/*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2022 Ruslan Bukin * Copyright (c) 2023 Arm Ltd * * This work was supported by Innovate UK project 105694, "Digital Security * by Design (DSbD) Technology Platform Prototype". * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "scmi.h" #include "scmi_protocols.h" #define SCMI_MAX_TOKEN 1024 #define SCMI_HDR_TOKEN_S 18 #define SCMI_HDR_TOKEN_BF (0x3fff) #define SCMI_HDR_TOKEN_M (SCMI_HDR_TOKEN_BF << SCMI_HDR_TOKEN_S) #define SCMI_HDR_PROTOCOL_ID_S 10 #define SCMI_HDR_PROTOCOL_ID_BF (0xff) #define SCMI_HDR_PROTOCOL_ID_M \ (SCMI_HDR_PROTOCOL_ID_BF << SCMI_HDR_PROTOCOL_ID_S) #define SCMI_HDR_MESSAGE_TYPE_S 8 #define SCMI_HDR_MESSAGE_TYPE_BF (0x3) #define SCMI_HDR_MESSAGE_TYPE_M \ (SCMI_HDR_MESSAGE_TYPE_BF << SCMI_HDR_MESSAGE_TYPE_S) #define SCMI_HDR_MESSAGE_ID_S 0 #define SCMI_HDR_MESSAGE_ID_BF (0xff) #define SCMI_HDR_MESSAGE_ID_M \ (SCMI_HDR_MESSAGE_ID_BF << SCMI_HDR_MESSAGE_ID_S) #define SCMI_MSG_TYPE_CMD 0 #define SCMI_MSG_TYPE_DRESP 2 #define SCMI_MSG_TYPE_NOTIF 3 #define SCMI_MSG_TYPE_CHECK(_h, _t) \ ((((_h) & SCMI_HDR_MESSAGE_TYPE_M) >> SCMI_HDR_MESSAGE_TYPE_S) == (_t)) #define SCMI_IS_MSG_TYPE_NOTIF(h) \ SCMI_MSG_TYPE_CHECK((h), SCMI_MSG_TYPE_NOTIF) #define SCMI_IS_MSG_TYPE_DRESP(h) \ SCMI_MSG_TYPE_CHECK((h), SCMI_MSG_TYPE_DRESP) #define SCMI_MSG_TOKEN(_hdr) \ (((_hdr) & SCMI_HDR_TOKEN_M) >> SCMI_HDR_TOKEN_S) struct scmi_req { int cnt; bool timed_out; bool use_polling; bool done; struct mtx mtx; LIST_ENTRY(scmi_req) next; int protocol_id; int message_id; int token; uint32_t header; struct scmi_msg msg; }; #define buf_to_msg(b) __containerof((b), struct scmi_msg, payld) #define msg_to_req(m) __containerof((m), struct scmi_req, msg) #define buf_to_req(b) msg_to_req(buf_to_msg(b)) LIST_HEAD(reqs_head, scmi_req); struct scmi_reqs_pool { struct mtx mtx; struct reqs_head head; }; BITSET_DEFINE(_scmi_tokens, SCMI_MAX_TOKEN); LIST_HEAD(inflight_head, scmi_req); #define REQHASH(_sc, _tk) \ (&((_sc)->trs->inflight_ht[(_tk) & (_sc)->trs->inflight_mask])) struct scmi_transport { unsigned long next_id; struct _scmi_tokens avail_tokens; struct inflight_head *inflight_ht; unsigned long inflight_mask; struct scmi_reqs_pool *chans[SCMI_CHAN_MAX]; struct mtx mtx; }; static int scmi_transport_init(struct scmi_softc *); static void scmi_transport_cleanup(struct scmi_softc *); static struct scmi_reqs_pool *scmi_reqs_pool_allocate(const int, const int); static void scmi_reqs_pool_free(struct scmi_reqs_pool *); static struct scmi_req *scmi_req_alloc(struct scmi_softc *, enum scmi_chan); static void scmi_req_free_unlocked(struct scmi_softc *, enum scmi_chan, struct scmi_req *); static void scmi_req_get(struct scmi_softc *, struct scmi_req *); static void scmi_req_put(struct scmi_softc *, struct scmi_req *); static int scmi_token_pick(struct scmi_softc *); static void scmi_token_release_unlocked(struct scmi_softc *, int); static int scmi_req_track_inflight(struct scmi_softc *, struct scmi_req *); static int scmi_req_drop_inflight(struct scmi_softc *, struct scmi_req *); static struct scmi_req *scmi_req_lookup_inflight(struct scmi_softc *, uint32_t); static int scmi_wait_for_response(struct scmi_softc *, struct scmi_req *, void **); static void scmi_process_response(struct scmi_softc *, uint32_t); int scmi_attach(device_t dev) { struct scmi_softc *sc; phandle_t node; int error; sc = device_get_softc(dev); sc->dev = dev; node = ofw_bus_get_node(dev); if (node == -1) return (ENXIO); simplebus_init(dev, node); error = scmi_transport_init(sc); if (error != 0) return (error); device_printf(dev, "Transport reply timeout initialized to %dms\n", sc->trs_desc.reply_timo_ms); /* * Allow devices to identify. */ bus_generic_probe(dev); /* * Now walk the OFW tree and attach top-level devices. */ for (node = OF_child(node); node > 0; node = OF_peer(node)) simplebus_add_device(dev, node, 0, NULL, -1, NULL); error = bus_generic_attach(dev); return (error); } static int scmi_detach(device_t dev) { struct scmi_softc *sc; sc = device_get_softc(dev); scmi_transport_cleanup(sc); return (0); } static device_method_t scmi_methods[] = { DEVMETHOD(device_attach, scmi_attach), DEVMETHOD(device_detach, scmi_detach), DEVMETHOD_END }; DEFINE_CLASS_1(scmi, scmi_driver, scmi_methods, sizeof(struct scmi_softc), simplebus_driver); DRIVER_MODULE(scmi, simplebus, scmi_driver, 0, 0); MODULE_VERSION(scmi, 1); static struct scmi_reqs_pool * scmi_reqs_pool_allocate(const int max_msg, const int max_payld_sz) { struct scmi_reqs_pool *rp; struct scmi_req *req; rp = malloc(sizeof(*rp), M_DEVBUF, M_ZERO | M_WAITOK); LIST_INIT(&rp->head); for (int i = 0; i < max_msg; i++) { req = malloc(sizeof(*req) + max_payld_sz, M_DEVBUF, M_ZERO | M_WAITOK); mtx_init(&req->mtx, "req", "SCMI", MTX_SPIN); LIST_INSERT_HEAD(&rp->head, req, next); } mtx_init(&rp->mtx, "reqs_pool", "SCMI", MTX_SPIN); return (rp); } static void scmi_reqs_pool_free(struct scmi_reqs_pool *rp) { struct scmi_req *req; LIST_FOREACH(req, &rp->head, next) { mtx_destroy(&req->mtx); free(req, M_DEVBUF); } mtx_destroy(&rp->mtx); free(rp, M_DEVBUF); } static int scmi_transport_init(struct scmi_softc *sc) { struct scmi_transport *trs; int ret; trs = malloc(sizeof(*trs), M_DEVBUF, M_ZERO | M_WAITOK); BIT_FILL(SCMI_MAX_TOKEN, &trs->avail_tokens); mtx_init(&trs->mtx, "tokens", "SCMI", MTX_SPIN); trs->inflight_ht = hashinit(SCMI_MAX_MSG, M_DEVBUF, &trs->inflight_mask); trs->chans[SCMI_CHAN_A2P] = scmi_reqs_pool_allocate(SCMI_MAX_MSG, SCMI_MAX_MSG_PAYLD_SIZE); if (trs->chans[SCMI_CHAN_A2P] == NULL) { free(trs, M_DEVBUF); return (ENOMEM); } trs->chans[SCMI_CHAN_P2A] = scmi_reqs_pool_allocate(SCMI_MAX_MSG, SCMI_MAX_MSG_PAYLD_SIZE); if (trs->chans[SCMI_CHAN_P2A] == NULL) { scmi_reqs_pool_free(trs->chans[SCMI_CHAN_A2P]); free(trs, M_DEVBUF); return (ENOMEM); } sc->trs = trs; ret = SCMI_TRANSPORT_INIT(sc->dev); if (ret != 0) { scmi_reqs_pool_free(trs->chans[SCMI_CHAN_A2P]); scmi_reqs_pool_free(trs->chans[SCMI_CHAN_P2A]); free(trs, M_DEVBUF); return (ret); } return (0); } static void scmi_transport_cleanup(struct scmi_softc *sc) { SCMI_TRANSPORT_CLEANUP(sc->dev); mtx_destroy(&sc->trs->mtx); hashdestroy(sc->trs->inflight_ht, M_DEVBUF, sc->trs->inflight_mask); scmi_reqs_pool_free(sc->trs->chans[SCMI_CHAN_A2P]); scmi_reqs_pool_free(sc->trs->chans[SCMI_CHAN_P2A]); free(sc->trs, M_DEVBUF); } static struct scmi_req * scmi_req_alloc(struct scmi_softc *sc, enum scmi_chan ch_idx) { struct scmi_reqs_pool *rp; struct scmi_req *req = NULL; rp = sc->trs->chans[ch_idx]; mtx_lock_spin(&rp->mtx); if (!LIST_EMPTY(&rp->head)) { req = LIST_FIRST(&rp->head); LIST_REMOVE_HEAD(&rp->head, next); } mtx_unlock_spin(&rp->mtx); if (req != NULL) refcount_init(&req->cnt, 1); return (req); } static void scmi_req_free_unlocked(struct scmi_softc *sc, enum scmi_chan ch_idx, struct scmi_req *req) { struct scmi_reqs_pool *rp; rp = sc->trs->chans[ch_idx]; mtx_lock_spin(&rp->mtx); req->timed_out = false; req->done = false; refcount_init(&req->cnt, 0); LIST_INSERT_HEAD(&rp->head, req, next); mtx_unlock_spin(&rp->mtx); } static void scmi_req_get(struct scmi_softc *sc, struct scmi_req *req) { bool ok; mtx_lock_spin(&req->mtx); ok = refcount_acquire_if_not_zero(&req->cnt); mtx_unlock_spin(&req->mtx); if (!ok) device_printf(sc->dev, "%s() -- BAD REFCOUNT\n", __func__); return; } static void scmi_req_put(struct scmi_softc *sc, struct scmi_req *req) { mtx_lock_spin(&req->mtx); if (!refcount_release_if_not_last(&req->cnt)) { bzero(&req->msg, sizeof(req->msg) + SCMI_MAX_MSG_PAYLD_SIZE); scmi_req_free_unlocked(sc, SCMI_CHAN_A2P, req); } mtx_unlock_spin(&req->mtx); } static int scmi_token_pick(struct scmi_softc *sc) { unsigned long next_msg_id, token; mtx_lock_spin(&sc->trs->mtx); /* * next_id is a monotonically increasing unsigned long that can be used * for tracing purposes; next_msg_id is a 10-bit sequence number derived * from it. */ next_msg_id = sc->trs->next_id++ & SCMI_HDR_TOKEN_BF; token = BIT_FFS_AT(SCMI_MAX_TOKEN, &sc->trs->avail_tokens, next_msg_id); /* TODO Account for wrap-arounds and holes */ if (token != 0) BIT_CLR(SCMI_MAX_TOKEN, token - 1, &sc->trs->avail_tokens); mtx_unlock_spin(&sc->trs->mtx); /* * BIT_FFS_AT returns 1-indexed values, so 0 means failure to find a * free slot: all possible SCMI messages are in-flight using all of the * SCMI_MAX_TOKEN sequence numbers. */ if (!token) return (-EBUSY); return ((int)(token - 1)); } static void scmi_token_release_unlocked(struct scmi_softc *sc, int token) { BIT_SET(SCMI_MAX_TOKEN, token, &sc->trs->avail_tokens); } static int scmi_finalize_req(struct scmi_softc *sc, struct scmi_req *req) { uint32_t header = 0; req->token = scmi_token_pick(sc); if (req->token < 0) return (EBUSY); header = req->message_id; header |= SCMI_MSG_TYPE_CMD << SCMI_HDR_MESSAGE_TYPE_S; header |= req->protocol_id << SCMI_HDR_PROTOCOL_ID_S; header |= req->token << SCMI_HDR_TOKEN_S; req->header = htole32(header); req->msg.hdr = htole32(header); return (0); } static int scmi_req_track_inflight(struct scmi_softc *sc, struct scmi_req *req) { int error; /* build hdr, pick token */ error = scmi_finalize_req(sc, req); if (error != 0) return (error); /* Bump refcount to get hold of this in-flight transaction */ scmi_req_get(sc, req); /* Register in the inflight hashtable */ mtx_lock_spin(&sc->trs->mtx); LIST_INSERT_HEAD(REQHASH(sc, req->token), req, next); mtx_unlock_spin(&sc->trs->mtx); return (0); } static int scmi_req_drop_inflight(struct scmi_softc *sc, struct scmi_req *req) { /* Remove from inflight hashtable at first ... */ mtx_lock_spin(&sc->trs->mtx); LIST_REMOVE(req, next); scmi_token_release_unlocked(sc, req->token); mtx_unlock_spin(&sc->trs->mtx); /* ...and drop refcount..potentially releasing *req */ scmi_req_put(sc, req); return (0); } static struct scmi_req * scmi_req_lookup_inflight(struct scmi_softc *sc, uint32_t hdr) { struct scmi_req *req = NULL; unsigned int token; token = SCMI_MSG_TOKEN(hdr); mtx_lock_spin(&sc->trs->mtx); LIST_FOREACH(req, REQHASH(sc, token), next) { if (req->token == token) break; } mtx_unlock_spin(&sc->trs->mtx); return (req); } static void scmi_process_response(struct scmi_softc *sc, uint32_t hdr) { bool timed_out = false; struct scmi_req *req; req = scmi_req_lookup_inflight(sc, hdr); if (req == NULL) { device_printf(sc->dev, "Unexpected reply with header |%X| - token: 0x%X Drop.\n", hdr, SCMI_MSG_TOKEN(hdr)); return; } mtx_lock_spin(&req->mtx); req->done = true; if (!req->timed_out) { /* * Consider the case in which a polled message is picked * by chance on the IRQ path on another CPU: setting poll_done * will terminate the other poll loop. */ if (!req->msg.polling) wakeup(req); else atomic_store_rel_int(&req->msg.poll_done, 1); } else { timed_out = true; } mtx_unlock_spin(&req->mtx); if (timed_out) device_printf(sc->dev, "Late reply for timed-out request - token: 0x%X. Ignore.\n", req->token); /* * In case of a late reply to a timed-out transaction this will * finally free the pending scmi_req */ scmi_req_drop_inflight(sc, req); } void scmi_rx_irq_callback(device_t dev, void *chan, uint32_t hdr) { struct scmi_softc *sc; sc = device_get_softc(dev); if (SCMI_IS_MSG_TYPE_NOTIF(hdr) || SCMI_IS_MSG_TYPE_DRESP(hdr)) { device_printf(dev, "DRESP/NOTIF unsupported. Drop.\n"); SCMI_CLEAR_CHANNEL(dev, chan); return; } scmi_process_response(sc, hdr); } static int scmi_wait_for_response(struct scmi_softc *sc, struct scmi_req *req, void **out) { int ret; if (req->msg.polling) { bool needs_drop; ret = SCMI_POLL_MSG(sc->dev, &req->msg, sc->trs_desc.reply_timo_ms); /* * Drop reference to successfully polled req unless it had * already also been processed on the IRQ path. * Addresses a possible race-condition between polling and * interrupt reception paths. */ mtx_lock_spin(&req->mtx); needs_drop = (ret == 0) && !req->done; mtx_unlock_spin(&req->mtx); if (needs_drop) scmi_req_drop_inflight(sc, req); if (ret == 0 && req->msg.hdr != req->header) { device_printf(sc->dev, "Malformed reply with header |%08X|. Expected: |%08X|Drop.\n", le32toh(req->msg.hdr), le32toh(req->header)); } } else { ret = tsleep(req, 0, "scmi_wait4", (sc->trs_desc.reply_timo_ms * hz) / 1000); /* Check for lost wakeups since there is no associated lock */ mtx_lock_spin(&req->mtx); if (ret != 0 && req->done) ret = 0; mtx_unlock_spin(&req->mtx); } if (ret == 0) { SCMI_COLLECT_REPLY(sc->dev, &req->msg); if (req->msg.payld[0] != 0) ret = req->msg.payld[0]; *out = &req->msg.payld[SCMI_MSG_HDR_SIZE]; } else { mtx_lock_spin(&req->mtx); req->timed_out = true; mtx_unlock_spin(&req->mtx); device_printf(sc->dev, "Request for token 0x%X timed-out.\n", req->token); } SCMI_TX_COMPLETE(sc->dev, NULL); return (ret); } void * scmi_buf_get(device_t dev, uint8_t protocol_id, uint8_t message_id, int tx_payld_sz, int rx_payld_sz) { struct scmi_softc *sc; struct scmi_req *req; sc = device_get_softc(dev); if (tx_payld_sz > SCMI_MAX_MSG_PAYLD_SIZE || rx_payld_sz > SCMI_MAX_MSG_REPLY_SIZE) { device_printf(dev, "Unsupported payload size. Drop.\n"); return (NULL); } /* Pick one from free list */ req = scmi_req_alloc(sc, SCMI_CHAN_A2P); if (req == NULL) return (NULL); req->protocol_id = protocol_id & SCMI_HDR_PROTOCOL_ID_BF; req->message_id = message_id & SCMI_HDR_MESSAGE_ID_BF; req->msg.tx_len = sizeof(req->msg.hdr) + tx_payld_sz; req->msg.rx_len = rx_payld_sz ? rx_payld_sz + 2 * sizeof(uint32_t) : SCMI_MAX_MSG_SIZE; return (&req->msg.payld[0]); } void scmi_buf_put(device_t dev, void *buf) { struct scmi_softc *sc; struct scmi_req *req; sc = device_get_softc(dev); req = buf_to_req(buf); scmi_req_put(sc, req); } int scmi_request(device_t dev, void *in, void **out) { struct scmi_softc *sc; struct scmi_req *req; int error; sc = device_get_softc(dev); req = buf_to_req(in); req->msg.polling = (cold || sc->trs_desc.no_completion_irq || req->use_polling); /* Set inflight and send using transport specific method - refc-2 */ error = scmi_req_track_inflight(sc, req); if (error != 0) return (error); error = SCMI_XFER_MSG(sc->dev, &req->msg); if (error != 0) { scmi_req_drop_inflight(sc, req); return (error); } return (scmi_wait_for_response(sc, req, out)); }