wait(struct fxp_softc *sc, volatile uint16_t *status, bus_dma_tag_t dmat, bus_dmamap_t map) { int i; for (i = 10000; i > 0; i--) { DELAY(2); bus_dmamap_sync(dmat, map, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); if ((le16toh(*status) & FXP_CB_STATUS_C) != 0) break; } if (i == 0) device_printf(sc->dev, "DMA timeout\n"); } static const struct fxp_ident * fxp_find_ident(device_t dev) { uint16_t vendor; uint16_t device; uint8_t revid; const struct fxp_ident *ident; vendor = pci_get_vendor(dev); device = pci_get_device(dev); revid = pci_get_revid(dev); for (ident = fxp_ident_table; ident->name != NULL; ident++) { if (ident->vendor == vendor && ident->device == device && (ident->revid == revid || ident->revid == -1)) { return (ident); } } return (NULL); } /* * Return identification string if this device is ours. */ static int fxp_probe(device_t dev) { const struct fxp_ident *ident; ident = fxp_find_ident(dev); if (ident != NULL) { device_set_desc(dev, ident->name); return (BUS_PROBE_DEFAULT); } return (ENXIO); } static void fxp_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) { uint32_t *addr; if (error) return; KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg)); addr = arg; *addr = segs->ds_addr; } static int fxp_attach(device_t dev) { struct fxp_softc *sc; struct fxp_cb_tx *tcbp; struct fxp_tx *txp; struct fxp_rx *rxp; if_t ifp; uint32_t val; uint16_t data; u_char eaddr[ETHER_ADDR_LEN]; int error, flags, i, pmc, prefer_iomap; error = 0; sc = device_get_softc(dev); sc->dev = dev; mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, MTX_DEF); callout_init_mtx(&sc->stat_ch, &sc->sc_mtx, 0); ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd, fxp_serial_ifmedia_sts); ifp = sc->ifp = if_gethandle(IFT_ETHER); if (ifp == (void *)NULL) { device_printf(dev, "can not if_alloc()\n"); error = ENOSPC; goto fail; } /* * Enable bus mastering. */ pci_enable_busmaster(dev); /* * Figure out which we should try first - memory mapping or i/o mapping? * We default to memory mapping. Then we accept an override from the * command line. Then we check to see which one is enabled. */ prefer_iomap = 0; resource_int_value(device_get_name(dev), device_get_unit(dev), "prefer_iomap", &prefer_iomap); if (prefer_iomap) sc->fxp_spec = fxp_res_spec_io; else sc->fxp_spec = fxp_res_spec_mem; error = bus_alloc_resources(dev, sc->fxp_spec, sc->fxp_res); if (error) { if (sc->fxp_spec == fxp_res_spec_mem) sc->fxp_spec = fxp_res_spec_io; else sc->fxp_spec = fxp_res_spec_mem; error = bus_alloc_resources(dev, sc->fxp_spec, sc->fxp_res); } if (error) { device_printf(dev, "could not allocate resources\n"); error = ENXIO; goto fail; } if (bootverbose) { device_printf(dev, "using %s space register mapping\n", sc->fxp_spec == fxp_res_spec_mem ? "memory" : "I/O"); } /* * Put CU/RU idle state and prepare full reset. */ CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET); DELAY(10); /* Full reset and disable interrupts. */ CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET); DELAY(10); CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE); /* * Find out how large of an SEEPROM we have. */ fxp_autosize_eeprom(sc); fxp_load_eeprom(sc); /* * Find out the chip revision; lump all 82557 revs together. */ sc->ident = fxp_find_ident(dev); if (sc->ident->ich > 0) { /* Assume ICH controllers are 82559. */ sc->revision = FXP_REV_82559_A0; } else { data = sc->eeprom[FXP_EEPROM_MAP_CNTR]; if ((data >> 8) == 1) sc->revision = FXP_REV_82557; else sc->revision = pci_get_revid(dev); } /* * Check availability of WOL. 82559ER does not support WOL. */ if (sc->revision >= FXP_REV_82558_A4 && sc->revision != FXP_REV_82559S_A) { data = sc->eeprom[FXP_EEPROM_MAP_ID]; if ((data & 0x20) != 0 && pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0) sc->flags |= FXP_FLAG_WOLCAP; } if (sc->revision == FXP_REV_82550_C) { /* * 82550C with server extension requires microcode to * receive fragmented UDP datagrams. However if the * microcode is used for client-only featured 82550C * it locks up controller. */ data = sc->eeprom[FXP_EEPROM_MAP_COMPAT]; if ((data & 0x0400) == 0) sc->flags |= FXP_FLAG_NO_UCODE; } /* Receiver lock-up workaround detection. */ if (sc->revision < FXP_REV_82558_A4) { data = sc->eeprom[FXP_EEPROM_MAP_COMPAT]; if ((data & 0x03) != 0x03) { sc->flags |= FXP_FLAG_RXBUG; device_printf(dev, "Enabling Rx lock-up workaround\n"); } } /* * Determine whether we must use the 503 serial interface. */ data = sc->eeprom[FXP_EEPROM_MAP_PRI_PHY]; if (sc->revision == FXP_REV_82557 && (data & FXP_PHY_DEVICE_MASK) != 0 && (data & FXP_PHY_SERIAL_ONLY)) sc->flags |= FXP_FLAG_SERIAL_MEDIA; fxp_sysctl_node(sc); /* * Enable workarounds for certain chip revision deficiencies. * * Systems based on the ICH2/ICH2-M chip from Intel, and possibly * some systems based a normal 82559 design, have a defect where * the chip can cause a PCI protocol violation if it receives * a CU_RESUME command when it is entering the IDLE state. The * workaround is to disable Dynamic Standby Mode, so the chip never * deasserts CLKRUN#, and always remains in an active state. * * See Intel 82801BA/82801BAM Specification Update, Errata #30. */ if ((sc->ident->ich >= 2 && sc->ident->ich <= 3) || (sc->ident->ich == 0 && sc->revision >= FXP_REV_82559_A0)) { data = sc->eeprom[FXP_EEPROM_MAP_ID]; if (data & 0x02) { /* STB enable */ uint16_t cksum; int i; device_printf(dev, "Disabling dynamic standby mode in EEPROM\n"); data &= ~0x02; sc->eeprom[FXP_EEPROM_MAP_ID] = data; fxp_write_eeprom(sc, &data, FXP_EEPROM_MAP_ID, 1); device_printf(dev, "New EEPROM ID: 0x%x\n", data); cksum = 0; for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) cksum += sc->eeprom[i]; i = (1 << sc->eeprom_size) - 1; cksum = 0xBABA - cksum; fxp_write_eeprom(sc, &cksum, i, 1); device_printf(dev, "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n", i, sc->eeprom[i], cksum); sc->eeprom[i] = cksum; /* * If the user elects to continue, try the software * workaround, as it is better than nothing. */ sc->flags |= FXP_FLAG_CU_RESUME_BUG; } } /* * If we are not a 82557 chip, we can enable extended features. */ if (sc->revision != FXP_REV_82557) { /* * If MWI is enabled in the PCI configuration, and there * is a valid cacheline size (8 or 16 dwords), then tell * the board to turn on MWI. */ val = pci_read_config(dev, PCIR_COMMAND, 2); if (val & PCIM_CMD_MWRICEN && pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0) sc->flags |= FXP_FLAG_MWI_ENABLE; /* turn on the extended TxCB feature */ sc->flags |= FXP_FLAG_EXT_TXCB; /* enable reception of long frames for VLAN */ sc->flags |= FXP_FLAG_LONG_PKT_EN; } else { /* a hack to get long VLAN frames on a 82557 */ sc->flags |= FXP_FLAG_SAVE_BAD; } /* For 82559 or later chips, Rx checksum offload is supported. */ if (sc->revision >= FXP_REV_82559_A0) { /* 82559ER does not support Rx checksum offloading. */ if (sc->ident->device != 0x1209) sc->flags |= FXP_FLAG_82559_RXCSUM; } /* * Enable use of extended RFDs and TCBs for 82550 * and later chips. Note: we need extended TXCB support * too, but that's already enabled by the code above. * Be careful to do this only on the right devices. */ if (sc->revision == FXP_REV_82550 || sc->revision == FXP_REV_82550_C || sc->revision == FXP_REV_82551_E || sc->revision == FXP_REV_82551_F || sc->revision == FXP_REV_82551_10) { sc->rfa_size = sizeof (struct fxp_rfa); sc->tx_cmd = FXP_CB_COMMAND_IPCBXMIT; sc->flags |= FXP_FLAG_EXT_RFA; /* Use extended RFA instead of 82559 checksum mode. */ sc->flags &= ~FXP_FLAG_82559_RXCSUM; } else { sc->rfa_size = sizeof (struct fxp_rfa) - FXP_RFAX_LEN; sc->tx_cmd = FXP_CB_COMMAND_XMIT; } /* * Allocate DMA tags and DMA safe memory. */ sc->maxtxseg = FXP_NTXSEG; sc->maxsegsize = MCLBYTES; if (sc->flags & FXP_FLAG_EXT_RFA) { sc->maxtxseg--; sc->maxsegsize = FXP_TSO_SEGSIZE; } error = bus_dma_tag_create(bus_get_dma_tag(dev), 2, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, sc->maxsegsize * sc->maxtxseg + sizeof(struct ether_vlan_header), sc->maxtxseg, sc->maxsegsize, 0, NULL, NULL, &sc->fxp_txmtag); if (error) { device_printf(dev, "could not create TX DMA tag\n"); goto fail; } error = bus_dma_tag_create(bus_get_dma_tag(dev), 2, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1, MCLBYTES, 0, NULL, NULL, &sc->fxp_rxmtag); if (error) { device_printf(dev, "could not create RX DMA tag\n"); goto fail; } error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct fxp_stats), 1, sizeof(struct fxp_stats), 0, NULL, NULL, &sc->fxp_stag); if (error) { device_printf(dev, "could not create stats DMA tag\n"); goto fail; } error = bus_dmamem_alloc(sc->fxp_stag, (void **)&sc->fxp_stats, BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->fxp_smap); if (error) { device_printf(dev, "could not allocate stats DMA memory\n"); goto fail; } error = bus_dmamap_load(sc->fxp_stag, sc->fxp_smap, sc->fxp_stats, sizeof(struct fxp_stats), fxp_dma_map_addr, &sc->stats_addr, BUS_DMA_NOWAIT); if (error) { device_printf(dev, "could not load the stats DMA buffer\n"); goto fail; } error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, FXP_TXCB_SZ, 1, FXP_TXCB_SZ, 0, NULL, NULL, &sc->cbl_tag); if (error) { device_printf(dev, "could not create TxCB DMA tag\n"); goto fail; } error = bus_dmamem_alloc(sc->cbl_tag, (void **)&sc->fxp_desc.cbl_list, BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->cbl_map); if (error) { device_printf(dev, "could not allocate TxCB DMA memory\n"); goto fail; } error = bus_dmamap_load(sc->cbl_tag, sc->cbl_map, sc->fxp_desc.cbl_list, FXP_TXCB_SZ, fxp_dma_map_addr, &sc->fxp_desc.cbl_addr, BUS_DMA_NOWAIT); if (error) { device_printf(dev, "could not load TxCB DMA buffer\n"); goto fail; } error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, sizeof(struct fxp_cb_mcs), 1, sizeof(struct fxp_cb_mcs), 0, NULL, NULL, &sc->mcs_tag); if (error) { device_printf(dev, "could not create multicast setup DMA tag\n"); goto fail; } error = bus_dmamem_alloc(sc->mcs_tag, (void **)&sc->mcsp, BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->mcs_map); if (error) { device_printf(dev, "could not allocate multicast setup DMA memory\n"); goto fail; } error = bus_dmamap_load(sc->mcs_tag, sc->mcs_map, sc->mcsp, sizeof(struct fxp_cb_mcs), fxp_dma_map_addr, &sc->mcs_addr, BUS_DMA_NOWAIT); if (error) { device_printf(dev, "can't load the multicast setup DMA buffer\n"); goto fail; } /* * Pre-allocate the TX DMA maps and setup the pointers to * the TX command blocks. */ txp = sc->fxp_desc.tx_list; tcbp = sc->fxp_desc.cbl_list; for (i = 0; i < FXP_NTXCB; i++) { txp[i].tx_cb = tcbp + i; error = bus_dmamap_create(sc->fxp_txmtag, 0, &txp[i].tx_map); if (error) { device_printf(dev, "can't create DMA map for TX\n"); goto fail; } } error = bus_dmamap_create(sc->fxp_rxmtag, 0, &sc->spare_map); if (error) { device_printf(dev, "can't create spare DMA map\n"); goto fail; } /* * Pre-allocate our receive buffers. */ sc->fxp_desc.rx_head = sc->fxp_desc.rx_tail = NULL; for (i = 0; i < FXP_NRFABUFS; i++) { rxp = &sc->fxp_desc.rx_list[i]; error = bus_dmamap_create(sc->fxp_rxmtag, 0, &rxp->rx_map); if (error) { device_printf(dev, "can't create DMA map for RX\n"); goto fail; } if (fxp_new_rfabuf(sc, rxp) != 0) { error = ENOMEM; goto fail; } fxp_add_rfabuf(sc, rxp); } /* * Read MAC address. */ eaddr[0] = sc->eeprom[FXP_EEPROM_MAP_IA0] & 0xff; eaddr[1] = sc->eeprom[FXP_EEPROM_MAP_IA0] >> 8; eaddr[2] = sc->eeprom[FXP_EEPROM_MAP_IA1] & 0xff; eaddr[3] = sc->eeprom[FXP_EEPROM_MAP_IA1] >> 8; eaddr[4] = sc->eeprom[FXP_EEPROM_MAP_IA2] & 0xff; eaddr[5] = sc->eeprom[FXP_EEPROM_MAP_IA2] >> 8; if (bootverbose) { device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n", pci_get_vendor(dev), pci_get_device(dev), pci_get_subvendor(dev), pci_get_subdevice(dev), pci_get_revid(dev)); device_printf(dev, "Dynamic Standby mode is %s\n", sc->eeprom[FXP_EEPROM_MAP_ID] & 0x02 ? "enabled" : "disabled"); } /* * If this is only a 10Mbps device, then there is no MII, and * the PHY will use a serial interface instead. * * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter * doesn't have a programming interface of any sort. The * media is sensed automatically based on how the link partner * is configured. This is, in essence, manual configuration. */ if (sc->flags & FXP_FLAG_SERIAL_MEDIA) { ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL); ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL); } else { /* * i82557 wedge when isolating all of their PHYs. */ flags = MIIF_NOISOLATE; if (sc->revision >= FXP_REV_82558_A4) flags |= MIIF_DOPAUSE; error = mii_attach(dev, &sc->miibus, ifp, (ifm_change_cb_t)fxp_ifmedia_upd, (ifm_stat_cb_t)fxp_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, flags); if (error != 0) { device_printf(dev, "attaching PHYs failed\n"); goto fail; } } if_initname(ifp, device_get_name(dev), device_get_unit(dev)); if_setdev(ifp, dev); if_setinitfn(ifp, fxp_init); if_setsoftc(ifp, sc); if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST); if_setioctlfn(ifp, fxp_ioctl); if_setstartfn(ifp, fxp_start); if_setcapabilities(ifp, 0); if_setcapenable(ifp, 0); /* Enable checksum offload/TSO for 82550 or better chips */ if (sc->flags & FXP_FLAG_EXT_RFA) { if_sethwassist(ifp, FXP_CSUM_FEATURES | CSUM_TSO); if_setcapabilitiesbit(ifp, IFCAP_HWCSUM | IFCAP_TSO4, 0); if_setcapenablebit(ifp, IFCAP_HWCSUM | IFCAP_TSO4, 0); } if (sc->flags & FXP_FLAG_82559_RXCSUM) { if_setcapabilitiesbit(ifp, IFCAP_RXCSUM, 0); if_setcapenablebit(ifp, IFCAP_RXCSUM, 0); } if (sc->flags & FXP_FLAG_WOLCAP) { if_setcapabilitiesbit(ifp, IFCAP_WOL_MAGIC, 0); if_setcapenablebit(ifp, IFCAP_WOL_MAGIC, 0); } #ifdef DEVICE_POLLING /* Inform the world we support polling. */ if_setcapabilitiesbit(ifp, IFCAP_POLLING, 0); #endif /* * Attach the interface. */ ether_ifattach(ifp, eaddr); /* * Tell the upper layer(s) we support long frames. * Must appear after the call to ether_ifattach() because * ether_ifattach() sets ifi_hdrlen to the default value. */ if_setifheaderlen(ifp, sizeof(struct ether_vlan_header)); if_setcapabilitiesbit(ifp, IFCAP_VLAN_MTU, 0); if_setcapenablebit(ifp, IFCAP_VLAN_MTU, 0); if ((sc->flags & FXP_FLAG_EXT_RFA) != 0) { if_setcapabilitiesbit(ifp, IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO, 0); if_setcapenablebit(ifp, IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO, 0); } /* * Let the system queue as many packets as we have available * TX descriptors. */ if_setsendqlen(ifp, FXP_NTXCB - 1); if_setsendqready(ifp); /* * Hook our interrupt after all initialization is complete. */ error = bus_setup_intr(dev, sc->fxp_res[1], INTR_TYPE_NET | INTR_MPSAFE, NULL, fxp_intr, sc, &sc->ih); if (error) { device_printf(dev, "could not setup irq\n"); ether_ifdetach(sc->ifp); goto fail; } /* * Configure hardware to reject magic frames otherwise * system will hang on recipt of magic frames. */ if ((sc->flags & FXP_FLAG_WOLCAP) != 0) { FXP_LOCK(sc); /* Clear wakeup events. */ CSR_WRITE_1(sc, FXP_CSR_PMDR, CSR_READ_1(sc, FXP_CSR_PMDR)); fxp_init_body(sc, 0); fxp_stop(sc); FXP_UNLOCK(sc); } fail: if (error) fxp_release(sc); return (error); } /* * Release all resources. The softc lock should not be held and the * interrupt should already be torn down. */ static void fxp_release(struct fxp_softc *sc) { struct fxp_rx *rxp; struct fxp_tx *txp; int i; FXP_LOCK_ASSERT(sc, MA_NOTOWNED); KASSERT(sc->ih == NULL, ("fxp_release() called with intr handle still active")); if (sc->miibus) device_delete_child(sc->dev, sc->miibus); bus_generic_detach(sc->dev); ifmedia_removeall(&sc->sc_media); if (sc->fxp_desc.cbl_list) { bus_dmamap_unload(sc->cbl_tag, sc->cbl_map); bus_dmamem_free(sc->cbl_tag, sc->fxp_desc.cbl_list, sc->cbl_map); } if (sc->fxp_stats) { bus_dmamap_unload(sc->fxp_stag, sc->fxp_smap); bus_dmamem_free(sc->fxp_stag, sc->fxp_stats, sc->fxp_smap); } if (sc->mcsp) { bus_dmamap_unload(sc->mcs_tag, sc->mcs_map); bus_dmamem_free(sc->mcs_tag, sc->mcsp, sc->mcs_map); } bus_release_resources(sc->dev, sc->fxp_spec, sc->fxp_res); if (sc->fxp_rxmtag) { for (i = 0; i < FXP_NRFABUFS; i++) { rxp = &sc->fxp_desc.rx_list[i]; if (rxp->rx_mbuf != NULL) { bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->fxp_rxmtag, rxp->rx_map); m_freem(rxp->rx_mbuf); } bus_dmamap_destroy(sc->fxp_rxmtag, rxp->rx_map); } bus_dmamap_destroy(sc->fxp_rxmtag, sc->spare_map); bus_dma_tag_destroy(sc->fxp_rxmtag); } if (sc->fxp_txmtag) { for (i = 0; i < FXP_NTXCB; i++) { txp = &sc->fxp_desc.tx_list[i]; if (txp->tx_mbuf != NULL) { bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->fxp_txmtag, txp->tx_map); m_freem(txp->tx_mbuf); } bus_dmamap_destroy(sc->fxp_txmtag, txp->tx_map); } bus_dma_tag_destroy(sc->fxp_txmtag); } if (sc->fxp_stag) bus_dma_tag_destroy(sc->fxp_stag); if (sc->cbl_tag) bus_dma_tag_destroy(sc->cbl_tag); if (sc->mcs_tag) bus_dma_tag_destroy(sc->mcs_tag); if (sc->ifp) if_free(sc->ifp); mtx_destroy(&sc->sc_mtx); } /* * Detach interface. */ static int fxp_detach(device_t dev) { struct fxp_softc *sc = device_get_softc(dev); #ifdef DEVICE_POLLING if (if_getcapenable(sc->ifp) & IFCAP_POLLING) ether_poll_deregister(sc->ifp); #endif FXP_LOCK(sc); /* * Stop DMA and drop transmit queue, but disable interrupts first. */ CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE); fxp_stop(sc); FXP_UNLOCK(sc); callout_drain(&sc->stat_ch); /* * Close down routes etc. */ ether_ifdetach(sc->ifp); /* * Unhook interrupt before dropping lock. This is to prevent * races with fxp_intr(). */ bus_teardown_intr(sc->dev, sc->fxp_res[1], sc->ih); sc->ih = NULL; /* Release our allocated resources. */ fxp_release(sc); return (0); } /* * Device shutdown routine. Called at system shutdown after sync. The * main purpose of this routine is to shut off receiver DMA so that * kernel memory doesn't get clobbered during warmboot. */ static int fxp_shutdown(device_t dev) { /* * Make sure that DMA is disabled prior to reboot. Not doing * do could allow DMA to corrupt kernel memory during the * reboot before the driver initializes. */ return (fxp_suspend(dev)); } /* * Device suspend routine. Stop the interface and save some PCI * settings in case the BIOS doesn't restore them properly on * resume. */ static int fxp_suspend(device_t dev) { struct fxp_softc *sc = device_get_softc(dev); if_t ifp; int pmc; uint16_t pmstat; FXP_LOCK(sc); ifp = sc->ifp; if (pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0) { pmstat = pci_read_config(sc->dev, pmc + PCIR_POWER_STATUS, 2); pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE); if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) != 0) { /* Request PME. */ pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE; sc->flags |= FXP_FLAG_WOL; /* Reconfigure hardware to accept magic frames. */ if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); fxp_init_body(sc, 0); } pci_write_config(sc->dev, pmc + PCIR_POWER_STATUS, pmstat, 2); } fxp_stop(sc); sc->suspended = 1; FXP_UNLOCK(sc); return (0); } /* * Device resume routine. re-enable busmastering, and restart the interface if * appropriate. */ static int fxp_resume(device_t dev) { struct fxp_softc *sc = device_get_softc(dev); if_t ifp = sc->ifp; int pmc; uint16_t pmstat; FXP_LOCK(sc); if (pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0) { sc->flags &= ~FXP_FLAG_WOL; pmstat = pci_read_config(sc->dev, pmc + PCIR_POWER_STATUS, 2); /* Disable PME and clear PME status. */ pmstat &= ~PCIM_PSTAT_PMEENABLE; pci_write_config(sc->dev, pmc + PCIR_POWER_STATUS, pmstat, 2); if ((sc->flags & FXP_FLAG_WOLCAP) != 0) CSR_WRITE_1(sc, FXP_CSR_PMDR, CSR_READ_1(sc, FXP_CSR_PMDR)); } CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET); DELAY(10); /* reinitialize interface if necessary */ if (if_getflags(ifp) & IFF_UP) fxp_init_body(sc, 1); sc->suspended = 0; FXP_UNLOCK(sc); return (0); } static void fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length) { uint16_t reg; int x; /* * Shift in data. */ for (x = 1 << (length - 1); x; x >>= 1) { if (data & x) reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI; else reg = FXP_EEPROM_EECS; CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); DELAY(1); CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK); DELAY(1); CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); DELAY(1); } } /* * Read from the serial EEPROM. Basically, you manually shift in * the read opcode (one bit at a time) and then shift in the address, * and then you shift out the data (all of this one bit at a time). * The word size is 16 bits, so you have to provide the address for * every 16 bits of data. */ static uint16_t fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize) { uint16_t reg, data; int x; CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); /* * Shift in read opcode. */ fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3); /* * Shift in address. */ data = 0; for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) { if (offset & x) reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI; else reg = FXP_EEPROM_EECS; CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); DELAY(1); CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK); DELAY(1); CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); DELAY(1); reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO; data++; if (autosize && reg == 0) { sc->eeprom_size = data; break; } } /* * Shift out data. */ data = 0; reg = FXP_EEPROM_EECS; for (x = 1 << 15; x; x >>= 1) { CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK); DELAY(1); if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO) data |= x; CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg); DELAY(1); } CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); DELAY(1); return (data); } static void fxp_eeprom_putword(struct fxp_softc *sc, int offset, uint16_t data) { int i; /* * Erase/write enable. */ CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); fxp_eeprom_shiftin(sc, 0x4, 3); fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size); CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); DELAY(1); /* * Shift in write opcode, address, data. */ CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3); fxp_eeprom_shiftin(sc, offset, sc->eeprom_size); fxp_eeprom_shiftin(sc, data, 16); CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); DELAY(1); /* * Wait for EEPROM to finish up. */ CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); DELAY(1); for (i = 0; i < 1000; i++) { if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO) break; DELAY(50); } CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); DELAY(1); /* * Erase/write disable. */ CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS); fxp_eeprom_shiftin(sc, 0x4, 3); fxp_eeprom_shiftin(sc, 0, sc->eeprom_size); CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0); DELAY(1); } /* * From NetBSD: * * Figure out EEPROM size. * * 559's can have either 64-word or 256-word EEPROMs, the 558 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet * talks about the existence of 16 to 256 word EEPROMs. * * The only known sizes are 64 and 256, where the 256 version is used * by CardBus cards to store CIS information. * * The address is shifted in msb-to-lsb, and after the last * address-bit the EEPROM is supposed to output a `dummy zero' bit, * after which follows the actual data. We try to detect this zero, by * probing the data-out bit in the EEPROM control register just after * having shifted in a bit. If the bit is zero, we assume we've * shifted enough address bits. The data-out should be tri-state, * before this, which should translate to a logical one. */ static void fxp_autosize_eeprom(struct fxp_softc *sc) { /* guess maximum size of 256 words */ sc->eeprom_size = 8; /* autosize */ (void) fxp_eeprom_getword(sc, 0, 1); } static void fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words) { int i; for (i = 0; i < words; i++) data[i] = fxp_eeprom_getword(sc, offset + i, 0); } static void fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words) { int i; for (i = 0; i < words; i++) fxp_eeprom_putword(sc, offset + i, data[i]); } static void fxp_load_eeprom(struct fxp_softc *sc) { int i; uint16_t cksum; fxp_read_eeprom(sc, sc->eeprom, 0, 1 << sc->eeprom_size); cksum = 0; for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) cksum += sc->eeprom[i]; cksum = 0xBABA - cksum; if (cksum != sc->eeprom[(1 << sc->eeprom_size) - 1]) device_printf(sc->dev, "EEPROM checksum mismatch! (0x%04x -> 0x%04x)\n", cksum, sc->eeprom[(1 << sc->eeprom_size) - 1]); } /* * Grab the softc lock and call the real fxp_start_body() routine */ static void fxp_start(if_t ifp) { struct fxp_softc *sc = if_getsoftc(ifp); FXP_LOCK(sc); fxp_start_body(ifp); FXP_UNLOCK(sc); } /* * Start packet transmission on the interface. * This routine must be called with the softc lock held, and is an * internal entry point only. */ static void fxp_start_body(if_t ifp) { struct fxp_softc *sc = if_getsoftc(ifp); struct mbuf *mb_head; int txqueued; FXP_LOCK_ASSERT(sc, MA_OWNED); if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != IFF_DRV_RUNNING) return; if (sc->tx_queued > FXP_NTXCB_HIWAT) fxp_txeof(sc); /* * We're finished if there is nothing more to add to the list or if * we're all filled up with buffers to transmit. * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add * a NOP command when needed. */ txqueued = 0; while (!if_sendq_empty(ifp) && sc->tx_queued < FXP_NTXCB - 1) { /* * Grab a packet to transmit. */ mb_head = if_dequeue(ifp); if (mb_head == NULL) break; if (fxp_encap(sc, &mb_head)) { if (mb_head == NULL) break; if_sendq_prepend(ifp, mb_head); if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); } txqueued++; /* * Pass packet to bpf if there is a listener. */ if_bpfmtap(ifp, mb_head); } /* * We're finished. If we added to the list, issue a RESUME to get DMA * going again if suspended. */ if (txqueued > 0) { bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); fxp_scb_wait(sc); fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME); /* * Set a 5 second timer just in case we don't hear * from the card again. */ sc->watchdog_timer = 5; } } static int fxp_encap(struct fxp_softc *sc, struct mbuf **m_head) { struct mbuf *m; struct fxp_tx *txp; struct fxp_cb_tx *cbp; struct tcphdr *tcp; bus_dma_segment_t segs[FXP_NTXSEG]; int error, i, nseg, tcp_payload; FXP_LOCK_ASSERT(sc, MA_OWNED); tcp_payload = 0; tcp = NULL; /* * Get pointer to next available tx desc. */ txp = sc->fxp_desc.tx_last->tx_next; /* * A note in Appendix B of the Intel 8255x 10/100 Mbps * Ethernet Controller Family Open Source Software * Developer Manual says: * Using software parsing is only allowed with legal * TCP/IP or UDP/IP packets. * ... * For all other datagrams, hardware parsing must * be used. * Software parsing appears to truncate ICMP and * fragmented UDP packets that contain one to three * bytes in the second (and final) mbuf of the packet. */ if (sc->flags & FXP_FLAG_EXT_RFA) txp->tx_cb->ipcb_ip_activation_high = FXP_IPCB_HARDWAREPARSING_ENABLE; m = *m_head; if (m->m_pkthdr.csum_flags & CSUM_TSO) { /* * 82550/82551 requires ethernet/IP/TCP headers must be * contained in the first active transmit buffer. */ struct ether_header *eh; struct ip *ip; uint32_t ip_off, poff; if (M_WRITABLE(*m_head) == 0) { /* Get a writable copy. */ m = m_dup(*m_head, M_NOWAIT); m_freem(*m_head); if (m == NULL) { *m_head = NULL; return (ENOBUFS); } *m_head = m; } ip_off = sizeof(struct ether_header); m = m_pullup(*m_head, ip_off); if (m == NULL) { *m_head = NULL; return (ENOBUFS); } eh = mtod(m, struct ether_header *); /* Check the existence of VLAN tag. */ if (eh->ether_type == htons(ETHERTYPE_VLAN)) { ip_off = sizeof(struct ether_vlan_header); m = m_pullup(m, ip_off); if (m == NULL) { *m_head = NULL; return (ENOBUFS); } } m = m_pullup(m, ip_off + sizeof(struct ip)); if (m == NULL) { *m_head = NULL; return (ENOBUFS); } ip = (struct ip *)(mtod(m, char *) + ip_off); poff = ip_off + (ip->ip_hl << 2); m = m_pullup(m, poff + sizeof(struct tcphdr)); if (m == NULL) { *m_head = NULL; return (ENOBUFS); } tcp = (struct tcphdr *)(mtod(m, char *) + poff); m = m_pullup(m, poff + (tcp->th_off << 2)); if (m == NULL) { *m_head = NULL; return (ENOBUFS); } /* * Since 82550/82551 doesn't modify IP length and pseudo * checksum in the first frame driver should compute it. */ ip = (struct ip *)(mtod(m, char *) + ip_off); tcp = (struct tcphdr *)(mtod(m, char *) + poff); ip->ip_sum = 0; ip->ip_len = htons(m->m_pkthdr.tso_segsz + (ip->ip_hl << 2) + (tcp->th_off << 2)); tcp->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr, htons(IPPROTO_TCP + (tcp->th_off << 2) + m->m_pkthdr.tso_segsz)); /* Compute total TCP payload. */ tcp_payload = m->m_pkthdr.len - ip_off - (ip->ip_hl << 2); tcp_payload -= tcp->th_off << 2; *m_head = m; } else if (m->m_pkthdr.csum_flags & FXP_CSUM_FEATURES) { /* * Deal with TCP/IP checksum offload. Note that * in order for TCP checksum offload to work, * the pseudo header checksum must have already * been computed and stored in the checksum field * in the TCP header. The stack should have * already done this for us. */ txp->tx_cb->ipcb_ip_schedule = FXP_IPCB_TCPUDP_CHECKSUM_ENABLE; if (m->m_pkthdr.csum_flags & CSUM_TCP) txp->tx_cb->ipcb_ip_schedule |= FXP_IPCB_TCP_PACKET; #ifdef FXP_IP_CSUM_WAR /* * XXX The 82550 chip appears to have trouble * dealing with IP header checksums in very small * datagrams, namely fragments from 1 to 3 bytes * in size. For example, say you want to transmit * a UDP packet of 1473 bytes. The packet will be * fragmented over two IP datagrams, the latter * containing only one byte of data. The 82550 will * botch the header checksum on the 1-byte fragment. * As long as the datagram contains 4 or more bytes * of data, you're ok. * * The following code attempts to work around this * problem: if the datagram is less than 38 bytes * in size (14 bytes ether header, 20 bytes IP header, * plus 4 bytes of data), we punt and compute the IP * header checksum by hand. This workaround doesn't * work very well, however, since it can be fooled * by things like VLAN tags and IP options that make * the header sizes/offsets vary. */ if (m->m_pkthdr.csum_flags & CSUM_IP) { if (m->m_pkthdr.len < 38) { struct ip *ip; m->m_data += ETHER_HDR_LEN; ip = mtod(m, struct ip *); ip->ip_sum = in_cksum(m, ip->ip_hl << 2); m->m_data -= ETHER_HDR_LEN; m->m_pkthdr.csum_flags &= ~CSUM_IP; } else { txp->tx_cb->ipcb_ip_activation_high = FXP_IPCB_HARDWAREPARSING_ENABLE; txp->tx_cb->ipcb_ip_schedule |= FXP_IPCB_IP_CHECKSUM_ENABLE; } } #endif } error = bus_dmamap_load_mbuf_sg(sc->fxp_txmtag, txp->tx_map, *m_head, segs, &nseg, 0); if (error == EFBIG) { m = m_collapse(*m_head, M_NOWAIT, sc->maxtxseg); if (m == NULL) { m_freem(*m_head); *m_head = NULL; return (ENOMEM); } *m_head = m; error = bus_dmamap_load_mbuf_sg(sc->fxp_txmtag, txp->tx_map, *m_head, segs, &nseg, 0); if (error != 0) { m_freem(*m_head); *m_head = NULL; return (ENOMEM); } } else if (error != 0) return (error); if (nseg == 0) { m_freem(*m_head); *m_head = NULL; return (EIO); } KASSERT(nseg <= sc->maxtxseg, ("too many DMA segments")); bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map, BUS_DMASYNC_PREWRITE); cbp = txp->tx_cb; for (i = 0; i < nseg; i++) { /* * If this is an 82550/82551, then we're using extended * TxCBs _and_ we're using checksum offload. This means * that the TxCB is really an IPCB. One major difference * between the two is that with plain extended TxCBs, * the bottom half of the TxCB contains two entries from * the TBD array, whereas IPCBs contain just one entry: * one entry (8 bytes) has been sacrificed for the TCP/IP * checksum offload control bits. So to make things work * right, we have to start filling in the TBD array * starting from a different place depending on whether * the chip is an 82550/82551 or not. */ if (sc->flags & FXP_FLAG_EXT_RFA) { cbp->tbd[i + 1].tb_addr = htole32(segs[i].ds_addr); cbp->tbd[i + 1].tb_size = htole32(segs[i].ds_len); } else { cbp->tbd[i].tb_addr = htole32(segs[i].ds_addr); cbp->tbd[i].tb_size = htole32(segs[i].ds_len); } } if (sc->flags & FXP_FLAG_EXT_RFA) { /* Configure dynamic TBD for 82550/82551. */ cbp->tbd_number = 0xFF; cbp->tbd[nseg].tb_size |= htole32(0x8000); } else cbp->tbd_number = nseg; /* Configure TSO. */ if (m->m_pkthdr.csum_flags & CSUM_TSO) { cbp->tbdtso.tb_size = htole32(m->m_pkthdr.tso_segsz << 16); cbp->tbd[1].tb_size |= htole32(tcp_payload << 16); cbp->ipcb_ip_schedule |= FXP_IPCB_LARGESEND_ENABLE | FXP_IPCB_IP_CHECKSUM_ENABLE | FXP_IPCB_TCP_PACKET | FXP_IPCB_TCPUDP_CHECKSUM_ENABLE; } /* Configure VLAN hardware tag insertion. */ if ((m->m_flags & M_VLANTAG) != 0) { cbp->ipcb_vlan_id = htons(m->m_pkthdr.ether_vtag); txp->tx_cb->ipcb_ip_activation_high |= FXP_IPCB_INSERTVLAN_ENABLE; } txp->tx_mbuf = m; txp->tx_cb->cb_status = 0; txp->tx_cb->byte_count = 0; if (sc->tx_queued != FXP_CXINT_THRESH - 1) txp->tx_cb->cb_command = htole16(sc->tx_cmd | FXP_CB_COMMAND_SF | FXP_CB_COMMAND_S); else txp->tx_cb->cb_command = htole16(sc->tx_cmd | FXP_CB_COMMAND_SF | FXP_CB_COMMAND_S | FXP_CB_COMMAND_I); if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0) txp->tx_cb->tx_threshold = tx_threshold; /* * Advance the end of list forward. */ sc->fxp_desc.tx_last->tx_cb->cb_command &= htole16(~FXP_CB_COMMAND_S); sc->fxp_desc.tx_last = txp; /* * Advance the beginning of the list forward if there are * no other packets queued (when nothing is queued, tx_first * sits on the last TxCB that was sent out). */ if (sc->tx_queued == 0) sc->fxp_desc.tx_first = txp; sc->tx_queued++; return (0); } #ifdef DEVICE_POLLING static poll_handler_t fxp_poll; static int fxp_poll(if_t ifp, enum poll_cmd cmd, int count) { struct fxp_softc *sc = if_getsoftc(ifp); uint8_t statack; int rx_npkts = 0; FXP_LOCK(sc); if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) { FXP_UNLOCK(sc); return (rx_npkts); } statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA | FXP_SCB_STATACK_FR; if (cmd == POLL_AND_CHECK_STATUS) { uint8_t tmp; tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK); if (tmp == 0xff || tmp == 0) { FXP_UNLOCK(sc); return (rx_npkts); /* nothing to do */ } tmp &= ~statack; /* ack what we can */ if (tmp != 0) CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp); statack |= tmp; } rx_npkts = fxp_intr_body(sc, ifp, statack, count); FXP_UNLOCK(sc); return (rx_npkts); } #endif /* DEVICE_POLLING */ /* * Process interface interrupts. */ static void fxp_intr(void *xsc) { struct fxp_softc *sc = xsc; if_t ifp = sc->ifp; uint8_t statack; FXP_LOCK(sc); if (sc->suspended) { FXP_UNLOCK(sc); return; } #ifdef DEVICE_POLLING if (if_getcapenable(ifp) & IFCAP_POLLING) { FXP_UNLOCK(sc); return; } #endif while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) { /* * It should not be possible to have all bits set; the * FXP_SCB_INTR_SWI bit always returns 0 on a read. If * all bits are set, this may indicate that the card has * been physically ejected, so ignore it. */ if (statack == 0xff) { FXP_UNLOCK(sc); return; } /* * First ACK all the interrupts in this pass. */ CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack); if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) fxp_intr_body(sc, ifp, statack, -1); } FXP_UNLOCK(sc); } static void fxp_txeof(struct fxp_softc *sc) { if_t ifp; struct fxp_tx *txp; ifp = sc->ifp; bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); for (txp = sc->fxp_desc.tx_first; sc->tx_queued && (le16toh(txp->tx_cb->cb_status) & FXP_CB_STATUS_C) != 0; txp = txp->tx_next) { if (txp->tx_mbuf != NULL) { bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->fxp_txmtag, txp->tx_map); m_freem(txp->tx_mbuf); txp->tx_mbuf = NULL; /* clear this to reset csum offload bits */ txp->tx_cb->tbd[0].tb_addr = 0; } sc->tx_queued--; if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE); } sc->fxp_desc.tx_first = txp; bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); if (sc->tx_queued == 0) sc->watchdog_timer = 0; } static void fxp_rxcsum(struct fxp_softc *sc, if_t ifp, struct mbuf *m, uint16_t status, int pos) { struct ether_header *eh; struct ip *ip; struct udphdr *uh; int32_t hlen, len, pktlen, temp32; uint16_t csum, *opts; if ((sc->flags & FXP_FLAG_82559_RXCSUM) == 0) { if ((status & FXP_RFA_STATUS_PARSE) != 0) { if (status & FXP_RFDX_CS_IP_CSUM_BIT_VALID) m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; if (status & FXP_RFDX_CS_IP_CSUM_VALID) m->m_pkthdr.csum_flags |= CSUM_IP_VALID; if ((status & FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) && (status & FXP_RFDX_CS_TCPUDP_CSUM_VALID)) { m->m_pkthdr.csum_flags |= CSUM_DATA_VALID | CSUM_PSEUDO_HDR; m->m_pkthdr.csum_data = 0xffff; } } return; } pktlen = m->m_pkthdr.len; if (pktlen < sizeof(struct ether_header) + sizeof(struct ip)) return; eh = mtod(m, struct ether_header *); if (eh->ether_type != htons(ETHERTYPE_IP)) return; ip = (struct ip *)(eh + 1); if (ip->ip_v != IPVERSION) return; hlen = ip->ip_hl << 2; pktlen -= sizeof(struct ether_header); if (hlen < sizeof(struct ip)) return; if (ntohs(ip->ip_len) < hlen) return; if (ntohs(ip->ip_len) != pktlen) return; if (ip->ip_off & htons(IP_MF | IP_OFFMASK)) return; /* can't handle fragmented packet */ switch (ip->ip_p) { case IPPROTO_TCP: if (pktlen < (hlen + sizeof(struct tcphdr))) return; break; case IPPROTO_UDP: if (pktlen < (hlen + sizeof(struct udphdr))) return; uh = (struct udphdr *)((caddr_t)ip + hlen); if (uh->uh_sum == 0) return; /* no checksum */ break; default: return; } /* Extract computed checksum. */ csum = be16dec(mtod(m, char *) + pos); /* checksum fixup for IP options */ len = hlen - sizeof(struct ip); if (len > 0) { opts = (uint16_t *)(ip + 1); for (; len > 0; len -= sizeof(uint16_t), opts++) { temp32 = csum - *opts; temp32 = (temp32 >> 16) + (temp32 & 65535); csum = temp32 & 65535; } } m->m_pkthdr.csum_flags |= CSUM_DATA_VALID; m->m_pkthdr.csum_data = csum; } static int fxp_intr_body(struct fxp_softc *sc, if_t ifp, uint8_t statack, int count) { struct mbuf *m; struct fxp_rx *rxp; struct fxp_rfa *rfa; int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0; int rx_npkts; uint16_t status; rx_npkts = 0; FXP_LOCK_ASSERT(sc, MA_OWNED); if (rnr) sc->rnr++; #ifdef DEVICE_POLLING /* Pick up a deferred RNR condition if `count' ran out last time. */ if (sc->flags & FXP_FLAG_DEFERRED_RNR) { sc->flags &= ~FXP_FLAG_DEFERRED_RNR; rnr = 1; } #endif /* * Free any finished transmit mbuf chains. * * Handle the CNA event likt a CXTNO event. It used to * be that this event (control unit not ready) was not * encountered, but it is now with the SMPng modifications. * The exact sequence of events that occur when the interface * is brought up are different now, and if this event * goes unhandled, the configuration/rxfilter setup sequence * can stall for several seconds. The result is that no * packets go out onto the wire for about 5 to 10 seconds * after the interface is ifconfig'ed for the first time. */ if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) fxp_txeof(sc); /* * Try to start more packets transmitting. */ if (!if_sendq_empty(ifp)) fxp_start_body(ifp); /* * Just return if nothing happened on the receive side. */ if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0) return (rx_npkts); /* * Process receiver interrupts. If a no-resource (RNR) * condition exists, get whatever packets we can and * re-start the receiver. * * When using polling, we do not process the list to completion, * so when we get an RNR interrupt we must defer the restart * until we hit the last buffer with the C bit set. * If we run out of cycles and rfa_headm has the C bit set, * record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so * that the info will be used in the subsequent polling cycle. */ for (;;) { rxp = sc->fxp_desc.rx_head; m = rxp->rx_mbuf; rfa = (struct fxp_rfa *)(m->m_ext.ext_buf + RFA_ALIGNMENT_FUDGE); bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); #ifdef DEVICE_POLLING /* loop at most count times if count >=0 */ if (count >= 0 && count-- == 0) { if (rnr) { /* Defer RNR processing until the next time. */ sc->flags |= FXP_FLAG_DEFERRED_RNR; rnr = 0; } break; } #endif /* DEVICE_POLLING */ status = le16toh(rfa->rfa_status); if ((status & FXP_RFA_STATUS_C) == 0) break; if ((status & FXP_RFA_STATUS_RNR) != 0) rnr++; /* * Advance head forward. */ sc->fxp_desc.rx_head = rxp->rx_next; /* * Add a new buffer to the receive chain. * If this fails, the old buffer is recycled * instead. */ if (fxp_new_rfabuf(sc, rxp) == 0) { int total_len; /* * Fetch packet length (the top 2 bits of * actual_size are flags set by the controller * upon completion), and drop the packet in case * of bogus length or CRC errors. */ total_len = le16toh(rfa->actual_size) & 0x3fff; if ((sc->flags & FXP_FLAG_82559_RXCSUM) != 0 && (if_getcapenable(ifp) & IFCAP_RXCSUM) != 0) { /* Adjust for appended checksum bytes. */ total_len -= 2; } if (total_len < (int)sizeof(struct ether_header) || total_len > (MCLBYTES - RFA_ALIGNMENT_FUDGE - sc->rfa_size) || status & (FXP_RFA_STATUS_CRC | FXP_RFA_STATUS_ALIGN | FXP_RFA_STATUS_OVERRUN)) { m_freem(m); fxp_add_rfabuf(sc, rxp); continue; } m->m_pkthdr.len = m->m_len = total_len; if_setrcvif(m, ifp); /* Do IP checksum checking. */ if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0) fxp_rxcsum(sc, ifp, m, status, total_len); if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0 && (status & FXP_RFA_STATUS_VLAN) != 0) { m->m_pkthdr.ether_vtag = ntohs(rfa->rfax_vlan_id); m->m_flags |= M_VLANTAG; } /* * Drop locks before calling if_input() since it * may re-enter fxp_start() in the netisr case. * This would result in a lock reversal. Better * performance might be obtained by chaining all * packets received, dropping the lock, and then * calling if_input() on each one. */ FXP_UNLOCK(sc); if_input(ifp, m); FXP_LOCK(sc); rx_npkts++; if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) return (rx_npkts); } else { /* Reuse RFA and loaded DMA map. */ if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1); fxp_discard_rfabuf(sc, rxp); } fxp_add_rfabuf(sc, rxp); } if (rnr) { fxp_scb_wait(sc); CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.rx_head->rx_addr); fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START); } return (rx_npkts); } static void fxp_update_stats(struct fxp_softc *sc) { if_t ifp = sc->ifp; struct fxp_stats *sp = sc->fxp_stats; struct fxp_hwstats *hsp; uint32_t *status; FXP_LOCK_ASSERT(sc, MA_OWNED); bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); /* Update statistical counters. */ if (sc->revision >= FXP_REV_82559_A0) status = &sp->completion_status; else if (sc->revision >= FXP_REV_82558_A4) status = (uint32_t *)&sp->tx_tco; else status = &sp->tx_pause; if (*status == htole32(FXP_STATS_DR_COMPLETE)) { hsp = &sc->fxp_hwstats; hsp->tx_good += le32toh(sp->tx_good); hsp->tx_maxcols += le32toh(sp->tx_maxcols); hsp->tx_latecols += le32toh(sp->tx_latecols); hsp->tx_underruns += le32toh(sp->tx_underruns); hsp->tx_lostcrs += le32toh(sp->tx_lostcrs); hsp->tx_deffered += le32toh(sp->tx_deffered); hsp->tx_single_collisions += le32toh(sp->tx_single_collisions); hsp->tx_multiple_collisions += le32toh(sp->tx_multiple_collisions); hsp->tx_total_collisions += le32toh(sp->tx_total_collisions); hsp->rx_good += le32toh(sp->rx_good); hsp->rx_crc_errors += le32toh(sp->rx_crc_errors); hsp->rx_alignment_errors += le32toh(sp->rx_alignment_errors); hsp->rx_rnr_errors += le32toh(sp->rx_rnr_errors); hsp->rx_overrun_errors += le32toh(sp->rx_overrun_errors); hsp->rx_cdt_errors += le32toh(sp->rx_cdt_errors); hsp->rx_shortframes += le32toh(sp->rx_shortframes); hsp->tx_pause += le32toh(sp->tx_pause); hsp->rx_pause += le32toh(sp->rx_pause); hsp->rx_controls += le32toh(sp->rx_controls); hsp->tx_tco += le16toh(sp->tx_tco); hsp->rx_tco += le16toh(sp->rx_tco); if_inc_counter(ifp, IFCOUNTER_OPACKETS, le32toh(sp->tx_good)); if_inc_counter(ifp, IFCOUNTER_COLLISIONS, le32toh(sp->tx_total_collisions)); if (sp->rx_good) { if_inc_counter(ifp, IFCOUNTER_IPACKETS, le32toh(sp->rx_good)); sc->rx_idle_secs = 0; } else if (sc->flags & FXP_FLAG_RXBUG) { /* * Receiver's been idle for another second. */ sc->rx_idle_secs++; } if_inc_counter(ifp, IFCOUNTER_IERRORS, le32toh(sp->rx_crc_errors) + le32toh(sp->rx_alignment_errors) + le32toh(sp->rx_rnr_errors) + le32toh(sp->rx_overrun_errors)); /* * If any transmit underruns occurred, bump up the transmit * threshold by another 512 bytes (64 * 8). */ if (sp->tx_underruns) { if_inc_counter(ifp, IFCOUNTER_OERRORS, le32toh(sp->tx_underruns)); if (tx_threshold < 192) tx_threshold += 64; } *status = 0; bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); } } /* * Update packet in/out/collision statistics. The i82557 doesn't * allow you to access these counters without doing a fairly * expensive DMA to get _all_ of the statistics it maintains, so * we do this operation here only once per second. The statistics * counters in the kernel are updated from the previous dump-stats * DMA and then a new dump-stats DMA is started. The on-chip * counters are zeroed when the DMA completes. If we can't start * the DMA immediately, we don't wait - we just prepare to read * them again next time. */ static void fxp_tick(void *xsc) { struct fxp_softc *sc = xsc; if_t ifp = sc->ifp; FXP_LOCK_ASSERT(sc, MA_OWNED); /* Update statistical counters. */ fxp_update_stats(sc); /* * Release any xmit buffers that have completed DMA. This isn't * strictly necessary to do here, but it's advantagous for mbufs * with external storage to be released in a timely manner rather * than being defered for a potentially long time. This limits * the delay to a maximum of one second. */ fxp_txeof(sc); /* * If we haven't received any packets in FXP_MAC_RX_IDLE seconds, * then assume the receiver has locked up and attempt to clear * the condition by reprogramming the multicast filter. This is * a work-around for a bug in the 82557 where the receiver locks * up if it gets certain types of garbage in the synchronization * bits prior to the packet header. This bug is supposed to only * occur in 10Mbps mode, but has been seen to occur in 100Mbps * mode as well (perhaps due to a 10/100 speed transition). */ if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) { sc->rx_idle_secs = 0; if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) { if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); fxp_init_body(sc, 1); } return; } /* * If there is no pending command, start another stats * dump. Otherwise punt for now. */ if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) { /* * Start another stats dump. */ fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET); } if (sc->miibus != NULL) mii_tick(device_get_softc(sc->miibus)); /* * Check that chip hasn't hung. */ fxp_watchdog(sc); /* * Schedule another timeout one second from now. */ callout_reset(&sc->stat_ch, hz, fxp_tick, sc); } /* * Stop the interface. Cancels the statistics updater and resets * the interface. */ static void fxp_stop(struct fxp_softc *sc) { if_t ifp = sc->ifp; struct fxp_tx *txp; int i; if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)); sc->watchdog_timer = 0; /* * Cancel stats updater. */ callout_stop(&sc->stat_ch); /* * Preserve PCI configuration, configure, IA/multicast * setup and put RU and CU into idle state. */ CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET); DELAY(50); /* Disable interrupts. */ CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE); fxp_update_stats(sc); /* * Release any xmit buffers. */ txp = sc->fxp_desc.tx_list; for (i = 0; i < FXP_NTXCB; i++) { if (txp[i].tx_mbuf != NULL) { bus_dmamap_sync(sc->fxp_txmtag, txp[i].tx_map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->fxp_txmtag, txp[i].tx_map); m_freem(txp[i].tx_mbuf); txp[i].tx_mbuf = NULL; /* clear this to reset csum offload bits */ txp[i].tx_cb->tbd[0].tb_addr = 0; } } bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); sc->tx_queued = 0; } /* * Watchdog/transmission transmit timeout handler. Called when a * transmission is started on the interface, but no interrupt is * received before the timeout. This usually indicates that the * card has wedged for some reason. */ static void fxp_watchdog(struct fxp_softc *sc) { if_t ifp = sc->ifp; FXP_LOCK_ASSERT(sc, MA_OWNED); if (sc->watchdog_timer == 0 || --sc->watchdog_timer) return; device_printf(sc->dev, "device timeout\n"); if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); fxp_init_body(sc, 1); } /* * Acquire locks and then call the real initialization function. This * is necessary because ether_ioctl() calls if_init() and this would * result in mutex recursion if the mutex was held. */ static void fxp_init(void *xsc) { struct fxp_softc *sc = xsc; FXP_LOCK(sc); fxp_init_body(sc, 1); FXP_UNLOCK(sc); } /* * Perform device initialization. This routine must be called with the * softc lock held. */ static void fxp_init_body(struct fxp_softc *sc, int setmedia) { if_t ifp = sc->ifp; struct mii_data *mii; struct fxp_cb_config *cbp; struct fxp_cb_ias *cb_ias; struct fxp_cb_tx *tcbp; struct fxp_tx *txp; int i, prm; FXP_LOCK_ASSERT(sc, MA_OWNED); if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) return; /* * Cancel any pending I/O */ fxp_stop(sc); /* * Issue software reset, which also unloads the microcode. */ sc->flags &= ~FXP_FLAG_UCODE; CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET); DELAY(50); prm = (if_getflags(ifp) & IFF_PROMISC) ? 1 : 0; /* * Initialize base of CBL and RFA memory. Loading with zero * sets it up for regular linear addressing. */ CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0); fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE); fxp_scb_wait(sc); fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE); /* * Initialize base of dump-stats buffer. */ fxp_scb_wait(sc); bzero(sc->fxp_stats, sizeof(struct fxp_stats)); bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->stats_addr); fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR); /* * Attempt to load microcode if requested. * For ICH based controllers do not load microcode. */ if (sc->ident->ich == 0) { if (if_getflags(ifp) & IFF_LINK0 && (sc->flags & FXP_FLAG_UCODE) == 0) fxp_load_ucode(sc); } /* * Set IFF_ALLMULTI status. It's needed in configure action * command. */ fxp_mc_addrs(sc); /* * We temporarily use memory that contains the TxCB list to * construct the config CB. The TxCB list memory is rebuilt * later. */ cbp = (struct fxp_cb_config *)sc->fxp_desc.cbl_list; /* * This bcopy is kind of disgusting, but there are a bunch of must be * zero and must be one bits in this structure and this is the easiest * way to initialize them all to proper values. */ bcopy(fxp_cb_config_template, cbp, sizeof(fxp_cb_config_template)); cbp->cb_status = 0; cbp->cb_command = htole16(FXP_CB_COMMAND_CONFIG | FXP_CB_COMMAND_EL); cbp->link_addr = 0xffffffff; /* (no) next command */ cbp->byte_count = sc->flags & FXP_FLAG_EXT_RFA ? 32 : 22; cbp->rx_fifo_limit = 8; /* rx fifo threshold (32 bytes) */ cbp->tx_fifo_limit = 0; /* tx fifo threshold (0 bytes) */ cbp->adaptive_ifs = 0; /* (no) adaptive interframe spacing */ cbp->mwi_enable = sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0; cbp->type_enable = 0; /* actually reserved */ cbp->read_align_en = sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0; cbp->end_wr_on_cl = sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0; cbp->rx_dma_bytecount = 0; /* (no) rx DMA max */ cbp->tx_dma_bytecount = 0; /* (no) tx DMA max */ cbp->dma_mbce = 0; /* (disable) dma max counters */ cbp->late_scb = 0; /* (don't) defer SCB update */ cbp->direct_dma_dis = 1; /* disable direct rcv dma mode */ cbp->tno_int_or_tco_en =0; /* (disable) tx not okay interrupt */ cbp->ci_int = 1; /* interrupt on CU idle */ cbp->ext_txcb_dis = sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1; cbp->ext_stats_dis = 1; /* disable extended counters */ cbp->keep_overrun_rx = 0; /* don't pass overrun frames to host */ cbp->save_bf = sc->flags & FXP_FLAG_SAVE_BAD ? 1 : prm; cbp->disc_short_rx = !prm; /* discard short packets */ cbp->underrun_retry = 1; /* retry mode (once) on DMA underrun */ cbp->two_frames = 0; /* do not limit FIFO to 2 frames */ cbp->dyn_tbd = sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0; cbp->ext_rfa = sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0; cbp->mediatype = sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1; cbp->csma_dis = 0; /* (don't) disable link */ cbp->tcp_udp_cksum = ((sc->flags & FXP_FLAG_82559_RXCSUM) != 0 && (if_getcapenable(ifp) & IFCAP_RXCSUM) != 0) ? 1 : 0; cbp->vlan_tco = 0; /* (don't) enable vlan wakeup */ cbp->link_wake_en = 0; /* (don't) assert PME# on link change */ cbp->arp_wake_en = 0; /* (don't) assert PME# on arp */ cbp->mc_wake_en = 0; /* (don't) enable PME# on mcmatch */ cbp->nsai = 1; /* (don't) disable source addr insert */ cbp->preamble_length = 2; /* (7 byte) preamble */ cbp->loopback = 0; /* (don't) loopback */ cbp->linear_priority = 0; /* (normal CSMA/CD operation) */ cbp->linear_pri_mode = 0; /* (wait after xmit only) */ cbp->interfrm_spacing = 6; /* (96 bits of) interframe spacing */ cbp->promiscuous = prm; /* promiscuous mode */ cbp->bcast_disable = 0; /* (don't) disable broadcasts */ cbp->wait_after_win = 0; /* (don't) enable modified backoff alg*/ cbp->ignore_ul = 0; /* consider U/L bit in IA matching */ cbp->crc16_en = 0; /* (don't) enable crc-16 algorithm */ cbp->crscdt = sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0; cbp->stripping = !prm; /* truncate rx packet to byte count */ cbp->padding = 1; /* (do) pad short tx packets */ cbp->rcv_crc_xfer = 0; /* (don't) xfer CRC to host */ cbp->long_rx_en = sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0; cbp->ia_wake_en = 0; /* (don't) wake up on address match */ cbp->magic_pkt_dis = sc->flags & FXP_FLAG_WOL ? 0 : 1; cbp->force_fdx = 0; /* (don't) force full duplex */ cbp->fdx_pin_en = 1; /* (enable) FDX# pin */ cbp->multi_ia = 0; /* (don't) accept multiple IAs */ cbp->mc_all = if_getflags(ifp) & IFF_ALLMULTI ? 1 : prm; cbp->gamla_rx = sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0; cbp->vlan_strip_en = ((sc->flags & FXP_FLAG_EXT_RFA) != 0 && (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0) ? 1 : 0; if (sc->revision == FXP_REV_82557) { /* * The 82557 has no hardware flow control, the values * below are the defaults for the chip. */ cbp->fc_delay_lsb = 0; cbp->fc_delay_msb = 0x40; cbp->pri_fc_thresh = 3; cbp->tx_fc_dis = 0; cbp->rx_fc_restop = 0; cbp->rx_fc_restart = 0; cbp->fc_filter = 0; cbp->pri_fc_loc = 1; } else { /* Set pause RX FIFO threshold to 1KB. */ CSR_WRITE_1(sc, FXP_CSR_FC_THRESH, 1); /* Set pause time. */ cbp->fc_delay_lsb = 0xff; cbp->fc_delay_msb = 0xff; cbp->pri_fc_thresh = 3; mii = device_get_softc(sc->miibus); if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0) /* enable transmit FC */ cbp->tx_fc_dis = 0; else /* disable transmit FC */ cbp->tx_fc_dis = 1; if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0) { /* enable FC restart/restop frames */ cbp->rx_fc_restart = 1; cbp->rx_fc_restop = 1; } else { /* disable FC restart/restop frames */ cbp->rx_fc_restart = 0; cbp->rx_fc_restop = 0; } cbp->fc_filter = !prm; /* drop FC frames to host */ cbp->pri_fc_loc = 1; /* FC pri location (byte31) */ } /* Enable 82558 and 82559 extended statistics functionality. */ if (sc->revision >= FXP_REV_82558_A4) { if (sc->revision >= FXP_REV_82559_A0) { /* * Extend configuration table size to 32 * to include TCO configuration. */ cbp->byte_count = 32; cbp->ext_stats_dis = 1; /* Enable TCO stats. */ cbp->tno_int_or_tco_en = 1; cbp->gamla_rx = 1; } else cbp->ext_stats_dis = 0; } /* * Start the config command/DMA. */ fxp_scb_wait(sc); bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr); fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); /* ...and wait for it to complete. */ fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map); /* * Now initialize the station address. Temporarily use the TxCB * memory area like we did above for the config CB. */ cb_ias = (struct fxp_cb_ias *)sc->fxp_desc.cbl_list; cb_ias->cb_status = 0; cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL); cb_ias->link_addr = 0xffffffff; bcopy(if_getlladdr(sc->ifp), cb_ias->macaddr, ETHER_ADDR_LEN); /* * Start the IAS (Individual Address Setup) command/DMA. */ fxp_scb_wait(sc); bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr); fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); /* ...and wait for it to complete. */ fxp_dma_wait(sc, &cb_ias->cb_status, sc->cbl_tag, sc->cbl_map); /* * Initialize the multicast address list. */ fxp_mc_setup(sc); /* * Initialize transmit control block (TxCB) list. */ txp = sc->fxp_desc.tx_list; tcbp = sc->fxp_desc.cbl_list; bzero(tcbp, FXP_TXCB_SZ); for (i = 0; i < FXP_NTXCB; i++) { txp[i].tx_mbuf = NULL; tcbp[i].cb_status = htole16(FXP_CB_STATUS_C | FXP_CB_STATUS_OK); tcbp[i].cb_command = htole16(FXP_CB_COMMAND_NOP); tcbp[i].link_addr = htole32(sc->fxp_desc.cbl_addr + (((i + 1) & FXP_TXCB_MASK) * sizeof(struct fxp_cb_tx))); if (sc->flags & FXP_FLAG_EXT_TXCB) tcbp[i].tbd_array_addr = htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[2])); else tcbp[i].tbd_array_addr = htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[0])); txp[i].tx_next = &txp[(i + 1) & FXP_TXCB_MASK]; } /* * Set the suspend flag on the first TxCB and start the control * unit. It will execute the NOP and then suspend. */ tcbp->cb_command = htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S); bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp; sc->tx_queued = 1; fxp_scb_wait(sc); CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr); fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); /* * Initialize receiver buffer area - RFA. */ fxp_scb_wait(sc); CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.rx_head->rx_addr); fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START); if (sc->miibus != NULL && setmedia != 0) mii_mediachg(device_get_softc(sc->miibus)); if_setdrvflagbits(ifp, IFF_DRV_RUNNING, IFF_DRV_OACTIVE); /* * Enable interrupts. */ #ifdef DEVICE_POLLING /* * ... but only do that if we are not polling. And because (presumably) * the default is interrupts on, we need to disable them explicitly! */ if (if_getcapenable(ifp) & IFCAP_POLLING ) CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE); else #endif /* DEVICE_POLLING */ CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0); /* * Start stats updater. */ callout_reset(&sc->stat_ch, hz, fxp_tick, sc); } static int fxp_serial_ifmedia_upd(if_t ifp) { return (0); } static void fxp_serial_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr) { ifmr->ifm_active = IFM_ETHER|IFM_MANUAL; } /* * Change media according to request. */ static int fxp_ifmedia_upd(if_t ifp) { struct fxp_softc *sc = if_getsoftc(ifp); struct mii_data *mii; struct mii_softc *miisc; mii = device_get_softc(sc->miibus); FXP_LOCK(sc); LIST_FOREACH(miisc, &mii->mii_phys, mii_list) PHY_RESET(miisc); mii_mediachg(mii); FXP_UNLOCK(sc); return (0); } /* * Notify the world which media we're using. */ static void fxp_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr) { struct fxp_softc *sc = if_getsoftc(ifp); struct mii_data *mii; mii = device_get_softc(sc->miibus); FXP_LOCK(sc); mii_pollstat(mii); ifmr->ifm_active = mii->mii_media_active; ifmr->ifm_status = mii->mii_media_status; FXP_UNLOCK(sc); } /* * Add a buffer to the end of the RFA buffer list. * Return 0 if successful, 1 for failure. A failure results in * reusing the RFA buffer. * The RFA struct is stuck at the beginning of mbuf cluster and the * data pointer is fixed up to point just past it. */ static int fxp_new_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp) { struct mbuf *m; struct fxp_rfa *rfa; bus_dmamap_t tmp_map; int error; m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); if (m == NULL) return (ENOBUFS); /* * Move the data pointer up so that the incoming data packet * will be 32-bit aligned. */ m->m_data += RFA_ALIGNMENT_FUDGE; /* * Get a pointer to the base of the mbuf cluster and move * data start past it. */ rfa = mtod(m, struct fxp_rfa *); m->m_data += sc->rfa_size; rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE); rfa->rfa_status = 0; rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL); rfa->actual_size = 0; m->m_len = m->m_pkthdr.len = MCLBYTES - RFA_ALIGNMENT_FUDGE - sc->rfa_size; /* * Initialize the rest of the RFA. Note that since the RFA * is misaligned, we cannot store values directly. We're thus * using the le32enc() function which handles endianness and * is also alignment-safe. */ le32enc(&rfa->link_addr, 0xffffffff); le32enc(&rfa->rbd_addr, 0xffffffff); /* Map the RFA into DMA memory. */ error = bus_dmamap_load(sc->fxp_rxmtag, sc->spare_map, rfa, MCLBYTES - RFA_ALIGNMENT_FUDGE, fxp_dma_map_addr, &rxp->rx_addr, BUS_DMA_NOWAIT); if (error) { m_freem(m); return (error); } if (rxp->rx_mbuf != NULL) bus_dmamap_unload(sc->fxp_rxmtag, rxp->rx_map); tmp_map = sc->spare_map; sc->spare_map = rxp->rx_map; rxp->rx_map = tmp_map; rxp->rx_mbuf = m; bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); return (0); } static void fxp_add_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp) { struct fxp_rfa *p_rfa; struct fxp_rx *p_rx; /* * If there are other buffers already on the list, attach this * one to the end by fixing up the tail to point to this one. */ if (sc->fxp_desc.rx_head != NULL) { p_rx = sc->fxp_desc.rx_tail; p_rfa = (struct fxp_rfa *) (p_rx->rx_mbuf->m_ext.ext_buf + RFA_ALIGNMENT_FUDGE); p_rx->rx_next = rxp; le32enc(&p_rfa->link_addr, rxp->rx_addr); p_rfa->rfa_control = 0; bus_dmamap_sync(sc->fxp_rxmtag, p_rx->rx_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); } else { rxp->rx_next = NULL; sc->fxp_desc.rx_head = rxp; } sc->fxp_desc.rx_tail = rxp; } static void fxp_discard_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp) { struct mbuf *m; struct fxp_rfa *rfa; m = rxp->rx_mbuf; m->m_data = m->m_ext.ext_buf; /* * Move the data pointer up so that the incoming data packet * will be 32-bit aligned. */ m->m_data += RFA_ALIGNMENT_FUDGE; /* * Get a pointer to the base of the mbuf cluster and move * data start past it. */ rfa = mtod(m, struct fxp_rfa *); m->m_data += sc->rfa_size; rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE); rfa->rfa_status = 0; rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL); rfa->actual_size = 0; /* * Initialize the rest of the RFA. Note that since the RFA * is misaligned, we cannot store values directly. We're thus * using the le32enc() function which handles endianness and * is also alignment-safe. */ le32enc(&rfa->link_addr, 0xffffffff); le32enc(&rfa->rbd_addr, 0xffffffff); bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); } static int fxp_miibus_readreg(device_t dev, int phy, int reg) { struct fxp_softc *sc = device_get_softc(dev); int count = 10000; int value; CSR_WRITE_4(sc, FXP_CSR_MDICONTROL, (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21)); while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0 && count--) DELAY(10); if (count <= 0) device_printf(dev, "fxp_miibus_readreg: timed out\n"); return (value & 0xffff); } static int fxp_miibus_writereg(device_t dev, int phy, int reg, int value) { struct fxp_softc *sc = device_get_softc(dev); int count = 10000; CSR_WRITE_4(sc, FXP_CSR_MDICONTROL, (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) | (value & 0xffff)); while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 && count--) DELAY(10); if (count <= 0) device_printf(dev, "fxp_miibus_writereg: timed out\n"); return (0); } static void fxp_miibus_statchg(device_t dev) { struct fxp_softc *sc; struct mii_data *mii; if_t ifp; sc = device_get_softc(dev); mii = device_get_softc(sc->miibus); ifp = sc->ifp; if (mii == NULL || ifp == (void *)NULL || (if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0 || (mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) != (IFM_AVALID | IFM_ACTIVE)) return; if (IFM_SUBTYPE(mii->mii_media_active) == IFM_10_T && sc->flags & FXP_FLAG_CU_RESUME_BUG) sc->cu_resume_bug = 1; else sc->cu_resume_bug = 0; /* * Call fxp_init_body in order to adjust the flow control settings. * Note that the 82557 doesn't support hardware flow control. */ if (sc->revision == FXP_REV_82557) return; if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); fxp_init_body(sc, 0); } static int fxp_ioctl(if_t ifp, u_long command, caddr_t data) { struct fxp_softc *sc = if_getsoftc(ifp); struct ifreq *ifr = (struct ifreq *)data; struct mii_data *mii; int flag, mask, error = 0, reinit; switch (command) { case SIOCSIFFLAGS: FXP_LOCK(sc); /* * If interface is marked up and not running, then start it. * If it is marked down and running, stop it. * XXX If it's up then re-initialize it. This is so flags * such as IFF_PROMISC are handled. */ if (if_getflags(ifp) & IFF_UP) { if (((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) && ((if_getflags(ifp) ^ sc->if_flags) & (IFF_PROMISC | IFF_ALLMULTI | IFF_LINK0)) != 0) { if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); fxp_init_body(sc, 0); } else if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) fxp_init_body(sc, 1); } else { if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) fxp_stop(sc); } sc->if_flags = if_getflags(ifp); FXP_UNLOCK(sc); break; case SIOCADDMULTI: case SIOCDELMULTI: FXP_LOCK(sc); if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) { if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); fxp_init_body(sc, 0); } FXP_UNLOCK(sc); break; case SIOCSIFMEDIA: case SIOCGIFMEDIA: if (sc->miibus != NULL) { mii = device_get_softc(sc->miibus); error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); } else { error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command); } break; case SIOCSIFCAP: reinit = 0; mask = if_getcapenable(ifp) ^ ifr->ifr_reqcap; #ifdef DEVICE_POLLING if (mask & IFCAP_POLLING) { if (ifr->ifr_reqcap & IFCAP_POLLING) { error = ether_poll_register(fxp_poll, ifp); if (error) return(error); FXP_LOCK(sc); CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE); if_setcapenablebit(ifp, IFCAP_POLLING, 0); FXP_UNLOCK(sc); } else { error = ether_poll_deregister(ifp); /* Enable interrupts in any case */ FXP_LOCK(sc); CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0); if_setcapenablebit(ifp, 0, IFCAP_POLLING); FXP_UNLOCK(sc); } } #endif FXP_LOCK(sc); if ((mask & IFCAP_TXCSUM) != 0 && (if_getcapabilities(ifp) & IFCAP_TXCSUM) != 0) { if_togglecapenable(ifp, IFCAP_TXCSUM); if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0) if_sethwassistbits(ifp, FXP_CSUM_FEATURES, 0); else if_sethwassistbits(ifp, 0, FXP_CSUM_FEATURES); } if ((mask & IFCAP_RXCSUM) != 0 && (if_getcapabilities(ifp) & IFCAP_RXCSUM) != 0) { if_togglecapenable(ifp, IFCAP_RXCSUM); if ((sc->flags & FXP_FLAG_82559_RXCSUM) != 0) reinit++; } if ((mask & IFCAP_TSO4) != 0 && (if_getcapabilities(ifp) & IFCAP_TSO4) != 0) { if_togglecapenable(ifp, IFCAP_TSO4); if ((if_getcapenable(ifp) & IFCAP_TSO4) != 0) if_sethwassistbits(ifp, CSUM_TSO, 0); else if_sethwassistbits(ifp, 0, CSUM_TSO); } if ((mask & IFCAP_WOL_MAGIC) != 0 && (if_getcapabilities(ifp) & IFCAP_WOL_MAGIC) != 0) if_togglecapenable(ifp, IFCAP_WOL_MAGIC); if ((mask & IFCAP_VLAN_MTU) != 0 && (if_getcapabilities(ifp) & IFCAP_VLAN_MTU) != 0) { if_togglecapenable(ifp, IFCAP_VLAN_MTU); if (sc->revision != FXP_REV_82557) flag = FXP_FLAG_LONG_PKT_EN; else /* a hack to get long frames on the old chip */ flag = FXP_FLAG_SAVE_BAD; sc->flags ^= flag; if (if_getflags(ifp) & IFF_UP) reinit++; } if ((mask & IFCAP_VLAN_HWCSUM) != 0 && (if_getcapabilities(ifp) & IFCAP_VLAN_HWCSUM) != 0) if_togglecapenable(ifp, IFCAP_VLAN_HWCSUM); if ((mask & IFCAP_VLAN_HWTSO) != 0 && (if_getcapabilities(ifp) & IFCAP_VLAN_HWTSO) != 0) if_togglecapenable(ifp, IFCAP_VLAN_HWTSO); if ((mask & IFCAP_VLAN_HWTAGGING) != 0 && (if_getcapabilities(ifp) & IFCAP_VLAN_HWTAGGING) != 0) { if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING); if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) == 0) if_setcapenablebit(ifp, 0, IFCAP_VLAN_HWTSO | IFCAP_VLAN_HWCSUM); reinit++; } if (reinit > 0 && (if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) { if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); fxp_init_body(sc, 0); } FXP_UNLOCK(sc); if_vlancap(ifp); break; default: error = ether_ioctl(ifp, command, data); } return (error); } static u_int fxp_setup_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt) { struct fxp_softc *sc = arg; struct fxp_cb_mcs *mcsp = sc->mcsp; if (mcsp->mc_cnt < MAXMCADDR) bcopy(LLADDR(sdl), mcsp->mc_addr[mcsp->mc_cnt * ETHER_ADDR_LEN], ETHER_ADDR_LEN); mcsp->mc_cnt++; return (1); } /* * Fill in the multicast address list and return number of entries. */ static void fxp_mc_addrs(struct fxp_softc *sc) { struct fxp_cb_mcs *mcsp = sc->mcsp; if_t ifp = sc->ifp; if ((if_getflags(ifp) & IFF_ALLMULTI) == 0) { mcsp->mc_cnt = 0; if_foreach_llmaddr(sc->ifp, fxp_setup_maddr, sc); if (mcsp->mc_cnt >= MAXMCADDR) { if_setflagbits(ifp, IFF_ALLMULTI, 0); mcsp->mc_cnt = 0; } } mcsp->mc_cnt = htole16(mcsp->mc_cnt * ETHER_ADDR_LEN); } /* * Program the multicast filter. * * We have an artificial restriction that the multicast setup command * must be the first command in the chain, so we take steps to ensure * this. By requiring this, it allows us to keep up the performance of * the pre-initialized command ring (esp. link pointers) by not actually * inserting the mcsetup command in the ring - i.e. its link pointer * points to the TxCB ring, but the mcsetup descriptor itself is not part * of it. We then can do 'CU_START' on the mcsetup descriptor and have it * lead into the regular TxCB ring when it completes. */ static void fxp_mc_setup(struct fxp_softc *sc) { struct fxp_cb_mcs *mcsp; int count; FXP_LOCK_ASSERT(sc, MA_OWNED); mcsp = sc->mcsp; mcsp->cb_status = 0; mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL); mcsp->link_addr = 0xffffffff; fxp_mc_addrs(sc); /* * Wait until command unit is idle. This should never be the * case when nothing is queued, but make sure anyway. */ count = 100; while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) != FXP_SCB_CUS_IDLE && --count) DELAY(10); if (count == 0) { device_printf(sc->dev, "command queue timeout\n"); return; } /* * Start the multicast setup command. */ fxp_scb_wait(sc); bus_dmamap_sync(sc->mcs_tag, sc->mcs_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr); fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); /* ...and wait for it to complete. */ fxp_dma_wait(sc, &mcsp->cb_status, sc->mcs_tag, sc->mcs_map); } static uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE; static uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE; static uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE; static uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE; static uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE; static uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE; static uint32_t fxp_ucode_d102e[] = D102_E_RCVBUNDLE_UCODE; #define UCODE(x) x, sizeof(x)/sizeof(uint32_t) static const struct ucode { uint32_t revision; uint32_t *ucode; int length; u_short int_delay_offset; u_short bundle_max_offset; } ucode_table[] = { { FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 }, { FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 }, { FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma), D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD }, { FXP_REV_82559S_A, UCODE(fxp_ucode_d101s), D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD }, { FXP_REV_82550, UCODE(fxp_ucode_d102), D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD }, { FXP_REV_82550_C, UCODE(fxp_ucode_d102c), D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD }, { FXP_REV_82551_F, UCODE(fxp_ucode_d102e), D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD }, { FXP_REV_82551_10, UCODE(fxp_ucode_d102e), D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD }, { 0, NULL, 0, 0, 0 } }; static void fxp_load_ucode(struct fxp_softc *sc) { const struct ucode *uc; struct fxp_cb_ucode *cbp; int i; if (sc->flags & FXP_FLAG_NO_UCODE) return; for (uc = ucode_table; uc->ucode != NULL; uc++) if (sc->revision == uc->revision) break; if (uc->ucode == NULL) return; cbp = (struct fxp_cb_ucode *)sc->fxp_desc.cbl_list; cbp->cb_status = 0; cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL); cbp->link_addr = 0xffffffff; /* (no) next command */ for (i = 0; i < uc->length; i++) cbp->ucode[i] = htole32(uc->ucode[i]); if (uc->int_delay_offset) *(uint16_t *)&cbp->ucode[uc->int_delay_offset] = htole16(sc->tunable_int_delay + sc->tunable_int_delay / 2); if (uc->bundle_max_offset) *(uint16_t *)&cbp->ucode[uc->bundle_max_offset] = htole16(sc->tunable_bundle_max); /* * Download the ucode to the chip. */ fxp_scb_wait(sc); bus_dmamap_sync(sc->cbl_tag, sc->cbl_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr); fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START); /* ...and wait for it to complete. */ fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map); device_printf(sc->dev, "Microcode loaded, int_delay: %d usec bundle_max: %d\n", sc->tunable_int_delay, uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max); sc->flags |= FXP_FLAG_UCODE; bzero(cbp, FXP_TXCB_SZ); } #define FXP_SYSCTL_STAT_ADD(c, h, n, p, d) \ SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d) static void fxp_sysctl_node(struct fxp_softc *sc) { struct sysctl_ctx_list *ctx; struct sysctl_oid_list *child, *parent; struct sysctl_oid *tree; struct fxp_hwstats *hsp; ctx = device_get_sysctl_ctx(sc->dev); child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)); SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, &sc->tunable_int_delay, 0, sysctl_hw_fxp_int_delay, "I", "FXP driver receive interrupt microcode bundling delay"); SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, &sc->tunable_bundle_max, 0, sysctl_hw_fxp_bundle_max, "I", "FXP driver receive interrupt microcode bundle size limit"); SYSCTL_ADD_INT(ctx, child,OID_AUTO, "rnr", CTLFLAG_RD, &sc->rnr, 0, "FXP RNR events"); /* * Pull in device tunables. */ sc->tunable_int_delay = TUNABLE_INT_DELAY; sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX; (void) resource_int_value(device_get_name(sc->dev), device_get_unit(sc->dev), "int_delay", &sc->tunable_int_delay); (void) resource_int_value(device_get_name(sc->dev), device_get_unit(sc->dev), "bundle_max", &sc->tunable_bundle_max); sc->rnr = 0; hsp = &sc->fxp_hwstats; tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "FXP statistics"); parent = SYSCTL_CHILDREN(tree); /* Rx MAC statistics. */ tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Rx MAC statistics"); child = SYSCTL_CHILDREN(tree); FXP_SYSCTL_STAT_ADD(ctx, child, "good_frames", &hsp->rx_good, "Good frames"); FXP_SYSCTL_STAT_ADD(ctx, child, "crc_errors", &hsp->rx_crc_errors, "CRC errors"); FXP_SYSCTL_STAT_ADD(ctx, child, "alignment_errors", &hsp->rx_alignment_errors, "Alignment errors"); FXP_SYSCTL_STAT_ADD(ctx, child, "rnr_errors", &hsp->rx_rnr_errors, "RNR errors"); FXP_SYSCTL_STAT_ADD(ctx, child, "overrun_errors", &hsp->rx_overrun_errors, "Overrun errors"); FXP_SYSCTL_STAT_ADD(ctx, child, "cdt_errors", &hsp->rx_cdt_errors, "Collision detect errors"); FXP_SYSCTL_STAT_ADD(ctx, child, "shortframes", &hsp->rx_shortframes, "Short frame errors"); if (sc->revision >= FXP_REV_82558_A4) { FXP_SYSCTL_STAT_ADD(ctx, child, "pause", &hsp->rx_pause, "Pause frames"); FXP_SYSCTL_STAT_ADD(ctx, child, "controls", &hsp->rx_controls, "Unsupported control frames"); } if (sc->revision >= FXP_REV_82559_A0) FXP_SYSCTL_STAT_ADD(ctx, child, "tco", &hsp->rx_tco, "TCO frames"); /* Tx MAC statistics. */ tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Tx MAC statistics"); child = SYSCTL_CHILDREN(tree); FXP_SYSCTL_STAT_ADD(ctx, child, "good_frames", &hsp->tx_good, "Good frames"); FXP_SYSCTL_STAT_ADD(ctx, child, "maxcols", &hsp->tx_maxcols, "Maximum collisions errors"); FXP_SYSCTL_STAT_ADD(ctx, child, "latecols", &hsp->tx_latecols, "Late collisions errors"); FXP_SYSCTL_STAT_ADD(ctx, child, "underruns", &hsp->tx_underruns, "Underrun errors"); FXP_SYSCTL_STAT_ADD(ctx, child, "lostcrs", &hsp->tx_lostcrs, "Lost carrier sense"); FXP_SYSCTL_STAT_ADD(ctx, child, "deffered", &hsp->tx_deffered, "Deferred"); FXP_SYSCTL_STAT_ADD(ctx, child, "single_collisions", &hsp->tx_single_collisions, "Single collisions"); FXP_SYSCTL_STAT_ADD(ctx, child, "multiple_collisions", &hsp->tx_multiple_collisions, "Multiple collisions"); FXP_SYSCTL_STAT_ADD(ctx, child, "total_collisions", &hsp->tx_total_collisions, "Total collisions"); if (sc->revision >= FXP_REV_82558_A4) FXP_SYSCTL_STAT_ADD(ctx, child, "pause", &hsp->tx_pause, "Pause frames"); if (sc->revision >= FXP_REV_82559_A0) FXP_SYSCTL_STAT_ADD(ctx, child, "tco", &hsp->tx_tco, "TCO frames"); } #undef FXP_SYSCTL_STAT_ADD static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high) { int error, value; value = *(int *)arg1; error = sysctl_handle_int(oidp, &value, 0, req); if (error || !req->newptr) return (error); if (value < low || value > high) return (EINVAL); *(int *)arg1 = value; return (0); } /* * Interrupt delay is expressed in microseconds, a multiplier is used * to convert this to the appropriate clock ticks before using. */ static int sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS) { return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000)); } static int sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS) { return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff)); }