/*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2006 M. Warner Losh. All rights reserved. * Copyright (c) 2009 Oleksandr Tymoshenko. All rights reserved. * Copyright (c) 2018 Ian Lepore. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_platform.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef FDT #include #include #include #endif #include #include "spibus_if.h" #include #define FL_NONE 0x00 #define FL_ERASE_4K 0x01 #define FL_ERASE_32K 0x02 #define FL_ENABLE_4B_ADDR 0x04 #define FL_DISABLE_4B_ADDR 0x08 /* * Define the sectorsize to be a smaller size rather than the flash * sector size. Trying to run FFS off of a 64k flash sector size * results in a completely un-usable system. */ #define MX25L_SECTORSIZE 512 struct mx25l_flash_ident { const char *name; uint8_t manufacturer_id; uint16_t device_id; unsigned int sectorsize; unsigned int sectorcount; unsigned int flags; }; struct mx25l_softc { device_t sc_dev; device_t sc_parent; uint8_t sc_manufacturer_id; uint16_t sc_device_id; unsigned int sc_erasesize; struct mtx sc_mtx; struct disk *sc_disk; struct proc *sc_p; struct bio_queue_head sc_bio_queue; unsigned int sc_flags; unsigned int sc_taskstate; uint8_t sc_dummybuf[FLASH_PAGE_SIZE]; }; #define TSTATE_STOPPED 0 #define TSTATE_STOPPING 1 #define TSTATE_RUNNING 2 #define M25PXX_LOCK(_sc) mtx_lock(&(_sc)->sc_mtx) #define M25PXX_UNLOCK(_sc) mtx_unlock(&(_sc)->sc_mtx) #define M25PXX_LOCK_INIT(_sc) \ mtx_init(&_sc->sc_mtx, device_get_nameunit(_sc->sc_dev), \ "mx25l", MTX_DEF) #define M25PXX_LOCK_DESTROY(_sc) mtx_destroy(&_sc->sc_mtx); #define M25PXX_ASSERT_LOCKED(_sc) mtx_assert(&_sc->sc_mtx, MA_OWNED); #define M25PXX_ASSERT_UNLOCKED(_sc) mtx_assert(&_sc->sc_mtx, MA_NOTOWNED); /* disk routines */ static int mx25l_open(struct disk *dp); static int mx25l_close(struct disk *dp); static int mx25l_ioctl(struct disk *, u_long, void *, int, struct thread *); static void mx25l_strategy(struct bio *bp); static int mx25l_getattr(struct bio *bp); static void mx25l_task(void *arg); struct mx25l_flash_ident flash_devices[] = { { "en25f32", 0x1c, 0x3116, 64 * 1024, 64, FL_NONE }, { "en25p32", 0x1c, 0x2016, 64 * 1024, 64, FL_NONE }, { "en25p64", 0x1c, 0x2017, 64 * 1024, 128, FL_NONE }, { "en25q32", 0x1c, 0x3016, 64 * 1024, 64, FL_NONE }, { "en25q64", 0x1c, 0x3017, 64 * 1024, 128, FL_ERASE_4K }, { "m25p32", 0x20, 0x2016, 64 * 1024, 64, FL_NONE }, { "m25p64", 0x20, 0x2017, 64 * 1024, 128, FL_NONE }, { "mx25l1606e", 0xc2, 0x2015, 64 * 1024, 32, FL_ERASE_4K}, { "mx25ll32", 0xc2, 0x2016, 64 * 1024, 64, FL_NONE }, { "mx25ll64", 0xc2, 0x2017, 64 * 1024, 128, FL_NONE }, { "mx25ll128", 0xc2, 0x2018, 64 * 1024, 256, FL_ERASE_4K | FL_ERASE_32K }, { "mx25ll256", 0xc2, 0x2019, 64 * 1024, 512, FL_ERASE_4K | FL_ERASE_32K | FL_ENABLE_4B_ADDR }, { "s25fl032", 0x01, 0x0215, 64 * 1024, 64, FL_NONE }, { "s25fl064", 0x01, 0x0216, 64 * 1024, 128, FL_NONE }, { "s25fl128", 0x01, 0x2018, 64 * 1024, 256, FL_NONE }, { "s25fl256s", 0x01, 0x0219, 64 * 1024, 512, FL_NONE }, { "SST25VF010A", 0xbf, 0x2549, 4 * 1024, 32, FL_ERASE_4K | FL_ERASE_32K }, { "SST25VF032B", 0xbf, 0x254a, 64 * 1024, 64, FL_ERASE_4K | FL_ERASE_32K }, /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */ { "w25x32", 0xef, 0x3016, 64 * 1024, 64, FL_ERASE_4K }, { "w25x64", 0xef, 0x3017, 64 * 1024, 128, FL_ERASE_4K }, { "w25q32", 0xef, 0x4016, 64 * 1024, 64, FL_ERASE_4K }, { "w25q64", 0xef, 0x4017, 64 * 1024, 128, FL_ERASE_4K }, { "w25q64bv", 0xef, 0x4017, 64 * 1024, 128, FL_ERASE_4K }, { "w25q128", 0xef, 0x4018, 64 * 1024, 256, FL_ERASE_4K }, { "w25q256", 0xef, 0x4019, 64 * 1024, 512, FL_ERASE_4K }, /* Atmel */ { "at25df641", 0x1f, 0x4800, 64 * 1024, 128, FL_ERASE_4K }, /* GigaDevice */ { "gd25q64", 0xc8, 0x4017, 64 * 1024, 128, FL_ERASE_4K }, }; static int mx25l_wait_for_device_ready(struct mx25l_softc *sc) { uint8_t txBuf[2], rxBuf[2]; struct spi_command cmd; int err; memset(&cmd, 0, sizeof(cmd)); do { txBuf[0] = CMD_READ_STATUS; cmd.tx_cmd = txBuf; cmd.rx_cmd = rxBuf; cmd.rx_cmd_sz = 2; cmd.tx_cmd_sz = 2; err = SPIBUS_TRANSFER(sc->sc_parent, sc->sc_dev, &cmd); } while (err == 0 && (rxBuf[1] & STATUS_WIP)); return (err); } static struct mx25l_flash_ident* mx25l_get_device_ident(struct mx25l_softc *sc) { uint8_t txBuf[8], rxBuf[8]; struct spi_command cmd; uint8_t manufacturer_id; uint16_t dev_id; int err, i; memset(&cmd, 0, sizeof(cmd)); memset(txBuf, 0, sizeof(txBuf)); memset(rxBuf, 0, sizeof(rxBuf)); txBuf[0] = CMD_READ_IDENT; cmd.tx_cmd = &txBuf; cmd.rx_cmd = &rxBuf; /* * Some compatible devices has extended two-bytes ID * We'll use only manufacturer/deviceid atm */ cmd.tx_cmd_sz = 4; cmd.rx_cmd_sz = 4; err = SPIBUS_TRANSFER(sc->sc_parent, sc->sc_dev, &cmd); if (err) return (NULL); manufacturer_id = rxBuf[1]; dev_id = (rxBuf[2] << 8) | (rxBuf[3]); for (i = 0; i < nitems(flash_devices); i++) { if ((flash_devices[i].manufacturer_id == manufacturer_id) && (flash_devices[i].device_id == dev_id)) return &flash_devices[i]; } device_printf(sc->sc_dev, "Unknown SPI flash device. Vendor: %02x, device id: %04x\n", manufacturer_id, dev_id); return (NULL); } static int mx25l_set_writable(struct mx25l_softc *sc, int writable) { uint8_t txBuf[1], rxBuf[1]; struct spi_command cmd; int err; memset(&cmd, 0, sizeof(cmd)); memset(txBuf, 0, sizeof(txBuf)); memset(rxBuf, 0, sizeof(rxBuf)); txBuf[0] = writable ? CMD_WRITE_ENABLE : CMD_WRITE_DISABLE; cmd.tx_cmd = txBuf; cmd.rx_cmd = rxBuf; cmd.rx_cmd_sz = 1; cmd.tx_cmd_sz = 1; err = SPIBUS_TRANSFER(sc->sc_parent, sc->sc_dev, &cmd); return (err); } static int mx25l_erase_cmd(struct mx25l_softc *sc, off_t sector) { uint8_t txBuf[5], rxBuf[5]; struct spi_command cmd; int err; if ((err = mx25l_set_writable(sc, 1)) != 0) return (err); memset(&cmd, 0, sizeof(cmd)); memset(txBuf, 0, sizeof(txBuf)); memset(rxBuf, 0, sizeof(rxBuf)); cmd.tx_cmd = txBuf; cmd.rx_cmd = rxBuf; if (sc->sc_flags & FL_ERASE_4K) txBuf[0] = CMD_BLOCK_4K_ERASE; else if (sc->sc_flags & FL_ERASE_32K) txBuf[0] = CMD_BLOCK_32K_ERASE; else txBuf[0] = CMD_SECTOR_ERASE; if (sc->sc_flags & FL_ENABLE_4B_ADDR) { cmd.rx_cmd_sz = 5; cmd.tx_cmd_sz = 5; txBuf[1] = ((sector >> 24) & 0xff); txBuf[2] = ((sector >> 16) & 0xff); txBuf[3] = ((sector >> 8) & 0xff); txBuf[4] = (sector & 0xff); } else { cmd.rx_cmd_sz = 4; cmd.tx_cmd_sz = 4; txBuf[1] = ((sector >> 16) & 0xff); txBuf[2] = ((sector >> 8) & 0xff); txBuf[3] = (sector & 0xff); } if ((err = SPIBUS_TRANSFER(sc->sc_parent, sc->sc_dev, &cmd)) != 0) return (err); err = mx25l_wait_for_device_ready(sc); return (err); } static int mx25l_write(struct mx25l_softc *sc, off_t offset, caddr_t data, off_t count) { uint8_t txBuf[8], rxBuf[8]; struct spi_command cmd; off_t bytes_to_write; int err = 0; if (sc->sc_flags & FL_ENABLE_4B_ADDR) { cmd.tx_cmd_sz = 5; cmd.rx_cmd_sz = 5; } else { cmd.tx_cmd_sz = 4; cmd.rx_cmd_sz = 4; } /* * Writes must be aligned to the erase sectorsize, since blocks are * fully erased before they're written to. */ if (count % sc->sc_erasesize != 0 || offset % sc->sc_erasesize != 0) return (EIO); /* * Maximum write size for CMD_PAGE_PROGRAM is FLASH_PAGE_SIZE, so loop * to write chunks of FLASH_PAGE_SIZE bytes each. */ while (count != 0) { /* If we crossed a sector boundary, erase the next sector. */ if (((offset) % sc->sc_erasesize) == 0) { err = mx25l_erase_cmd(sc, offset); if (err) break; } txBuf[0] = CMD_PAGE_PROGRAM; if (sc->sc_flags & FL_ENABLE_4B_ADDR) { txBuf[1] = (offset >> 24) & 0xff; txBuf[2] = (offset >> 16) & 0xff; txBuf[3] = (offset >> 8) & 0xff; txBuf[4] = offset & 0xff; } else { txBuf[1] = (offset >> 16) & 0xff; txBuf[2] = (offset >> 8) & 0xff; txBuf[3] = offset & 0xff; } bytes_to_write = MIN(FLASH_PAGE_SIZE, count); cmd.tx_cmd = txBuf; cmd.rx_cmd = rxBuf; cmd.tx_data = data; cmd.rx_data = sc->sc_dummybuf; cmd.tx_data_sz = (uint32_t)bytes_to_write; cmd.rx_data_sz = (uint32_t)bytes_to_write; /* * Each completed write operation resets WEL (write enable * latch) to disabled state, so we re-enable it here. */ if ((err = mx25l_wait_for_device_ready(sc)) != 0) break; if ((err = mx25l_set_writable(sc, 1)) != 0) break; err = SPIBUS_TRANSFER(sc->sc_parent, sc->sc_dev, &cmd); if (err != 0) break; err = mx25l_wait_for_device_ready(sc); if (err) break; data += bytes_to_write; offset += bytes_to_write; count -= bytes_to_write; } return (err); } static int mx25l_read(struct mx25l_softc *sc, off_t offset, caddr_t data, off_t count) { uint8_t txBuf[8], rxBuf[8]; struct spi_command cmd; int err = 0; /* * Enforce that reads are aligned to the disk sectorsize, not the * erase sectorsize. In this way, smaller read IO is possible, * dramatically speeding up filesystem/geom_compress access. */ if (count % sc->sc_disk->d_sectorsize != 0 || offset % sc->sc_disk->d_sectorsize != 0) return (EIO); txBuf[0] = CMD_FAST_READ; if (sc->sc_flags & FL_ENABLE_4B_ADDR) { cmd.tx_cmd_sz = 6; cmd.rx_cmd_sz = 6; txBuf[1] = (offset >> 24) & 0xff; txBuf[2] = (offset >> 16) & 0xff; txBuf[3] = (offset >> 8) & 0xff; txBuf[4] = offset & 0xff; /* Dummy byte */ txBuf[5] = 0; } else { cmd.tx_cmd_sz = 5; cmd.rx_cmd_sz = 5; txBuf[1] = (offset >> 16) & 0xff; txBuf[2] = (offset >> 8) & 0xff; txBuf[3] = offset & 0xff; /* Dummy byte */ txBuf[4] = 0; } cmd.tx_cmd = txBuf; cmd.rx_cmd = rxBuf; cmd.tx_data = data; cmd.rx_data = data; cmd.tx_data_sz = count; cmd.rx_data_sz = count; err = SPIBUS_TRANSFER(sc->sc_parent, sc->sc_dev, &cmd); return (err); } static int mx25l_set_4b_mode(struct mx25l_softc *sc, uint8_t command) { uint8_t txBuf[1], rxBuf[1]; struct spi_command cmd; int err; memset(&cmd, 0, sizeof(cmd)); memset(txBuf, 0, sizeof(txBuf)); memset(rxBuf, 0, sizeof(rxBuf)); cmd.tx_cmd_sz = cmd.rx_cmd_sz = 1; cmd.tx_cmd = txBuf; cmd.rx_cmd = rxBuf; txBuf[0] = command; if ((err = SPIBUS_TRANSFER(sc->sc_parent, sc->sc_dev, &cmd)) == 0) err = mx25l_wait_for_device_ready(sc); return (err); } #ifdef FDT static struct ofw_compat_data compat_data[] = { { "st,m25p", 1 }, { "jedec,spi-nor", 1 }, { NULL, 0 }, }; #endif static int mx25l_probe(device_t dev) { #ifdef FDT int i; if (!ofw_bus_status_okay(dev)) return (ENXIO); /* First try to match the compatible property to the compat_data */ if (ofw_bus_search_compatible(dev, compat_data)->ocd_data == 1) goto found; /* * Next, try to find a compatible device using the names in the * flash_devices structure */ for (i = 0; i < nitems(flash_devices); i++) if (ofw_bus_is_compatible(dev, flash_devices[i].name)) goto found; return (ENXIO); found: #endif device_set_desc(dev, "M25Pxx Flash Family"); return (0); } static int mx25l_attach(device_t dev) { struct mx25l_softc *sc; struct mx25l_flash_ident *ident; int err; sc = device_get_softc(dev); sc->sc_dev = dev; sc->sc_parent = device_get_parent(sc->sc_dev); M25PXX_LOCK_INIT(sc); ident = mx25l_get_device_ident(sc); if (ident == NULL) return (ENXIO); if ((err = mx25l_wait_for_device_ready(sc)) != 0) return (err); sc->sc_flags = ident->flags; if (sc->sc_flags & FL_ERASE_4K) sc->sc_erasesize = 4 * 1024; else if (sc->sc_flags & FL_ERASE_32K) sc->sc_erasesize = 32 * 1024; else sc->sc_erasesize = ident->sectorsize; if (sc->sc_flags & FL_ENABLE_4B_ADDR) { if ((err = mx25l_set_4b_mode(sc, CMD_ENTER_4B_MODE)) != 0) return (err); } else if (sc->sc_flags & FL_DISABLE_4B_ADDR) { if ((err = mx25l_set_4b_mode(sc, CMD_EXIT_4B_MODE)) != 0) return (err); } sc->sc_disk = disk_alloc(); sc->sc_disk->d_open = mx25l_open; sc->sc_disk->d_close = mx25l_close; sc->sc_disk->d_strategy = mx25l_strategy; sc->sc_disk->d_getattr = mx25l_getattr; sc->sc_disk->d_ioctl = mx25l_ioctl; sc->sc_disk->d_name = "flash/spi"; sc->sc_disk->d_drv1 = sc; sc->sc_disk->d_maxsize = DFLTPHYS; sc->sc_disk->d_sectorsize = MX25L_SECTORSIZE; sc->sc_disk->d_mediasize = ident->sectorsize * ident->sectorcount; sc->sc_disk->d_stripesize = sc->sc_erasesize; sc->sc_disk->d_unit = device_get_unit(sc->sc_dev); sc->sc_disk->d_dump = NULL; /* NB: no dumps */ strlcpy(sc->sc_disk->d_descr, ident->name, sizeof(sc->sc_disk->d_descr)); disk_create(sc->sc_disk, DISK_VERSION); bioq_init(&sc->sc_bio_queue); kproc_create(&mx25l_task, sc, &sc->sc_p, 0, 0, "task: mx25l flash"); sc->sc_taskstate = TSTATE_RUNNING; device_printf(sc->sc_dev, "device type %s, size %dK in %d sectors of %dK, erase size %dK\n", ident->name, ident->sectorcount * ident->sectorsize / 1024, ident->sectorcount, ident->sectorsize / 1024, sc->sc_erasesize / 1024); return (0); } static int mx25l_detach(device_t dev) { struct mx25l_softc *sc; int err; sc = device_get_softc(dev); err = 0; M25PXX_LOCK(sc); if (sc->sc_taskstate == TSTATE_RUNNING) { sc->sc_taskstate = TSTATE_STOPPING; wakeup(sc); while (err == 0 && sc->sc_taskstate != TSTATE_STOPPED) { err = msleep(sc, &sc->sc_mtx, 0, "mx25dt", hz * 3); if (err != 0) { sc->sc_taskstate = TSTATE_RUNNING; device_printf(sc->sc_dev, "Failed to stop queue task\n"); } } } M25PXX_UNLOCK(sc); if (err == 0 && sc->sc_taskstate == TSTATE_STOPPED) { disk_destroy(sc->sc_disk); bioq_flush(&sc->sc_bio_queue, NULL, ENXIO); M25PXX_LOCK_DESTROY(sc); } return (err); } static int mx25l_open(struct disk *dp) { return (0); } static int mx25l_close(struct disk *dp) { return (0); } static int mx25l_ioctl(struct disk *dp, u_long cmd, void *data, int fflag, struct thread *td) { return (EINVAL); } static void mx25l_strategy(struct bio *bp) { struct mx25l_softc *sc; sc = (struct mx25l_softc *)bp->bio_disk->d_drv1; M25PXX_LOCK(sc); bioq_disksort(&sc->sc_bio_queue, bp); wakeup(sc); M25PXX_UNLOCK(sc); } static int mx25l_getattr(struct bio *bp) { struct mx25l_softc *sc; device_t dev; if (bp->bio_disk == NULL || bp->bio_disk->d_drv1 == NULL) return (ENXIO); sc = bp->bio_disk->d_drv1; dev = sc->sc_dev; if (strcmp(bp->bio_attribute, "SPI::device") == 0) { if (bp->bio_length != sizeof(dev)) return (EFAULT); bcopy(&dev, bp->bio_data, sizeof(dev)); } else return (-1); return (0); } static void mx25l_task(void *arg) { struct mx25l_softc *sc = (struct mx25l_softc*)arg; struct bio *bp; device_t dev; for (;;) { dev = sc->sc_dev; M25PXX_LOCK(sc); do { if (sc->sc_taskstate == TSTATE_STOPPING) { sc->sc_taskstate = TSTATE_STOPPED; M25PXX_UNLOCK(sc); wakeup(sc); kproc_exit(0); } bp = bioq_first(&sc->sc_bio_queue); if (bp == NULL) msleep(sc, &sc->sc_mtx, PRIBIO, "mx25jq", 0); } while (bp == NULL); bioq_remove(&sc->sc_bio_queue, bp); M25PXX_UNLOCK(sc); switch (bp->bio_cmd) { case BIO_READ: bp->bio_error = mx25l_read(sc, bp->bio_offset, bp->bio_data, bp->bio_bcount); break; case BIO_WRITE: bp->bio_error = mx25l_write(sc, bp->bio_offset, bp->bio_data, bp->bio_bcount); break; default: bp->bio_error = EINVAL; } biodone(bp); } } static devclass_t mx25l_devclass; static device_method_t mx25l_methods[] = { /* Device interface */ DEVMETHOD(device_probe, mx25l_probe), DEVMETHOD(device_attach, mx25l_attach), DEVMETHOD(device_detach, mx25l_detach), { 0, 0 } }; static driver_t mx25l_driver = { "mx25l", mx25l_methods, sizeof(struct mx25l_softc), }; DRIVER_MODULE(mx25l, spibus, mx25l_driver, mx25l_devclass, 0, 0); MODULE_DEPEND(mx25l, spibus, 1, 1, 1);