/*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 2007 Sepherosa Ziehau. All rights reserved. * * This code is derived from software contributed to The DragonFly Project * by Sepherosa Ziehau * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name of The DragonFly Project nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific, prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $DragonFly: src/sys/dev/netif/et/if_et.c,v 1.10 2008/05/18 07:47:14 sephe Exp $ */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "miibus_if.h" MODULE_DEPEND(et, pci, 1, 1, 1); MODULE_DEPEND(et, ether, 1, 1, 1); MODULE_DEPEND(et, miibus, 1, 1, 1); /* Tunables. */ static int msi_disable = 0; TUNABLE_INT("hw.et.msi_disable", &msi_disable); #define ET_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP) static int et_probe(device_t); static int et_attach(device_t); static int et_detach(device_t); static int et_shutdown(device_t); static int et_suspend(device_t); static int et_resume(device_t); static int et_miibus_readreg(device_t, int, int); static int et_miibus_writereg(device_t, int, int, int); static void et_miibus_statchg(device_t); static void et_init_locked(struct et_softc *); static void et_init(void *); static int et_ioctl(struct ifnet *, u_long, caddr_t); static void et_start_locked(struct ifnet *); static void et_start(struct ifnet *); static int et_watchdog(struct et_softc *); static int et_ifmedia_upd_locked(struct ifnet *); static int et_ifmedia_upd(struct ifnet *); static void et_ifmedia_sts(struct ifnet *, struct ifmediareq *); static uint64_t et_get_counter(struct ifnet *, ift_counter); static void et_add_sysctls(struct et_softc *); static int et_sysctl_rx_intr_npkts(SYSCTL_HANDLER_ARGS); static int et_sysctl_rx_intr_delay(SYSCTL_HANDLER_ARGS); static void et_intr(void *); static void et_rxeof(struct et_softc *); static void et_txeof(struct et_softc *); static int et_dma_alloc(struct et_softc *); static void et_dma_free(struct et_softc *); static void et_dma_map_addr(void *, bus_dma_segment_t *, int, int); static int et_dma_ring_alloc(struct et_softc *, bus_size_t, bus_size_t, bus_dma_tag_t *, uint8_t **, bus_dmamap_t *, bus_addr_t *, const char *); static void et_dma_ring_free(struct et_softc *, bus_dma_tag_t *, uint8_t **, bus_dmamap_t, bus_addr_t *); static void et_init_tx_ring(struct et_softc *); static int et_init_rx_ring(struct et_softc *); static void et_free_tx_ring(struct et_softc *); static void et_free_rx_ring(struct et_softc *); static int et_encap(struct et_softc *, struct mbuf **); static int et_newbuf_cluster(struct et_rxbuf_data *, int); static int et_newbuf_hdr(struct et_rxbuf_data *, int); static void et_rxbuf_discard(struct et_rxbuf_data *, int); static void et_stop(struct et_softc *); static int et_chip_init(struct et_softc *); static void et_chip_attach(struct et_softc *); static void et_init_mac(struct et_softc *); static void et_init_rxmac(struct et_softc *); static void et_init_txmac(struct et_softc *); static int et_init_rxdma(struct et_softc *); static int et_init_txdma(struct et_softc *); static int et_start_rxdma(struct et_softc *); static int et_start_txdma(struct et_softc *); static int et_stop_rxdma(struct et_softc *); static int et_stop_txdma(struct et_softc *); static void et_reset(struct et_softc *); static int et_bus_config(struct et_softc *); static void et_get_eaddr(device_t, uint8_t[]); static void et_setmulti(struct et_softc *); static void et_tick(void *); static void et_stats_update(struct et_softc *); static const struct et_dev { uint16_t vid; uint16_t did; const char *desc; } et_devices[] = { { PCI_VENDOR_LUCENT, PCI_PRODUCT_LUCENT_ET1310, "Agere ET1310 Gigabit Ethernet" }, { PCI_VENDOR_LUCENT, PCI_PRODUCT_LUCENT_ET1310_FAST, "Agere ET1310 Fast Ethernet" }, { 0, 0, NULL } }; static device_method_t et_methods[] = { DEVMETHOD(device_probe, et_probe), DEVMETHOD(device_attach, et_attach), DEVMETHOD(device_detach, et_detach), DEVMETHOD(device_shutdown, et_shutdown), DEVMETHOD(device_suspend, et_suspend), DEVMETHOD(device_resume, et_resume), DEVMETHOD(miibus_readreg, et_miibus_readreg), DEVMETHOD(miibus_writereg, et_miibus_writereg), DEVMETHOD(miibus_statchg, et_miibus_statchg), DEVMETHOD_END }; static driver_t et_driver = { "et", et_methods, sizeof(struct et_softc) }; DRIVER_MODULE(et, pci, et_driver, 0, 0); MODULE_PNP_INFO("U16:vendor;U16:device;D:#", pci, et, et_devices, nitems(et_devices) - 1); DRIVER_MODULE(miibus, et, miibus_driver, 0, 0); static int et_rx_intr_npkts = 32; static int et_rx_intr_delay = 20; /* x10 usec */ static int et_tx_intr_nsegs = 126; static uint32_t et_timer = 1000 * 1000 * 1000; /* nanosec */ TUNABLE_INT("hw.et.timer", &et_timer); TUNABLE_INT("hw.et.rx_intr_npkts", &et_rx_intr_npkts); TUNABLE_INT("hw.et.rx_intr_delay", &et_rx_intr_delay); TUNABLE_INT("hw.et.tx_intr_nsegs", &et_tx_intr_nsegs); static int et_probe(device_t dev) { const struct et_dev *d; uint16_t did, vid; vid = pci_get_vendor(dev); did = pci_get_device(dev); for (d = et_devices; d->desc != NULL; ++d) { if (vid == d->vid && did == d->did) { device_set_desc(dev, d->desc); return (BUS_PROBE_DEFAULT); } } return (ENXIO); } static int et_attach(device_t dev) { struct et_softc *sc; struct ifnet *ifp; uint8_t eaddr[ETHER_ADDR_LEN]; uint32_t pmcfg; int cap, error, msic; sc = device_get_softc(dev); sc->dev = dev; mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, MTX_DEF); callout_init_mtx(&sc->sc_tick, &sc->sc_mtx, 0); ifp = sc->ifp = if_alloc(IFT_ETHER); if (ifp == NULL) { device_printf(dev, "can not if_alloc()\n"); error = ENOSPC; goto fail; } /* * Initialize tunables */ sc->sc_rx_intr_npkts = et_rx_intr_npkts; sc->sc_rx_intr_delay = et_rx_intr_delay; sc->sc_tx_intr_nsegs = et_tx_intr_nsegs; sc->sc_timer = et_timer; /* Enable bus mastering */ pci_enable_busmaster(dev); /* * Allocate IO memory */ sc->sc_mem_rid = PCIR_BAR(0); sc->sc_mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->sc_mem_rid, RF_ACTIVE); if (sc->sc_mem_res == NULL) { device_printf(dev, "can't allocate IO memory\n"); return (ENXIO); } msic = 0; if (pci_find_cap(dev, PCIY_EXPRESS, &cap) == 0) { sc->sc_expcap = cap; sc->sc_flags |= ET_FLAG_PCIE; msic = pci_msi_count(dev); if (bootverbose) device_printf(dev, "MSI count: %d\n", msic); } if (msic > 0 && msi_disable == 0) { msic = 1; if (pci_alloc_msi(dev, &msic) == 0) { if (msic == 1) { device_printf(dev, "Using %d MSI message\n", msic); sc->sc_flags |= ET_FLAG_MSI; } else pci_release_msi(dev); } } /* * Allocate IRQ */ if ((sc->sc_flags & ET_FLAG_MSI) == 0) { sc->sc_irq_rid = 0; sc->sc_irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->sc_irq_rid, RF_SHAREABLE | RF_ACTIVE); } else { sc->sc_irq_rid = 1; sc->sc_irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->sc_irq_rid, RF_ACTIVE); } if (sc->sc_irq_res == NULL) { device_printf(dev, "can't allocate irq\n"); error = ENXIO; goto fail; } if (pci_get_device(dev) == PCI_PRODUCT_LUCENT_ET1310_FAST) sc->sc_flags |= ET_FLAG_FASTETHER; error = et_bus_config(sc); if (error) goto fail; et_get_eaddr(dev, eaddr); /* Take PHY out of COMA and enable clocks. */ pmcfg = ET_PM_SYSCLK_GATE | ET_PM_TXCLK_GATE | ET_PM_RXCLK_GATE; if ((sc->sc_flags & ET_FLAG_FASTETHER) == 0) pmcfg |= EM_PM_GIGEPHY_ENB; CSR_WRITE_4(sc, ET_PM, pmcfg); et_reset(sc); error = et_dma_alloc(sc); if (error) goto fail; ifp->if_softc = sc; if_initname(ifp, device_get_name(dev), device_get_unit(dev)); ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_init = et_init; ifp->if_ioctl = et_ioctl; ifp->if_start = et_start; ifp->if_get_counter = et_get_counter; ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_VLAN_MTU; ifp->if_capenable = ifp->if_capabilities; ifp->if_snd.ifq_drv_maxlen = ET_TX_NDESC - 1; IFQ_SET_MAXLEN(&ifp->if_snd, ET_TX_NDESC - 1); IFQ_SET_READY(&ifp->if_snd); et_chip_attach(sc); error = mii_attach(dev, &sc->sc_miibus, ifp, et_ifmedia_upd, et_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, MIIF_DOPAUSE); if (error) { device_printf(dev, "attaching PHYs failed\n"); goto fail; } ether_ifattach(ifp, eaddr); /* Tell the upper layer(s) we support long frames. */ ifp->if_hdrlen = sizeof(struct ether_vlan_header); error = bus_setup_intr(dev, sc->sc_irq_res, INTR_TYPE_NET | INTR_MPSAFE, NULL, et_intr, sc, &sc->sc_irq_handle); if (error) { ether_ifdetach(ifp); device_printf(dev, "can't setup intr\n"); goto fail; } et_add_sysctls(sc); return (0); fail: et_detach(dev); return (error); } static int et_detach(device_t dev) { struct et_softc *sc; sc = device_get_softc(dev); if (device_is_attached(dev)) { ether_ifdetach(sc->ifp); ET_LOCK(sc); et_stop(sc); ET_UNLOCK(sc); callout_drain(&sc->sc_tick); } if (sc->sc_miibus != NULL) device_delete_child(dev, sc->sc_miibus); bus_generic_detach(dev); if (sc->sc_irq_handle != NULL) bus_teardown_intr(dev, sc->sc_irq_res, sc->sc_irq_handle); if (sc->sc_irq_res != NULL) bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->sc_irq_res), sc->sc_irq_res); if ((sc->sc_flags & ET_FLAG_MSI) != 0) pci_release_msi(dev); if (sc->sc_mem_res != NULL) bus_release_resource(dev, SYS_RES_MEMORY, rman_get_rid(sc->sc_mem_res), sc->sc_mem_res); if (sc->ifp != NULL) if_free(sc->ifp); et_dma_free(sc); mtx_destroy(&sc->sc_mtx); return (0); } static int et_shutdown(device_t dev) { struct et_softc *sc; sc = device_get_softc(dev); ET_LOCK(sc); et_stop(sc); ET_UNLOCK(sc); return (0); } static int et_miibus_readreg(device_t dev, int phy, int reg) { struct et_softc *sc; uint32_t val; int i, ret; sc = device_get_softc(dev); /* Stop any pending operations */ CSR_WRITE_4(sc, ET_MII_CMD, 0); val = (phy << ET_MII_ADDR_PHY_SHIFT) & ET_MII_ADDR_PHY_MASK; val |= (reg << ET_MII_ADDR_REG_SHIFT) & ET_MII_ADDR_REG_MASK; CSR_WRITE_4(sc, ET_MII_ADDR, val); /* Start reading */ CSR_WRITE_4(sc, ET_MII_CMD, ET_MII_CMD_READ); #define NRETRY 50 for (i = 0; i < NRETRY; ++i) { val = CSR_READ_4(sc, ET_MII_IND); if ((val & (ET_MII_IND_BUSY | ET_MII_IND_INVALID)) == 0) break; DELAY(50); } if (i == NRETRY) { if_printf(sc->ifp, "read phy %d, reg %d timed out\n", phy, reg); ret = 0; goto back; } #undef NRETRY val = CSR_READ_4(sc, ET_MII_STAT); ret = val & ET_MII_STAT_VALUE_MASK; back: /* Make sure that the current operation is stopped */ CSR_WRITE_4(sc, ET_MII_CMD, 0); return (ret); } static int et_miibus_writereg(device_t dev, int phy, int reg, int val0) { struct et_softc *sc; uint32_t val; int i; sc = device_get_softc(dev); /* Stop any pending operations */ CSR_WRITE_4(sc, ET_MII_CMD, 0); val = (phy << ET_MII_ADDR_PHY_SHIFT) & ET_MII_ADDR_PHY_MASK; val |= (reg << ET_MII_ADDR_REG_SHIFT) & ET_MII_ADDR_REG_MASK; CSR_WRITE_4(sc, ET_MII_ADDR, val); /* Start writing */ CSR_WRITE_4(sc, ET_MII_CTRL, (val0 << ET_MII_CTRL_VALUE_SHIFT) & ET_MII_CTRL_VALUE_MASK); #define NRETRY 100 for (i = 0; i < NRETRY; ++i) { val = CSR_READ_4(sc, ET_MII_IND); if ((val & ET_MII_IND_BUSY) == 0) break; DELAY(50); } if (i == NRETRY) { if_printf(sc->ifp, "write phy %d, reg %d timed out\n", phy, reg); et_miibus_readreg(dev, phy, reg); } #undef NRETRY /* Make sure that the current operation is stopped */ CSR_WRITE_4(sc, ET_MII_CMD, 0); return (0); } static void et_miibus_statchg(device_t dev) { struct et_softc *sc; struct mii_data *mii; struct ifnet *ifp; uint32_t cfg1, cfg2, ctrl; int i; sc = device_get_softc(dev); mii = device_get_softc(sc->sc_miibus); ifp = sc->ifp; if (mii == NULL || ifp == NULL || (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) return; sc->sc_flags &= ~ET_FLAG_LINK; if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) == (IFM_ACTIVE | IFM_AVALID)) { switch (IFM_SUBTYPE(mii->mii_media_active)) { case IFM_10_T: case IFM_100_TX: sc->sc_flags |= ET_FLAG_LINK; break; case IFM_1000_T: if ((sc->sc_flags & ET_FLAG_FASTETHER) == 0) sc->sc_flags |= ET_FLAG_LINK; break; } } /* XXX Stop TX/RX MAC? */ if ((sc->sc_flags & ET_FLAG_LINK) == 0) return; /* Program MACs with resolved speed/duplex/flow-control. */ ctrl = CSR_READ_4(sc, ET_MAC_CTRL); ctrl &= ~(ET_MAC_CTRL_GHDX | ET_MAC_CTRL_MODE_MII); cfg1 = CSR_READ_4(sc, ET_MAC_CFG1); cfg1 &= ~(ET_MAC_CFG1_TXFLOW | ET_MAC_CFG1_RXFLOW | ET_MAC_CFG1_LOOPBACK); cfg2 = CSR_READ_4(sc, ET_MAC_CFG2); cfg2 &= ~(ET_MAC_CFG2_MODE_MII | ET_MAC_CFG2_MODE_GMII | ET_MAC_CFG2_FDX | ET_MAC_CFG2_BIGFRM); cfg2 |= ET_MAC_CFG2_LENCHK | ET_MAC_CFG2_CRC | ET_MAC_CFG2_PADCRC | ((7 << ET_MAC_CFG2_PREAMBLE_LEN_SHIFT) & ET_MAC_CFG2_PREAMBLE_LEN_MASK); if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) cfg2 |= ET_MAC_CFG2_MODE_GMII; else { cfg2 |= ET_MAC_CFG2_MODE_MII; ctrl |= ET_MAC_CTRL_MODE_MII; } if (IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) { cfg2 |= ET_MAC_CFG2_FDX; /* * Controller lacks automatic TX pause frame * generation so it should be handled by driver. * Even though driver can send pause frame with * arbitrary pause time, controller does not * provide a way that tells how many free RX * buffers are available in controller. This * limitation makes it hard to generate XON frame * in time on driver side so don't enable TX flow * control. */ #ifdef notyet if (IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) cfg1 |= ET_MAC_CFG1_TXFLOW; #endif if (IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) cfg1 |= ET_MAC_CFG1_RXFLOW; } else ctrl |= ET_MAC_CTRL_GHDX; CSR_WRITE_4(sc, ET_MAC_CTRL, ctrl); CSR_WRITE_4(sc, ET_MAC_CFG2, cfg2); cfg1 |= ET_MAC_CFG1_TXEN | ET_MAC_CFG1_RXEN; CSR_WRITE_4(sc, ET_MAC_CFG1, cfg1); #define NRETRY 50 for (i = 0; i < NRETRY; ++i) { cfg1 = CSR_READ_4(sc, ET_MAC_CFG1); if ((cfg1 & (ET_MAC_CFG1_SYNC_TXEN | ET_MAC_CFG1_SYNC_RXEN)) == (ET_MAC_CFG1_SYNC_TXEN | ET_MAC_CFG1_SYNC_RXEN)) break; DELAY(100); } if (i == NRETRY) if_printf(ifp, "can't enable RX/TX\n"); sc->sc_flags |= ET_FLAG_TXRX_ENABLED; #undef NRETRY } static int et_ifmedia_upd_locked(struct ifnet *ifp) { struct et_softc *sc; struct mii_data *mii; struct mii_softc *miisc; sc = ifp->if_softc; mii = device_get_softc(sc->sc_miibus); LIST_FOREACH(miisc, &mii->mii_phys, mii_list) PHY_RESET(miisc); return (mii_mediachg(mii)); } static int et_ifmedia_upd(struct ifnet *ifp) { struct et_softc *sc; int res; sc = ifp->if_softc; ET_LOCK(sc); res = et_ifmedia_upd_locked(ifp); ET_UNLOCK(sc); return (res); } static void et_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) { struct et_softc *sc; struct mii_data *mii; sc = ifp->if_softc; ET_LOCK(sc); if ((ifp->if_flags & IFF_UP) == 0) { ET_UNLOCK(sc); return; } mii = device_get_softc(sc->sc_miibus); mii_pollstat(mii); ifmr->ifm_active = mii->mii_media_active; ifmr->ifm_status = mii->mii_media_status; ET_UNLOCK(sc); } static void et_stop(struct et_softc *sc) { struct ifnet *ifp; ET_LOCK_ASSERT(sc); ifp = sc->ifp; callout_stop(&sc->sc_tick); /* Disable interrupts. */ CSR_WRITE_4(sc, ET_INTR_MASK, 0xffffffff); CSR_WRITE_4(sc, ET_MAC_CFG1, CSR_READ_4(sc, ET_MAC_CFG1) & ~( ET_MAC_CFG1_TXEN | ET_MAC_CFG1_RXEN)); DELAY(100); et_stop_rxdma(sc); et_stop_txdma(sc); et_stats_update(sc); et_free_tx_ring(sc); et_free_rx_ring(sc); sc->sc_tx = 0; sc->sc_tx_intr = 0; sc->sc_flags &= ~ET_FLAG_TXRX_ENABLED; sc->watchdog_timer = 0; ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); } static int et_bus_config(struct et_softc *sc) { uint32_t val, max_plsz; uint16_t ack_latency, replay_timer; /* * Test whether EEPROM is valid * NOTE: Read twice to get the correct value */ pci_read_config(sc->dev, ET_PCIR_EEPROM_STATUS, 1); val = pci_read_config(sc->dev, ET_PCIR_EEPROM_STATUS, 1); if (val & ET_PCIM_EEPROM_STATUS_ERROR) { device_printf(sc->dev, "EEPROM status error 0x%02x\n", val); return (ENXIO); } /* TODO: LED */ if ((sc->sc_flags & ET_FLAG_PCIE) == 0) return (0); /* * Configure ACK latency and replay timer according to * max playload size */ val = pci_read_config(sc->dev, sc->sc_expcap + PCIER_DEVICE_CAP, 4); max_plsz = val & PCIEM_CAP_MAX_PAYLOAD; switch (max_plsz) { case ET_PCIV_DEVICE_CAPS_PLSZ_128: ack_latency = ET_PCIV_ACK_LATENCY_128; replay_timer = ET_PCIV_REPLAY_TIMER_128; break; case ET_PCIV_DEVICE_CAPS_PLSZ_256: ack_latency = ET_PCIV_ACK_LATENCY_256; replay_timer = ET_PCIV_REPLAY_TIMER_256; break; default: ack_latency = pci_read_config(sc->dev, ET_PCIR_ACK_LATENCY, 2); replay_timer = pci_read_config(sc->dev, ET_PCIR_REPLAY_TIMER, 2); device_printf(sc->dev, "ack latency %u, replay timer %u\n", ack_latency, replay_timer); break; } if (ack_latency != 0) { pci_write_config(sc->dev, ET_PCIR_ACK_LATENCY, ack_latency, 2); pci_write_config(sc->dev, ET_PCIR_REPLAY_TIMER, replay_timer, 2); } /* * Set L0s and L1 latency timer to 2us */ val = pci_read_config(sc->dev, ET_PCIR_L0S_L1_LATENCY, 4); val &= ~(PCIEM_LINK_CAP_L0S_EXIT | PCIEM_LINK_CAP_L1_EXIT); /* L0s exit latency : 2us */ val |= 0x00005000; /* L1 exit latency : 2us */ val |= 0x00028000; pci_write_config(sc->dev, ET_PCIR_L0S_L1_LATENCY, val, 4); /* * Set max read request size to 2048 bytes */ pci_set_max_read_req(sc->dev, 2048); return (0); } static void et_get_eaddr(device_t dev, uint8_t eaddr[]) { uint32_t val; int i; val = pci_read_config(dev, ET_PCIR_MAC_ADDR0, 4); for (i = 0; i < 4; ++i) eaddr[i] = (val >> (8 * i)) & 0xff; val = pci_read_config(dev, ET_PCIR_MAC_ADDR1, 2); for (; i < ETHER_ADDR_LEN; ++i) eaddr[i] = (val >> (8 * (i - 4))) & 0xff; } static void et_reset(struct et_softc *sc) { CSR_WRITE_4(sc, ET_MAC_CFG1, ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC | ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC | ET_MAC_CFG1_SIM_RST | ET_MAC_CFG1_SOFT_RST); CSR_WRITE_4(sc, ET_SWRST, ET_SWRST_TXDMA | ET_SWRST_RXDMA | ET_SWRST_TXMAC | ET_SWRST_RXMAC | ET_SWRST_MAC | ET_SWRST_MAC_STAT | ET_SWRST_MMC); CSR_WRITE_4(sc, ET_MAC_CFG1, ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC | ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC); CSR_WRITE_4(sc, ET_MAC_CFG1, 0); /* Disable interrupts. */ CSR_WRITE_4(sc, ET_INTR_MASK, 0xffffffff); } struct et_dmamap_arg { bus_addr_t et_busaddr; }; static void et_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) { struct et_dmamap_arg *ctx; if (error) return; KASSERT(nseg == 1, ("%s: %d segments returned!", __func__, nseg)); ctx = arg; ctx->et_busaddr = segs->ds_addr; } static int et_dma_ring_alloc(struct et_softc *sc, bus_size_t alignment, bus_size_t maxsize, bus_dma_tag_t *tag, uint8_t **ring, bus_dmamap_t *map, bus_addr_t *paddr, const char *msg) { struct et_dmamap_arg ctx; int error; error = bus_dma_tag_create(sc->sc_dtag, alignment, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, maxsize, 1, maxsize, 0, NULL, NULL, tag); if (error != 0) { device_printf(sc->dev, "could not create %s dma tag\n", msg); return (error); } /* Allocate DMA'able memory for ring. */ error = bus_dmamem_alloc(*tag, (void **)ring, BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, map); if (error != 0) { device_printf(sc->dev, "could not allocate DMA'able memory for %s\n", msg); return (error); } /* Load the address of the ring. */ ctx.et_busaddr = 0; error = bus_dmamap_load(*tag, *map, *ring, maxsize, et_dma_map_addr, &ctx, BUS_DMA_NOWAIT); if (error != 0) { device_printf(sc->dev, "could not load DMA'able memory for %s\n", msg); return (error); } *paddr = ctx.et_busaddr; return (0); } static void et_dma_ring_free(struct et_softc *sc, bus_dma_tag_t *tag, uint8_t **ring, bus_dmamap_t map, bus_addr_t *paddr) { if (*paddr != 0) { bus_dmamap_unload(*tag, map); *paddr = 0; } if (*ring != NULL) { bus_dmamem_free(*tag, *ring, map); *ring = NULL; } if (*tag) { bus_dma_tag_destroy(*tag); *tag = NULL; } } static int et_dma_alloc(struct et_softc *sc) { struct et_txdesc_ring *tx_ring; struct et_rxdesc_ring *rx_ring; struct et_rxstat_ring *rxst_ring; struct et_rxstatus_data *rxsd; struct et_rxbuf_data *rbd; struct et_txbuf_data *tbd; struct et_txstatus_data *txsd; int i, error; error = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL, &sc->sc_dtag); if (error != 0) { device_printf(sc->dev, "could not allocate parent dma tag\n"); return (error); } /* TX ring. */ tx_ring = &sc->sc_tx_ring; error = et_dma_ring_alloc(sc, ET_RING_ALIGN, ET_TX_RING_SIZE, &tx_ring->tr_dtag, (uint8_t **)&tx_ring->tr_desc, &tx_ring->tr_dmap, &tx_ring->tr_paddr, "TX ring"); if (error) return (error); /* TX status block. */ txsd = &sc->sc_tx_status; error = et_dma_ring_alloc(sc, ET_STATUS_ALIGN, sizeof(uint32_t), &txsd->txsd_dtag, (uint8_t **)&txsd->txsd_status, &txsd->txsd_dmap, &txsd->txsd_paddr, "TX status block"); if (error) return (error); /* RX ring 0, used as to recive small sized frames. */ rx_ring = &sc->sc_rx_ring[0]; error = et_dma_ring_alloc(sc, ET_RING_ALIGN, ET_RX_RING_SIZE, &rx_ring->rr_dtag, (uint8_t **)&rx_ring->rr_desc, &rx_ring->rr_dmap, &rx_ring->rr_paddr, "RX ring 0"); rx_ring->rr_posreg = ET_RX_RING0_POS; if (error) return (error); /* RX ring 1, used as to store normal sized frames. */ rx_ring = &sc->sc_rx_ring[1]; error = et_dma_ring_alloc(sc, ET_RING_ALIGN, ET_RX_RING_SIZE, &rx_ring->rr_dtag, (uint8_t **)&rx_ring->rr_desc, &rx_ring->rr_dmap, &rx_ring->rr_paddr, "RX ring 1"); rx_ring->rr_posreg = ET_RX_RING1_POS; if (error) return (error); /* RX stat ring. */ rxst_ring = &sc->sc_rxstat_ring; error = et_dma_ring_alloc(sc, ET_RING_ALIGN, ET_RXSTAT_RING_SIZE, &rxst_ring->rsr_dtag, (uint8_t **)&rxst_ring->rsr_stat, &rxst_ring->rsr_dmap, &rxst_ring->rsr_paddr, "RX stat ring"); if (error) return (error); /* RX status block. */ rxsd = &sc->sc_rx_status; error = et_dma_ring_alloc(sc, ET_STATUS_ALIGN, sizeof(struct et_rxstatus), &rxsd->rxsd_dtag, (uint8_t **)&rxsd->rxsd_status, &rxsd->rxsd_dmap, &rxsd->rxsd_paddr, "RX status block"); if (error) return (error); /* Create parent DMA tag for mbufs. */ error = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL, &sc->sc_mbuf_dtag); if (error != 0) { device_printf(sc->dev, "could not allocate parent dma tag for mbuf\n"); return (error); } /* Create DMA tag for mini RX mbufs to use RX ring 0. */ error = bus_dma_tag_create(sc->sc_mbuf_dtag, 1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MHLEN, 1, MHLEN, 0, NULL, NULL, &sc->sc_rx_mini_tag); if (error) { device_printf(sc->dev, "could not create mini RX dma tag\n"); return (error); } /* Create DMA tag for standard RX mbufs to use RX ring 1. */ error = bus_dma_tag_create(sc->sc_mbuf_dtag, 1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1, MCLBYTES, 0, NULL, NULL, &sc->sc_rx_tag); if (error) { device_printf(sc->dev, "could not create RX dma tag\n"); return (error); } /* Create DMA tag for TX mbufs. */ error = bus_dma_tag_create(sc->sc_mbuf_dtag, 1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES * ET_NSEG_MAX, ET_NSEG_MAX, MCLBYTES, 0, NULL, NULL, &sc->sc_tx_tag); if (error) { device_printf(sc->dev, "could not create TX dma tag\n"); return (error); } /* Initialize RX ring 0. */ rbd = &sc->sc_rx_data[0]; rbd->rbd_bufsize = ET_RXDMA_CTRL_RING0_128; rbd->rbd_newbuf = et_newbuf_hdr; rbd->rbd_discard = et_rxbuf_discard; rbd->rbd_softc = sc; rbd->rbd_ring = &sc->sc_rx_ring[0]; /* Create DMA maps for mini RX buffers, ring 0. */ for (i = 0; i < ET_RX_NDESC; i++) { error = bus_dmamap_create(sc->sc_rx_mini_tag, 0, &rbd->rbd_buf[i].rb_dmap); if (error) { device_printf(sc->dev, "could not create DMA map for mini RX mbufs\n"); return (error); } } /* Create a spare DMA map for mini RX buffers, ring 0. */ error = bus_dmamap_create(sc->sc_rx_mini_tag, 0, &sc->sc_rx_mini_sparemap); if (error) { device_printf(sc->dev, "could not create spare DMA map for mini RX mbuf\n"); return (error); } /* Initialize RX ring 1. */ rbd = &sc->sc_rx_data[1]; rbd->rbd_bufsize = ET_RXDMA_CTRL_RING1_2048; rbd->rbd_newbuf = et_newbuf_cluster; rbd->rbd_discard = et_rxbuf_discard; rbd->rbd_softc = sc; rbd->rbd_ring = &sc->sc_rx_ring[1]; /* Create DMA maps for standard RX buffers, ring 1. */ for (i = 0; i < ET_RX_NDESC; i++) { error = bus_dmamap_create(sc->sc_rx_tag, 0, &rbd->rbd_buf[i].rb_dmap); if (error) { device_printf(sc->dev, "could not create DMA map for mini RX mbufs\n"); return (error); } } /* Create a spare DMA map for standard RX buffers, ring 1. */ error = bus_dmamap_create(sc->sc_rx_tag, 0, &sc->sc_rx_sparemap); if (error) { device_printf(sc->dev, "could not create spare DMA map for RX mbuf\n"); return (error); } /* Create DMA maps for TX buffers. */ tbd = &sc->sc_tx_data; for (i = 0; i < ET_TX_NDESC; i++) { error = bus_dmamap_create(sc->sc_tx_tag, 0, &tbd->tbd_buf[i].tb_dmap); if (error) { device_printf(sc->dev, "could not create DMA map for TX mbufs\n"); return (error); } } return (0); } static void et_dma_free(struct et_softc *sc) { struct et_txdesc_ring *tx_ring; struct et_rxdesc_ring *rx_ring; struct et_txstatus_data *txsd; struct et_rxstat_ring *rxst_ring; struct et_rxbuf_data *rbd; struct et_txbuf_data *tbd; int i; /* Destroy DMA maps for mini RX buffers, ring 0. */ rbd = &sc->sc_rx_data[0]; for (i = 0; i < ET_RX_NDESC; i++) { if (rbd->rbd_buf[i].rb_dmap) { bus_dmamap_destroy(sc->sc_rx_mini_tag, rbd->rbd_buf[i].rb_dmap); rbd->rbd_buf[i].rb_dmap = NULL; } } if (sc->sc_rx_mini_sparemap) { bus_dmamap_destroy(sc->sc_rx_mini_tag, sc->sc_rx_mini_sparemap); sc->sc_rx_mini_sparemap = NULL; } if (sc->sc_rx_mini_tag) { bus_dma_tag_destroy(sc->sc_rx_mini_tag); sc->sc_rx_mini_tag = NULL; } /* Destroy DMA maps for standard RX buffers, ring 1. */ rbd = &sc->sc_rx_data[1]; for (i = 0; i < ET_RX_NDESC; i++) { if (rbd->rbd_buf[i].rb_dmap) { bus_dmamap_destroy(sc->sc_rx_tag, rbd->rbd_buf[i].rb_dmap); rbd->rbd_buf[i].rb_dmap = NULL; } } if (sc->sc_rx_sparemap) { bus_dmamap_destroy(sc->sc_rx_tag, sc->sc_rx_sparemap); sc->sc_rx_sparemap = NULL; } if (sc->sc_rx_tag) { bus_dma_tag_destroy(sc->sc_rx_tag); sc->sc_rx_tag = NULL; } /* Destroy DMA maps for TX buffers. */ tbd = &sc->sc_tx_data; for (i = 0; i < ET_TX_NDESC; i++) { if (tbd->tbd_buf[i].tb_dmap) { bus_dmamap_destroy(sc->sc_tx_tag, tbd->tbd_buf[i].tb_dmap); tbd->tbd_buf[i].tb_dmap = NULL; } } if (sc->sc_tx_tag) { bus_dma_tag_destroy(sc->sc_tx_tag); sc->sc_tx_tag = NULL; } /* Destroy mini RX ring, ring 0. */ rx_ring = &sc->sc_rx_ring[0]; et_dma_ring_free(sc, &rx_ring->rr_dtag, (void *)&rx_ring->rr_desc, rx_ring->rr_dmap, &rx_ring->rr_paddr); /* Destroy standard RX ring, ring 1. */ rx_ring = &sc->sc_rx_ring[1]; et_dma_ring_free(sc, &rx_ring->rr_dtag, (void *)&rx_ring->rr_desc, rx_ring->rr_dmap, &rx_ring->rr_paddr); /* Destroy RX stat ring. */ rxst_ring = &sc->sc_rxstat_ring; et_dma_ring_free(sc, &rxst_ring->rsr_dtag, (void *)&rxst_ring->rsr_stat, rxst_ring->rsr_dmap, &rxst_ring->rsr_paddr); /* Destroy RX status block. */ et_dma_ring_free(sc, &rxst_ring->rsr_dtag, (void *)&rxst_ring->rsr_stat, rxst_ring->rsr_dmap, &rxst_ring->rsr_paddr); /* Destroy TX ring. */ tx_ring = &sc->sc_tx_ring; et_dma_ring_free(sc, &tx_ring->tr_dtag, (void *)&tx_ring->tr_desc, tx_ring->tr_dmap, &tx_ring->tr_paddr); /* Destroy TX status block. */ txsd = &sc->sc_tx_status; et_dma_ring_free(sc, &txsd->txsd_dtag, (void *)&txsd->txsd_status, txsd->txsd_dmap, &txsd->txsd_paddr); /* Destroy the parent tag. */ if (sc->sc_dtag) { bus_dma_tag_destroy(sc->sc_dtag); sc->sc_dtag = NULL; } } static void et_chip_attach(struct et_softc *sc) { uint32_t val; /* * Perform minimal initialization */ /* Disable loopback */ CSR_WRITE_4(sc, ET_LOOPBACK, 0); /* Reset MAC */ CSR_WRITE_4(sc, ET_MAC_CFG1, ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC | ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC | ET_MAC_CFG1_SIM_RST | ET_MAC_CFG1_SOFT_RST); /* * Setup half duplex mode */ val = (10 << ET_MAC_HDX_ALT_BEB_TRUNC_SHIFT) | (15 << ET_MAC_HDX_REXMIT_MAX_SHIFT) | (55 << ET_MAC_HDX_COLLWIN_SHIFT) | ET_MAC_HDX_EXC_DEFER; CSR_WRITE_4(sc, ET_MAC_HDX, val); /* Clear MAC control */ CSR_WRITE_4(sc, ET_MAC_CTRL, 0); /* Reset MII */ CSR_WRITE_4(sc, ET_MII_CFG, ET_MII_CFG_CLKRST); /* Bring MAC out of reset state */ CSR_WRITE_4(sc, ET_MAC_CFG1, 0); /* Enable memory controllers */ CSR_WRITE_4(sc, ET_MMC_CTRL, ET_MMC_CTRL_ENABLE); } static void et_intr(void *xsc) { struct et_softc *sc; struct ifnet *ifp; uint32_t status; sc = xsc; ET_LOCK(sc); ifp = sc->ifp; if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) goto done; status = CSR_READ_4(sc, ET_INTR_STATUS); if ((status & ET_INTRS) == 0) goto done; /* Disable further interrupts. */ CSR_WRITE_4(sc, ET_INTR_MASK, 0xffffffff); if (status & (ET_INTR_RXDMA_ERROR | ET_INTR_TXDMA_ERROR)) { device_printf(sc->dev, "DMA error(0x%08x) -- resetting\n", status); ifp->if_drv_flags &= ~IFF_DRV_RUNNING; et_init_locked(sc); ET_UNLOCK(sc); return; } if (status & ET_INTR_RXDMA) et_rxeof(sc); if (status & (ET_INTR_TXDMA | ET_INTR_TIMER)) et_txeof(sc); if (status & ET_INTR_TIMER) CSR_WRITE_4(sc, ET_TIMER, sc->sc_timer); if (ifp->if_drv_flags & IFF_DRV_RUNNING) { CSR_WRITE_4(sc, ET_INTR_MASK, ~ET_INTRS); if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) et_start_locked(ifp); } done: ET_UNLOCK(sc); } static void et_init_locked(struct et_softc *sc) { struct ifnet *ifp; int error; ET_LOCK_ASSERT(sc); ifp = sc->ifp; if (ifp->if_drv_flags & IFF_DRV_RUNNING) return; et_stop(sc); et_reset(sc); et_init_tx_ring(sc); error = et_init_rx_ring(sc); if (error) return; error = et_chip_init(sc); if (error) goto fail; /* * Start TX/RX DMA engine */ error = et_start_rxdma(sc); if (error) return; error = et_start_txdma(sc); if (error) return; /* Enable interrupts. */ CSR_WRITE_4(sc, ET_INTR_MASK, ~ET_INTRS); CSR_WRITE_4(sc, ET_TIMER, sc->sc_timer); ifp->if_drv_flags |= IFF_DRV_RUNNING; ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; sc->sc_flags &= ~ET_FLAG_LINK; et_ifmedia_upd_locked(ifp); callout_reset(&sc->sc_tick, hz, et_tick, sc); fail: if (error) et_stop(sc); } static void et_init(void *xsc) { struct et_softc *sc = xsc; ET_LOCK(sc); et_init_locked(sc); ET_UNLOCK(sc); } static int et_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct et_softc *sc; struct mii_data *mii; struct ifreq *ifr; int error, mask, max_framelen; sc = ifp->if_softc; ifr = (struct ifreq *)data; error = 0; /* XXX LOCKSUSED */ switch (cmd) { case SIOCSIFFLAGS: ET_LOCK(sc); if (ifp->if_flags & IFF_UP) { if (ifp->if_drv_flags & IFF_DRV_RUNNING) { if ((ifp->if_flags ^ sc->sc_if_flags) & (IFF_ALLMULTI | IFF_PROMISC | IFF_BROADCAST)) et_setmulti(sc); } else { et_init_locked(sc); } } else { if (ifp->if_drv_flags & IFF_DRV_RUNNING) et_stop(sc); } sc->sc_if_flags = ifp->if_flags; ET_UNLOCK(sc); break; case SIOCSIFMEDIA: case SIOCGIFMEDIA: mii = device_get_softc(sc->sc_miibus); error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd); break; case SIOCADDMULTI: case SIOCDELMULTI: if (ifp->if_drv_flags & IFF_DRV_RUNNING) { ET_LOCK(sc); et_setmulti(sc); ET_UNLOCK(sc); } break; case SIOCSIFMTU: ET_LOCK(sc); #if 0 if (sc->sc_flags & ET_FLAG_JUMBO) max_framelen = ET_JUMBO_FRAMELEN; else #endif max_framelen = MCLBYTES - 1; if (ET_FRAMELEN(ifr->ifr_mtu) > max_framelen) { error = EOPNOTSUPP; ET_UNLOCK(sc); break; } if (ifp->if_mtu != ifr->ifr_mtu) { ifp->if_mtu = ifr->ifr_mtu; if (ifp->if_drv_flags & IFF_DRV_RUNNING) { ifp->if_drv_flags &= ~IFF_DRV_RUNNING; et_init_locked(sc); } } ET_UNLOCK(sc); break; case SIOCSIFCAP: ET_LOCK(sc); mask = ifr->ifr_reqcap ^ ifp->if_capenable; if ((mask & IFCAP_TXCSUM) != 0 && (IFCAP_TXCSUM & ifp->if_capabilities) != 0) { ifp->if_capenable ^= IFCAP_TXCSUM; if ((IFCAP_TXCSUM & ifp->if_capenable) != 0) ifp->if_hwassist |= ET_CSUM_FEATURES; else ifp->if_hwassist &= ~ET_CSUM_FEATURES; } ET_UNLOCK(sc); break; default: error = ether_ioctl(ifp, cmd, data); break; } return (error); } static void et_start_locked(struct ifnet *ifp) { struct et_softc *sc; struct mbuf *m_head = NULL; struct et_txdesc_ring *tx_ring; struct et_txbuf_data *tbd; uint32_t tx_ready_pos; int enq; sc = ifp->if_softc; ET_LOCK_ASSERT(sc); if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != IFF_DRV_RUNNING || (sc->sc_flags & (ET_FLAG_LINK | ET_FLAG_TXRX_ENABLED)) != (ET_FLAG_LINK | ET_FLAG_TXRX_ENABLED)) return; /* * Driver does not request TX completion interrupt for every * queued frames to prevent generating excessive interrupts. * This means driver may wait for TX completion interrupt even * though some frames were successfully transmitted. Reclaiming * transmitted frames will ensure driver see all available * descriptors. */ tbd = &sc->sc_tx_data; if (tbd->tbd_used > (ET_TX_NDESC * 2) / 3) et_txeof(sc); for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) { if (tbd->tbd_used + ET_NSEG_SPARE >= ET_TX_NDESC) { ifp->if_drv_flags |= IFF_DRV_OACTIVE; break; } IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); if (m_head == NULL) break; if (et_encap(sc, &m_head)) { if (m_head == NULL) { if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); break; } IFQ_DRV_PREPEND(&ifp->if_snd, m_head); if (tbd->tbd_used > 0) ifp->if_drv_flags |= IFF_DRV_OACTIVE; break; } enq++; ETHER_BPF_MTAP(ifp, m_head); } if (enq > 0) { tx_ring = &sc->sc_tx_ring; bus_dmamap_sync(tx_ring->tr_dtag, tx_ring->tr_dmap, BUS_DMASYNC_PREWRITE); tx_ready_pos = tx_ring->tr_ready_index & ET_TX_READY_POS_INDEX_MASK; if (tx_ring->tr_ready_wrap) tx_ready_pos |= ET_TX_READY_POS_WRAP; CSR_WRITE_4(sc, ET_TX_READY_POS, tx_ready_pos); sc->watchdog_timer = 5; } } static void et_start(struct ifnet *ifp) { struct et_softc *sc; sc = ifp->if_softc; ET_LOCK(sc); et_start_locked(ifp); ET_UNLOCK(sc); } static int et_watchdog(struct et_softc *sc) { uint32_t status; ET_LOCK_ASSERT(sc); if (sc->watchdog_timer == 0 || --sc->watchdog_timer) return (0); bus_dmamap_sync(sc->sc_tx_status.txsd_dtag, sc->sc_tx_status.txsd_dmap, BUS_DMASYNC_POSTREAD); status = le32toh(*(sc->sc_tx_status.txsd_status)); if_printf(sc->ifp, "watchdog timed out (0x%08x) -- resetting\n", status); if_inc_counter(sc->ifp, IFCOUNTER_OERRORS, 1); sc->ifp->if_drv_flags &= ~IFF_DRV_RUNNING; et_init_locked(sc); return (EJUSTRETURN); } static int et_stop_rxdma(struct et_softc *sc) { CSR_WRITE_4(sc, ET_RXDMA_CTRL, ET_RXDMA_CTRL_HALT | ET_RXDMA_CTRL_RING1_ENABLE); DELAY(5); if ((CSR_READ_4(sc, ET_RXDMA_CTRL) & ET_RXDMA_CTRL_HALTED) == 0) { if_printf(sc->ifp, "can't stop RX DMA engine\n"); return (ETIMEDOUT); } return (0); } static int et_stop_txdma(struct et_softc *sc) { CSR_WRITE_4(sc, ET_TXDMA_CTRL, ET_TXDMA_CTRL_HALT | ET_TXDMA_CTRL_SINGLE_EPKT); return (0); } static void et_free_tx_ring(struct et_softc *sc) { struct et_txbuf_data *tbd; struct et_txbuf *tb; int i; tbd = &sc->sc_tx_data; for (i = 0; i < ET_TX_NDESC; ++i) { tb = &tbd->tbd_buf[i]; if (tb->tb_mbuf != NULL) { bus_dmamap_sync(sc->sc_tx_tag, tb->tb_dmap, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_mbuf_dtag, tb->tb_dmap); m_freem(tb->tb_mbuf); tb->tb_mbuf = NULL; } } } static void et_free_rx_ring(struct et_softc *sc) { struct et_rxbuf_data *rbd; struct et_rxdesc_ring *rx_ring; struct et_rxbuf *rb; int i; /* Ring 0 */ rx_ring = &sc->sc_rx_ring[0]; rbd = &sc->sc_rx_data[0]; for (i = 0; i < ET_RX_NDESC; ++i) { rb = &rbd->rbd_buf[i]; if (rb->rb_mbuf != NULL) { bus_dmamap_sync(sc->sc_rx_mini_tag, rx_ring->rr_dmap, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->sc_rx_mini_tag, rb->rb_dmap); m_freem(rb->rb_mbuf); rb->rb_mbuf = NULL; } } /* Ring 1 */ rx_ring = &sc->sc_rx_ring[1]; rbd = &sc->sc_rx_data[1]; for (i = 0; i < ET_RX_NDESC; ++i) { rb = &rbd->rbd_buf[i]; if (rb->rb_mbuf != NULL) { bus_dmamap_sync(sc->sc_rx_tag, rx_ring->rr_dmap, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->sc_rx_tag, rb->rb_dmap); m_freem(rb->rb_mbuf); rb->rb_mbuf = NULL; } } } static u_int et_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt) { uint32_t h, *hp, *hash = arg; h = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN); h = (h & 0x3f800000) >> 23; hp = &hash[0]; if (h >= 32 && h < 64) { h -= 32; hp = &hash[1]; } else if (h >= 64 && h < 96) { h -= 64; hp = &hash[2]; } else if (h >= 96) { h -= 96; hp = &hash[3]; } *hp |= (1 << h); return (1); } static void et_setmulti(struct et_softc *sc) { struct ifnet *ifp; uint32_t hash[4] = { 0, 0, 0, 0 }; uint32_t rxmac_ctrl, pktfilt; int i, count; ET_LOCK_ASSERT(sc); ifp = sc->ifp; pktfilt = CSR_READ_4(sc, ET_PKTFILT); rxmac_ctrl = CSR_READ_4(sc, ET_RXMAC_CTRL); pktfilt &= ~(ET_PKTFILT_BCAST | ET_PKTFILT_MCAST | ET_PKTFILT_UCAST); if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) { rxmac_ctrl |= ET_RXMAC_CTRL_NO_PKTFILT; goto back; } count = if_foreach_llmaddr(ifp, et_hash_maddr, &hash); for (i = 0; i < 4; ++i) CSR_WRITE_4(sc, ET_MULTI_HASH + (i * 4), hash[i]); if (count > 0) pktfilt |= ET_PKTFILT_MCAST; rxmac_ctrl &= ~ET_RXMAC_CTRL_NO_PKTFILT; back: CSR_WRITE_4(sc, ET_PKTFILT, pktfilt); CSR_WRITE_4(sc, ET_RXMAC_CTRL, rxmac_ctrl); } static int et_chip_init(struct et_softc *sc) { struct ifnet *ifp; uint32_t rxq_end; int error, frame_len, rxmem_size; ifp = sc->ifp; /* * Split 16Kbytes internal memory between TX and RX * according to frame length. */ frame_len = ET_FRAMELEN(ifp->if_mtu); if (frame_len < 2048) { rxmem_size = ET_MEM_RXSIZE_DEFAULT; } else if (frame_len <= ET_RXMAC_CUT_THRU_FRMLEN) { rxmem_size = ET_MEM_SIZE / 2; } else { rxmem_size = ET_MEM_SIZE - roundup(frame_len + ET_MEM_TXSIZE_EX, ET_MEM_UNIT); } rxq_end = ET_QUEUE_ADDR(rxmem_size); CSR_WRITE_4(sc, ET_RXQUEUE_START, ET_QUEUE_ADDR_START); CSR_WRITE_4(sc, ET_RXQUEUE_END, rxq_end); CSR_WRITE_4(sc, ET_TXQUEUE_START, rxq_end + 1); CSR_WRITE_4(sc, ET_TXQUEUE_END, ET_QUEUE_ADDR_END); /* No loopback */ CSR_WRITE_4(sc, ET_LOOPBACK, 0); /* Clear MSI configure */ if ((sc->sc_flags & ET_FLAG_MSI) == 0) CSR_WRITE_4(sc, ET_MSI_CFG, 0); /* Disable timer */ CSR_WRITE_4(sc, ET_TIMER, 0); /* Initialize MAC */ et_init_mac(sc); /* Enable memory controllers */ CSR_WRITE_4(sc, ET_MMC_CTRL, ET_MMC_CTRL_ENABLE); /* Initialize RX MAC */ et_init_rxmac(sc); /* Initialize TX MAC */ et_init_txmac(sc); /* Initialize RX DMA engine */ error = et_init_rxdma(sc); if (error) return (error); /* Initialize TX DMA engine */ error = et_init_txdma(sc); if (error) return (error); return (0); } static void et_init_tx_ring(struct et_softc *sc) { struct et_txdesc_ring *tx_ring; struct et_txbuf_data *tbd; struct et_txstatus_data *txsd; tx_ring = &sc->sc_tx_ring; bzero(tx_ring->tr_desc, ET_TX_RING_SIZE); bus_dmamap_sync(tx_ring->tr_dtag, tx_ring->tr_dmap, BUS_DMASYNC_PREWRITE); tbd = &sc->sc_tx_data; tbd->tbd_start_index = 0; tbd->tbd_start_wrap = 0; tbd->tbd_used = 0; txsd = &sc->sc_tx_status; bzero(txsd->txsd_status, sizeof(uint32_t)); bus_dmamap_sync(txsd->txsd_dtag, txsd->txsd_dmap, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); } static int et_init_rx_ring(struct et_softc *sc) { struct et_rxstatus_data *rxsd; struct et_rxstat_ring *rxst_ring; struct et_rxbuf_data *rbd; int i, error, n; for (n = 0; n < ET_RX_NRING; ++n) { rbd = &sc->sc_rx_data[n]; for (i = 0; i < ET_RX_NDESC; ++i) { error = rbd->rbd_newbuf(rbd, i); if (error) { if_printf(sc->ifp, "%d ring %d buf, " "newbuf failed: %d\n", n, i, error); return (error); } } } rxsd = &sc->sc_rx_status; bzero(rxsd->rxsd_status, sizeof(struct et_rxstatus)); bus_dmamap_sync(rxsd->rxsd_dtag, rxsd->rxsd_dmap, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); rxst_ring = &sc->sc_rxstat_ring; bzero(rxst_ring->rsr_stat, ET_RXSTAT_RING_SIZE); bus_dmamap_sync(rxst_ring->rsr_dtag, rxst_ring->rsr_dmap, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); return (0); } static int et_init_rxdma(struct et_softc *sc) { struct et_rxstatus_data *rxsd; struct et_rxstat_ring *rxst_ring; struct et_rxdesc_ring *rx_ring; int error; error = et_stop_rxdma(sc); if (error) { if_printf(sc->ifp, "can't init RX DMA engine\n"); return (error); } /* * Install RX status */ rxsd = &sc->sc_rx_status; CSR_WRITE_4(sc, ET_RX_STATUS_HI, ET_ADDR_HI(rxsd->rxsd_paddr)); CSR_WRITE_4(sc, ET_RX_STATUS_LO, ET_ADDR_LO(rxsd->rxsd_paddr)); /* * Install RX stat ring */ rxst_ring = &sc->sc_rxstat_ring; CSR_WRITE_4(sc, ET_RXSTAT_HI, ET_ADDR_HI(rxst_ring->rsr_paddr)); CSR_WRITE_4(sc, ET_RXSTAT_LO, ET_ADDR_LO(rxst_ring->rsr_paddr)); CSR_WRITE_4(sc, ET_RXSTAT_CNT, ET_RX_NSTAT - 1); CSR_WRITE_4(sc, ET_RXSTAT_POS, 0); CSR_WRITE_4(sc, ET_RXSTAT_MINCNT, ((ET_RX_NSTAT * 15) / 100) - 1); /* Match ET_RXSTAT_POS */ rxst_ring->rsr_index = 0; rxst_ring->rsr_wrap = 0; /* * Install the 2nd RX descriptor ring */ rx_ring = &sc->sc_rx_ring[1]; CSR_WRITE_4(sc, ET_RX_RING1_HI, ET_ADDR_HI(rx_ring->rr_paddr)); CSR_WRITE_4(sc, ET_RX_RING1_LO, ET_ADDR_LO(rx_ring->rr_paddr)); CSR_WRITE_4(sc, ET_RX_RING1_CNT, ET_RX_NDESC - 1); CSR_WRITE_4(sc, ET_RX_RING1_POS, ET_RX_RING1_POS_WRAP); CSR_WRITE_4(sc, ET_RX_RING1_MINCNT, ((ET_RX_NDESC * 15) / 100) - 1); /* Match ET_RX_RING1_POS */ rx_ring->rr_index = 0; rx_ring->rr_wrap = 1; /* * Install the 1st RX descriptor ring */ rx_ring = &sc->sc_rx_ring[0]; CSR_WRITE_4(sc, ET_RX_RING0_HI, ET_ADDR_HI(rx_ring->rr_paddr)); CSR_WRITE_4(sc, ET_RX_RING0_LO, ET_ADDR_LO(rx_ring->rr_paddr)); CSR_WRITE_4(sc, ET_RX_RING0_CNT, ET_RX_NDESC - 1); CSR_WRITE_4(sc, ET_RX_RING0_POS, ET_RX_RING0_POS_WRAP); CSR_WRITE_4(sc, ET_RX_RING0_MINCNT, ((ET_RX_NDESC * 15) / 100) - 1); /* Match ET_RX_RING0_POS */ rx_ring->rr_index = 0; rx_ring->rr_wrap = 1; /* * RX intr moderation */ CSR_WRITE_4(sc, ET_RX_INTR_NPKTS, sc->sc_rx_intr_npkts); CSR_WRITE_4(sc, ET_RX_INTR_DELAY, sc->sc_rx_intr_delay); return (0); } static int et_init_txdma(struct et_softc *sc) { struct et_txdesc_ring *tx_ring; struct et_txstatus_data *txsd; int error; error = et_stop_txdma(sc); if (error) { if_printf(sc->ifp, "can't init TX DMA engine\n"); return (error); } /* * Install TX descriptor ring */ tx_ring = &sc->sc_tx_ring; CSR_WRITE_4(sc, ET_TX_RING_HI, ET_ADDR_HI(tx_ring->tr_paddr)); CSR_WRITE_4(sc, ET_TX_RING_LO, ET_ADDR_LO(tx_ring->tr_paddr)); CSR_WRITE_4(sc, ET_TX_RING_CNT, ET_TX_NDESC - 1); /* * Install TX status */ txsd = &sc->sc_tx_status; CSR_WRITE_4(sc, ET_TX_STATUS_HI, ET_ADDR_HI(txsd->txsd_paddr)); CSR_WRITE_4(sc, ET_TX_STATUS_LO, ET_ADDR_LO(txsd->txsd_paddr)); CSR_WRITE_4(sc, ET_TX_READY_POS, 0); /* Match ET_TX_READY_POS */ tx_ring->tr_ready_index = 0; tx_ring->tr_ready_wrap = 0; return (0); } static void et_init_mac(struct et_softc *sc) { struct ifnet *ifp; const uint8_t *eaddr; uint32_t val; /* Reset MAC */ CSR_WRITE_4(sc, ET_MAC_CFG1, ET_MAC_CFG1_RST_TXFUNC | ET_MAC_CFG1_RST_RXFUNC | ET_MAC_CFG1_RST_TXMC | ET_MAC_CFG1_RST_RXMC | ET_MAC_CFG1_SIM_RST | ET_MAC_CFG1_SOFT_RST); /* * Setup inter packet gap */ val = (56 << ET_IPG_NONB2B_1_SHIFT) | (88 << ET_IPG_NONB2B_2_SHIFT) | (80 << ET_IPG_MINIFG_SHIFT) | (96 << ET_IPG_B2B_SHIFT); CSR_WRITE_4(sc, ET_IPG, val); /* * Setup half duplex mode */ val = (10 << ET_MAC_HDX_ALT_BEB_TRUNC_SHIFT) | (15 << ET_MAC_HDX_REXMIT_MAX_SHIFT) | (55 << ET_MAC_HDX_COLLWIN_SHIFT) | ET_MAC_HDX_EXC_DEFER; CSR_WRITE_4(sc, ET_MAC_HDX, val); /* Clear MAC control */ CSR_WRITE_4(sc, ET_MAC_CTRL, 0); /* Reset MII */ CSR_WRITE_4(sc, ET_MII_CFG, ET_MII_CFG_CLKRST); /* * Set MAC address */ ifp = sc->ifp; eaddr = IF_LLADDR(ifp); val = eaddr[2] | (eaddr[3] << 8) | (eaddr[4] << 16) | (eaddr[5] << 24); CSR_WRITE_4(sc, ET_MAC_ADDR1, val); val = (eaddr[0] << 16) | (eaddr[1] << 24); CSR_WRITE_4(sc, ET_MAC_ADDR2, val); /* Set max frame length */ CSR_WRITE_4(sc, ET_MAX_FRMLEN, ET_FRAMELEN(ifp->if_mtu)); /* Bring MAC out of reset state */ CSR_WRITE_4(sc, ET_MAC_CFG1, 0); } static void et_init_rxmac(struct et_softc *sc) { struct ifnet *ifp; const uint8_t *eaddr; uint32_t val; int i; /* Disable RX MAC and WOL */ CSR_WRITE_4(sc, ET_RXMAC_CTRL, ET_RXMAC_CTRL_WOL_DISABLE); /* * Clear all WOL related registers */ for (i = 0; i < 3; ++i) CSR_WRITE_4(sc, ET_WOL_CRC + (i * 4), 0); for (i = 0; i < 20; ++i) CSR_WRITE_4(sc, ET_WOL_MASK + (i * 4), 0); /* * Set WOL source address. XXX is this necessary? */ ifp = sc->ifp; eaddr = IF_LLADDR(ifp); val = (eaddr[2] << 24) | (eaddr[3] << 16) | (eaddr[4] << 8) | eaddr[5]; CSR_WRITE_4(sc, ET_WOL_SA_LO, val); val = (eaddr[0] << 8) | eaddr[1]; CSR_WRITE_4(sc, ET_WOL_SA_HI, val); /* Clear packet filters */ CSR_WRITE_4(sc, ET_PKTFILT, 0); /* No ucast filtering */ CSR_WRITE_4(sc, ET_UCAST_FILTADDR1, 0); CSR_WRITE_4(sc, ET_UCAST_FILTADDR2, 0); CSR_WRITE_4(sc, ET_UCAST_FILTADDR3, 0); if (ET_FRAMELEN(ifp->if_mtu) > ET_RXMAC_CUT_THRU_FRMLEN) { /* * In order to transmit jumbo packets greater than * ET_RXMAC_CUT_THRU_FRMLEN bytes, the FIFO between * RX MAC and RX DMA needs to be reduced in size to * (ET_MEM_SIZE - ET_MEM_TXSIZE_EX - framelen). In * order to implement this, we must use "cut through" * mode in the RX MAC, which chops packets down into * segments. In this case we selected 256 bytes, * since this is the size of the PCI-Express TLP's * that the ET1310 uses. */ val = (ET_RXMAC_SEGSZ(256) & ET_RXMAC_MC_SEGSZ_MAX_MASK) | ET_RXMAC_MC_SEGSZ_ENABLE; } else { val = 0; } CSR_WRITE_4(sc, ET_RXMAC_MC_SEGSZ, val); CSR_WRITE_4(sc, ET_RXMAC_MC_WATERMARK, 0); /* Initialize RX MAC management register */ CSR_WRITE_4(sc, ET_RXMAC_MGT, 0); CSR_WRITE_4(sc, ET_RXMAC_SPACE_AVL, 0); CSR_WRITE_4(sc, ET_RXMAC_MGT, ET_RXMAC_MGT_PASS_ECRC | ET_RXMAC_MGT_PASS_ELEN | ET_RXMAC_MGT_PASS_ETRUNC | ET_RXMAC_MGT_CHECK_PKT); /* * Configure runt filtering (may not work on certain chip generation) */ val = (ETHER_MIN_LEN << ET_PKTFILT_MINLEN_SHIFT) & ET_PKTFILT_MINLEN_MASK; val |= ET_PKTFILT_FRAG; CSR_WRITE_4(sc, ET_PKTFILT, val); /* Enable RX MAC but leave WOL disabled */ CSR_WRITE_4(sc, ET_RXMAC_CTRL, ET_RXMAC_CTRL_WOL_DISABLE | ET_RXMAC_CTRL_ENABLE); /* * Setup multicast hash and allmulti/promisc mode */ et_setmulti(sc); } static void et_init_txmac(struct et_softc *sc) { /* Disable TX MAC and FC(?) */ CSR_WRITE_4(sc, ET_TXMAC_CTRL, ET_TXMAC_CTRL_FC_DISABLE); /* * Initialize pause time. * This register should be set before XON/XOFF frame is * sent by driver. */ CSR_WRITE_4(sc, ET_TXMAC_FLOWCTRL, 0 << ET_TXMAC_FLOWCTRL_CFPT_SHIFT); /* Enable TX MAC but leave FC(?) diabled */ CSR_WRITE_4(sc, ET_TXMAC_CTRL, ET_TXMAC_CTRL_ENABLE | ET_TXMAC_CTRL_FC_DISABLE); } static int et_start_rxdma(struct et_softc *sc) { uint32_t val; val = (sc->sc_rx_data[0].rbd_bufsize & ET_RXDMA_CTRL_RING0_SIZE_MASK) | ET_RXDMA_CTRL_RING0_ENABLE; val |= (sc->sc_rx_data[1].rbd_bufsize & ET_RXDMA_CTRL_RING1_SIZE_MASK) | ET_RXDMA_CTRL_RING1_ENABLE; CSR_WRITE_4(sc, ET_RXDMA_CTRL, val); DELAY(5); if (CSR_READ_4(sc, ET_RXDMA_CTRL) & ET_RXDMA_CTRL_HALTED) { if_printf(sc->ifp, "can't start RX DMA engine\n"); return (ETIMEDOUT); } return (0); } static int et_start_txdma(struct et_softc *sc) { CSR_WRITE_4(sc, ET_TXDMA_CTRL, ET_TXDMA_CTRL_SINGLE_EPKT); return (0); } static void et_rxeof(struct et_softc *sc) { struct et_rxstatus_data *rxsd; struct et_rxstat_ring *rxst_ring; struct et_rxbuf_data *rbd; struct et_rxdesc_ring *rx_ring; struct et_rxstat *st; struct ifnet *ifp; struct mbuf *m; uint32_t rxstat_pos, rxring_pos; uint32_t rxst_info1, rxst_info2, rxs_stat_ring; int buflen, buf_idx, npost[2], ring_idx; int rxst_index, rxst_wrap; ET_LOCK_ASSERT(sc); ifp = sc->ifp; rxsd = &sc->sc_rx_status; rxst_ring = &sc->sc_rxstat_ring; if ((sc->sc_flags & ET_FLAG_TXRX_ENABLED) == 0) return; bus_dmamap_sync(rxsd->rxsd_dtag, rxsd->rxsd_dmap, BUS_DMASYNC_POSTREAD); bus_dmamap_sync(rxst_ring->rsr_dtag, rxst_ring->rsr_dmap, BUS_DMASYNC_POSTREAD); npost[0] = npost[1] = 0; rxs_stat_ring = le32toh(rxsd->rxsd_status->rxs_stat_ring); rxst_wrap = (rxs_stat_ring & ET_RXS_STATRING_WRAP) ? 1 : 0; rxst_index = (rxs_stat_ring & ET_RXS_STATRING_INDEX_MASK) >> ET_RXS_STATRING_INDEX_SHIFT; while (rxst_index != rxst_ring->rsr_index || rxst_wrap != rxst_ring->rsr_wrap) { if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) break; MPASS(rxst_ring->rsr_index < ET_RX_NSTAT); st = &rxst_ring->rsr_stat[rxst_ring->rsr_index]; rxst_info1 = le32toh(st->rxst_info1); rxst_info2 = le32toh(st->rxst_info2); buflen = (rxst_info2 & ET_RXST_INFO2_LEN_MASK) >> ET_RXST_INFO2_LEN_SHIFT; buf_idx = (rxst_info2 & ET_RXST_INFO2_BUFIDX_MASK) >> ET_RXST_INFO2_BUFIDX_SHIFT; ring_idx = (rxst_info2 & ET_RXST_INFO2_RINGIDX_MASK) >> ET_RXST_INFO2_RINGIDX_SHIFT; if (++rxst_ring->rsr_index == ET_RX_NSTAT) { rxst_ring->rsr_index = 0; rxst_ring->rsr_wrap ^= 1; } rxstat_pos = rxst_ring->rsr_index & ET_RXSTAT_POS_INDEX_MASK; if (rxst_ring->rsr_wrap) rxstat_pos |= ET_RXSTAT_POS_WRAP; CSR_WRITE_4(sc, ET_RXSTAT_POS, rxstat_pos); if (ring_idx >= ET_RX_NRING) { if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); if_printf(ifp, "invalid ring index %d\n", ring_idx); continue; } if (buf_idx >= ET_RX_NDESC) { if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); if_printf(ifp, "invalid buf index %d\n", buf_idx); continue; } rbd = &sc->sc_rx_data[ring_idx]; m = rbd->rbd_buf[buf_idx].rb_mbuf; if ((rxst_info1 & ET_RXST_INFO1_OK) == 0){ /* Discard errored frame. */ rbd->rbd_discard(rbd, buf_idx); } else if (rbd->rbd_newbuf(rbd, buf_idx) != 0) { /* No available mbufs, discard it. */ if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1); rbd->rbd_discard(rbd, buf_idx); } else { buflen -= ETHER_CRC_LEN; if (buflen < ETHER_HDR_LEN) { m_freem(m); if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); } else { m->m_pkthdr.len = m->m_len = buflen; m->m_pkthdr.rcvif = ifp; ET_UNLOCK(sc); ifp->if_input(ifp, m); ET_LOCK(sc); } } rx_ring = &sc->sc_rx_ring[ring_idx]; if (buf_idx != rx_ring->rr_index) { if_printf(ifp, "WARNING!! ring %d, buf_idx %d, rr_idx %d\n", ring_idx, buf_idx, rx_ring->rr_index); } MPASS(rx_ring->rr_index < ET_RX_NDESC); if (++rx_ring->rr_index == ET_RX_NDESC) { rx_ring->rr_index = 0; rx_ring->rr_wrap ^= 1; } rxring_pos = rx_ring->rr_index & ET_RX_RING_POS_INDEX_MASK; if (rx_ring->rr_wrap) rxring_pos |= ET_RX_RING_POS_WRAP; CSR_WRITE_4(sc, rx_ring->rr_posreg, rxring_pos); } bus_dmamap_sync(rxsd->rxsd_dtag, rxsd->rxsd_dmap, BUS_DMASYNC_PREREAD); bus_dmamap_sync(rxst_ring->rsr_dtag, rxst_ring->rsr_dmap, BUS_DMASYNC_PREREAD); } static int et_encap(struct et_softc *sc, struct mbuf **m0) { struct et_txdesc_ring *tx_ring; struct et_txbuf_data *tbd; struct et_txdesc *td; struct mbuf *m; bus_dma_segment_t segs[ET_NSEG_MAX]; bus_dmamap_t map; uint32_t csum_flags, last_td_ctrl2; int error, i, idx, first_idx, last_idx, nsegs; tx_ring = &sc->sc_tx_ring; MPASS(tx_ring->tr_ready_index < ET_TX_NDESC); tbd = &sc->sc_tx_data; first_idx = tx_ring->tr_ready_index; map = tbd->tbd_buf[first_idx].tb_dmap; error = bus_dmamap_load_mbuf_sg(sc->sc_tx_tag, map, *m0, segs, &nsegs, 0); if (error == EFBIG) { m = m_collapse(*m0, M_NOWAIT, ET_NSEG_MAX); if (m == NULL) { m_freem(*m0); *m0 = NULL; return (ENOMEM); } *m0 = m; error = bus_dmamap_load_mbuf_sg(sc->sc_tx_tag, map, *m0, segs, &nsegs, 0); if (error != 0) { m_freem(*m0); *m0 = NULL; return (error); } } else if (error != 0) return (error); /* Check for descriptor overruns. */ if (tbd->tbd_used + nsegs > ET_TX_NDESC - 1) { bus_dmamap_unload(sc->sc_tx_tag, map); return (ENOBUFS); } bus_dmamap_sync(sc->sc_tx_tag, map, BUS_DMASYNC_PREWRITE); last_td_ctrl2 = ET_TDCTRL2_LAST_FRAG; sc->sc_tx += nsegs; if (sc->sc_tx / sc->sc_tx_intr_nsegs != sc->sc_tx_intr) { sc->sc_tx_intr = sc->sc_tx / sc->sc_tx_intr_nsegs; last_td_ctrl2 |= ET_TDCTRL2_INTR; } m = *m0; csum_flags = 0; if ((m->m_pkthdr.csum_flags & ET_CSUM_FEATURES) != 0) { if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0) csum_flags |= ET_TDCTRL2_CSUM_IP; if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0) csum_flags |= ET_TDCTRL2_CSUM_UDP; else if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0) csum_flags |= ET_TDCTRL2_CSUM_TCP; } last_idx = -1; for (i = 0; i < nsegs; ++i) { idx = (first_idx + i) % ET_TX_NDESC; td = &tx_ring->tr_desc[idx]; td->td_addr_hi = htole32(ET_ADDR_HI(segs[i].ds_addr)); td->td_addr_lo = htole32(ET_ADDR_LO(segs[i].ds_addr)); td->td_ctrl1 = htole32(segs[i].ds_len & ET_TDCTRL1_LEN_MASK); if (i == nsegs - 1) { /* Last frag */ td->td_ctrl2 = htole32(last_td_ctrl2 | csum_flags); last_idx = idx; } else td->td_ctrl2 = htole32(csum_flags); MPASS(tx_ring->tr_ready_index < ET_TX_NDESC); if (++tx_ring->tr_ready_index == ET_TX_NDESC) { tx_ring->tr_ready_index = 0; tx_ring->tr_ready_wrap ^= 1; } } td = &tx_ring->tr_desc[first_idx]; /* First frag */ td->td_ctrl2 |= htole32(ET_TDCTRL2_FIRST_FRAG); MPASS(last_idx >= 0); tbd->tbd_buf[first_idx].tb_dmap = tbd->tbd_buf[last_idx].tb_dmap; tbd->tbd_buf[last_idx].tb_dmap = map; tbd->tbd_buf[last_idx].tb_mbuf = m; tbd->tbd_used += nsegs; MPASS(tbd->tbd_used <= ET_TX_NDESC); return (0); } static void et_txeof(struct et_softc *sc) { struct et_txdesc_ring *tx_ring; struct et_txbuf_data *tbd; struct et_txbuf *tb; struct ifnet *ifp; uint32_t tx_done; int end, wrap; ET_LOCK_ASSERT(sc); ifp = sc->ifp; tx_ring = &sc->sc_tx_ring; tbd = &sc->sc_tx_data; if ((sc->sc_flags & ET_FLAG_TXRX_ENABLED) == 0) return; if (tbd->tbd_used == 0) return; bus_dmamap_sync(tx_ring->tr_dtag, tx_ring->tr_dmap, BUS_DMASYNC_POSTWRITE); tx_done = CSR_READ_4(sc, ET_TX_DONE_POS); end = tx_done & ET_TX_DONE_POS_INDEX_MASK; wrap = (tx_done & ET_TX_DONE_POS_WRAP) ? 1 : 0; while (tbd->tbd_start_index != end || tbd->tbd_start_wrap != wrap) { MPASS(tbd->tbd_start_index < ET_TX_NDESC); tb = &tbd->tbd_buf[tbd->tbd_start_index]; if (tb->tb_mbuf != NULL) { bus_dmamap_sync(sc->sc_tx_tag, tb->tb_dmap, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_tx_tag, tb->tb_dmap); m_freem(tb->tb_mbuf); tb->tb_mbuf = NULL; } if (++tbd->tbd_start_index == ET_TX_NDESC) { tbd->tbd_start_index = 0; tbd->tbd_start_wrap ^= 1; } MPASS(tbd->tbd_used > 0); tbd->tbd_used--; } if (tbd->tbd_used == 0) sc->watchdog_timer = 0; if (tbd->tbd_used + ET_NSEG_SPARE < ET_TX_NDESC) ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; } static void et_tick(void *xsc) { struct et_softc *sc; struct mii_data *mii; sc = xsc; ET_LOCK_ASSERT(sc); mii = device_get_softc(sc->sc_miibus); mii_tick(mii); et_stats_update(sc); if (et_watchdog(sc) == EJUSTRETURN) return; callout_reset(&sc->sc_tick, hz, et_tick, sc); } static int et_newbuf_cluster(struct et_rxbuf_data *rbd, int buf_idx) { struct et_softc *sc; struct et_rxdesc *desc; struct et_rxbuf *rb; struct mbuf *m; bus_dma_segment_t segs[1]; bus_dmamap_t dmap; int nsegs; MPASS(buf_idx < ET_RX_NDESC); m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); if (m == NULL) return (ENOBUFS); m->m_len = m->m_pkthdr.len = MCLBYTES; m_adj(m, ETHER_ALIGN); sc = rbd->rbd_softc; rb = &rbd->rbd_buf[buf_idx]; if (bus_dmamap_load_mbuf_sg(sc->sc_rx_tag, sc->sc_rx_sparemap, m, segs, &nsegs, 0) != 0) { m_freem(m); return (ENOBUFS); } KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); if (rb->rb_mbuf != NULL) { bus_dmamap_sync(sc->sc_rx_tag, rb->rb_dmap, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->sc_rx_tag, rb->rb_dmap); } dmap = rb->rb_dmap; rb->rb_dmap = sc->sc_rx_sparemap; sc->sc_rx_sparemap = dmap; bus_dmamap_sync(sc->sc_rx_tag, rb->rb_dmap, BUS_DMASYNC_PREREAD); rb->rb_mbuf = m; desc = &rbd->rbd_ring->rr_desc[buf_idx]; desc->rd_addr_hi = htole32(ET_ADDR_HI(segs[0].ds_addr)); desc->rd_addr_lo = htole32(ET_ADDR_LO(segs[0].ds_addr)); desc->rd_ctrl = htole32(buf_idx & ET_RDCTRL_BUFIDX_MASK); bus_dmamap_sync(rbd->rbd_ring->rr_dtag, rbd->rbd_ring->rr_dmap, BUS_DMASYNC_PREWRITE); return (0); } static void et_rxbuf_discard(struct et_rxbuf_data *rbd, int buf_idx) { struct et_rxdesc *desc; desc = &rbd->rbd_ring->rr_desc[buf_idx]; desc->rd_ctrl = htole32(buf_idx & ET_RDCTRL_BUFIDX_MASK); bus_dmamap_sync(rbd->rbd_ring->rr_dtag, rbd->rbd_ring->rr_dmap, BUS_DMASYNC_PREWRITE); } static int et_newbuf_hdr(struct et_rxbuf_data *rbd, int buf_idx) { struct et_softc *sc; struct et_rxdesc *desc; struct et_rxbuf *rb; struct mbuf *m; bus_dma_segment_t segs[1]; bus_dmamap_t dmap; int nsegs; MPASS(buf_idx < ET_RX_NDESC); MGETHDR(m, M_NOWAIT, MT_DATA); if (m == NULL) return (ENOBUFS); m->m_len = m->m_pkthdr.len = MHLEN; m_adj(m, ETHER_ALIGN); sc = rbd->rbd_softc; rb = &rbd->rbd_buf[buf_idx]; if (bus_dmamap_load_mbuf_sg(sc->sc_rx_mini_tag, sc->sc_rx_mini_sparemap, m, segs, &nsegs, 0) != 0) { m_freem(m); return (ENOBUFS); } KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); if (rb->rb_mbuf != NULL) { bus_dmamap_sync(sc->sc_rx_mini_tag, rb->rb_dmap, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->sc_rx_mini_tag, rb->rb_dmap); } dmap = rb->rb_dmap; rb->rb_dmap = sc->sc_rx_mini_sparemap; sc->sc_rx_mini_sparemap = dmap; bus_dmamap_sync(sc->sc_rx_mini_tag, rb->rb_dmap, BUS_DMASYNC_PREREAD); rb->rb_mbuf = m; desc = &rbd->rbd_ring->rr_desc[buf_idx]; desc->rd_addr_hi = htole32(ET_ADDR_HI(segs[0].ds_addr)); desc->rd_addr_lo = htole32(ET_ADDR_LO(segs[0].ds_addr)); desc->rd_ctrl = htole32(buf_idx & ET_RDCTRL_BUFIDX_MASK); bus_dmamap_sync(rbd->rbd_ring->rr_dtag, rbd->rbd_ring->rr_dmap, BUS_DMASYNC_PREWRITE); return (0); } #define ET_SYSCTL_STAT_ADD32(c, h, n, p, d) \ SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d) #define ET_SYSCTL_STAT_ADD64(c, h, n, p, d) \ SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d) /* * Create sysctl tree */ static void et_add_sysctls(struct et_softc * sc) { struct sysctl_ctx_list *ctx; struct sysctl_oid_list *children, *parent; struct sysctl_oid *tree; struct et_hw_stats *stats; ctx = device_get_sysctl_ctx(sc->dev); children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rx_intr_npkts", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0, et_sysctl_rx_intr_npkts, "I", "RX IM, # packets per RX interrupt"); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rx_intr_delay", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0, et_sysctl_rx_intr_delay, "I", "RX IM, RX interrupt delay (x10 usec)"); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_intr_nsegs", CTLFLAG_RW, &sc->sc_tx_intr_nsegs, 0, "TX IM, # segments per TX interrupt"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "timer", CTLFLAG_RW, &sc->sc_timer, 0, "TX timer"); tree = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "stats", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "ET statistics"); parent = SYSCTL_CHILDREN(tree); /* TX/RX statistics. */ stats = &sc->sc_stats; ET_SYSCTL_STAT_ADD64(ctx, parent, "frames_64", &stats->pkts_64, "0 to 64 bytes frames"); ET_SYSCTL_STAT_ADD64(ctx, parent, "frames_65_127", &stats->pkts_65, "65 to 127 bytes frames"); ET_SYSCTL_STAT_ADD64(ctx, parent, "frames_128_255", &stats->pkts_128, "128 to 255 bytes frames"); ET_SYSCTL_STAT_ADD64(ctx, parent, "frames_256_511", &stats->pkts_256, "256 to 511 bytes frames"); ET_SYSCTL_STAT_ADD64(ctx, parent, "frames_512_1023", &stats->pkts_512, "512 to 1023 bytes frames"); ET_SYSCTL_STAT_ADD64(ctx, parent, "frames_1024_1518", &stats->pkts_1024, "1024 to 1518 bytes frames"); ET_SYSCTL_STAT_ADD64(ctx, parent, "frames_1519_1522", &stats->pkts_1519, "1519 to 1522 bytes frames"); /* RX statistics. */ tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "RX MAC statistics"); children = SYSCTL_CHILDREN(tree); ET_SYSCTL_STAT_ADD64(ctx, children, "bytes", &stats->rx_bytes, "Good bytes"); ET_SYSCTL_STAT_ADD64(ctx, children, "frames", &stats->rx_frames, "Good frames"); ET_SYSCTL_STAT_ADD32(ctx, children, "crc_errs", &stats->rx_crcerrs, "CRC errors"); ET_SYSCTL_STAT_ADD64(ctx, children, "mcast_frames", &stats->rx_mcast, "Multicast frames"); ET_SYSCTL_STAT_ADD64(ctx, children, "bcast_frames", &stats->rx_bcast, "Broadcast frames"); ET_SYSCTL_STAT_ADD32(ctx, children, "control", &stats->rx_control, "Control frames"); ET_SYSCTL_STAT_ADD32(ctx, children, "pause", &stats->rx_pause, "Pause frames"); ET_SYSCTL_STAT_ADD32(ctx, children, "unknown_control", &stats->rx_unknown_control, "Unknown control frames"); ET_SYSCTL_STAT_ADD32(ctx, children, "align_errs", &stats->rx_alignerrs, "Alignment errors"); ET_SYSCTL_STAT_ADD32(ctx, children, "len_errs", &stats->rx_lenerrs, "Frames with length mismatched"); ET_SYSCTL_STAT_ADD32(ctx, children, "code_errs", &stats->rx_codeerrs, "Frames with code error"); ET_SYSCTL_STAT_ADD32(ctx, children, "cs_errs", &stats->rx_cserrs, "Frames with carrier sense error"); ET_SYSCTL_STAT_ADD32(ctx, children, "runts", &stats->rx_runts, "Too short frames"); ET_SYSCTL_STAT_ADD64(ctx, children, "oversize", &stats->rx_oversize, "Oversized frames"); ET_SYSCTL_STAT_ADD32(ctx, children, "fragments", &stats->rx_fragments, "Fragmented frames"); ET_SYSCTL_STAT_ADD32(ctx, children, "jabbers", &stats->rx_jabbers, "Frames with jabber error"); ET_SYSCTL_STAT_ADD32(ctx, children, "drop", &stats->rx_drop, "Dropped frames"); /* TX statistics. */ tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TX MAC statistics"); children = SYSCTL_CHILDREN(tree); ET_SYSCTL_STAT_ADD64(ctx, children, "bytes", &stats->tx_bytes, "Good bytes"); ET_SYSCTL_STAT_ADD64(ctx, children, "frames", &stats->tx_frames, "Good frames"); ET_SYSCTL_STAT_ADD64(ctx, children, "mcast_frames", &stats->tx_mcast, "Multicast frames"); ET_SYSCTL_STAT_ADD64(ctx, children, "bcast_frames", &stats->tx_bcast, "Broadcast frames"); ET_SYSCTL_STAT_ADD32(ctx, children, "pause", &stats->tx_pause, "Pause frames"); ET_SYSCTL_STAT_ADD32(ctx, children, "deferred", &stats->tx_deferred, "Deferred frames"); ET_SYSCTL_STAT_ADD32(ctx, children, "excess_deferred", &stats->tx_excess_deferred, "Excessively deferred frames"); ET_SYSCTL_STAT_ADD32(ctx, children, "single_colls", &stats->tx_single_colls, "Single collisions"); ET_SYSCTL_STAT_ADD32(ctx, children, "multi_colls", &stats->tx_multi_colls, "Multiple collisions"); ET_SYSCTL_STAT_ADD32(ctx, children, "late_colls", &stats->tx_late_colls, "Late collisions"); ET_SYSCTL_STAT_ADD32(ctx, children, "excess_colls", &stats->tx_excess_colls, "Excess collisions"); ET_SYSCTL_STAT_ADD32(ctx, children, "total_colls", &stats->tx_total_colls, "Total collisions"); ET_SYSCTL_STAT_ADD32(ctx, children, "pause_honored", &stats->tx_pause_honored, "Honored pause frames"); ET_SYSCTL_STAT_ADD32(ctx, children, "drop", &stats->tx_drop, "Dropped frames"); ET_SYSCTL_STAT_ADD32(ctx, children, "jabbers", &stats->tx_jabbers, "Frames with jabber errors"); ET_SYSCTL_STAT_ADD32(ctx, children, "crc_errs", &stats->tx_crcerrs, "Frames with CRC errors"); ET_SYSCTL_STAT_ADD32(ctx, children, "control", &stats->tx_control, "Control frames"); ET_SYSCTL_STAT_ADD64(ctx, children, "oversize", &stats->tx_oversize, "Oversized frames"); ET_SYSCTL_STAT_ADD32(ctx, children, "undersize", &stats->tx_undersize, "Undersized frames"); ET_SYSCTL_STAT_ADD32(ctx, children, "fragments", &stats->tx_fragments, "Fragmented frames"); } #undef ET_SYSCTL_STAT_ADD32 #undef ET_SYSCTL_STAT_ADD64 static int et_sysctl_rx_intr_npkts(SYSCTL_HANDLER_ARGS) { struct et_softc *sc; struct ifnet *ifp; int error, v; sc = arg1; ifp = sc->ifp; v = sc->sc_rx_intr_npkts; error = sysctl_handle_int(oidp, &v, 0, req); if (error || req->newptr == NULL) goto back; if (v <= 0) { error = EINVAL; goto back; } if (sc->sc_rx_intr_npkts != v) { if (ifp->if_drv_flags & IFF_DRV_RUNNING) CSR_WRITE_4(sc, ET_RX_INTR_NPKTS, v); sc->sc_rx_intr_npkts = v; } back: return (error); } static int et_sysctl_rx_intr_delay(SYSCTL_HANDLER_ARGS) { struct et_softc *sc; struct ifnet *ifp; int error, v; sc = arg1; ifp = sc->ifp; v = sc->sc_rx_intr_delay; error = sysctl_handle_int(oidp, &v, 0, req); if (error || req->newptr == NULL) goto back; if (v <= 0) { error = EINVAL; goto back; } if (sc->sc_rx_intr_delay != v) { if (ifp->if_drv_flags & IFF_DRV_RUNNING) CSR_WRITE_4(sc, ET_RX_INTR_DELAY, v); sc->sc_rx_intr_delay = v; } back: return (error); } static void et_stats_update(struct et_softc *sc) { struct et_hw_stats *stats; stats = &sc->sc_stats; stats->pkts_64 += CSR_READ_4(sc, ET_STAT_PKTS_64); stats->pkts_65 += CSR_READ_4(sc, ET_STAT_PKTS_65_127); stats->pkts_128 += CSR_READ_4(sc, ET_STAT_PKTS_128_255); stats->pkts_256 += CSR_READ_4(sc, ET_STAT_PKTS_256_511); stats->pkts_512 += CSR_READ_4(sc, ET_STAT_PKTS_512_1023); stats->pkts_1024 += CSR_READ_4(sc, ET_STAT_PKTS_1024_1518); stats->pkts_1519 += CSR_READ_4(sc, ET_STAT_PKTS_1519_1522); stats->rx_bytes += CSR_READ_4(sc, ET_STAT_RX_BYTES); stats->rx_frames += CSR_READ_4(sc, ET_STAT_RX_FRAMES); stats->rx_crcerrs += CSR_READ_4(sc, ET_STAT_RX_CRC_ERR); stats->rx_mcast += CSR_READ_4(sc, ET_STAT_RX_MCAST); stats->rx_bcast += CSR_READ_4(sc, ET_STAT_RX_BCAST); stats->rx_control += CSR_READ_4(sc, ET_STAT_RX_CTL); stats->rx_pause += CSR_READ_4(sc, ET_STAT_RX_PAUSE); stats->rx_unknown_control += CSR_READ_4(sc, ET_STAT_RX_UNKNOWN_CTL); stats->rx_alignerrs += CSR_READ_4(sc, ET_STAT_RX_ALIGN_ERR); stats->rx_lenerrs += CSR_READ_4(sc, ET_STAT_RX_LEN_ERR); stats->rx_codeerrs += CSR_READ_4(sc, ET_STAT_RX_CODE_ERR); stats->rx_cserrs += CSR_READ_4(sc, ET_STAT_RX_CS_ERR); stats->rx_runts += CSR_READ_4(sc, ET_STAT_RX_RUNT); stats->rx_oversize += CSR_READ_4(sc, ET_STAT_RX_OVERSIZE); stats->rx_fragments += CSR_READ_4(sc, ET_STAT_RX_FRAG); stats->rx_jabbers += CSR_READ_4(sc, ET_STAT_RX_JABBER); stats->rx_drop += CSR_READ_4(sc, ET_STAT_RX_DROP); stats->tx_bytes += CSR_READ_4(sc, ET_STAT_TX_BYTES); stats->tx_frames += CSR_READ_4(sc, ET_STAT_TX_FRAMES); stats->tx_mcast += CSR_READ_4(sc, ET_STAT_TX_MCAST); stats->tx_bcast += CSR_READ_4(sc, ET_STAT_TX_BCAST); stats->tx_pause += CSR_READ_4(sc, ET_STAT_TX_PAUSE); stats->tx_deferred += CSR_READ_4(sc, ET_STAT_TX_DEFER); stats->tx_excess_deferred += CSR_READ_4(sc, ET_STAT_TX_EXCESS_DEFER); stats->tx_single_colls += CSR_READ_4(sc, ET_STAT_TX_SINGLE_COL); stats->tx_multi_colls += CSR_READ_4(sc, ET_STAT_TX_MULTI_COL); stats->tx_late_colls += CSR_READ_4(sc, ET_STAT_TX_LATE_COL); stats->tx_excess_colls += CSR_READ_4(sc, ET_STAT_TX_EXCESS_COL); stats->tx_total_colls += CSR_READ_4(sc, ET_STAT_TX_TOTAL_COL); stats->tx_pause_honored += CSR_READ_4(sc, ET_STAT_TX_PAUSE_HONOR); stats->tx_drop += CSR_READ_4(sc, ET_STAT_TX_DROP); stats->tx_jabbers += CSR_READ_4(sc, ET_STAT_TX_JABBER); stats->tx_crcerrs += CSR_READ_4(sc, ET_STAT_TX_CRC_ERR); stats->tx_control += CSR_READ_4(sc, ET_STAT_TX_CTL); stats->tx_oversize += CSR_READ_4(sc, ET_STAT_TX_OVERSIZE); stats->tx_undersize += CSR_READ_4(sc, ET_STAT_TX_UNDERSIZE); stats->tx_fragments += CSR_READ_4(sc, ET_STAT_TX_FRAG); } static uint64_t et_get_counter(struct ifnet *ifp, ift_counter cnt) { struct et_softc *sc; struct et_hw_stats *stats; sc = if_getsoftc(ifp); stats = &sc->sc_stats; switch (cnt) { case IFCOUNTER_OPACKETS: return (stats->tx_frames); case IFCOUNTER_COLLISIONS: return (stats->tx_total_colls); case IFCOUNTER_OERRORS: return (stats->tx_drop + stats->tx_jabbers + stats->tx_crcerrs + stats->tx_excess_deferred + stats->tx_late_colls); case IFCOUNTER_IPACKETS: return (stats->rx_frames); case IFCOUNTER_IERRORS: return (stats->rx_crcerrs + stats->rx_alignerrs + stats->rx_lenerrs + stats->rx_codeerrs + stats->rx_cserrs + stats->rx_runts + stats->rx_jabbers + stats->rx_drop); default: return (if_get_counter_default(ifp, cnt)); } } static int et_suspend(device_t dev) { struct et_softc *sc; uint32_t pmcfg; sc = device_get_softc(dev); ET_LOCK(sc); if ((sc->ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) et_stop(sc); /* Diable all clocks and put PHY into COMA. */ pmcfg = CSR_READ_4(sc, ET_PM); pmcfg &= ~(EM_PM_GIGEPHY_ENB | ET_PM_SYSCLK_GATE | ET_PM_TXCLK_GATE | ET_PM_RXCLK_GATE); pmcfg |= ET_PM_PHY_SW_COMA; CSR_WRITE_4(sc, ET_PM, pmcfg); ET_UNLOCK(sc); return (0); } static int et_resume(device_t dev) { struct et_softc *sc; uint32_t pmcfg; sc = device_get_softc(dev); ET_LOCK(sc); /* Take PHY out of COMA and enable clocks. */ pmcfg = ET_PM_SYSCLK_GATE | ET_PM_TXCLK_GATE | ET_PM_RXCLK_GATE; if ((sc->sc_flags & ET_FLAG_FASTETHER) == 0) pmcfg |= EM_PM_GIGEPHY_ENB; CSR_WRITE_4(sc, ET_PM, pmcfg); if ((sc->ifp->if_flags & IFF_UP) != 0) et_init_locked(sc); ET_UNLOCK(sc); return (0); }