/*-
* Copyright (c) 2017-2018 Ruslan Bukin
* All rights reserved.
*
* This software was developed by SRI International and the University of
* Cambridge Computer Laboratory under DARPA/AFRL contract FA8750-10-C-0237
* ("CTSRD"), as part of the DARPA CRASH research programme.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* Cadence Quad SPI Flash Controller driver.
* 4B-addressing mode supported only.
*/
#include
__FBSDID("$FreeBSD$");
#include "opt_platform.h"
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "qspi_if.h"
#define CQSPI_DEBUG
#undef CQSPI_DEBUG
#ifdef CQSPI_DEBUG
#define dprintf(fmt, ...) printf(fmt, ##__VA_ARGS__)
#else
#define dprintf(fmt, ...)
#endif
#define CQSPI_SECTORSIZE 512
#define TX_QUEUE_SIZE 16
#define RX_QUEUE_SIZE 16
#define READ4(_sc, _reg) bus_read_4((_sc)->res[0], _reg)
#define READ2(_sc, _reg) bus_read_2((_sc)->res[0], _reg)
#define READ1(_sc, _reg) bus_read_1((_sc)->res[0], _reg)
#define WRITE4(_sc, _reg, _val) bus_write_4((_sc)->res[0], _reg, _val)
#define WRITE2(_sc, _reg, _val) bus_write_2((_sc)->res[0], _reg, _val)
#define WRITE1(_sc, _reg, _val) bus_write_1((_sc)->res[0], _reg, _val)
#define READ_DATA_4(_sc, _reg) bus_read_4((_sc)->res[1], _reg)
#define READ_DATA_1(_sc, _reg) bus_read_1((_sc)->res[1], _reg)
#define WRITE_DATA_4(_sc, _reg, _val) bus_write_4((_sc)->res[1], _reg, _val)
#define WRITE_DATA_1(_sc, _reg, _val) bus_write_1((_sc)->res[1], _reg, _val)
struct cqspi_softc {
device_t dev;
struct resource *res[3];
bus_space_tag_t bst;
bus_space_handle_t bsh;
void *ih;
uint8_t read_op_done;
uint8_t write_op_done;
uint32_t fifo_depth;
uint32_t fifo_width;
uint32_t trigger_address;
uint32_t sram_phys;
/* xDMA */
xdma_controller_t *xdma_tx;
xdma_channel_t *xchan_tx;
void *ih_tx;
xdma_controller_t *xdma_rx;
xdma_channel_t *xchan_rx;
void *ih_rx;
struct intr_config_hook config_intrhook;
struct mtx sc_mtx;
};
#define CQSPI_LOCK(_sc) mtx_lock(&(_sc)->sc_mtx)
#define CQSPI_UNLOCK(_sc) mtx_unlock(&(_sc)->sc_mtx)
#define CQSPI_LOCK_INIT(_sc) \
mtx_init(&_sc->sc_mtx, device_get_nameunit(_sc->dev), \
"cqspi", MTX_DEF)
#define CQSPI_LOCK_DESTROY(_sc) mtx_destroy(&_sc->sc_mtx);
#define CQSPI_ASSERT_LOCKED(_sc) \
mtx_assert(&_sc->sc_mtx, MA_OWNED);
#define CQSPI_ASSERT_UNLOCKED(_sc) \
mtx_assert(&_sc->sc_mtx, MA_NOTOWNED);
static struct resource_spec cqspi_spec[] = {
{ SYS_RES_MEMORY, 0, RF_ACTIVE },
{ SYS_RES_MEMORY, 1, RF_ACTIVE },
{ SYS_RES_IRQ, 0, RF_ACTIVE },
{ -1, 0 }
};
static struct ofw_compat_data compat_data[] = {
{ "cdns,qspi-nor", 1 },
{ NULL, 0 },
};
static void
cqspi_intr(void *arg)
{
struct cqspi_softc *sc;
uint32_t pending;
sc = arg;
pending = READ4(sc, CQSPI_IRQSTAT);
dprintf("%s: IRQSTAT %x\n", __func__, pending);
if (pending & (IRQMASK_INDOPDONE | IRQMASK_INDXFRLVL |
IRQMASK_INDSRAMFULL)) {
/* TODO: PIO operation done */
}
WRITE4(sc, CQSPI_IRQSTAT, pending);
}
static int
cqspi_xdma_tx_intr(void *arg, xdma_transfer_status_t *status)
{
struct xdma_transfer_status st;
struct cqspi_softc *sc;
struct bio *bp;
int ret;
int deq;
sc = arg;
dprintf("%s\n", __func__);
deq = 0;
while (1) {
ret = xdma_dequeue_bio(sc->xchan_tx, &bp, &st);
if (ret != 0) {
break;
}
sc->write_op_done = 1;
deq++;
}
if (deq > 1)
device_printf(sc->dev,
"Warning: more than 1 tx bio dequeued\n");
wakeup(&sc->xdma_tx);
return (0);
}
static int
cqspi_xdma_rx_intr(void *arg, xdma_transfer_status_t *status)
{
struct xdma_transfer_status st;
struct cqspi_softc *sc;
struct bio *bp;
int ret;
int deq;
sc = arg;
dprintf("%s\n", __func__);
deq = 0;
while (1) {
ret = xdma_dequeue_bio(sc->xchan_rx, &bp, &st);
if (ret != 0) {
break;
}
sc->read_op_done = 1;
deq++;
}
if (deq > 1)
device_printf(sc->dev,
"Warning: more than 1 rx bio dequeued\n");
wakeup(&sc->xdma_rx);
return (0);
}
static int
cqspi_wait_for_completion(struct cqspi_softc *sc)
{
int timeout;
int i;
timeout = 10000;
for (i = timeout; i > 0; i--) {
if ((READ4(sc, CQSPI_FLASHCMD) & FLASHCMD_CMDEXECSTAT) == 0) {
break;
}
}
if (i == 0) {
device_printf(sc->dev, "%s: cmd timed out: %x\n",
__func__, READ4(sc, CQSPI_FLASHCMD));
return (-1);
}
return (0);
}
static int
cqspi_cmd_write_addr(struct cqspi_softc *sc, uint8_t cmd,
uint32_t addr, uint32_t len)
{
uint32_t reg;
int ret;
dprintf("%s: %x\n", __func__, cmd);
WRITE4(sc, CQSPI_FLASHCMDADDR, addr);
reg = (cmd << FLASHCMD_CMDOPCODE_S);
reg |= (FLASHCMD_ENCMDADDR);
reg |= ((len - 1) << FLASHCMD_NUMADDRBYTES_S);
WRITE4(sc, CQSPI_FLASHCMD, reg);
reg |= FLASHCMD_EXECCMD;
WRITE4(sc, CQSPI_FLASHCMD, reg);
ret = cqspi_wait_for_completion(sc);
return (ret);
}
static int
cqspi_cmd_write(struct cqspi_softc *sc, uint8_t cmd,
uint8_t *addr, uint32_t len)
{
uint32_t reg;
int ret;
reg = (cmd << FLASHCMD_CMDOPCODE_S);
WRITE4(sc, CQSPI_FLASHCMD, reg);
reg |= FLASHCMD_EXECCMD;
WRITE4(sc, CQSPI_FLASHCMD, reg);
ret = cqspi_wait_for_completion(sc);
return (ret);
}
static int
cqspi_cmd_read(struct cqspi_softc *sc, uint8_t cmd,
uint8_t *addr, uint32_t len)
{
uint32_t data;
uint32_t reg;
uint8_t *buf;
int ret;
int i;
if (len > 8) {
device_printf(sc->dev, "Failed to read data\n");
return (-1);
}
dprintf("%s: %x\n", __func__, cmd);
buf = (uint8_t *)addr;
reg = (cmd << FLASHCMD_CMDOPCODE_S);
reg |= ((len - 1) << FLASHCMD_NUMRDDATABYTES_S);
reg |= FLASHCMD_ENRDDATA;
WRITE4(sc, CQSPI_FLASHCMD, reg);
reg |= FLASHCMD_EXECCMD;
WRITE4(sc, CQSPI_FLASHCMD, reg);
ret = cqspi_wait_for_completion(sc);
if (ret != 0) {
device_printf(sc->dev, "%s: cmd failed: %x\n",
__func__, cmd);
return (ret);
}
data = READ4(sc, CQSPI_FLASHCMDRDDATALO);
for (i = 0; i < len; i++)
buf[i] = (data >> (i * 8)) & 0xff;
return (0);
}
static int
cqspi_wait_ready(struct cqspi_softc *sc)
{
uint8_t data;
do {
cqspi_cmd_read(sc, CMD_READ_STATUS, &data, 1);
} while (data & STATUS_WIP);
return (0);
}
static int
cqspi_write_reg(device_t dev, device_t child,
uint8_t opcode, uint8_t *addr, uint32_t len)
{
struct cqspi_softc *sc;
int ret;
sc = device_get_softc(dev);
ret = cqspi_cmd_write(sc, opcode, addr, len);
return (ret);
}
static int
cqspi_read_reg(device_t dev, device_t child,
uint8_t opcode, uint8_t *addr, uint32_t len)
{
struct cqspi_softc *sc;
int ret;
sc = device_get_softc(dev);
ret = cqspi_cmd_read(sc, opcode, addr, len);
return (ret);
}
static int
cqspi_wait_idle(struct cqspi_softc *sc)
{
uint32_t reg;
do {
reg = READ4(sc, CQSPI_CFG);
if (reg & CFG_IDLE) {
break;
}
} while (1);
return (0);
}
static int
cqspi_erase(device_t dev, device_t child, off_t offset)
{
struct cqspi_softc *sc;
sc = device_get_softc(dev);
cqspi_wait_idle(sc);
cqspi_wait_ready(sc);
cqspi_cmd_write(sc, CMD_WRITE_ENABLE, 0, 0);
cqspi_wait_idle(sc);
cqspi_wait_ready(sc);
cqspi_cmd_write_addr(sc, CMD_QUAD_SECTOR_ERASE, offset, 4);
cqspi_wait_idle(sc);
return (0);
}
static int
cqspi_write(device_t dev, device_t child, struct bio *bp,
off_t offset, caddr_t data, off_t count)
{
struct cqspi_softc *sc;
uint32_t reg;
dprintf("%s: offset 0x%llx count %lld bytes\n",
__func__, offset, count);
sc = device_get_softc(dev);
cqspi_wait_ready(sc);
cqspi_cmd_write(sc, CMD_WRITE_ENABLE, 0, 0);
cqspi_wait_idle(sc);
cqspi_wait_ready(sc);
cqspi_wait_idle(sc);
reg = DMAPER_NUMSGLREQBYTES_4;
reg |= DMAPER_NUMBURSTREQBYTES_4;
WRITE4(sc, CQSPI_DMAPER, reg);
WRITE4(sc, CQSPI_INDWRWATER, 64);
WRITE4(sc, CQSPI_INDWR, INDRD_IND_OPS_DONE_STATUS);
WRITE4(sc, CQSPI_INDWR, 0);
WRITE4(sc, CQSPI_INDWRCNT, count);
WRITE4(sc, CQSPI_INDWRSTADDR, offset);
reg = (0 << DEVWR_DUMMYWRCLKS_S);
reg |= DEVWR_DATA_WIDTH_QUAD;
reg |= DEVWR_ADDR_WIDTH_SINGLE;
reg |= (CMD_QUAD_PAGE_PROGRAM << DEVWR_WROPCODE_S);
WRITE4(sc, CQSPI_DEVWR, reg);
reg = DEVRD_DATA_WIDTH_QUAD;
reg |= DEVRD_ADDR_WIDTH_SINGLE;
reg |= DEVRD_INST_WIDTH_SINGLE;
WRITE4(sc, CQSPI_DEVRD, reg);
xdma_enqueue_bio(sc->xchan_tx, &bp,
sc->sram_phys, 4, 4, XDMA_MEM_TO_DEV);
xdma_queue_submit(sc->xchan_tx);
sc->write_op_done = 0;
WRITE4(sc, CQSPI_INDWR, INDRD_START);
while (sc->write_op_done == 0)
tsleep(&sc->xdma_tx, PCATCH | PZERO, "spi", hz/2);
cqspi_wait_idle(sc);
return (0);
}
static int
cqspi_read(device_t dev, device_t child, struct bio *bp,
off_t offset, caddr_t data, off_t count)
{
struct cqspi_softc *sc;
uint32_t reg;
sc = device_get_softc(dev);
dprintf("%s: offset 0x%llx count %lld bytes\n",
__func__, offset, count);
cqspi_wait_idle(sc);
reg = DMAPER_NUMSGLREQBYTES_4;
reg |= DMAPER_NUMBURSTREQBYTES_4;
WRITE4(sc, CQSPI_DMAPER, reg);
WRITE4(sc, CQSPI_INDRDWATER, 64);
WRITE4(sc, CQSPI_INDRD, INDRD_IND_OPS_DONE_STATUS);
WRITE4(sc, CQSPI_INDRD, 0);
WRITE4(sc, CQSPI_INDRDCNT, count);
WRITE4(sc, CQSPI_INDRDSTADDR, offset);
reg = (0 << DEVRD_DUMMYRDCLKS_S);
reg |= DEVRD_DATA_WIDTH_QUAD;
reg |= DEVRD_ADDR_WIDTH_SINGLE;
reg |= DEVRD_INST_WIDTH_SINGLE;
reg |= DEVRD_ENMODEBITS;
reg |= (CMD_READ_4B_QUAD_OUTPUT << DEVRD_RDOPCODE_S);
WRITE4(sc, CQSPI_DEVRD, reg);
WRITE4(sc, CQSPI_MODEBIT, 0xff);
WRITE4(sc, CQSPI_IRQMASK, 0);
xdma_enqueue_bio(sc->xchan_rx, &bp, sc->sram_phys, 4, 4,
XDMA_DEV_TO_MEM);
xdma_queue_submit(sc->xchan_rx);
sc->read_op_done = 0;
WRITE4(sc, CQSPI_INDRD, INDRD_START);
while (sc->read_op_done == 0)
tsleep(&sc->xdma_rx, PCATCH | PZERO, "spi", hz/2);
cqspi_wait_idle(sc);
return (0);
}
static int
cqspi_init(struct cqspi_softc *sc)
{
pcell_t dts_value[1];
phandle_t node;
uint32_t reg;
int len;
device_printf(sc->dev, "Module ID %x\n",
READ4(sc, CQSPI_MODULEID));
if ((node = ofw_bus_get_node(sc->dev)) == -1) {
return (ENXIO);
}
if ((len = OF_getproplen(node, "cdns,fifo-depth")) <= 0) {
return (ENXIO);
}
OF_getencprop(node, "cdns,fifo-depth", dts_value, len);
sc->fifo_depth = dts_value[0];
if ((len = OF_getproplen(node, "cdns,fifo-width")) <= 0) {
return (ENXIO);
}
OF_getencprop(node, "cdns,fifo-width", dts_value, len);
sc->fifo_width = dts_value[0];
if ((len = OF_getproplen(node, "cdns,trigger-address")) <= 0) {
return (ENXIO);
}
OF_getencprop(node, "cdns,trigger-address", dts_value, len);
sc->trigger_address = dts_value[0];
/* Disable controller */
reg = READ4(sc, CQSPI_CFG);
reg &= ~(CFG_EN);
WRITE4(sc, CQSPI_CFG, reg);
reg = READ4(sc, CQSPI_DEVSZ);
reg &= ~(DEVSZ_NUMADDRBYTES_M);
reg |= ((4 - 1) - DEVSZ_NUMADDRBYTES_S);
WRITE4(sc, CQSPI_DEVSZ, reg);
WRITE4(sc, CQSPI_SRAMPART, sc->fifo_depth/2);
/* TODO: calculate baud rate and delay values. */
reg = READ4(sc, CQSPI_CFG);
/* Configure baud rate */
reg &= ~(CFG_BAUD_M);
reg |= CFG_BAUD12;
reg |= CFG_ENDMA;
WRITE4(sc, CQSPI_CFG, reg);
reg = (3 << DELAY_NSS_S);
reg |= (3 << DELAY_BTWN_S);
reg |= (1 << DELAY_AFTER_S);
reg |= (1 << DELAY_INIT_S);
WRITE4(sc, CQSPI_DELAY, reg);
READ4(sc, CQSPI_RDDATACAP);
reg &= ~(RDDATACAP_DELAY_M);
reg |= (1 << RDDATACAP_DELAY_S);
WRITE4(sc, CQSPI_RDDATACAP, reg);
/* Enable controller */
reg = READ4(sc, CQSPI_CFG);
reg |= (CFG_EN);
WRITE4(sc, CQSPI_CFG, reg);
return (0);
}
static int
cqspi_add_devices(device_t dev)
{
phandle_t child, node;
device_t child_dev;
int error;
node = ofw_bus_get_node(dev);
for (child = OF_child(node); child != 0; child = OF_peer(child)) {
child_dev =
simplebus_add_device(dev, child, 0, NULL, -1, NULL);
if (child_dev == NULL) {
return (ENXIO);
}
error = device_probe_and_attach(child_dev);
if (error != 0) {
printf("can't probe and attach: %d\n", error);
}
}
return (0);
}
static void
cqspi_delayed_attach(void *arg)
{
struct cqspi_softc *sc;
sc = arg;
cqspi_add_devices(sc->dev);
bus_generic_attach(sc->dev);
config_intrhook_disestablish(&sc->config_intrhook);
}
static int
cqspi_probe(device_t dev)
{
if (!ofw_bus_status_okay(dev)) {
return (ENXIO);
}
if (!ofw_bus_search_compatible(dev, compat_data)->ocd_data) {
return (ENXIO);
}
device_set_desc(dev, "Cadence Quad SPI controller");
return (0);
}
static int
cqspi_attach(device_t dev)
{
struct cqspi_softc *sc;
uint32_t caps;
int error;
sc = device_get_softc(dev);
sc->dev = dev;
if (bus_alloc_resources(dev, cqspi_spec, sc->res)) {
device_printf(dev, "could not allocate resources\n");
return (ENXIO);
}
/* Memory interface */
sc->bst = rman_get_bustag(sc->res[0]);
sc->bsh = rman_get_bushandle(sc->res[0]);
sc->sram_phys = rman_get_start(sc->res[1]);
/* Setup interrupt handlers */
if (bus_setup_intr(sc->dev, sc->res[2], INTR_TYPE_BIO | INTR_MPSAFE,
NULL, cqspi_intr, sc, &sc->ih)) {
device_printf(sc->dev, "Unable to setup intr\n");
return (ENXIO);
}
CQSPI_LOCK_INIT(sc);
caps = 0;
/* Get xDMA controller. */
sc->xdma_tx = xdma_ofw_get(sc->dev, "tx");
if (sc->xdma_tx == NULL) {
device_printf(dev, "Can't find DMA controller.\n");
return (ENXIO);
}
sc->xdma_rx = xdma_ofw_get(sc->dev, "rx");
if (sc->xdma_rx == NULL) {
device_printf(dev, "Can't find DMA controller.\n");
return (ENXIO);
}
/* Alloc xDMA virtual channels. */
sc->xchan_tx = xdma_channel_alloc(sc->xdma_tx, caps);
if (sc->xchan_tx == NULL) {
device_printf(dev, "Can't alloc virtual DMA channel.\n");
return (ENXIO);
}
sc->xchan_rx = xdma_channel_alloc(sc->xdma_rx, caps);
if (sc->xchan_rx == NULL) {
device_printf(dev, "Can't alloc virtual DMA channel.\n");
return (ENXIO);
}
/* Setup xDMA interrupt handlers. */
error = xdma_setup_intr(sc->xchan_tx, 0, cqspi_xdma_tx_intr,
sc, &sc->ih_tx);
if (error) {
device_printf(sc->dev,
"Can't setup xDMA interrupt handler.\n");
return (ENXIO);
}
error = xdma_setup_intr(sc->xchan_rx, 0, cqspi_xdma_rx_intr,
sc, &sc->ih_rx);
if (error) {
device_printf(sc->dev,
"Can't setup xDMA interrupt handler.\n");
return (ENXIO);
}
xdma_prep_sg(sc->xchan_tx, TX_QUEUE_SIZE, maxphys, 8, 16, 0,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR);
xdma_prep_sg(sc->xchan_rx, TX_QUEUE_SIZE, maxphys, 8, 16, 0,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR);
cqspi_init(sc);
sc->config_intrhook.ich_func = cqspi_delayed_attach;
sc->config_intrhook.ich_arg = sc;
if (config_intrhook_establish(&sc->config_intrhook) != 0) {
device_printf(dev, "config_intrhook_establish failed\n");
return (ENOMEM);
}
return (0);
}
static int
cqspi_detach(device_t dev)
{
return (ENXIO);
}
static device_method_t cqspi_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, cqspi_probe),
DEVMETHOD(device_attach, cqspi_attach),
DEVMETHOD(device_detach, cqspi_detach),
/* Quad SPI Flash Interface */
DEVMETHOD(qspi_read_reg, cqspi_read_reg),
DEVMETHOD(qspi_write_reg, cqspi_write_reg),
DEVMETHOD(qspi_read, cqspi_read),
DEVMETHOD(qspi_write, cqspi_write),
DEVMETHOD(qspi_erase, cqspi_erase),
{ 0, 0 }
};
DEFINE_CLASS_1(cqspi, cqspi_driver, cqspi_methods,
sizeof(struct cqspi_softc), simplebus_driver);
DRIVER_MODULE(cqspi, simplebus, cqspi_driver, 0, 0);