/*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2022 Soren Schmidt * Copyright (c) 2022 Jared McNeill * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $Id: eqos.c 1059 2022-12-08 19:32:32Z sos $ */ /* * DesignWare Ethernet Quality-of-Service controller */ #include "opt_platform.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "miibus_if.h" #include "if_eqos_if.h" #ifdef FDT #include #include #include #include #endif #include #include #define DESC_BOUNDARY (1ULL << 32) #define DESC_ALIGN sizeof(struct eqos_dma_desc) #define DESC_OFFSET(n) ((n) * sizeof(struct eqos_dma_desc)) #define TX_DESC_COUNT EQOS_DMA_DESC_COUNT #define TX_DESC_SIZE (TX_DESC_COUNT * DESC_ALIGN) #define TX_MAX_SEGS (TX_DESC_COUNT / 2) #define TX_NEXT(n) (((n) + 1 ) % TX_DESC_COUNT) #define TX_QUEUED(h, t) ((((h) - (t)) + TX_DESC_COUNT) % TX_DESC_COUNT) #define RX_DESC_COUNT EQOS_DMA_DESC_COUNT #define RX_DESC_SIZE (RX_DESC_COUNT * DESC_ALIGN) #define RX_NEXT(n) (((n) + 1) % RX_DESC_COUNT) #define MII_BUSY_RETRY 1000 #define WATCHDOG_TIMEOUT_SECS 3 #define EQOS_LOCK(sc) mtx_lock(&(sc)->lock) #define EQOS_UNLOCK(sc) mtx_unlock(&(sc)->lock) #define EQOS_ASSERT_LOCKED(sc) mtx_assert(&(sc)->lock, MA_OWNED) #define RD4(sc, o) bus_read_4(sc->res[EQOS_RES_MEM], (o)) #define WR4(sc, o, v) bus_write_4(sc->res[EQOS_RES_MEM], (o), (v)) static struct resource_spec eqos_spec[] = { { SYS_RES_MEMORY, 0, RF_ACTIVE }, { SYS_RES_IRQ, 0, RF_ACTIVE }, { -1, 0 } }; static void eqos_tick(void *softc); static int eqos_miibus_readreg(device_t dev, int phy, int reg) { struct eqos_softc *sc = device_get_softc(dev); uint32_t addr; int retry, val; addr = sc->csr_clock_range | (phy << GMAC_MAC_MDIO_ADDRESS_PA_SHIFT) | (reg << GMAC_MAC_MDIO_ADDRESS_RDA_SHIFT) | GMAC_MAC_MDIO_ADDRESS_GOC_READ | GMAC_MAC_MDIO_ADDRESS_GB; WR4(sc, GMAC_MAC_MDIO_ADDRESS, addr); DELAY(100); for (retry = MII_BUSY_RETRY; retry > 0; retry--) { addr = RD4(sc, GMAC_MAC_MDIO_ADDRESS); if (!(addr & GMAC_MAC_MDIO_ADDRESS_GB)) { val = RD4(sc, GMAC_MAC_MDIO_DATA) & 0xFFFF; break; } DELAY(10); } if (!retry) { device_printf(dev, "phy read timeout, phy=%d reg=%d\n", phy, reg); return (ETIMEDOUT); } return (val); } static int eqos_miibus_writereg(device_t dev, int phy, int reg, int val) { struct eqos_softc *sc = device_get_softc(dev); uint32_t addr; int retry; WR4(sc, GMAC_MAC_MDIO_DATA, val); addr = sc->csr_clock_range | (phy << GMAC_MAC_MDIO_ADDRESS_PA_SHIFT) | (reg << GMAC_MAC_MDIO_ADDRESS_RDA_SHIFT) | GMAC_MAC_MDIO_ADDRESS_GOC_WRITE | GMAC_MAC_MDIO_ADDRESS_GB; WR4(sc, GMAC_MAC_MDIO_ADDRESS, addr); DELAY(100); for (retry = MII_BUSY_RETRY; retry > 0; retry--) { addr = RD4(sc, GMAC_MAC_MDIO_ADDRESS); if (!(addr & GMAC_MAC_MDIO_ADDRESS_GB)) break; DELAY(10); } if (!retry) { device_printf(dev, "phy write timeout, phy=%d reg=%d\n", phy, reg); return (ETIMEDOUT); } return (0); } static void eqos_miibus_statchg(device_t dev) { struct eqos_softc *sc = device_get_softc(dev); struct mii_data *mii = device_get_softc(sc->miibus); uint32_t reg; EQOS_ASSERT_LOCKED(sc); if (mii->mii_media_status & IFM_ACTIVE) sc->link_up = true; else sc->link_up = false; reg = RD4(sc, GMAC_MAC_CONFIGURATION); switch (IFM_SUBTYPE(mii->mii_media_active)) { case IFM_10_T: reg |= GMAC_MAC_CONFIGURATION_PS; reg &= ~GMAC_MAC_CONFIGURATION_FES; break; case IFM_100_TX: reg |= GMAC_MAC_CONFIGURATION_PS; reg |= GMAC_MAC_CONFIGURATION_FES; break; case IFM_1000_T: case IFM_1000_SX: reg &= ~GMAC_MAC_CONFIGURATION_PS; reg &= ~GMAC_MAC_CONFIGURATION_FES; break; case IFM_2500_T: case IFM_2500_SX: reg &= ~GMAC_MAC_CONFIGURATION_PS; reg |= GMAC_MAC_CONFIGURATION_FES; break; default: sc->link_up = false; return; } if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX)) reg |= GMAC_MAC_CONFIGURATION_DM; else reg &= ~GMAC_MAC_CONFIGURATION_DM; WR4(sc, GMAC_MAC_CONFIGURATION, reg); IF_EQOS_SET_SPEED(dev, IFM_SUBTYPE(mii->mii_media_active)); WR4(sc, GMAC_MAC_1US_TIC_COUNTER, (sc->csr_clock / 1000000) - 1); } static void eqos_media_status(if_t ifp, struct ifmediareq *ifmr) { struct eqos_softc *sc = if_getsoftc(ifp); struct mii_data *mii = device_get_softc(sc->miibus); EQOS_LOCK(sc); mii_pollstat(mii); ifmr->ifm_active = mii->mii_media_active; ifmr->ifm_status = mii->mii_media_status; EQOS_UNLOCK(sc); } static int eqos_media_change(if_t ifp) { struct eqos_softc *sc = if_getsoftc(ifp); int error; EQOS_LOCK(sc); error = mii_mediachg(device_get_softc(sc->miibus)); EQOS_UNLOCK(sc); return (error); } static void eqos_setup_txdesc(struct eqos_softc *sc, int index, int flags, bus_addr_t paddr, u_int len, u_int total_len) { uint32_t tdes2, tdes3; if (!paddr || !len) { tdes2 = 0; tdes3 = flags; } else { tdes2 = (flags & EQOS_TDES3_LD) ? EQOS_TDES2_IOC : 0; tdes3 = flags; } bus_dmamap_sync(sc->tx.desc_tag, sc->tx.desc_map, BUS_DMASYNC_PREWRITE); sc->tx.desc_ring[index].des0 = htole32((uint32_t)paddr); sc->tx.desc_ring[index].des1 = htole32((uint32_t)(paddr >> 32)); sc->tx.desc_ring[index].des2 = htole32(tdes2 | len); sc->tx.desc_ring[index].des3 = htole32(tdes3 | total_len); } static int eqos_setup_txbuf(struct eqos_softc *sc, struct mbuf *m) { bus_dma_segment_t segs[TX_MAX_SEGS]; int first = sc->tx.head; int error, nsegs, idx; uint32_t flags; error = bus_dmamap_load_mbuf_sg(sc->tx.buf_tag, sc->tx.buf_map[first].map, m, segs, &nsegs, 0); if (error == EFBIG) { struct mbuf *mb; device_printf(sc->dev, "TX packet too big trying defrag\n"); bus_dmamap_unload(sc->tx.buf_tag, sc->tx.buf_map[first].map); if (!(mb = m_defrag(m, M_NOWAIT))) return (ENOMEM); m = mb; error = bus_dmamap_load_mbuf_sg(sc->tx.buf_tag, sc->tx.buf_map[first].map, m, segs, &nsegs, 0); } if (error) return (ENOMEM); if (TX_QUEUED(sc->tx.head, sc->tx.tail) + nsegs > TX_DESC_COUNT) { bus_dmamap_unload(sc->tx.buf_tag, sc->tx.buf_map[first].map); device_printf(sc->dev, "TX packet no more queue space\n"); return (ENOMEM); } bus_dmamap_sync(sc->tx.buf_tag, sc->tx.buf_map[first].map, BUS_DMASYNC_PREWRITE); sc->tx.buf_map[first].mbuf = m; for (flags = EQOS_TDES3_FD, idx = 0; idx < nsegs; idx++) { if (idx == (nsegs - 1)) flags |= EQOS_TDES3_LD; eqos_setup_txdesc(sc, sc->tx.head, flags, segs[idx].ds_addr, segs[idx].ds_len, m->m_pkthdr.len); flags &= ~EQOS_TDES3_FD; flags |= EQOS_TDES3_OWN; sc->tx.head = TX_NEXT(sc->tx.head); } /* * Defer setting OWN bit on the first descriptor * until all descriptors have been updated */ bus_dmamap_sync(sc->tx.desc_tag, sc->tx.desc_map, BUS_DMASYNC_PREWRITE); sc->tx.desc_ring[first].des3 |= htole32(EQOS_TDES3_OWN); return (0); } static void eqos_setup_rxdesc(struct eqos_softc *sc, int index, bus_addr_t paddr) { sc->rx.desc_ring[index].des0 = htole32((uint32_t)paddr); sc->rx.desc_ring[index].des1 = htole32((uint32_t)(paddr >> 32)); sc->rx.desc_ring[index].des2 = htole32(0); bus_dmamap_sync(sc->rx.desc_tag, sc->rx.desc_map, BUS_DMASYNC_PREWRITE); sc->rx.desc_ring[index].des3 = htole32(EQOS_RDES3_OWN | EQOS_RDES3_IOC | EQOS_RDES3_BUF1V); } static int eqos_setup_rxbuf(struct eqos_softc *sc, int index, struct mbuf *m) { struct bus_dma_segment seg; int error, nsegs; m_adj(m, ETHER_ALIGN); error = bus_dmamap_load_mbuf_sg(sc->rx.buf_tag, sc->rx.buf_map[index].map, m, &seg, &nsegs, 0); if (error) return (error); bus_dmamap_sync(sc->rx.buf_tag, sc->rx.buf_map[index].map, BUS_DMASYNC_PREREAD); sc->rx.buf_map[index].mbuf = m; eqos_setup_rxdesc(sc, index, seg.ds_addr); return (0); } static struct mbuf * eqos_alloc_mbufcl(struct eqos_softc *sc) { struct mbuf *m; if ((m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR))) m->m_pkthdr.len = m->m_len = m->m_ext.ext_size; return (m); } static void eqos_enable_intr(struct eqos_softc *sc) { WR4(sc, GMAC_DMA_CHAN0_INTR_ENABLE, GMAC_DMA_CHAN0_INTR_ENABLE_NIE | GMAC_DMA_CHAN0_INTR_ENABLE_AIE | GMAC_DMA_CHAN0_INTR_ENABLE_FBE | GMAC_DMA_CHAN0_INTR_ENABLE_RIE | GMAC_DMA_CHAN0_INTR_ENABLE_TIE); } static void eqos_disable_intr(struct eqos_softc *sc) { WR4(sc, GMAC_DMA_CHAN0_INTR_ENABLE, 0); } static uint32_t eqos_bitrev32(uint32_t x) { x = (((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1)); x = (((x & 0xcccccccc) >> 2) | ((x & 0x33333333) << 2)); x = (((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4)); x = (((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8)); return ((x >> 16) | (x << 16)); } static u_int eqos_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt) { uint32_t crc, *hash = arg; crc = ether_crc32_le(LLADDR(sdl), ETHER_ADDR_LEN); crc &= 0x7f; crc = eqos_bitrev32(~crc) >> 26; hash[crc >> 5] |= 1 << (crc & 0x1f); return (1); } static void eqos_setup_rxfilter(struct eqos_softc *sc) { if_t ifp = sc->ifp; uint32_t pfil, hash[2]; const uint8_t *eaddr; uint32_t val; EQOS_ASSERT_LOCKED(sc); pfil = RD4(sc, GMAC_MAC_PACKET_FILTER); pfil &= ~(GMAC_MAC_PACKET_FILTER_PR | GMAC_MAC_PACKET_FILTER_PM | GMAC_MAC_PACKET_FILTER_HMC | GMAC_MAC_PACKET_FILTER_PCF_MASK); hash[0] = hash[1] = 0xffffffff; if ((if_getflags(ifp) & IFF_PROMISC)) { pfil |= GMAC_MAC_PACKET_FILTER_PR | GMAC_MAC_PACKET_FILTER_PCF_ALL; } else if ((if_getflags(ifp) & IFF_ALLMULTI)) { pfil |= GMAC_MAC_PACKET_FILTER_PM; } else { hash[0] = hash[1] = 0; pfil |= GMAC_MAC_PACKET_FILTER_HMC; if_foreach_llmaddr(ifp, eqos_hash_maddr, hash); } /* Write our unicast address */ eaddr = if_getlladdr(ifp); val = eaddr[4] | (eaddr[5] << 8); WR4(sc, GMAC_MAC_ADDRESS0_HIGH, val); val = eaddr[0] | (eaddr[1] << 8) | (eaddr[2] << 16) | (eaddr[3] << 24); WR4(sc, GMAC_MAC_ADDRESS0_LOW, val); /* Multicast hash filters */ WR4(sc, GMAC_MAC_HASH_TABLE_REG0, hash[1]); WR4(sc, GMAC_MAC_HASH_TABLE_REG1, hash[0]); /* Packet filter config */ WR4(sc, GMAC_MAC_PACKET_FILTER, pfil); } static int eqos_reset(struct eqos_softc *sc) { uint32_t val; int retry; WR4(sc, GMAC_DMA_MODE, GMAC_DMA_MODE_SWR); for (retry = 2000; retry > 0; retry--) { DELAY(1000); val = RD4(sc, GMAC_DMA_MODE); if (!(val & GMAC_DMA_MODE_SWR)) return (0); } return (ETIMEDOUT); } static void eqos_init_rings(struct eqos_softc *sc) { WR4(sc, GMAC_DMA_CHAN0_TX_BASE_ADDR_HI, (uint32_t)(sc->tx.desc_ring_paddr >> 32)); WR4(sc, GMAC_DMA_CHAN0_TX_BASE_ADDR, (uint32_t)sc->tx.desc_ring_paddr); WR4(sc, GMAC_DMA_CHAN0_TX_RING_LEN, TX_DESC_COUNT - 1); WR4(sc, GMAC_DMA_CHAN0_RX_BASE_ADDR_HI, (uint32_t)(sc->rx.desc_ring_paddr >> 32)); WR4(sc, GMAC_DMA_CHAN0_RX_BASE_ADDR, (uint32_t)sc->rx.desc_ring_paddr); WR4(sc, GMAC_DMA_CHAN0_RX_RING_LEN, RX_DESC_COUNT - 1); WR4(sc, GMAC_DMA_CHAN0_RX_END_ADDR, (uint32_t)sc->rx.desc_ring_paddr + DESC_OFFSET(RX_DESC_COUNT)); } static void eqos_init(void *if_softc) { struct eqos_softc *sc = if_softc; if_t ifp = sc->ifp; struct mii_data *mii = device_get_softc(sc->miibus); uint32_t val; if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) return; EQOS_LOCK(sc); eqos_init_rings(sc); eqos_setup_rxfilter(sc); WR4(sc, GMAC_MAC_1US_TIC_COUNTER, (sc->csr_clock / 1000000) - 1); /* Enable transmit and receive DMA */ val = RD4(sc, GMAC_DMA_CHAN0_CONTROL); val &= ~GMAC_DMA_CHAN0_CONTROL_DSL_MASK; val |= ((DESC_ALIGN - 16) / 8) << GMAC_DMA_CHAN0_CONTROL_DSL_SHIFT; val |= GMAC_DMA_CHAN0_CONTROL_PBLX8; WR4(sc, GMAC_DMA_CHAN0_CONTROL, val); val = RD4(sc, GMAC_DMA_CHAN0_TX_CONTROL); val |= GMAC_DMA_CHAN0_TX_CONTROL_OSP; val |= GMAC_DMA_CHAN0_TX_CONTROL_START; WR4(sc, GMAC_DMA_CHAN0_TX_CONTROL, val); val = RD4(sc, GMAC_DMA_CHAN0_RX_CONTROL); val &= ~GMAC_DMA_CHAN0_RX_CONTROL_RBSZ_MASK; val |= (MCLBYTES << GMAC_DMA_CHAN0_RX_CONTROL_RBSZ_SHIFT); val |= GMAC_DMA_CHAN0_RX_CONTROL_START; WR4(sc, GMAC_DMA_CHAN0_RX_CONTROL, val); /* Disable counters */ WR4(sc, GMAC_MMC_CONTROL, GMAC_MMC_CONTROL_CNTFREEZ | GMAC_MMC_CONTROL_CNTPRST | GMAC_MMC_CONTROL_CNTPRSTLVL); /* Configure operation modes */ WR4(sc, GMAC_MTL_TXQ0_OPERATION_MODE, GMAC_MTL_TXQ0_OPERATION_MODE_TSF | GMAC_MTL_TXQ0_OPERATION_MODE_TXQEN_EN); WR4(sc, GMAC_MTL_RXQ0_OPERATION_MODE, GMAC_MTL_RXQ0_OPERATION_MODE_RSF | GMAC_MTL_RXQ0_OPERATION_MODE_FEP | GMAC_MTL_RXQ0_OPERATION_MODE_FUP); /* Enable flow control */ val = RD4(sc, GMAC_MAC_Q0_TX_FLOW_CTRL); val |= 0xFFFFU << GMAC_MAC_Q0_TX_FLOW_CTRL_PT_SHIFT; val |= GMAC_MAC_Q0_TX_FLOW_CTRL_TFE; WR4(sc, GMAC_MAC_Q0_TX_FLOW_CTRL, val); val = RD4(sc, GMAC_MAC_RX_FLOW_CTRL); val |= GMAC_MAC_RX_FLOW_CTRL_RFE; WR4(sc, GMAC_MAC_RX_FLOW_CTRL, val); /* set RX queue mode. must be in DCB mode. */ WR4(sc, GMAC_RXQ_CTRL0, (GMAC_RXQ_CTRL0_EN_MASK << 16) | GMAC_RXQ_CTRL0_EN_DCB); /* Enable transmitter and receiver */ val = RD4(sc, GMAC_MAC_CONFIGURATION); val |= GMAC_MAC_CONFIGURATION_BE; val |= GMAC_MAC_CONFIGURATION_JD; val |= GMAC_MAC_CONFIGURATION_JE; val |= GMAC_MAC_CONFIGURATION_DCRS; val |= GMAC_MAC_CONFIGURATION_TE; val |= GMAC_MAC_CONFIGURATION_RE; WR4(sc, GMAC_MAC_CONFIGURATION, val); eqos_enable_intr(sc); if_setdrvflagbits(ifp, IFF_DRV_RUNNING, IFF_DRV_OACTIVE); mii_mediachg(mii); callout_reset(&sc->callout, hz, eqos_tick, sc); EQOS_UNLOCK(sc); } static void eqos_start_locked(if_t ifp) { struct eqos_softc *sc = if_getsoftc(ifp); struct mbuf *m; int pending = 0; if (!sc->link_up) return; if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING|IFF_DRV_OACTIVE)) != IFF_DRV_RUNNING) return; while (true) { if (TX_QUEUED(sc->tx.head, sc->tx.tail) >= TX_DESC_COUNT - TX_MAX_SEGS) { if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); break; } if (!(m = if_dequeue(ifp))) break; if (eqos_setup_txbuf(sc, m)) { if_sendq_prepend(ifp, m); if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); break; } bpf_mtap_if(ifp, m); pending++; } if (pending) { bus_dmamap_sync(sc->tx.desc_tag, sc->tx.desc_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); /* Start and run TX DMA */ WR4(sc, GMAC_DMA_CHAN0_TX_END_ADDR, (uint32_t)sc->tx.desc_ring_paddr + DESC_OFFSET(sc->tx.head)); sc->tx_watchdog = WATCHDOG_TIMEOUT_SECS; } } static void eqos_start(if_t ifp) { struct eqos_softc *sc = if_getsoftc(ifp); EQOS_LOCK(sc); eqos_start_locked(ifp); EQOS_UNLOCK(sc); } static void eqos_stop(struct eqos_softc *sc) { if_t ifp = sc->ifp; uint32_t val; int retry; EQOS_LOCK(sc); if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING | IFF_DRV_OACTIVE); callout_stop(&sc->callout); /* Disable receiver */ val = RD4(sc, GMAC_MAC_CONFIGURATION); val &= ~GMAC_MAC_CONFIGURATION_RE; WR4(sc, GMAC_MAC_CONFIGURATION, val); /* Stop receive DMA */ val = RD4(sc, GMAC_DMA_CHAN0_RX_CONTROL); val &= ~GMAC_DMA_CHAN0_RX_CONTROL_START; WR4(sc, GMAC_DMA_CHAN0_RX_CONTROL, val); /* Stop transmit DMA */ val = RD4(sc, GMAC_DMA_CHAN0_TX_CONTROL); val &= ~GMAC_DMA_CHAN0_TX_CONTROL_START; WR4(sc, GMAC_DMA_CHAN0_TX_CONTROL, val); /* Flush data in the TX FIFO */ val = RD4(sc, GMAC_MTL_TXQ0_OPERATION_MODE); val |= GMAC_MTL_TXQ0_OPERATION_MODE_FTQ; WR4(sc, GMAC_MTL_TXQ0_OPERATION_MODE, val); for (retry = 10000; retry > 0; retry--) { val = RD4(sc, GMAC_MTL_TXQ0_OPERATION_MODE); if (!(val & GMAC_MTL_TXQ0_OPERATION_MODE_FTQ)) break; DELAY(10); } if (!retry) device_printf(sc->dev, "timeout flushing TX queue\n"); /* Disable transmitter */ val = RD4(sc, GMAC_MAC_CONFIGURATION); val &= ~GMAC_MAC_CONFIGURATION_TE; WR4(sc, GMAC_MAC_CONFIGURATION, val); eqos_disable_intr(sc); EQOS_UNLOCK(sc); } static void eqos_rxintr(struct eqos_softc *sc) { if_t ifp = sc->ifp; struct mbuf *m; uint32_t rdes3; int error, length; while (true) { rdes3 = le32toh(sc->rx.desc_ring[sc->rx.head].des3); if ((rdes3 & EQOS_RDES3_OWN)) break; if (rdes3 & (EQOS_RDES3_OE | EQOS_RDES3_RE)) printf("Receive error rdes3=%08x\n", rdes3); bus_dmamap_sync(sc->rx.buf_tag, sc->rx.buf_map[sc->rx.head].map, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->rx.buf_tag, sc->rx.buf_map[sc->rx.head].map); length = rdes3 & EQOS_RDES3_LENGTH_MASK; if (length) { m = sc->rx.buf_map[sc->rx.head].mbuf; m->m_pkthdr.rcvif = ifp; m->m_pkthdr.len = length; m->m_len = length; m->m_nextpkt = NULL; /* Remove trailing FCS */ m_adj(m, -ETHER_CRC_LEN); EQOS_UNLOCK(sc); if_input(ifp, m); EQOS_LOCK(sc); } if ((m = eqos_alloc_mbufcl(sc))) { if ((error = eqos_setup_rxbuf(sc, sc->rx.head, m))) printf("ERROR: Hole in RX ring!!\n"); } else if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); WR4(sc, GMAC_DMA_CHAN0_RX_END_ADDR, (uint32_t)sc->rx.desc_ring_paddr + DESC_OFFSET(sc->rx.head)); sc->rx.head = RX_NEXT(sc->rx.head); } } static void eqos_txintr(struct eqos_softc *sc) { if_t ifp = sc->ifp; struct eqos_bufmap *bmap; uint32_t tdes3; EQOS_ASSERT_LOCKED(sc); while (sc->tx.tail != sc->tx.head) { tdes3 = le32toh(sc->tx.desc_ring[sc->tx.tail].des3); if ((tdes3 & EQOS_TDES3_OWN)) break; bmap = &sc->tx.buf_map[sc->tx.tail]; if (bmap->mbuf) { bus_dmamap_sync(sc->tx.buf_tag, bmap->map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->tx.buf_tag, bmap->map); m_freem(bmap->mbuf); bmap->mbuf = NULL; } eqos_setup_txdesc(sc, sc->tx.tail, 0, 0, 0, 0); if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE); /* Last descriptor in a packet contains DMA status */ if ((tdes3 & EQOS_TDES3_LD)) { if ((tdes3 & EQOS_TDES3_DE)) { if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); } else if ((tdes3 & EQOS_TDES3_ES)) { if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); } else { if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); } } sc->tx.tail = TX_NEXT(sc->tx.tail); } if (sc->tx.tail == sc->tx.head) sc->tx_watchdog = 0; eqos_start_locked(sc->ifp); } static void eqos_intr_mtl(struct eqos_softc *sc, uint32_t mtl_status) { uint32_t mtl_istat = 0; if ((mtl_status & GMAC_MTL_INTERRUPT_STATUS_Q0IS)) { uint32_t mtl_clear = 0; mtl_istat = RD4(sc, GMAC_MTL_Q0_INTERRUPT_CTRL_STATUS); if ((mtl_istat & GMAC_MTL_Q0_INTERRUPT_CTRL_STATUS_RXOVFIS)) { mtl_clear |= GMAC_MTL_Q0_INTERRUPT_CTRL_STATUS_RXOVFIS; } if ((mtl_istat & GMAC_MTL_Q0_INTERRUPT_CTRL_STATUS_TXUNFIS)) { mtl_clear |= GMAC_MTL_Q0_INTERRUPT_CTRL_STATUS_TXUNFIS; } if (mtl_clear) { mtl_clear |= (mtl_istat & (GMAC_MTL_Q0_INTERRUPT_CTRL_STATUS_RXOIE | GMAC_MTL_Q0_INTERRUPT_CTRL_STATUS_TXUIE)); WR4(sc, GMAC_MTL_Q0_INTERRUPT_CTRL_STATUS, mtl_clear); } } if (bootverbose) device_printf(sc->dev, "GMAC_MTL_INTERRUPT_STATUS = 0x%08X, " "GMAC_MTL_INTERRUPT_STATUS_Q0IS = 0x%08X\n", mtl_status, mtl_istat); } static void eqos_tick(void *softc) { struct eqos_softc *sc = softc; struct mii_data *mii = device_get_softc(sc->miibus); bool link_status; EQOS_ASSERT_LOCKED(sc); if (sc->tx_watchdog > 0) if (!--sc->tx_watchdog) { device_printf(sc->dev, "watchdog timeout\n"); eqos_txintr(sc); } link_status = sc->link_up; mii_tick(mii); if (sc->link_up && !link_status) eqos_start_locked(sc->ifp); callout_reset(&sc->callout, hz, eqos_tick, sc); } static void eqos_intr(void *arg) { struct eqos_softc *sc = arg; uint32_t mac_status, mtl_status, dma_status, rx_tx_status; mac_status = RD4(sc, GMAC_MAC_INTERRUPT_STATUS); mac_status &= RD4(sc, GMAC_MAC_INTERRUPT_ENABLE); if (mac_status) device_printf(sc->dev, "MAC interrupt\n"); if ((mtl_status = RD4(sc, GMAC_MTL_INTERRUPT_STATUS))) eqos_intr_mtl(sc, mtl_status); dma_status = RD4(sc, GMAC_DMA_CHAN0_STATUS); dma_status &= RD4(sc, GMAC_DMA_CHAN0_INTR_ENABLE); if (dma_status) WR4(sc, GMAC_DMA_CHAN0_STATUS, dma_status); EQOS_LOCK(sc); if (dma_status & GMAC_DMA_CHAN0_STATUS_RI) eqos_rxintr(sc); if (dma_status & GMAC_DMA_CHAN0_STATUS_TI) eqos_txintr(sc); EQOS_UNLOCK(sc); if (!(mac_status | mtl_status | dma_status)) { device_printf(sc->dev, "spurious interrupt mac=%08x mtl=%08x dma=%08x\n", RD4(sc, GMAC_MAC_INTERRUPT_STATUS), RD4(sc, GMAC_MTL_INTERRUPT_STATUS), RD4(sc, GMAC_DMA_CHAN0_STATUS)); } if ((rx_tx_status = RD4(sc, GMAC_MAC_RX_TX_STATUS))) device_printf(sc->dev, "RX/TX status interrupt\n"); } static int eqos_ioctl(if_t ifp, u_long cmd, caddr_t data) { struct eqos_softc *sc = if_getsoftc(ifp); struct ifreq *ifr = (struct ifreq *)data; struct mii_data *mii; int flags, mask; int error = 0; switch (cmd) { case SIOCSIFFLAGS: if (if_getflags(ifp) & IFF_UP) { if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { flags = if_getflags(ifp); if ((flags & (IFF_PROMISC|IFF_ALLMULTI))) { EQOS_LOCK(sc); eqos_setup_rxfilter(sc); EQOS_UNLOCK(sc); } } else { eqos_init(sc); } } else { if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) eqos_stop(sc); } break; case SIOCADDMULTI: case SIOCDELMULTI: if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { EQOS_LOCK(sc); eqos_setup_rxfilter(sc); EQOS_UNLOCK(sc); } break; case SIOCSIFMEDIA: case SIOCGIFMEDIA: mii = device_get_softc(sc->miibus); error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd); break; case SIOCSIFCAP: mask = ifr->ifr_reqcap ^ if_getcapenable(ifp); if (mask & IFCAP_VLAN_MTU) if_togglecapenable(ifp, IFCAP_VLAN_MTU); if (mask & IFCAP_RXCSUM) if_togglecapenable(ifp, IFCAP_RXCSUM); if (mask & IFCAP_TXCSUM) if_togglecapenable(ifp, IFCAP_TXCSUM); if ((if_getcapenable(ifp) & IFCAP_TXCSUM)) if_sethwassistbits(ifp, CSUM_IP | CSUM_UDP | CSUM_TCP, 0); else if_sethwassistbits(ifp, 0, CSUM_IP | CSUM_UDP | CSUM_TCP); break; default: error = ether_ioctl(ifp, cmd, data); break; } return (error); } static void eqos_get_eaddr(struct eqos_softc *sc, uint8_t *eaddr) { uint32_t maclo, machi; maclo = htobe32(RD4(sc, GMAC_MAC_ADDRESS0_LOW)); machi = htobe16(RD4(sc, GMAC_MAC_ADDRESS0_HIGH) & 0xFFFF); /* if no valid MAC address generate random */ if (maclo == 0xffffffff && machi == 0xffff) { maclo = 0xf2 | (arc4random() & 0xffff0000); machi = arc4random() & 0x0000ffff; } eaddr[0] = maclo & 0xff; eaddr[1] = (maclo >> 8) & 0xff; eaddr[2] = (maclo >> 16) & 0xff; eaddr[3] = (maclo >> 24) & 0xff; eaddr[4] = machi & 0xff; eaddr[5] = (machi >> 8) & 0xff; } static void eqos_axi_configure(struct eqos_softc *sc) { uint32_t val; val = RD4(sc, GMAC_DMA_SYSBUS_MODE); /* Max Write Outstanding Req Limit */ val &= ~GMAC_DMA_SYSBUS_MODE_WR_OSR_LMT_MASK; val |= 0x03 << GMAC_DMA_SYSBUS_MODE_WR_OSR_LMT_SHIFT; /* Max Read Outstanding Req Limit */ val &= ~GMAC_DMA_SYSBUS_MODE_RD_OSR_LMT_MASK; val |= 0x07 << GMAC_DMA_SYSBUS_MODE_RD_OSR_LMT_SHIFT; /* Allowed Burst Length's */ val |= GMAC_DMA_SYSBUS_MODE_BLEN16; val |= GMAC_DMA_SYSBUS_MODE_BLEN8; val |= GMAC_DMA_SYSBUS_MODE_BLEN4; /* Fixed Burst Length */ val |= GMAC_DMA_SYSBUS_MODE_MB; WR4(sc, GMAC_DMA_SYSBUS_MODE, val); } static void eqos_get1paddr(void *arg, bus_dma_segment_t *segs, int nsegs, int error) { if (!error) *(bus_addr_t *)arg = segs[0].ds_addr; } static int eqos_setup_dma(struct eqos_softc *sc) { struct mbuf *m; int error, i; /* Set up TX descriptor ring, descriptors, and dma maps */ if ((error = bus_dma_tag_create(bus_get_dma_tag(sc->dev), DESC_ALIGN, DESC_BOUNDARY, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, TX_DESC_SIZE, 1, TX_DESC_SIZE, 0, NULL, NULL, &sc->tx.desc_tag))) { device_printf(sc->dev, "could not create TX ring DMA tag\n"); return (error); } if ((error = bus_dmamem_alloc(sc->tx.desc_tag, (void**)&sc->tx.desc_ring, BUS_DMA_COHERENT | BUS_DMA_WAITOK | BUS_DMA_ZERO, &sc->tx.desc_map))) { device_printf(sc->dev, "could not allocate TX descriptor ring.\n"); return (error); } if ((error = bus_dmamap_load(sc->tx.desc_tag, sc->tx.desc_map, sc->tx.desc_ring, TX_DESC_SIZE, eqos_get1paddr, &sc->tx.desc_ring_paddr, 0))) { device_printf(sc->dev, "could not load TX descriptor ring map.\n"); return (error); } if ((error = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES*TX_MAX_SEGS, TX_MAX_SEGS, MCLBYTES, 0, NULL, NULL, &sc->tx.buf_tag))) { device_printf(sc->dev, "could not create TX buffer DMA tag.\n"); return (error); } for (i = 0; i < TX_DESC_COUNT; i++) { if ((error = bus_dmamap_create(sc->tx.buf_tag, BUS_DMA_COHERENT, &sc->tx.buf_map[i].map))) { device_printf(sc->dev, "cannot create TX buffer map\n"); return (error); } eqos_setup_txdesc(sc, i, EQOS_TDES3_OWN, 0, 0, 0); } /* Set up RX descriptor ring, descriptors, dma maps, and mbufs */ if ((error = bus_dma_tag_create(bus_get_dma_tag(sc->dev), DESC_ALIGN, DESC_BOUNDARY, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, RX_DESC_SIZE, 1, RX_DESC_SIZE, 0, NULL, NULL, &sc->rx.desc_tag))) { device_printf(sc->dev, "could not create RX ring DMA tag.\n"); return (error); } if ((error = bus_dmamem_alloc(sc->rx.desc_tag, (void **)&sc->rx.desc_ring, BUS_DMA_COHERENT | BUS_DMA_WAITOK | BUS_DMA_ZERO, &sc->rx.desc_map))) { device_printf(sc->dev, "could not allocate RX descriptor ring.\n"); return (error); } if ((error = bus_dmamap_load(sc->rx.desc_tag, sc->rx.desc_map, sc->rx.desc_ring, RX_DESC_SIZE, eqos_get1paddr, &sc->rx.desc_ring_paddr, 0))) { device_printf(sc->dev, "could not load RX descriptor ring map.\n"); return (error); } if ((error = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1, MCLBYTES, 0, NULL, NULL, &sc->rx.buf_tag))) { device_printf(sc->dev, "could not create RX buf DMA tag.\n"); return (error); } for (i = 0; i < RX_DESC_COUNT; i++) { if ((error = bus_dmamap_create(sc->rx.buf_tag, BUS_DMA_COHERENT, &sc->rx.buf_map[i].map))) { device_printf(sc->dev, "cannot create RX buffer map\n"); return (error); } if (!(m = eqos_alloc_mbufcl(sc))) { device_printf(sc->dev, "cannot allocate RX mbuf\n"); return (ENOMEM); } if ((error = eqos_setup_rxbuf(sc, i, m))) { device_printf(sc->dev, "cannot create RX buffer\n"); return (error); } } if (bootverbose) device_printf(sc->dev, "TX ring @ 0x%lx, RX ring @ 0x%lx\n", sc->tx.desc_ring_paddr, sc->rx.desc_ring_paddr); return (0); } static int eqos_attach(device_t dev) { struct eqos_softc *sc = device_get_softc(dev); if_t ifp; uint32_t ver; uint8_t eaddr[ETHER_ADDR_LEN]; u_int userver, snpsver; int error; int n; /* setup resources */ if (bus_alloc_resources(dev, eqos_spec, sc->res)) { device_printf(dev, "Could not allocate resources\n"); bus_release_resources(dev, eqos_spec, sc->res); return (ENXIO); } if ((error = IF_EQOS_INIT(dev))) return (error); sc->dev = dev; ver = RD4(sc, GMAC_MAC_VERSION); userver = (ver & GMAC_MAC_VERSION_USERVER_MASK) >> GMAC_MAC_VERSION_USERVER_SHIFT; snpsver = ver & GMAC_MAC_VERSION_SNPSVER_MASK; if (snpsver != 0x51) { device_printf(dev, "EQOS version 0x%02x not supported\n", snpsver); return (ENXIO); } for (n = 0; n < 4; n++) sc->hw_feature[n] = RD4(sc, GMAC_MAC_HW_FEATURE(n)); if (bootverbose) { device_printf(dev, "DesignWare EQOS ver 0x%02x (0x%02x)\n", snpsver, userver); device_printf(dev, "hw features %08x %08x %08x %08x\n", sc->hw_feature[0], sc->hw_feature[1], sc->hw_feature[2], sc->hw_feature[3]); } mtx_init(&sc->lock, "eqos lock", MTX_NETWORK_LOCK, MTX_DEF); callout_init_mtx(&sc->callout, &sc->lock, 0); eqos_get_eaddr(sc, eaddr); if (bootverbose) device_printf(sc->dev, "Ethernet address %6D\n", eaddr, ":"); /* Soft reset EMAC core */ if ((error = eqos_reset(sc))) { device_printf(sc->dev, "reset timeout!\n"); return (error); } /* Configure AXI Bus mode parameters */ eqos_axi_configure(sc); /* Setup DMA descriptors */ if (eqos_setup_dma(sc)) { device_printf(sc->dev, "failed to setup DMA descriptors\n"); return (EINVAL); } /* setup interrupt delivery */ if ((bus_setup_intr(dev, sc->res[EQOS_RES_IRQ0], EQOS_INTR_FLAGS, NULL, eqos_intr, sc, &sc->irq_handle))) { device_printf(dev, "unable to setup 1st interrupt\n"); bus_release_resources(dev, eqos_spec, sc->res); return (ENXIO); } /* Setup ethernet interface */ ifp = sc->ifp = if_alloc(IFT_ETHER); if_setsoftc(ifp, sc); if_initname(ifp, device_get_name(sc->dev), device_get_unit(sc->dev)); if_setflags(sc->ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST); if_setstartfn(ifp, eqos_start); if_setioctlfn(ifp, eqos_ioctl); if_setinitfn(ifp, eqos_init); if_setsendqlen(ifp, TX_DESC_COUNT - 1); if_setsendqready(ifp); if_setcapabilities(ifp, IFCAP_VLAN_MTU /*| IFCAP_HWCSUM*/); if_setcapenable(ifp, if_getcapabilities(ifp)); /* Attach MII driver */ if ((error = mii_attach(sc->dev, &sc->miibus, ifp, eqos_media_change, eqos_media_status, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0))) { device_printf(sc->dev, "PHY attach failed\n"); return (ENXIO); } /* Attach ethernet interface */ ether_ifattach(ifp, eaddr); return (0); } static int eqos_detach(device_t dev) { struct eqos_softc *sc = device_get_softc(dev); int i; if (device_is_attached(dev)) { EQOS_LOCK(sc); eqos_stop(sc); EQOS_UNLOCK(sc); if_setflagbits(sc->ifp, 0, IFF_UP); ether_ifdetach(sc->ifp); } if (sc->miibus) device_delete_child(dev, sc->miibus); bus_generic_detach(dev); if (sc->irq_handle) bus_teardown_intr(dev, sc->res[EQOS_RES_IRQ0], sc->irq_handle); if (sc->ifp) if_free(sc->ifp); bus_release_resources(dev, eqos_spec, sc->res); if (sc->tx.desc_tag) { if (sc->tx.desc_map) { bus_dmamap_unload(sc->tx.desc_tag, sc->tx.desc_map); bus_dmamem_free(sc->tx.desc_tag, sc->tx.desc_ring, sc->tx.desc_map); } bus_dma_tag_destroy(sc->tx.desc_tag); } if (sc->tx.buf_tag) { for (i = 0; i < TX_DESC_COUNT; i++) { m_free(sc->tx.buf_map[i].mbuf); bus_dmamap_destroy(sc->tx.buf_tag, sc->tx.buf_map[i].map); } bus_dma_tag_destroy(sc->tx.buf_tag); } if (sc->rx.desc_tag) { if (sc->rx.desc_map) { bus_dmamap_unload(sc->rx.desc_tag, sc->rx.desc_map); bus_dmamem_free(sc->rx.desc_tag, sc->rx.desc_ring, sc->rx.desc_map); } bus_dma_tag_destroy(sc->rx.desc_tag); } if (sc->rx.buf_tag) { for (i = 0; i < RX_DESC_COUNT; i++) { m_free(sc->rx.buf_map[i].mbuf); bus_dmamap_destroy(sc->rx.buf_tag, sc->rx.buf_map[i].map); } bus_dma_tag_destroy(sc->rx.buf_tag); } mtx_destroy(&sc->lock); return (0); } static device_method_t eqos_methods[] = { /* Device Interface */ DEVMETHOD(device_attach, eqos_attach), DEVMETHOD(device_detach, eqos_detach), /* MII Interface */ DEVMETHOD(miibus_readreg, eqos_miibus_readreg), DEVMETHOD(miibus_writereg, eqos_miibus_writereg), DEVMETHOD(miibus_statchg, eqos_miibus_statchg), DEVMETHOD_END }; driver_t eqos_driver = { "eqos", eqos_methods, sizeof(struct eqos_softc), }; DRIVER_MODULE(miibus, eqos, miibus_driver, 0, 0);