/*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2015-2021 Amazon.com, Inc. or its affiliates. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_rss.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef RSS #include #endif #include #include #include #include #include #include #include #include #include #include #include #include "ena_datapath.h" #include "ena.h" #include "ena_sysctl.h" #ifdef DEV_NETMAP #include "ena_netmap.h" #endif /* DEV_NETMAP */ /********************************************************* * Function prototypes *********************************************************/ static int ena_probe(device_t); static void ena_intr_msix_mgmnt(void *); static void ena_free_pci_resources(struct ena_adapter *); static int ena_change_mtu(if_t, int); static inline void ena_alloc_counters(counter_u64_t *, int); static inline void ena_free_counters(counter_u64_t *, int); static inline void ena_reset_counters(counter_u64_t *, int); static void ena_init_io_rings_common(struct ena_adapter *, struct ena_ring *, uint16_t); static void ena_init_io_rings_basic(struct ena_adapter *); static void ena_init_io_rings_advanced(struct ena_adapter *); static void ena_init_io_rings(struct ena_adapter *); static void ena_free_io_ring_resources(struct ena_adapter *, unsigned int); static void ena_free_all_io_rings_resources(struct ena_adapter *); static int ena_setup_tx_dma_tag(struct ena_adapter *); static int ena_free_tx_dma_tag(struct ena_adapter *); static int ena_setup_rx_dma_tag(struct ena_adapter *); static int ena_free_rx_dma_tag(struct ena_adapter *); static void ena_release_all_tx_dmamap(struct ena_ring *); static int ena_setup_tx_resources(struct ena_adapter *, int); static void ena_free_tx_resources(struct ena_adapter *, int); static int ena_setup_all_tx_resources(struct ena_adapter *); static void ena_free_all_tx_resources(struct ena_adapter *); static int ena_setup_rx_resources(struct ena_adapter *, unsigned int); static void ena_free_rx_resources(struct ena_adapter *, unsigned int); static int ena_setup_all_rx_resources(struct ena_adapter *); static void ena_free_all_rx_resources(struct ena_adapter *); static inline int ena_alloc_rx_mbuf(struct ena_adapter *, struct ena_ring *, struct ena_rx_buffer *); static void ena_free_rx_mbuf(struct ena_adapter *, struct ena_ring *, struct ena_rx_buffer *); static void ena_free_rx_bufs(struct ena_adapter *, unsigned int); static void ena_refill_all_rx_bufs(struct ena_adapter *); static void ena_free_all_rx_bufs(struct ena_adapter *); static void ena_free_tx_bufs(struct ena_adapter *, unsigned int); static void ena_free_all_tx_bufs(struct ena_adapter *); static void ena_destroy_all_tx_queues(struct ena_adapter *); static void ena_destroy_all_rx_queues(struct ena_adapter *); static void ena_destroy_all_io_queues(struct ena_adapter *); static int ena_create_io_queues(struct ena_adapter *); static int ena_handle_msix(void *); static int ena_enable_msix(struct ena_adapter *); static void ena_setup_mgmnt_intr(struct ena_adapter *); static int ena_setup_io_intr(struct ena_adapter *); static int ena_request_mgmnt_irq(struct ena_adapter *); static int ena_request_io_irq(struct ena_adapter *); static void ena_free_mgmnt_irq(struct ena_adapter *); static void ena_free_io_irq(struct ena_adapter *); static void ena_free_irqs(struct ena_adapter*); static void ena_disable_msix(struct ena_adapter *); static void ena_unmask_all_io_irqs(struct ena_adapter *); static int ena_rss_configure(struct ena_adapter *); static int ena_up_complete(struct ena_adapter *); static uint64_t ena_get_counter(if_t, ift_counter); static int ena_media_change(if_t); static void ena_media_status(if_t, struct ifmediareq *); static void ena_init(void *); static int ena_ioctl(if_t, u_long, caddr_t); static int ena_get_dev_offloads(struct ena_com_dev_get_features_ctx *); static void ena_update_host_info(struct ena_admin_host_info *, if_t); static void ena_update_hwassist(struct ena_adapter *); static int ena_setup_ifnet(device_t, struct ena_adapter *, struct ena_com_dev_get_features_ctx *); static int ena_enable_wc(device_t, struct resource *); static int ena_set_queues_placement_policy(device_t, struct ena_com_dev *, struct ena_admin_feature_llq_desc *, struct ena_llq_configurations *); static uint32_t ena_calc_max_io_queue_num(device_t, struct ena_com_dev *, struct ena_com_dev_get_features_ctx *); static int ena_calc_io_queue_size(struct ena_calc_queue_size_ctx *); static int ena_rss_init_default(struct ena_adapter *); static void ena_rss_init_default_deferred(void *); static void ena_config_host_info(struct ena_com_dev *, device_t); static int ena_attach(device_t); static int ena_detach(device_t); static int ena_device_init(struct ena_adapter *, device_t, struct ena_com_dev_get_features_ctx *, int *); static int ena_enable_msix_and_set_admin_interrupts(struct ena_adapter *); static void ena_update_on_link_change(void *, struct ena_admin_aenq_entry *); static void unimplemented_aenq_handler(void *, struct ena_admin_aenq_entry *); static int ena_copy_eni_metrics(struct ena_adapter *); static void ena_timer_service(void *); static char ena_version[] = DEVICE_NAME DRV_MODULE_NAME " v" DRV_MODULE_VERSION; static ena_vendor_info_t ena_vendor_info_array[] = { { PCI_VENDOR_ID_AMAZON, PCI_DEV_ID_ENA_PF, 0}, { PCI_VENDOR_ID_AMAZON, PCI_DEV_ID_ENA_PF_RSERV0, 0}, { PCI_VENDOR_ID_AMAZON, PCI_DEV_ID_ENA_VF, 0}, { PCI_VENDOR_ID_AMAZON, PCI_DEV_ID_ENA_VF_RSERV0, 0}, /* Last entry */ { 0, 0, 0 } }; /* * Contains pointers to event handlers, e.g. link state chage. */ static struct ena_aenq_handlers aenq_handlers; void ena_dmamap_callback(void *arg, bus_dma_segment_t *segs, int nseg, int error) { if (error != 0) return; *(bus_addr_t *) arg = segs[0].ds_addr; } int ena_dma_alloc(device_t dmadev, bus_size_t size, ena_mem_handle_t *dma, int mapflags, bus_size_t alignment) { struct ena_adapter* adapter = device_get_softc(dmadev); device_t pdev = adapter->pdev; uint32_t maxsize; uint64_t dma_space_addr; int error; maxsize = ((size - 1) / PAGE_SIZE + 1) * PAGE_SIZE; dma_space_addr = ENA_DMA_BIT_MASK(adapter->dma_width); if (unlikely(dma_space_addr == 0)) dma_space_addr = BUS_SPACE_MAXADDR; error = bus_dma_tag_create(bus_get_dma_tag(dmadev), /* parent */ alignment, 0, /* alignment, bounds */ dma_space_addr, /* lowaddr of exclusion window */ BUS_SPACE_MAXADDR,/* highaddr of exclusion window */ NULL, NULL, /* filter, filterarg */ maxsize, /* maxsize */ 1, /* nsegments */ maxsize, /* maxsegsize */ BUS_DMA_ALLOCNOW, /* flags */ NULL, /* lockfunc */ NULL, /* lockarg */ &dma->tag); if (unlikely(error != 0)) { ena_log(pdev, ERR, "bus_dma_tag_create failed: %d\n", error); goto fail_tag; } error = bus_dmamem_alloc(dma->tag, (void**) &dma->vaddr, BUS_DMA_COHERENT | BUS_DMA_ZERO, &dma->map); if (unlikely(error != 0)) { ena_log(pdev, ERR, "bus_dmamem_alloc(%ju) failed: %d\n", (uintmax_t)size, error); goto fail_map_create; } dma->paddr = 0; error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size, ena_dmamap_callback, &dma->paddr, mapflags); if (unlikely((error != 0) || (dma->paddr == 0))) { ena_log(pdev, ERR, "bus_dmamap_load failed: %d\n", error); goto fail_map_load; } bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); return (0); fail_map_load: bus_dmamem_free(dma->tag, dma->vaddr, dma->map); fail_map_create: bus_dma_tag_destroy(dma->tag); fail_tag: dma->tag = NULL; dma->vaddr = NULL; dma->paddr = 0; return (error); } /* * This function should generate unique key for the whole driver. * If the key was already genereated in the previous call (for example * for another adapter), then it should be returned instead. */ void ena_rss_key_fill(void *key, size_t size) { static bool key_generated; static uint8_t default_key[ENA_HASH_KEY_SIZE]; KASSERT(size <= ENA_HASH_KEY_SIZE, ("Requested more bytes than ENA RSS key can hold")); if (!key_generated) { arc4random_buf(default_key, ENA_HASH_KEY_SIZE); key_generated = true; } memcpy(key, default_key, size); } static void ena_free_pci_resources(struct ena_adapter *adapter) { device_t pdev = adapter->pdev; if (adapter->memory != NULL) { bus_release_resource(pdev, SYS_RES_MEMORY, PCIR_BAR(ENA_MEM_BAR), adapter->memory); } if (adapter->registers != NULL) { bus_release_resource(pdev, SYS_RES_MEMORY, PCIR_BAR(ENA_REG_BAR), adapter->registers); } if (adapter->msix != NULL) { bus_release_resource(pdev, SYS_RES_MEMORY, adapter->msix_rid, adapter->msix); } } static int ena_probe(device_t dev) { ena_vendor_info_t *ent; char adapter_name[60]; uint16_t pci_vendor_id = 0; uint16_t pci_device_id = 0; pci_vendor_id = pci_get_vendor(dev); pci_device_id = pci_get_device(dev); ent = ena_vendor_info_array; while (ent->vendor_id != 0) { if ((pci_vendor_id == ent->vendor_id) && (pci_device_id == ent->device_id)) { ena_log_raw(DBG, "vendor=%x device=%x\n", pci_vendor_id, pci_device_id); sprintf(adapter_name, DEVICE_DESC); device_set_desc_copy(dev, adapter_name); return (BUS_PROBE_DEFAULT); } ent++; } return (ENXIO); } static int ena_change_mtu(if_t ifp, int new_mtu) { struct ena_adapter *adapter = if_getsoftc(ifp); device_t pdev = adapter->pdev; int rc; if ((new_mtu > adapter->max_mtu) || (new_mtu < ENA_MIN_MTU)) { ena_log(pdev, ERR, "Invalid MTU setting. " "new_mtu: %d max mtu: %d min mtu: %d\n", new_mtu, adapter->max_mtu, ENA_MIN_MTU); return (EINVAL); } rc = ena_com_set_dev_mtu(adapter->ena_dev, new_mtu); if (likely(rc == 0)) { ena_log(pdev, DBG, "set MTU to %d\n", new_mtu); if_setmtu(ifp, new_mtu); } else { ena_log(pdev, ERR, "Failed to set MTU to %d\n", new_mtu); } return (rc); } static inline void ena_alloc_counters(counter_u64_t *begin, int size) { counter_u64_t *end = (counter_u64_t *)((char *)begin + size); for (; begin < end; ++begin) *begin = counter_u64_alloc(M_WAITOK); } static inline void ena_free_counters(counter_u64_t *begin, int size) { counter_u64_t *end = (counter_u64_t *)((char *)begin + size); for (; begin < end; ++begin) counter_u64_free(*begin); } static inline void ena_reset_counters(counter_u64_t *begin, int size) { counter_u64_t *end = (counter_u64_t *)((char *)begin + size); for (; begin < end; ++begin) counter_u64_zero(*begin); } static void ena_init_io_rings_common(struct ena_adapter *adapter, struct ena_ring *ring, uint16_t qid) { ring->qid = qid; ring->adapter = adapter; ring->ena_dev = adapter->ena_dev; ring->first_interrupt = false; ring->no_interrupt_event_cnt = 0; } static void ena_init_io_rings_basic(struct ena_adapter *adapter) { struct ena_com_dev *ena_dev; struct ena_ring *txr, *rxr; struct ena_que *que; int i; ena_dev = adapter->ena_dev; for (i = 0; i < adapter->num_io_queues; i++) { txr = &adapter->tx_ring[i]; rxr = &adapter->rx_ring[i]; /* TX/RX common ring state */ ena_init_io_rings_common(adapter, txr, i); ena_init_io_rings_common(adapter, rxr, i); /* TX specific ring state */ txr->tx_max_header_size = ena_dev->tx_max_header_size; txr->tx_mem_queue_type = ena_dev->tx_mem_queue_type; que = &adapter->que[i]; que->adapter = adapter; que->id = i; que->tx_ring = txr; que->rx_ring = rxr; txr->que = que; rxr->que = que; rxr->empty_rx_queue = 0; rxr->rx_mbuf_sz = ena_mbuf_sz; } } static void ena_init_io_rings_advanced(struct ena_adapter *adapter) { struct ena_ring *txr, *rxr; int i; for (i = 0; i < adapter->num_io_queues; i++) { txr = &adapter->tx_ring[i]; rxr = &adapter->rx_ring[i]; /* Allocate a buf ring */ txr->buf_ring_size = adapter->buf_ring_size; txr->br = buf_ring_alloc(txr->buf_ring_size, M_DEVBUF, M_WAITOK, &txr->ring_mtx); /* Allocate Tx statistics. */ ena_alloc_counters((counter_u64_t *)&txr->tx_stats, sizeof(txr->tx_stats)); /* Allocate Rx statistics. */ ena_alloc_counters((counter_u64_t *)&rxr->rx_stats, sizeof(rxr->rx_stats)); /* Initialize locks */ snprintf(txr->mtx_name, nitems(txr->mtx_name), "%s:tx(%d)", device_get_nameunit(adapter->pdev), i); snprintf(rxr->mtx_name, nitems(rxr->mtx_name), "%s:rx(%d)", device_get_nameunit(adapter->pdev), i); mtx_init(&txr->ring_mtx, txr->mtx_name, NULL, MTX_DEF); } } static void ena_init_io_rings(struct ena_adapter *adapter) { /* * IO rings initialization can be divided into the 2 steps: * 1. Initialize variables and fields with initial values and copy * them from adapter/ena_dev (basic) * 2. Allocate mutex, counters and buf_ring (advanced) */ ena_init_io_rings_basic(adapter); ena_init_io_rings_advanced(adapter); } static void ena_free_io_ring_resources(struct ena_adapter *adapter, unsigned int qid) { struct ena_ring *txr = &adapter->tx_ring[qid]; struct ena_ring *rxr = &adapter->rx_ring[qid]; ena_free_counters((counter_u64_t *)&txr->tx_stats, sizeof(txr->tx_stats)); ena_free_counters((counter_u64_t *)&rxr->rx_stats, sizeof(rxr->rx_stats)); ENA_RING_MTX_LOCK(txr); drbr_free(txr->br, M_DEVBUF); ENA_RING_MTX_UNLOCK(txr); mtx_destroy(&txr->ring_mtx); } static void ena_free_all_io_rings_resources(struct ena_adapter *adapter) { int i; for (i = 0; i < adapter->num_io_queues; i++) ena_free_io_ring_resources(adapter, i); } static int ena_setup_tx_dma_tag(struct ena_adapter *adapter) { int ret; /* Create DMA tag for Tx buffers */ ret = bus_dma_tag_create(bus_get_dma_tag(adapter->pdev), 1, 0, /* alignment, bounds */ ENA_DMA_BIT_MASK(adapter->dma_width), /* lowaddr of excl window */ BUS_SPACE_MAXADDR, /* highaddr of excl window */ NULL, NULL, /* filter, filterarg */ ENA_TSO_MAXSIZE, /* maxsize */ adapter->max_tx_sgl_size - 1, /* nsegments */ ENA_TSO_MAXSIZE, /* maxsegsize */ 0, /* flags */ NULL, /* lockfunc */ NULL, /* lockfuncarg */ &adapter->tx_buf_tag); return (ret); } static int ena_free_tx_dma_tag(struct ena_adapter *adapter) { int ret; ret = bus_dma_tag_destroy(adapter->tx_buf_tag); if (likely(ret == 0)) adapter->tx_buf_tag = NULL; return (ret); } static int ena_setup_rx_dma_tag(struct ena_adapter *adapter) { int ret; /* Create DMA tag for Rx buffers*/ ret = bus_dma_tag_create(bus_get_dma_tag(adapter->pdev), /* parent */ 1, 0, /* alignment, bounds */ ENA_DMA_BIT_MASK(adapter->dma_width), /* lowaddr of excl window */ BUS_SPACE_MAXADDR, /* highaddr of excl window */ NULL, NULL, /* filter, filterarg */ ena_mbuf_sz, /* maxsize */ adapter->max_rx_sgl_size, /* nsegments */ ena_mbuf_sz, /* maxsegsize */ 0, /* flags */ NULL, /* lockfunc */ NULL, /* lockarg */ &adapter->rx_buf_tag); return (ret); } static int ena_free_rx_dma_tag(struct ena_adapter *adapter) { int ret; ret = bus_dma_tag_destroy(adapter->rx_buf_tag); if (likely(ret == 0)) adapter->rx_buf_tag = NULL; return (ret); } static void ena_release_all_tx_dmamap(struct ena_ring *tx_ring) { struct ena_adapter *adapter = tx_ring->adapter; struct ena_tx_buffer *tx_info; bus_dma_tag_t tx_tag = adapter->tx_buf_tag;; int i; #ifdef DEV_NETMAP struct ena_netmap_tx_info *nm_info; int j; #endif /* DEV_NETMAP */ for (i = 0; i < tx_ring->ring_size; ++i) { tx_info = &tx_ring->tx_buffer_info[i]; #ifdef DEV_NETMAP if (adapter->ifp->if_capenable & IFCAP_NETMAP) { nm_info = &tx_info->nm_info; for (j = 0; j < ENA_PKT_MAX_BUFS; ++j) { if (nm_info->map_seg[j] != NULL) { bus_dmamap_destroy(tx_tag, nm_info->map_seg[j]); nm_info->map_seg[j] = NULL; } } } #endif /* DEV_NETMAP */ if (tx_info->dmamap != NULL) { bus_dmamap_destroy(tx_tag, tx_info->dmamap); tx_info->dmamap = NULL; } } } /** * ena_setup_tx_resources - allocate Tx resources (Descriptors) * @adapter: network interface device structure * @qid: queue index * * Returns 0 on success, otherwise on failure. **/ static int ena_setup_tx_resources(struct ena_adapter *adapter, int qid) { device_t pdev = adapter->pdev; struct ena_que *que = &adapter->que[qid]; struct ena_ring *tx_ring = que->tx_ring; int size, i, err; #ifdef DEV_NETMAP bus_dmamap_t *map; int j; ena_netmap_reset_tx_ring(adapter, qid); #endif /* DEV_NETMAP */ size = sizeof(struct ena_tx_buffer) * tx_ring->ring_size; tx_ring->tx_buffer_info = malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO); if (unlikely(tx_ring->tx_buffer_info == NULL)) return (ENOMEM); size = sizeof(uint16_t) * tx_ring->ring_size; tx_ring->free_tx_ids = malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO); if (unlikely(tx_ring->free_tx_ids == NULL)) goto err_buf_info_free; size = tx_ring->tx_max_header_size; tx_ring->push_buf_intermediate_buf = malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO); if (unlikely(tx_ring->push_buf_intermediate_buf == NULL)) goto err_tx_ids_free; /* Req id stack for TX OOO completions */ for (i = 0; i < tx_ring->ring_size; i++) tx_ring->free_tx_ids[i] = i; /* Reset TX statistics. */ ena_reset_counters((counter_u64_t *)&tx_ring->tx_stats, sizeof(tx_ring->tx_stats)); tx_ring->next_to_use = 0; tx_ring->next_to_clean = 0; tx_ring->acum_pkts = 0; /* Make sure that drbr is empty */ ENA_RING_MTX_LOCK(tx_ring); drbr_flush(adapter->ifp, tx_ring->br); ENA_RING_MTX_UNLOCK(tx_ring); /* ... and create the buffer DMA maps */ for (i = 0; i < tx_ring->ring_size; i++) { err = bus_dmamap_create(adapter->tx_buf_tag, 0, &tx_ring->tx_buffer_info[i].dmamap); if (unlikely(err != 0)) { ena_log(pdev, ERR, "Unable to create Tx DMA map for buffer %d\n", i); goto err_map_release; } #ifdef DEV_NETMAP if (adapter->ifp->if_capenable & IFCAP_NETMAP) { map = tx_ring->tx_buffer_info[i].nm_info.map_seg; for (j = 0; j < ENA_PKT_MAX_BUFS; j++) { err = bus_dmamap_create(adapter->tx_buf_tag, 0, &map[j]); if (unlikely(err != 0)) { ena_log(pdev, ERR, "Unable to create " "Tx DMA for buffer %d %d\n", i, j); goto err_map_release; } } } #endif /* DEV_NETMAP */ } /* Allocate taskqueues */ TASK_INIT(&tx_ring->enqueue_task, 0, ena_deferred_mq_start, tx_ring); tx_ring->enqueue_tq = taskqueue_create_fast("ena_tx_enque", M_NOWAIT, taskqueue_thread_enqueue, &tx_ring->enqueue_tq); if (unlikely(tx_ring->enqueue_tq == NULL)) { ena_log(pdev, ERR, "Unable to create taskqueue for enqueue task\n"); i = tx_ring->ring_size; goto err_map_release; } tx_ring->running = true; taskqueue_start_threads(&tx_ring->enqueue_tq, 1, PI_NET, "%s txeq %d", device_get_nameunit(adapter->pdev), que->cpu); return (0); err_map_release: ena_release_all_tx_dmamap(tx_ring); err_tx_ids_free: free(tx_ring->free_tx_ids, M_DEVBUF); tx_ring->free_tx_ids = NULL; err_buf_info_free: free(tx_ring->tx_buffer_info, M_DEVBUF); tx_ring->tx_buffer_info = NULL; return (ENOMEM); } /** * ena_free_tx_resources - Free Tx Resources per Queue * @adapter: network interface device structure * @qid: queue index * * Free all transmit software resources **/ static void ena_free_tx_resources(struct ena_adapter *adapter, int qid) { struct ena_ring *tx_ring = &adapter->tx_ring[qid]; #ifdef DEV_NETMAP struct ena_netmap_tx_info *nm_info; int j; #endif /* DEV_NETMAP */ while (taskqueue_cancel(tx_ring->enqueue_tq, &tx_ring->enqueue_task, NULL)) taskqueue_drain(tx_ring->enqueue_tq, &tx_ring->enqueue_task); taskqueue_free(tx_ring->enqueue_tq); ENA_RING_MTX_LOCK(tx_ring); /* Flush buffer ring, */ drbr_flush(adapter->ifp, tx_ring->br); /* Free buffer DMA maps, */ for (int i = 0; i < tx_ring->ring_size; i++) { bus_dmamap_sync(adapter->tx_buf_tag, tx_ring->tx_buffer_info[i].dmamap, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(adapter->tx_buf_tag, tx_ring->tx_buffer_info[i].dmamap); bus_dmamap_destroy(adapter->tx_buf_tag, tx_ring->tx_buffer_info[i].dmamap); #ifdef DEV_NETMAP if (adapter->ifp->if_capenable & IFCAP_NETMAP) { nm_info = &tx_ring->tx_buffer_info[i].nm_info; for (j = 0; j < ENA_PKT_MAX_BUFS; j++) { if (nm_info->socket_buf_idx[j] != 0) { bus_dmamap_sync(adapter->tx_buf_tag, nm_info->map_seg[j], BUS_DMASYNC_POSTWRITE); ena_netmap_unload(adapter, nm_info->map_seg[j]); } bus_dmamap_destroy(adapter->tx_buf_tag, nm_info->map_seg[j]); nm_info->socket_buf_idx[j] = 0; } } #endif /* DEV_NETMAP */ m_freem(tx_ring->tx_buffer_info[i].mbuf); tx_ring->tx_buffer_info[i].mbuf = NULL; } ENA_RING_MTX_UNLOCK(tx_ring); /* And free allocated memory. */ free(tx_ring->tx_buffer_info, M_DEVBUF); tx_ring->tx_buffer_info = NULL; free(tx_ring->free_tx_ids, M_DEVBUF); tx_ring->free_tx_ids = NULL; free(tx_ring->push_buf_intermediate_buf, M_DEVBUF); tx_ring->push_buf_intermediate_buf = NULL; } /** * ena_setup_all_tx_resources - allocate all queues Tx resources * @adapter: network interface device structure * * Returns 0 on success, otherwise on failure. **/ static int ena_setup_all_tx_resources(struct ena_adapter *adapter) { int i, rc; for (i = 0; i < adapter->num_io_queues; i++) { rc = ena_setup_tx_resources(adapter, i); if (rc != 0) { ena_log(adapter->pdev, ERR, "Allocation for Tx Queue %u failed\n", i); goto err_setup_tx; } } return (0); err_setup_tx: /* Rewind the index freeing the rings as we go */ while (i--) ena_free_tx_resources(adapter, i); return (rc); } /** * ena_free_all_tx_resources - Free Tx Resources for All Queues * @adapter: network interface device structure * * Free all transmit software resources **/ static void ena_free_all_tx_resources(struct ena_adapter *adapter) { int i; for (i = 0; i < adapter->num_io_queues; i++) ena_free_tx_resources(adapter, i); } /** * ena_setup_rx_resources - allocate Rx resources (Descriptors) * @adapter: network interface device structure * @qid: queue index * * Returns 0 on success, otherwise on failure. **/ static int ena_setup_rx_resources(struct ena_adapter *adapter, unsigned int qid) { device_t pdev = adapter->pdev; struct ena_que *que = &adapter->que[qid]; struct ena_ring *rx_ring = que->rx_ring; int size, err, i; size = sizeof(struct ena_rx_buffer) * rx_ring->ring_size; #ifdef DEV_NETMAP ena_netmap_reset_rx_ring(adapter, qid); rx_ring->initialized = false; #endif /* DEV_NETMAP */ /* * Alloc extra element so in rx path * we can always prefetch rx_info + 1 */ size += sizeof(struct ena_rx_buffer); rx_ring->rx_buffer_info = malloc(size, M_DEVBUF, M_WAITOK | M_ZERO); size = sizeof(uint16_t) * rx_ring->ring_size; rx_ring->free_rx_ids = malloc(size, M_DEVBUF, M_WAITOK); for (i = 0; i < rx_ring->ring_size; i++) rx_ring->free_rx_ids[i] = i; /* Reset RX statistics. */ ena_reset_counters((counter_u64_t *)&rx_ring->rx_stats, sizeof(rx_ring->rx_stats)); rx_ring->next_to_clean = 0; rx_ring->next_to_use = 0; /* ... and create the buffer DMA maps */ for (i = 0; i < rx_ring->ring_size; i++) { err = bus_dmamap_create(adapter->rx_buf_tag, 0, &(rx_ring->rx_buffer_info[i].map)); if (err != 0) { ena_log(pdev, ERR, "Unable to create Rx DMA map for buffer %d\n", i); goto err_buf_info_unmap; } } /* Create LRO for the ring */ if ((adapter->ifp->if_capenable & IFCAP_LRO) != 0) { int err = tcp_lro_init(&rx_ring->lro); if (err != 0) { ena_log(pdev, ERR, "LRO[%d] Initialization failed!\n", qid); } else { ena_log(pdev, DBG, "RX Soft LRO[%d] Initialized\n", qid); rx_ring->lro.ifp = adapter->ifp; } } return (0); err_buf_info_unmap: while (i--) { bus_dmamap_destroy(adapter->rx_buf_tag, rx_ring->rx_buffer_info[i].map); } free(rx_ring->free_rx_ids, M_DEVBUF); rx_ring->free_rx_ids = NULL; free(rx_ring->rx_buffer_info, M_DEVBUF); rx_ring->rx_buffer_info = NULL; return (ENOMEM); } /** * ena_free_rx_resources - Free Rx Resources * @adapter: network interface device structure * @qid: queue index * * Free all receive software resources **/ static void ena_free_rx_resources(struct ena_adapter *adapter, unsigned int qid) { struct ena_ring *rx_ring = &adapter->rx_ring[qid]; /* Free buffer DMA maps, */ for (int i = 0; i < rx_ring->ring_size; i++) { bus_dmamap_sync(adapter->rx_buf_tag, rx_ring->rx_buffer_info[i].map, BUS_DMASYNC_POSTREAD); m_freem(rx_ring->rx_buffer_info[i].mbuf); rx_ring->rx_buffer_info[i].mbuf = NULL; bus_dmamap_unload(adapter->rx_buf_tag, rx_ring->rx_buffer_info[i].map); bus_dmamap_destroy(adapter->rx_buf_tag, rx_ring->rx_buffer_info[i].map); } /* free LRO resources, */ tcp_lro_free(&rx_ring->lro); /* free allocated memory */ free(rx_ring->rx_buffer_info, M_DEVBUF); rx_ring->rx_buffer_info = NULL; free(rx_ring->free_rx_ids, M_DEVBUF); rx_ring->free_rx_ids = NULL; } /** * ena_setup_all_rx_resources - allocate all queues Rx resources * @adapter: network interface device structure * * Returns 0 on success, otherwise on failure. **/ static int ena_setup_all_rx_resources(struct ena_adapter *adapter) { int i, rc = 0; for (i = 0; i < adapter->num_io_queues; i++) { rc = ena_setup_rx_resources(adapter, i); if (rc != 0) { ena_log(adapter->pdev, ERR, "Allocation for Rx Queue %u failed\n", i); goto err_setup_rx; } } return (0); err_setup_rx: /* rewind the index freeing the rings as we go */ while (i--) ena_free_rx_resources(adapter, i); return (rc); } /** * ena_free_all_rx_resources - Free Rx resources for all queues * @adapter: network interface device structure * * Free all receive software resources **/ static void ena_free_all_rx_resources(struct ena_adapter *adapter) { int i; for (i = 0; i < adapter->num_io_queues; i++) ena_free_rx_resources(adapter, i); } static inline int ena_alloc_rx_mbuf(struct ena_adapter *adapter, struct ena_ring *rx_ring, struct ena_rx_buffer *rx_info) { device_t pdev = adapter->pdev; struct ena_com_buf *ena_buf; bus_dma_segment_t segs[1]; int nsegs, error; int mlen; /* if previous allocated frag is not used */ if (unlikely(rx_info->mbuf != NULL)) return (0); /* Get mbuf using UMA allocator */ rx_info->mbuf = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, rx_ring->rx_mbuf_sz); if (unlikely(rx_info->mbuf == NULL)) { counter_u64_add(rx_ring->rx_stats.mjum_alloc_fail, 1); rx_info->mbuf = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); if (unlikely(rx_info->mbuf == NULL)) { counter_u64_add(rx_ring->rx_stats.mbuf_alloc_fail, 1); return (ENOMEM); } mlen = MCLBYTES; } else { mlen = rx_ring->rx_mbuf_sz; } /* Set mbuf length*/ rx_info->mbuf->m_pkthdr.len = rx_info->mbuf->m_len = mlen; /* Map packets for DMA */ ena_log(pdev, DBG, "Using tag %p for buffers' DMA mapping, mbuf %p len: %d\n", adapter->rx_buf_tag,rx_info->mbuf, rx_info->mbuf->m_len); error = bus_dmamap_load_mbuf_sg(adapter->rx_buf_tag, rx_info->map, rx_info->mbuf, segs, &nsegs, BUS_DMA_NOWAIT); if (unlikely((error != 0) || (nsegs != 1))) { ena_log(pdev, WARN, "failed to map mbuf, error: %d, nsegs: %d\n", error, nsegs); counter_u64_add(rx_ring->rx_stats.dma_mapping_err, 1); goto exit; } bus_dmamap_sync(adapter->rx_buf_tag, rx_info->map, BUS_DMASYNC_PREREAD); ena_buf = &rx_info->ena_buf; ena_buf->paddr = segs[0].ds_addr; ena_buf->len = mlen; ena_log(pdev, DBG, "ALLOC RX BUF: mbuf %p, rx_info %p, len %d, paddr %#jx\n", rx_info->mbuf, rx_info,ena_buf->len, (uintmax_t)ena_buf->paddr); return (0); exit: m_freem(rx_info->mbuf); rx_info->mbuf = NULL; return (EFAULT); } static void ena_free_rx_mbuf(struct ena_adapter *adapter, struct ena_ring *rx_ring, struct ena_rx_buffer *rx_info) { if (rx_info->mbuf == NULL) { ena_log(adapter->pdev, WARN, "Trying to free unallocated buffer\n"); return; } bus_dmamap_sync(adapter->rx_buf_tag, rx_info->map, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(adapter->rx_buf_tag, rx_info->map); m_freem(rx_info->mbuf); rx_info->mbuf = NULL; } /** * ena_refill_rx_bufs - Refills ring with descriptors * @rx_ring: the ring which we want to feed with free descriptors * @num: number of descriptors to refill * Refills the ring with newly allocated DMA-mapped mbufs for receiving **/ int ena_refill_rx_bufs(struct ena_ring *rx_ring, uint32_t num) { struct ena_adapter *adapter = rx_ring->adapter; device_t pdev = adapter->pdev; uint16_t next_to_use, req_id; uint32_t i; int rc; ena_log_io(adapter->pdev, DBG, "refill qid: %d\n", rx_ring->qid); next_to_use = rx_ring->next_to_use; for (i = 0; i < num; i++) { struct ena_rx_buffer *rx_info; ena_log_io(pdev, DBG, "RX buffer - next to use: %d\n", next_to_use); req_id = rx_ring->free_rx_ids[next_to_use]; rx_info = &rx_ring->rx_buffer_info[req_id]; #ifdef DEV_NETMAP if (ena_rx_ring_in_netmap(adapter, rx_ring->qid)) rc = ena_netmap_alloc_rx_slot(adapter, rx_ring, rx_info); else #endif /* DEV_NETMAP */ rc = ena_alloc_rx_mbuf(adapter, rx_ring, rx_info); if (unlikely(rc != 0)) { ena_log_io(pdev, WARN, "failed to alloc buffer for rx queue %d\n", rx_ring->qid); break; } rc = ena_com_add_single_rx_desc(rx_ring->ena_com_io_sq, &rx_info->ena_buf, req_id); if (unlikely(rc != 0)) { ena_log_io(pdev, WARN, "failed to add buffer for rx queue %d\n", rx_ring->qid); break; } next_to_use = ENA_RX_RING_IDX_NEXT(next_to_use, rx_ring->ring_size); } if (unlikely(i < num)) { counter_u64_add(rx_ring->rx_stats.refil_partial, 1); ena_log_io(pdev, WARN, "refilled rx qid %d with only %d mbufs (from %d)\n", rx_ring->qid, i, num); } if (likely(i != 0)) ena_com_write_sq_doorbell(rx_ring->ena_com_io_sq); rx_ring->next_to_use = next_to_use; return (i); } int ena_update_buf_ring_size(struct ena_adapter *adapter, uint32_t new_buf_ring_size) { uint32_t old_buf_ring_size; int rc = 0; bool dev_was_up; ENA_LOCK_LOCK(adapter); old_buf_ring_size = adapter->buf_ring_size; adapter->buf_ring_size = new_buf_ring_size; dev_was_up = ENA_FLAG_ISSET(ENA_FLAG_DEV_UP, adapter); ena_down(adapter); /* Reconfigure buf ring for all Tx rings. */ ena_free_all_io_rings_resources(adapter); ena_init_io_rings_advanced(adapter); if (dev_was_up) { /* * If ena_up() fails, it's not because of recent buf_ring size * changes. Because of that, we just want to revert old drbr * value and trigger the reset because something else had to * go wrong. */ rc = ena_up(adapter); if (unlikely(rc != 0)) { ena_log(adapter->pdev, ERR, "Failed to configure device after setting new drbr size: %u. Reverting old value: %u and triggering the reset\n", new_buf_ring_size, old_buf_ring_size); /* Revert old size and trigger the reset */ adapter->buf_ring_size = old_buf_ring_size; ena_free_all_io_rings_resources(adapter); ena_init_io_rings_advanced(adapter); ENA_FLAG_SET_ATOMIC(ENA_FLAG_DEV_UP_BEFORE_RESET, adapter); ena_trigger_reset(adapter, ENA_REGS_RESET_OS_TRIGGER); } } ENA_LOCK_UNLOCK(adapter); return (rc); } int ena_update_queue_size(struct ena_adapter *adapter, uint32_t new_tx_size, uint32_t new_rx_size) { uint32_t old_tx_size, old_rx_size; int rc = 0; bool dev_was_up; ENA_LOCK_LOCK(adapter); old_tx_size = adapter->requested_tx_ring_size; old_rx_size = adapter->requested_rx_ring_size; adapter->requested_tx_ring_size = new_tx_size; adapter->requested_rx_ring_size = new_rx_size; dev_was_up = ENA_FLAG_ISSET(ENA_FLAG_DEV_UP, adapter); ena_down(adapter); /* Configure queues with new size. */ ena_init_io_rings_basic(adapter); if (dev_was_up) { rc = ena_up(adapter); if (unlikely(rc != 0)) { ena_log(adapter->pdev, ERR, "Failed to configure device with the new sizes - Tx: %u Rx: %u. Reverting old values - Tx: %u Rx: %u\n", new_tx_size, new_rx_size, old_tx_size, old_rx_size); /* Revert old size. */ adapter->requested_tx_ring_size = old_tx_size; adapter->requested_rx_ring_size = old_rx_size; ena_init_io_rings_basic(adapter); /* And try again. */ rc = ena_up(adapter); if (unlikely(rc != 0)) { ena_log(adapter->pdev, ERR, "Failed to revert old queue sizes. Triggering device reset.\n"); /* * If we've failed again, something had to go * wrong. After reset, the device should try to * go up */ ENA_FLAG_SET_ATOMIC( ENA_FLAG_DEV_UP_BEFORE_RESET, adapter); ena_trigger_reset(adapter, ENA_REGS_RESET_OS_TRIGGER); } } } ENA_LOCK_UNLOCK(adapter); return (rc); } static void ena_update_io_rings(struct ena_adapter *adapter, uint32_t num) { ena_free_all_io_rings_resources(adapter); /* Force indirection table to be reinitialized */ ena_com_rss_destroy(adapter->ena_dev); adapter->num_io_queues = num; ena_init_io_rings(adapter); } /* Caller should sanitize new_num */ int ena_update_io_queue_nb(struct ena_adapter *adapter, uint32_t new_num) { uint32_t old_num; int rc = 0; bool dev_was_up; ENA_LOCK_LOCK(adapter); dev_was_up = ENA_FLAG_ISSET(ENA_FLAG_DEV_UP, adapter); old_num = adapter->num_io_queues; ena_down(adapter); ena_update_io_rings(adapter, new_num); if (dev_was_up) { rc = ena_up(adapter); if (unlikely(rc != 0)) { ena_log(adapter->pdev, ERR, "Failed to configure device with %u IO queues. " "Reverting to previous value: %u\n", new_num, old_num); ena_update_io_rings(adapter, old_num); rc = ena_up(adapter); if (unlikely(rc != 0)) { ena_log(adapter->pdev, ERR, "Failed to revert to previous setup IO " "queues. Triggering device reset.\n"); ENA_FLAG_SET_ATOMIC( ENA_FLAG_DEV_UP_BEFORE_RESET, adapter); ena_trigger_reset(adapter, ENA_REGS_RESET_OS_TRIGGER); } } } ENA_LOCK_UNLOCK(adapter); return (rc); } static void ena_free_rx_bufs(struct ena_adapter *adapter, unsigned int qid) { struct ena_ring *rx_ring = &adapter->rx_ring[qid]; unsigned int i; for (i = 0; i < rx_ring->ring_size; i++) { struct ena_rx_buffer *rx_info = &rx_ring->rx_buffer_info[i]; if (rx_info->mbuf != NULL) ena_free_rx_mbuf(adapter, rx_ring, rx_info); #ifdef DEV_NETMAP if (((if_getflags(adapter->ifp) & IFF_DYING) == 0) && (adapter->ifp->if_capenable & IFCAP_NETMAP)) { if (rx_info->netmap_buf_idx != 0) ena_netmap_free_rx_slot(adapter, rx_ring, rx_info); } #endif /* DEV_NETMAP */ } } /** * ena_refill_all_rx_bufs - allocate all queues Rx buffers * @adapter: network interface device structure * */ static void ena_refill_all_rx_bufs(struct ena_adapter *adapter) { struct ena_ring *rx_ring; int i, rc, bufs_num; for (i = 0; i < adapter->num_io_queues; i++) { rx_ring = &adapter->rx_ring[i]; bufs_num = rx_ring->ring_size - 1; rc = ena_refill_rx_bufs(rx_ring, bufs_num); if (unlikely(rc != bufs_num)) ena_log_io(adapter->pdev, WARN, "refilling Queue %d failed. " "Allocated %d buffers from: %d\n", i, rc, bufs_num); #ifdef DEV_NETMAP rx_ring->initialized = true; #endif /* DEV_NETMAP */ } } static void ena_free_all_rx_bufs(struct ena_adapter *adapter) { int i; for (i = 0; i < adapter->num_io_queues; i++) ena_free_rx_bufs(adapter, i); } /** * ena_free_tx_bufs - Free Tx Buffers per Queue * @adapter: network interface device structure * @qid: queue index **/ static void ena_free_tx_bufs(struct ena_adapter *adapter, unsigned int qid) { bool print_once = true; struct ena_ring *tx_ring = &adapter->tx_ring[qid]; ENA_RING_MTX_LOCK(tx_ring); for (int i = 0; i < tx_ring->ring_size; i++) { struct ena_tx_buffer *tx_info = &tx_ring->tx_buffer_info[i]; if (tx_info->mbuf == NULL) continue; if (print_once) { ena_log(adapter->pdev, WARN, "free uncompleted tx mbuf qid %d idx 0x%x\n", qid, i); print_once = false; } else { ena_log(adapter->pdev, DBG, "free uncompleted tx mbuf qid %d idx 0x%x\n", qid, i); } bus_dmamap_sync(adapter->tx_buf_tag, tx_info->dmamap, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(adapter->tx_buf_tag, tx_info->dmamap); m_free(tx_info->mbuf); tx_info->mbuf = NULL; } ENA_RING_MTX_UNLOCK(tx_ring); } static void ena_free_all_tx_bufs(struct ena_adapter *adapter) { for (int i = 0; i < adapter->num_io_queues; i++) ena_free_tx_bufs(adapter, i); } static void ena_destroy_all_tx_queues(struct ena_adapter *adapter) { uint16_t ena_qid; int i; for (i = 0; i < adapter->num_io_queues; i++) { ena_qid = ENA_IO_TXQ_IDX(i); ena_com_destroy_io_queue(adapter->ena_dev, ena_qid); } } static void ena_destroy_all_rx_queues(struct ena_adapter *adapter) { uint16_t ena_qid; int i; for (i = 0; i < adapter->num_io_queues; i++) { ena_qid = ENA_IO_RXQ_IDX(i); ena_com_destroy_io_queue(adapter->ena_dev, ena_qid); } } static void ena_destroy_all_io_queues(struct ena_adapter *adapter) { struct ena_que *queue; int i; for (i = 0; i < adapter->num_io_queues; i++) { queue = &adapter->que[i]; while (taskqueue_cancel(queue->cleanup_tq, &queue->cleanup_task, NULL)) taskqueue_drain(queue->cleanup_tq, &queue->cleanup_task); taskqueue_free(queue->cleanup_tq); } ena_destroy_all_tx_queues(adapter); ena_destroy_all_rx_queues(adapter); } static int ena_create_io_queues(struct ena_adapter *adapter) { struct ena_com_dev *ena_dev = adapter->ena_dev; struct ena_com_create_io_ctx ctx; struct ena_ring *ring; struct ena_que *queue; uint16_t ena_qid; uint32_t msix_vector; int rc, i; /* Create TX queues */ for (i = 0; i < adapter->num_io_queues; i++) { msix_vector = ENA_IO_IRQ_IDX(i); ena_qid = ENA_IO_TXQ_IDX(i); ctx.mem_queue_type = ena_dev->tx_mem_queue_type; ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX; ctx.queue_size = adapter->requested_tx_ring_size; ctx.msix_vector = msix_vector; ctx.qid = ena_qid; rc = ena_com_create_io_queue(ena_dev, &ctx); if (rc != 0) { ena_log(adapter->pdev, ERR, "Failed to create io TX queue #%d rc: %d\n", i, rc); goto err_tx; } ring = &adapter->tx_ring[i]; rc = ena_com_get_io_handlers(ena_dev, ena_qid, &ring->ena_com_io_sq, &ring->ena_com_io_cq); if (rc != 0) { ena_log(adapter->pdev, ERR, "Failed to get TX queue handlers. TX queue num" " %d rc: %d\n", i, rc); ena_com_destroy_io_queue(ena_dev, ena_qid); goto err_tx; } } /* Create RX queues */ for (i = 0; i < adapter->num_io_queues; i++) { msix_vector = ENA_IO_IRQ_IDX(i); ena_qid = ENA_IO_RXQ_IDX(i); ctx.mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST; ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX; ctx.queue_size = adapter->requested_rx_ring_size; ctx.msix_vector = msix_vector; ctx.qid = ena_qid; rc = ena_com_create_io_queue(ena_dev, &ctx); if (unlikely(rc != 0)) { ena_log(adapter->pdev, ERR, "Failed to create io RX queue[%d] rc: %d\n", i, rc); goto err_rx; } ring = &adapter->rx_ring[i]; rc = ena_com_get_io_handlers(ena_dev, ena_qid, &ring->ena_com_io_sq, &ring->ena_com_io_cq); if (unlikely(rc != 0)) { ena_log(adapter->pdev, ERR, "Failed to get RX queue handlers. RX queue num" " %d rc: %d\n", i, rc); ena_com_destroy_io_queue(ena_dev, ena_qid); goto err_rx; } } for (i = 0; i < adapter->num_io_queues; i++) { queue = &adapter->que[i]; NET_TASK_INIT(&queue->cleanup_task, 0, ena_cleanup, queue); queue->cleanup_tq = taskqueue_create_fast("ena cleanup", M_WAITOK, taskqueue_thread_enqueue, &queue->cleanup_tq); taskqueue_start_threads(&queue->cleanup_tq, 1, PI_NET, "%s queue %d cleanup", device_get_nameunit(adapter->pdev), i); } return (0); err_rx: while (i--) ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(i)); i = adapter->num_io_queues; err_tx: while (i--) ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(i)); return (ENXIO); } /********************************************************************* * * MSIX & Interrupt Service routine * **********************************************************************/ /** * ena_handle_msix - MSIX Interrupt Handler for admin/async queue * @arg: interrupt number **/ static void ena_intr_msix_mgmnt(void *arg) { struct ena_adapter *adapter = (struct ena_adapter *)arg; ena_com_admin_q_comp_intr_handler(adapter->ena_dev); if (likely(ENA_FLAG_ISSET(ENA_FLAG_DEVICE_RUNNING, adapter))) ena_com_aenq_intr_handler(adapter->ena_dev, arg); } /** * ena_handle_msix - MSIX Interrupt Handler for Tx/Rx * @arg: queue **/ static int ena_handle_msix(void *arg) { struct ena_que *queue = arg; struct ena_adapter *adapter = queue->adapter; if_t ifp = adapter->ifp; if (unlikely((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)) return (FILTER_STRAY); taskqueue_enqueue(queue->cleanup_tq, &queue->cleanup_task); return (FILTER_HANDLED); } static int ena_enable_msix(struct ena_adapter *adapter) { device_t dev = adapter->pdev; int msix_vecs, msix_req; int i, rc = 0; if (ENA_FLAG_ISSET(ENA_FLAG_MSIX_ENABLED, adapter)) { ena_log(dev, ERR, "Error, MSI-X is already enabled\n"); return (EINVAL); } /* Reserved the max msix vectors we might need */ msix_vecs = ENA_MAX_MSIX_VEC(adapter->max_num_io_queues); adapter->msix_entries = malloc(msix_vecs * sizeof(struct msix_entry), M_DEVBUF, M_WAITOK | M_ZERO); ena_log(dev, DBG, "trying to enable MSI-X, vectors: %d\n", msix_vecs); for (i = 0; i < msix_vecs; i++) { adapter->msix_entries[i].entry = i; /* Vectors must start from 1 */ adapter->msix_entries[i].vector = i + 1; } msix_req = msix_vecs; rc = pci_alloc_msix(dev, &msix_vecs); if (unlikely(rc != 0)) { ena_log(dev, ERR, "Failed to enable MSIX, vectors %d rc %d\n", msix_vecs, rc); rc = ENOSPC; goto err_msix_free; } if (msix_vecs != msix_req) { if (msix_vecs == ENA_ADMIN_MSIX_VEC) { ena_log(dev, ERR, "Not enough number of MSI-x allocated: %d\n", msix_vecs); pci_release_msi(dev); rc = ENOSPC; goto err_msix_free; } ena_log(dev, ERR, "Enable only %d MSI-x (out of %d), reduce " "the number of queues\n", msix_vecs, msix_req); } adapter->msix_vecs = msix_vecs; ENA_FLAG_SET_ATOMIC(ENA_FLAG_MSIX_ENABLED, adapter); return (0); err_msix_free: free(adapter->msix_entries, M_DEVBUF); adapter->msix_entries = NULL; return (rc); } static void ena_setup_mgmnt_intr(struct ena_adapter *adapter) { snprintf(adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].name, ENA_IRQNAME_SIZE, "ena-mgmnt@pci:%s", device_get_nameunit(adapter->pdev)); /* * Handler is NULL on purpose, it will be set * when mgmnt interrupt is acquired */ adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].handler = NULL; adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].data = adapter; adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].vector = adapter->msix_entries[ENA_MGMNT_IRQ_IDX].vector; } static int ena_setup_io_intr(struct ena_adapter *adapter) { static int last_bind_cpu = -1; int irq_idx; if (adapter->msix_entries == NULL) return (EINVAL); for (int i = 0; i < adapter->num_io_queues; i++) { irq_idx = ENA_IO_IRQ_IDX(i); snprintf(adapter->irq_tbl[irq_idx].name, ENA_IRQNAME_SIZE, "%s-TxRx-%d", device_get_nameunit(adapter->pdev), i); adapter->irq_tbl[irq_idx].handler = ena_handle_msix; adapter->irq_tbl[irq_idx].data = &adapter->que[i]; adapter->irq_tbl[irq_idx].vector = adapter->msix_entries[irq_idx].vector; ena_log(adapter->pdev, DBG, "ena_setup_io_intr vector: %d\n", adapter->msix_entries[irq_idx].vector); /* * We want to bind rings to the corresponding cpu * using something similar to the RSS round-robin technique. */ if (unlikely(last_bind_cpu < 0)) last_bind_cpu = CPU_FIRST(); adapter->que[i].cpu = adapter->irq_tbl[irq_idx].cpu = last_bind_cpu; last_bind_cpu = CPU_NEXT(last_bind_cpu); } return (0); } static int ena_request_mgmnt_irq(struct ena_adapter *adapter) { device_t pdev = adapter->pdev; struct ena_irq *irq; unsigned long flags; int rc, rcc; flags = RF_ACTIVE | RF_SHAREABLE; irq = &adapter->irq_tbl[ENA_MGMNT_IRQ_IDX]; irq->res = bus_alloc_resource_any(adapter->pdev, SYS_RES_IRQ, &irq->vector, flags); if (unlikely(irq->res == NULL)) { ena_log(pdev, ERR, "could not allocate irq vector: %d\n", irq->vector); return (ENXIO); } rc = bus_setup_intr(adapter->pdev, irq->res, INTR_TYPE_NET | INTR_MPSAFE, NULL, ena_intr_msix_mgmnt, irq->data, &irq->cookie); if (unlikely(rc != 0)) { ena_log(pdev, ERR, "failed to register " "interrupt handler for irq %ju: %d\n", rman_get_start(irq->res), rc); goto err_res_free; } irq->requested = true; return (rc); err_res_free: ena_log(pdev, INFO, "releasing resource for irq %d\n", irq->vector); rcc = bus_release_resource(adapter->pdev, SYS_RES_IRQ, irq->vector, irq->res); if (unlikely(rcc != 0)) ena_log(pdev, ERR, "dev has no parent while " "releasing res for irq: %d\n", irq->vector); irq->res = NULL; return (rc); } static int ena_request_io_irq(struct ena_adapter *adapter) { device_t pdev = adapter->pdev; struct ena_irq *irq; unsigned long flags = 0; int rc = 0, i, rcc; if (unlikely(!ENA_FLAG_ISSET(ENA_FLAG_MSIX_ENABLED, adapter))) { ena_log(pdev, ERR, "failed to request I/O IRQ: MSI-X is not enabled\n"); return (EINVAL); } else { flags = RF_ACTIVE | RF_SHAREABLE; } for (i = ENA_IO_IRQ_FIRST_IDX; i < adapter->msix_vecs; i++) { irq = &adapter->irq_tbl[i]; if (unlikely(irq->requested)) continue; irq->res = bus_alloc_resource_any(adapter->pdev, SYS_RES_IRQ, &irq->vector, flags); if (unlikely(irq->res == NULL)) { rc = ENOMEM; ena_log(pdev, ERR, "could not allocate irq vector: %d\n", irq->vector); goto err; } rc = bus_setup_intr(adapter->pdev, irq->res, INTR_TYPE_NET | INTR_MPSAFE, irq->handler, NULL, irq->data, &irq->cookie); if (unlikely(rc != 0)) { ena_log(pdev, ERR, "failed to register " "interrupt handler for irq %ju: %d\n", rman_get_start(irq->res), rc); goto err; } irq->requested = true; } return (rc); err: for (; i >= ENA_IO_IRQ_FIRST_IDX; i--) { irq = &adapter->irq_tbl[i]; rcc = 0; /* Once we entered err: section and irq->requested is true we free both intr and resources */ if (irq->requested) rcc = bus_teardown_intr(adapter->pdev, irq->res, irq->cookie); if (unlikely(rcc != 0)) ena_log(pdev, ERR, "could not release irq: %d, error: %d\n", irq->vector, rcc); /* If we entred err: section without irq->requested set we know it was bus_alloc_resource_any() that needs cleanup, provided res is not NULL. In case res is NULL no work in needed in this iteration */ rcc = 0; if (irq->res != NULL) { rcc = bus_release_resource(adapter->pdev, SYS_RES_IRQ, irq->vector, irq->res); } if (unlikely(rcc != 0)) ena_log(pdev, ERR, "dev has no parent while " "releasing res for irq: %d\n", irq->vector); irq->requested = false; irq->res = NULL; } return (rc); } static void ena_free_mgmnt_irq(struct ena_adapter *adapter) { device_t pdev = adapter->pdev; struct ena_irq *irq; int rc; irq = &adapter->irq_tbl[ENA_MGMNT_IRQ_IDX]; if (irq->requested) { ena_log(pdev, DBG, "tear down irq: %d\n", irq->vector); rc = bus_teardown_intr(adapter->pdev, irq->res, irq->cookie); if (unlikely(rc != 0)) ena_log(pdev, ERR, "failed to tear down irq: %d\n", irq->vector); irq->requested = 0; } if (irq->res != NULL) { ena_log(pdev, DBG, "release resource irq: %d\n", irq->vector); rc = bus_release_resource(adapter->pdev, SYS_RES_IRQ, irq->vector, irq->res); irq->res = NULL; if (unlikely(rc != 0)) ena_log(pdev, ERR, "dev has no parent while " "releasing res for irq: %d\n", irq->vector); } } static void ena_free_io_irq(struct ena_adapter *adapter) { device_t pdev = adapter->pdev; struct ena_irq *irq; int rc; for (int i = ENA_IO_IRQ_FIRST_IDX; i < adapter->msix_vecs; i++) { irq = &adapter->irq_tbl[i]; if (irq->requested) { ena_log(pdev, DBG, "tear down irq: %d\n", irq->vector); rc = bus_teardown_intr(adapter->pdev, irq->res, irq->cookie); if (unlikely(rc != 0)) { ena_log(pdev, ERR, "failed to tear down irq: %d\n", irq->vector); } irq->requested = 0; } if (irq->res != NULL) { ena_log(pdev, DBG, "release resource irq: %d\n", irq->vector); rc = bus_release_resource(adapter->pdev, SYS_RES_IRQ, irq->vector, irq->res); irq->res = NULL; if (unlikely(rc != 0)) { ena_log(pdev, ERR, "dev has no parent" " while releasing res for irq: %d\n", irq->vector); } } } } static void ena_free_irqs(struct ena_adapter* adapter) { ena_free_io_irq(adapter); ena_free_mgmnt_irq(adapter); ena_disable_msix(adapter); } static void ena_disable_msix(struct ena_adapter *adapter) { if (ENA_FLAG_ISSET(ENA_FLAG_MSIX_ENABLED, adapter)) { ENA_FLAG_CLEAR_ATOMIC(ENA_FLAG_MSIX_ENABLED, adapter); pci_release_msi(adapter->pdev); } adapter->msix_vecs = 0; free(adapter->msix_entries, M_DEVBUF); adapter->msix_entries = NULL; } static void ena_unmask_all_io_irqs(struct ena_adapter *adapter) { struct ena_com_io_cq* io_cq; struct ena_eth_io_intr_reg intr_reg; uint16_t ena_qid; int i; /* Unmask interrupts for all queues */ for (i = 0; i < adapter->num_io_queues; i++) { ena_qid = ENA_IO_TXQ_IDX(i); io_cq = &adapter->ena_dev->io_cq_queues[ena_qid]; ena_com_update_intr_reg(&intr_reg, 0, 0, true); ena_com_unmask_intr(io_cq, &intr_reg); } } /* Configure the Rx forwarding */ static int ena_rss_configure(struct ena_adapter *adapter) { struct ena_com_dev *ena_dev = adapter->ena_dev; int rc; /* In case the RSS table was destroyed */ if (!ena_dev->rss.tbl_log_size) { rc = ena_rss_init_default(adapter); if (unlikely((rc != 0) && (rc != EOPNOTSUPP))) { ena_log(adapter->pdev, ERR, "WARNING: RSS was not properly re-initialized," " it will affect bandwidth\n"); ENA_FLAG_CLEAR_ATOMIC(ENA_FLAG_RSS_ACTIVE, adapter); return (rc); } } /* Set indirect table */ rc = ena_com_indirect_table_set(ena_dev); if (unlikely((rc != 0) && (rc != EOPNOTSUPP))) return (rc); /* Configure hash function (if supported) */ rc = ena_com_set_hash_function(ena_dev); if (unlikely((rc != 0) && (rc != EOPNOTSUPP))) return (rc); /* Configure hash inputs (if supported) */ rc = ena_com_set_hash_ctrl(ena_dev); if (unlikely((rc != 0) && (rc != EOPNOTSUPP))) return (rc); return (0); } static int ena_up_complete(struct ena_adapter *adapter) { int rc; if (likely(ENA_FLAG_ISSET(ENA_FLAG_RSS_ACTIVE, adapter))) { rc = ena_rss_configure(adapter); if (rc != 0) { ena_log(adapter->pdev, ERR, "Failed to configure RSS\n"); return (rc); } } rc = ena_change_mtu(adapter->ifp, adapter->ifp->if_mtu); if (unlikely(rc != 0)) return (rc); ena_refill_all_rx_bufs(adapter); ena_reset_counters((counter_u64_t *)&adapter->hw_stats, sizeof(adapter->hw_stats)); return (0); } static void set_io_rings_size(struct ena_adapter *adapter, int new_tx_size, int new_rx_size) { int i; for (i = 0; i < adapter->num_io_queues; i++) { adapter->tx_ring[i].ring_size = new_tx_size; adapter->rx_ring[i].ring_size = new_rx_size; } } static int create_queues_with_size_backoff(struct ena_adapter *adapter) { device_t pdev = adapter->pdev; int rc; uint32_t cur_rx_ring_size, cur_tx_ring_size; uint32_t new_rx_ring_size, new_tx_ring_size; /* * Current queue sizes might be set to smaller than the requested * ones due to past queue allocation failures. */ set_io_rings_size(adapter, adapter->requested_tx_ring_size, adapter->requested_rx_ring_size); while (1) { /* Allocate transmit descriptors */ rc = ena_setup_all_tx_resources(adapter); if (unlikely(rc != 0)) { ena_log(pdev, ERR, "err_setup_tx\n"); goto err_setup_tx; } /* Allocate receive descriptors */ rc = ena_setup_all_rx_resources(adapter); if (unlikely(rc != 0)) { ena_log(pdev, ERR, "err_setup_rx\n"); goto err_setup_rx; } /* Create IO queues for Rx & Tx */ rc = ena_create_io_queues(adapter); if (unlikely(rc != 0)) { ena_log(pdev, ERR, "create IO queues failed\n"); goto err_io_que; } return (0); err_io_que: ena_free_all_rx_resources(adapter); err_setup_rx: ena_free_all_tx_resources(adapter); err_setup_tx: /* * Lower the ring size if ENOMEM. Otherwise, return the * error straightaway. */ if (unlikely(rc != ENOMEM)) { ena_log(pdev, ERR, "Queue creation failed with error code: %d\n", rc); return (rc); } cur_tx_ring_size = adapter->tx_ring[0].ring_size; cur_rx_ring_size = adapter->rx_ring[0].ring_size; ena_log(pdev, ERR, "Not enough memory to create queues with sizes TX=%d, RX=%d\n", cur_tx_ring_size, cur_rx_ring_size); new_tx_ring_size = cur_tx_ring_size; new_rx_ring_size = cur_rx_ring_size; /* * Decrease the size of a larger queue, or decrease both if they are * the same size. */ if (cur_rx_ring_size <= cur_tx_ring_size) new_tx_ring_size = cur_tx_ring_size / 2; if (cur_rx_ring_size >= cur_tx_ring_size) new_rx_ring_size = cur_rx_ring_size / 2; if (new_tx_ring_size < ENA_MIN_RING_SIZE || new_rx_ring_size < ENA_MIN_RING_SIZE) { ena_log(pdev, ERR, "Queue creation failed with the smallest possible queue size" "of %d for both queues. Not retrying with smaller queues\n", ENA_MIN_RING_SIZE); return (rc); } set_io_rings_size(adapter, new_tx_ring_size, new_rx_ring_size); } } int ena_up(struct ena_adapter *adapter) { int rc = 0; if (unlikely(device_is_attached(adapter->pdev) == 0)) { ena_log(adapter->pdev, ERR, "device is not attached!\n"); return (ENXIO); } if (ENA_FLAG_ISSET(ENA_FLAG_DEV_UP, adapter)) return (0); ena_log(adapter->pdev, INFO, "device is going UP\n"); /* setup interrupts for IO queues */ rc = ena_setup_io_intr(adapter); if (unlikely(rc != 0)) { ena_log(adapter->pdev, ERR, "error setting up IO interrupt\n"); goto error; } rc = ena_request_io_irq(adapter); if (unlikely(rc != 0)) { ena_log(adapter->pdev, ERR, "err_req_irq\n"); goto error; } ena_log(adapter->pdev, INFO, "Creating %u IO queues. Rx queue size: %d, Tx queue size: %d, " "LLQ is %s\n", adapter->num_io_queues, adapter->requested_rx_ring_size, adapter->requested_tx_ring_size, (adapter->ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) ? "ENABLED" : "DISABLED"); rc = create_queues_with_size_backoff(adapter); if (unlikely(rc != 0)) { ena_log(adapter->pdev, ERR, "error creating queues with size backoff\n"); goto err_create_queues_with_backoff; } if (ENA_FLAG_ISSET(ENA_FLAG_LINK_UP, adapter)) if_link_state_change(adapter->ifp, LINK_STATE_UP); rc = ena_up_complete(adapter); if (unlikely(rc != 0)) goto err_up_complete; counter_u64_add(adapter->dev_stats.interface_up, 1); ena_update_hwassist(adapter); if_setdrvflagbits(adapter->ifp, IFF_DRV_RUNNING, IFF_DRV_OACTIVE); /* Activate timer service only if the device is running. * If this flag is not set, it means that the driver is being * reset and timer service will be activated afterwards. */ if (ENA_FLAG_ISSET(ENA_FLAG_DEVICE_RUNNING, adapter)) { callout_reset_sbt(&adapter->timer_service, SBT_1S, SBT_1S, ena_timer_service, (void *)adapter, 0); } ENA_FLAG_SET_ATOMIC(ENA_FLAG_DEV_UP, adapter); ena_unmask_all_io_irqs(adapter); return (0); err_up_complete: ena_destroy_all_io_queues(adapter); ena_free_all_rx_resources(adapter); ena_free_all_tx_resources(adapter); err_create_queues_with_backoff: ena_free_io_irq(adapter); error: return (rc); } static uint64_t ena_get_counter(if_t ifp, ift_counter cnt) { struct ena_adapter *adapter; struct ena_hw_stats *stats; adapter = if_getsoftc(ifp); stats = &adapter->hw_stats; switch (cnt) { case IFCOUNTER_IPACKETS: return (counter_u64_fetch(stats->rx_packets)); case IFCOUNTER_OPACKETS: return (counter_u64_fetch(stats->tx_packets)); case IFCOUNTER_IBYTES: return (counter_u64_fetch(stats->rx_bytes)); case IFCOUNTER_OBYTES: return (counter_u64_fetch(stats->tx_bytes)); case IFCOUNTER_IQDROPS: return (counter_u64_fetch(stats->rx_drops)); case IFCOUNTER_OQDROPS: return (counter_u64_fetch(stats->tx_drops)); default: return (if_get_counter_default(ifp, cnt)); } } static int ena_media_change(if_t ifp) { /* Media Change is not supported by firmware */ return (0); } static void ena_media_status(if_t ifp, struct ifmediareq *ifmr) { struct ena_adapter *adapter = if_getsoftc(ifp); ena_log(adapter->pdev, DBG, "Media status update\n"); ENA_LOCK_LOCK(adapter); ifmr->ifm_status = IFM_AVALID; ifmr->ifm_active = IFM_ETHER; if (!ENA_FLAG_ISSET(ENA_FLAG_LINK_UP, adapter)) { ENA_LOCK_UNLOCK(adapter); ena_log(adapter->pdev, INFO, "Link is down\n"); return; } ifmr->ifm_status |= IFM_ACTIVE; ifmr->ifm_active |= IFM_UNKNOWN | IFM_FDX; ENA_LOCK_UNLOCK(adapter); } static void ena_init(void *arg) { struct ena_adapter *adapter = (struct ena_adapter *)arg; if (!ENA_FLAG_ISSET(ENA_FLAG_DEV_UP, adapter)) { ENA_LOCK_LOCK(adapter); ena_up(adapter); ENA_LOCK_UNLOCK(adapter); } } static int ena_ioctl(if_t ifp, u_long command, caddr_t data) { struct ena_adapter *adapter; struct ifreq *ifr; int rc; adapter = ifp->if_softc; ifr = (struct ifreq *)data; /* * Acquiring lock to prevent from running up and down routines parallel. */ rc = 0; switch (command) { case SIOCSIFMTU: if (ifp->if_mtu == ifr->ifr_mtu) break; ENA_LOCK_LOCK(adapter); ena_down(adapter); ena_change_mtu(ifp, ifr->ifr_mtu); rc = ena_up(adapter); ENA_LOCK_UNLOCK(adapter); break; case SIOCSIFFLAGS: if ((ifp->if_flags & IFF_UP) != 0) { if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) { if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) { ena_log(adapter->pdev, INFO, "ioctl promisc/allmulti\n"); } } else { ENA_LOCK_LOCK(adapter); rc = ena_up(adapter); ENA_LOCK_UNLOCK(adapter); } } else { if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) { ENA_LOCK_LOCK(adapter); ena_down(adapter); ENA_LOCK_UNLOCK(adapter); } } break; case SIOCADDMULTI: case SIOCDELMULTI: break; case SIOCSIFMEDIA: case SIOCGIFMEDIA: rc = ifmedia_ioctl(ifp, ifr, &adapter->media, command); break; case SIOCSIFCAP: { int reinit = 0; if (ifr->ifr_reqcap != ifp->if_capenable) { ifp->if_capenable = ifr->ifr_reqcap; reinit = 1; } if ((reinit != 0) && ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)) { ENA_LOCK_LOCK(adapter); ena_down(adapter); rc = ena_up(adapter); ENA_LOCK_UNLOCK(adapter); } } break; default: rc = ether_ioctl(ifp, command, data); break; } return (rc); } static int ena_get_dev_offloads(struct ena_com_dev_get_features_ctx *feat) { int caps = 0; if ((feat->offload.tx & (ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_FULL_MASK | ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK | ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L3_CSUM_IPV4_MASK)) != 0) caps |= IFCAP_TXCSUM; if ((feat->offload.tx & (ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_FULL_MASK | ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_PART_MASK)) != 0) caps |= IFCAP_TXCSUM_IPV6; if ((feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK) != 0) caps |= IFCAP_TSO4; if ((feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV6_MASK) != 0) caps |= IFCAP_TSO6; if ((feat->offload.rx_supported & (ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK | ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L3_CSUM_IPV4_MASK)) != 0) caps |= IFCAP_RXCSUM; if ((feat->offload.rx_supported & ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV6_CSUM_MASK) != 0) caps |= IFCAP_RXCSUM_IPV6; caps |= IFCAP_LRO | IFCAP_JUMBO_MTU; return (caps); } static void ena_update_host_info(struct ena_admin_host_info *host_info, if_t ifp) { host_info->supported_network_features[0] = (uint32_t)if_getcapabilities(ifp); } static void ena_update_hwassist(struct ena_adapter *adapter) { if_t ifp = adapter->ifp; uint32_t feat = adapter->tx_offload_cap; int cap = if_getcapenable(ifp); int flags = 0; if_clearhwassist(ifp); if ((cap & IFCAP_TXCSUM) != 0) { if ((feat & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L3_CSUM_IPV4_MASK) != 0) flags |= CSUM_IP; if ((feat & (ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_FULL_MASK | ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK)) != 0) flags |= CSUM_IP_UDP | CSUM_IP_TCP; } if ((cap & IFCAP_TXCSUM_IPV6) != 0) flags |= CSUM_IP6_UDP | CSUM_IP6_TCP; if ((cap & IFCAP_TSO4) != 0) flags |= CSUM_IP_TSO; if ((cap & IFCAP_TSO6) != 0) flags |= CSUM_IP6_TSO; if_sethwassistbits(ifp, flags, 0); } static int ena_setup_ifnet(device_t pdev, struct ena_adapter *adapter, struct ena_com_dev_get_features_ctx *feat) { if_t ifp; int caps = 0; ifp = adapter->ifp = if_gethandle(IFT_ETHER); if (unlikely(ifp == NULL)) { ena_log(pdev, ERR, "can not allocate ifnet structure\n"); return (ENXIO); } if_initname(ifp, device_get_name(pdev), device_get_unit(pdev)); if_setdev(ifp, pdev); if_setsoftc(ifp, adapter); if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST | IFF_KNOWSEPOCH); if_setinitfn(ifp, ena_init); if_settransmitfn(ifp, ena_mq_start); if_setqflushfn(ifp, ena_qflush); if_setioctlfn(ifp, ena_ioctl); if_setgetcounterfn(ifp, ena_get_counter); if_setsendqlen(ifp, adapter->requested_tx_ring_size); if_setsendqready(ifp); if_setmtu(ifp, ETHERMTU); if_setbaudrate(ifp, 0); /* Zeroize capabilities... */ if_setcapabilities(ifp, 0); if_setcapenable(ifp, 0); /* check hardware support */ caps = ena_get_dev_offloads(feat); /* ... and set them */ if_setcapabilitiesbit(ifp, caps, 0); /* TSO parameters */ ifp->if_hw_tsomax = ENA_TSO_MAXSIZE - (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN); ifp->if_hw_tsomaxsegcount = adapter->max_tx_sgl_size - 1; ifp->if_hw_tsomaxsegsize = ENA_TSO_MAXSIZE; if_setifheaderlen(ifp, sizeof(struct ether_vlan_header)); if_setcapenable(ifp, if_getcapabilities(ifp)); /* * Specify the media types supported by this adapter and register * callbacks to update media and link information */ ifmedia_init(&adapter->media, IFM_IMASK, ena_media_change, ena_media_status); ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL); ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO); ether_ifattach(ifp, adapter->mac_addr); return (0); } void ena_down(struct ena_adapter *adapter) { int rc; if (!ENA_FLAG_ISSET(ENA_FLAG_DEV_UP, adapter)) return; ena_log(adapter->pdev, INFO, "device is going DOWN\n"); callout_drain(&adapter->timer_service); ENA_FLAG_CLEAR_ATOMIC(ENA_FLAG_DEV_UP, adapter); if_setdrvflagbits(adapter->ifp, IFF_DRV_OACTIVE, IFF_DRV_RUNNING); ena_free_io_irq(adapter); if (ENA_FLAG_ISSET(ENA_FLAG_TRIGGER_RESET, adapter)) { rc = ena_com_dev_reset(adapter->ena_dev, adapter->reset_reason); if (unlikely(rc != 0)) ena_log(adapter->pdev, ERR, "Device reset failed\n"); } ena_destroy_all_io_queues(adapter); ena_free_all_tx_bufs(adapter); ena_free_all_rx_bufs(adapter); ena_free_all_tx_resources(adapter); ena_free_all_rx_resources(adapter); counter_u64_add(adapter->dev_stats.interface_down, 1); } static uint32_t ena_calc_max_io_queue_num(device_t pdev, struct ena_com_dev *ena_dev, struct ena_com_dev_get_features_ctx *get_feat_ctx) { uint32_t io_tx_sq_num, io_tx_cq_num, io_rx_num, max_num_io_queues; /* Regular queues capabilities */ if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) { struct ena_admin_queue_ext_feature_fields *max_queue_ext = &get_feat_ctx->max_queue_ext.max_queue_ext; io_rx_num = min_t(int, max_queue_ext->max_rx_sq_num, max_queue_ext->max_rx_cq_num); io_tx_sq_num = max_queue_ext->max_tx_sq_num; io_tx_cq_num = max_queue_ext->max_tx_cq_num; } else { struct ena_admin_queue_feature_desc *max_queues = &get_feat_ctx->max_queues; io_tx_sq_num = max_queues->max_sq_num; io_tx_cq_num = max_queues->max_cq_num; io_rx_num = min_t(int, io_tx_sq_num, io_tx_cq_num); } /* In case of LLQ use the llq fields for the tx SQ/CQ */ if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) io_tx_sq_num = get_feat_ctx->llq.max_llq_num; max_num_io_queues = min_t(uint32_t, mp_ncpus, ENA_MAX_NUM_IO_QUEUES); max_num_io_queues = min_t(uint32_t, max_num_io_queues, io_rx_num); max_num_io_queues = min_t(uint32_t, max_num_io_queues, io_tx_sq_num); max_num_io_queues = min_t(uint32_t, max_num_io_queues, io_tx_cq_num); /* 1 IRQ for for mgmnt and 1 IRQ for each TX/RX pair */ max_num_io_queues = min_t(uint32_t, max_num_io_queues, pci_msix_count(pdev) - 1); return (max_num_io_queues); } static int ena_enable_wc(device_t pdev, struct resource *res) { #if defined(__i386) || defined(__amd64) || defined(__aarch64__) vm_offset_t va; vm_size_t len; int rc; va = (vm_offset_t)rman_get_virtual(res); len = rman_get_size(res); /* Enable write combining */ rc = pmap_change_attr(va, len, VM_MEMATTR_WRITE_COMBINING); if (unlikely(rc != 0)) { ena_log(pdev, ERR, "pmap_change_attr failed, %d\n", rc); return (rc); } return (0); #endif return (EOPNOTSUPP); } static int ena_set_queues_placement_policy(device_t pdev, struct ena_com_dev *ena_dev, struct ena_admin_feature_llq_desc *llq, struct ena_llq_configurations *llq_default_configurations) { struct ena_adapter *adapter = device_get_softc(pdev); int rc, rid; uint32_t llq_feature_mask; llq_feature_mask = 1 << ENA_ADMIN_LLQ; if (!(ena_dev->supported_features & llq_feature_mask)) { ena_log(pdev, WARN, "LLQ is not supported. Fallback to host mode policy.\n"); ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST; return (0); } rc = ena_com_config_dev_mode(ena_dev, llq, llq_default_configurations); if (unlikely(rc != 0)) { ena_log(pdev, WARN, "Failed to configure the device mode. " "Fallback to host mode policy.\n"); ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST; return (0); } /* Nothing to config, exit */ if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST) return (0); /* Try to allocate resources for LLQ bar */ rid = PCIR_BAR(ENA_MEM_BAR); adapter->memory = bus_alloc_resource_any(pdev, SYS_RES_MEMORY, &rid, RF_ACTIVE); if (unlikely(adapter->memory == NULL)) { ena_log(pdev, WARN, "unable to allocate LLQ bar resource. " "Fallback to host mode policy.\n"); ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST; return (0); } /* Enable write combining for better LLQ performance */ rc = ena_enable_wc(adapter->pdev, adapter->memory); if (unlikely(rc != 0)) { ena_log(pdev, ERR, "failed to enable write combining.\n"); return (rc); } /* * Save virtual address of the device's memory region * for the ena_com layer. */ ena_dev->mem_bar = rman_get_virtual(adapter->memory); return (0); } static inline void set_default_llq_configurations(struct ena_llq_configurations *llq_config, struct ena_admin_feature_llq_desc *llq) { llq_config->llq_header_location = ENA_ADMIN_INLINE_HEADER; llq_config->llq_stride_ctrl = ENA_ADMIN_MULTIPLE_DESCS_PER_ENTRY; llq_config->llq_num_decs_before_header = ENA_ADMIN_LLQ_NUM_DESCS_BEFORE_HEADER_2; if ((llq->entry_size_ctrl_supported & ENA_ADMIN_LIST_ENTRY_SIZE_256B) != 0 && ena_force_large_llq_header) { llq_config->llq_ring_entry_size = ENA_ADMIN_LIST_ENTRY_SIZE_256B; llq_config->llq_ring_entry_size_value = 256; } else { llq_config->llq_ring_entry_size = ENA_ADMIN_LIST_ENTRY_SIZE_128B; llq_config->llq_ring_entry_size_value = 128; } } static int ena_calc_io_queue_size(struct ena_calc_queue_size_ctx *ctx) { struct ena_admin_feature_llq_desc *llq = &ctx->get_feat_ctx->llq; struct ena_com_dev *ena_dev = ctx->ena_dev; uint32_t tx_queue_size = ENA_DEFAULT_RING_SIZE; uint32_t rx_queue_size = ENA_DEFAULT_RING_SIZE; uint32_t max_tx_queue_size; uint32_t max_rx_queue_size; if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) { struct ena_admin_queue_ext_feature_fields *max_queue_ext = &ctx->get_feat_ctx->max_queue_ext.max_queue_ext; max_rx_queue_size = min_t(uint32_t, max_queue_ext->max_rx_cq_depth, max_queue_ext->max_rx_sq_depth); max_tx_queue_size = max_queue_ext->max_tx_cq_depth; if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) max_tx_queue_size = min_t(uint32_t, max_tx_queue_size, llq->max_llq_depth); else max_tx_queue_size = min_t(uint32_t, max_tx_queue_size, max_queue_ext->max_tx_sq_depth); ctx->max_tx_sgl_size = min_t(uint16_t, ENA_PKT_MAX_BUFS, max_queue_ext->max_per_packet_tx_descs); ctx->max_rx_sgl_size = min_t(uint16_t, ENA_PKT_MAX_BUFS, max_queue_ext->max_per_packet_rx_descs); } else { struct ena_admin_queue_feature_desc *max_queues = &ctx->get_feat_ctx->max_queues; max_rx_queue_size = min_t(uint32_t, max_queues->max_cq_depth, max_queues->max_sq_depth); max_tx_queue_size = max_queues->max_cq_depth; if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) max_tx_queue_size = min_t(uint32_t, max_tx_queue_size, llq->max_llq_depth); else max_tx_queue_size = min_t(uint32_t, max_tx_queue_size, max_queues->max_sq_depth); ctx->max_tx_sgl_size = min_t(uint16_t, ENA_PKT_MAX_BUFS, max_queues->max_packet_tx_descs); ctx->max_rx_sgl_size = min_t(uint16_t, ENA_PKT_MAX_BUFS, max_queues->max_packet_rx_descs); } /* round down to the nearest power of 2 */ max_tx_queue_size = 1 << (flsl(max_tx_queue_size) - 1); max_rx_queue_size = 1 << (flsl(max_rx_queue_size) - 1); /* * When forcing large headers, we multiply the entry size by 2, * and therefore divide the queue size by 2, leaving the amount * of memory used by the queues unchanged. */ if (ena_force_large_llq_header) { if ((llq->entry_size_ctrl_supported & ENA_ADMIN_LIST_ENTRY_SIZE_256B) != 0 && ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) { max_tx_queue_size /= 2; ena_log(ctx->pdev, INFO, "Forcing large headers and decreasing maximum Tx queue size to %d\n", max_tx_queue_size); } else { ena_log(ctx->pdev, WARN, "Forcing large headers failed: LLQ is disabled or device does not support large headers\n"); } } tx_queue_size = clamp_val(tx_queue_size, ENA_MIN_RING_SIZE, max_tx_queue_size); rx_queue_size = clamp_val(rx_queue_size, ENA_MIN_RING_SIZE, max_rx_queue_size); tx_queue_size = 1 << (flsl(tx_queue_size) - 1); rx_queue_size = 1 << (flsl(rx_queue_size) - 1); ctx->max_tx_queue_size = max_tx_queue_size; ctx->max_rx_queue_size = max_rx_queue_size; ctx->tx_queue_size = tx_queue_size; ctx->rx_queue_size = rx_queue_size; return (0); } static int ena_rss_init_default(struct ena_adapter *adapter) { struct ena_com_dev *ena_dev = adapter->ena_dev; device_t dev = adapter->pdev; int qid, rc, i; rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE); if (unlikely(rc != 0)) { ena_log(dev, ERR, "Cannot init indirect table\n"); return (rc); } for (i = 0; i < ENA_RX_RSS_TABLE_SIZE; i++) { qid = i % adapter->num_io_queues; rc = ena_com_indirect_table_fill_entry(ena_dev, i, ENA_IO_RXQ_IDX(qid)); if (unlikely((rc != 0) && (rc != EOPNOTSUPP))) { ena_log(dev, ERR, "Cannot fill indirect table\n"); goto err_rss_destroy; } } #ifdef RSS uint8_t rss_algo = rss_gethashalgo(); if (rss_algo == RSS_HASH_TOEPLITZ) { uint8_t hash_key[RSS_KEYSIZE]; rss_getkey(hash_key); rc = ena_com_fill_hash_function(ena_dev, ENA_ADMIN_TOEPLITZ, hash_key, RSS_KEYSIZE, 0xFFFFFFFF); } else #endif rc = ena_com_fill_hash_function(ena_dev, ENA_ADMIN_CRC32, NULL, ENA_HASH_KEY_SIZE, 0xFFFFFFFF); if (unlikely((rc != 0) && (rc != EOPNOTSUPP))) { ena_log(dev, ERR, "Cannot fill hash function\n"); goto err_rss_destroy; } rc = ena_com_set_default_hash_ctrl(ena_dev); if (unlikely((rc != 0) && (rc != EOPNOTSUPP))) { ena_log(dev, ERR, "Cannot fill hash control\n"); goto err_rss_destroy; } return (0); err_rss_destroy: ena_com_rss_destroy(ena_dev); return (rc); } static void ena_rss_init_default_deferred(void *arg) { struct ena_adapter *adapter; devclass_t dc; int max; int rc; dc = devclass_find("ena"); if (unlikely(dc == NULL)) { ena_log_raw(ERR, "SYSINIT: %s: No devclass ena\n", __func__); return; } max = devclass_get_maxunit(dc); while (max-- >= 0) { adapter = devclass_get_softc(dc, max); if (adapter != NULL) { rc = ena_rss_init_default(adapter); ENA_FLAG_SET_ATOMIC(ENA_FLAG_RSS_ACTIVE, adapter); if (unlikely(rc != 0)) { ena_log(adapter->pdev, WARN, "WARNING: RSS was not properly initialized," " it will affect bandwidth\n"); ENA_FLAG_CLEAR_ATOMIC(ENA_FLAG_RSS_ACTIVE, adapter); } } } } SYSINIT(ena_rss_init, SI_SUB_KICK_SCHEDULER, SI_ORDER_SECOND, ena_rss_init_default_deferred, NULL); static void ena_config_host_info(struct ena_com_dev *ena_dev, device_t dev) { struct ena_admin_host_info *host_info; uintptr_t rid; int rc; /* Allocate only the host info */ rc = ena_com_allocate_host_info(ena_dev); if (unlikely(rc != 0)) { ena_log(dev, ERR, "Cannot allocate host info\n"); return; } host_info = ena_dev->host_attr.host_info; if (pci_get_id(dev, PCI_ID_RID, &rid) == 0) host_info->bdf = rid; host_info->os_type = ENA_ADMIN_OS_FREEBSD; host_info->kernel_ver = osreldate; sprintf(host_info->kernel_ver_str, "%d", osreldate); host_info->os_dist = 0; strncpy(host_info->os_dist_str, osrelease, sizeof(host_info->os_dist_str) - 1); host_info->driver_version = (DRV_MODULE_VER_MAJOR) | (DRV_MODULE_VER_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) | (DRV_MODULE_VER_SUBMINOR << ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT); host_info->num_cpus = mp_ncpus; host_info->driver_supported_features = ENA_ADMIN_HOST_INFO_RX_OFFSET_MASK; rc = ena_com_set_host_attributes(ena_dev); if (unlikely(rc != 0)) { if (rc == EOPNOTSUPP) ena_log(dev, WARN, "Cannot set host attributes\n"); else ena_log(dev, ERR, "Cannot set host attributes\n"); goto err; } return; err: ena_com_delete_host_info(ena_dev); } static int ena_device_init(struct ena_adapter *adapter, device_t pdev, struct ena_com_dev_get_features_ctx *get_feat_ctx, int *wd_active) { struct ena_com_dev* ena_dev = adapter->ena_dev; bool readless_supported; uint32_t aenq_groups; int dma_width; int rc; rc = ena_com_mmio_reg_read_request_init(ena_dev); if (unlikely(rc != 0)) { ena_log(pdev, ERR, "failed to init mmio read less\n"); return (rc); } /* * The PCIe configuration space revision id indicate if mmio reg * read is disabled */ readless_supported = !(pci_get_revid(pdev) & ENA_MMIO_DISABLE_REG_READ); ena_com_set_mmio_read_mode(ena_dev, readless_supported); rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL); if (unlikely(rc != 0)) { ena_log(pdev, ERR, "Can not reset device\n"); goto err_mmio_read_less; } rc = ena_com_validate_version(ena_dev); if (unlikely(rc != 0)) { ena_log(pdev, ERR, "device version is too low\n"); goto err_mmio_read_less; } dma_width = ena_com_get_dma_width(ena_dev); if (unlikely(dma_width < 0)) { ena_log(pdev, ERR, "Invalid dma width value %d", dma_width); rc = dma_width; goto err_mmio_read_less; } adapter->dma_width = dma_width; /* ENA admin level init */ rc = ena_com_admin_init(ena_dev, &aenq_handlers); if (unlikely(rc != 0)) { ena_log(pdev, ERR, "Can not initialize ena admin queue with device\n"); goto err_mmio_read_less; } /* * To enable the msix interrupts the driver needs to know the number * of queues. So the driver uses polling mode to retrieve this * information */ ena_com_set_admin_polling_mode(ena_dev, true); ena_config_host_info(ena_dev, pdev); /* Get Device Attributes */ rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx); if (unlikely(rc != 0)) { ena_log(pdev, ERR, "Cannot get attribute for ena device rc: %d\n", rc); goto err_admin_init; } aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) | BIT(ENA_ADMIN_FATAL_ERROR) | BIT(ENA_ADMIN_WARNING) | BIT(ENA_ADMIN_NOTIFICATION) | BIT(ENA_ADMIN_KEEP_ALIVE); aenq_groups &= get_feat_ctx->aenq.supported_groups; rc = ena_com_set_aenq_config(ena_dev, aenq_groups); if (unlikely(rc != 0)) { ena_log(pdev, ERR, "Cannot configure aenq groups rc: %d\n", rc); goto err_admin_init; } *wd_active = !!(aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE)); return (0); err_admin_init: ena_com_delete_host_info(ena_dev); ena_com_admin_destroy(ena_dev); err_mmio_read_less: ena_com_mmio_reg_read_request_destroy(ena_dev); return (rc); } static int ena_enable_msix_and_set_admin_interrupts(struct ena_adapter *adapter) { struct ena_com_dev *ena_dev = adapter->ena_dev; int rc; rc = ena_enable_msix(adapter); if (unlikely(rc != 0)) { ena_log(adapter->pdev, ERR, "Error with MSI-X enablement\n"); return (rc); } ena_setup_mgmnt_intr(adapter); rc = ena_request_mgmnt_irq(adapter); if (unlikely(rc != 0)) { ena_log(adapter->pdev, ERR, "Cannot setup mgmnt queue intr\n"); goto err_disable_msix; } ena_com_set_admin_polling_mode(ena_dev, false); ena_com_admin_aenq_enable(ena_dev); return (0); err_disable_msix: ena_disable_msix(adapter); return (rc); } /* Function called on ENA_ADMIN_KEEP_ALIVE event */ static void ena_keep_alive_wd(void *adapter_data, struct ena_admin_aenq_entry *aenq_e) { struct ena_adapter *adapter = (struct ena_adapter *)adapter_data; struct ena_admin_aenq_keep_alive_desc *desc; sbintime_t stime; uint64_t rx_drops; uint64_t tx_drops; desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e; rx_drops = ((uint64_t)desc->rx_drops_high << 32) | desc->rx_drops_low; tx_drops = ((uint64_t)desc->tx_drops_high << 32) | desc->tx_drops_low; counter_u64_zero(adapter->hw_stats.rx_drops); counter_u64_add(adapter->hw_stats.rx_drops, rx_drops); counter_u64_zero(adapter->hw_stats.tx_drops); counter_u64_add(adapter->hw_stats.tx_drops, tx_drops); stime = getsbinuptime(); atomic_store_rel_64(&adapter->keep_alive_timestamp, stime); } /* Check for keep alive expiration */ static void check_for_missing_keep_alive(struct ena_adapter *adapter) { sbintime_t timestamp, time; if (adapter->wd_active == 0) return; if (adapter->keep_alive_timeout == ENA_HW_HINTS_NO_TIMEOUT) return; timestamp = atomic_load_acq_64(&adapter->keep_alive_timestamp); time = getsbinuptime() - timestamp; if (unlikely(time > adapter->keep_alive_timeout)) { ena_log(adapter->pdev, ERR, "Keep alive watchdog timeout.\n"); counter_u64_add(adapter->dev_stats.wd_expired, 1); ena_trigger_reset(adapter, ENA_REGS_RESET_KEEP_ALIVE_TO); } } /* Check if admin queue is enabled */ static void check_for_admin_com_state(struct ena_adapter *adapter) { if (unlikely(ena_com_get_admin_running_state(adapter->ena_dev) == false)) { ena_log(adapter->pdev, ERR, "ENA admin queue is not in running state!\n"); counter_u64_add(adapter->dev_stats.admin_q_pause, 1); ena_trigger_reset(adapter, ENA_REGS_RESET_ADMIN_TO); } } static int check_for_rx_interrupt_queue(struct ena_adapter *adapter, struct ena_ring *rx_ring) { if (likely(rx_ring->first_interrupt)) return (0); if (ena_com_cq_empty(rx_ring->ena_com_io_cq)) return (0); rx_ring->no_interrupt_event_cnt++; if (rx_ring->no_interrupt_event_cnt == ENA_MAX_NO_INTERRUPT_ITERATIONS) { ena_log(adapter->pdev, ERR, "Potential MSIX issue on Rx side " "Queue = %d. Reset the device\n", rx_ring->qid); ena_trigger_reset(adapter, ENA_REGS_RESET_MISS_INTERRUPT); return (EIO); } return (0); } static int check_missing_comp_in_tx_queue(struct ena_adapter *adapter, struct ena_ring *tx_ring) { device_t pdev = adapter->pdev; struct bintime curtime, time; struct ena_tx_buffer *tx_buf; sbintime_t time_offset; uint32_t missed_tx = 0; int i, rc = 0; getbinuptime(&curtime); for (i = 0; i < tx_ring->ring_size; i++) { tx_buf = &tx_ring->tx_buffer_info[i]; if (bintime_isset(&tx_buf->timestamp) == 0) continue; time = curtime; bintime_sub(&time, &tx_buf->timestamp); time_offset = bttosbt(time); if (unlikely(!tx_ring->first_interrupt && time_offset > 2 * adapter->missing_tx_timeout)) { /* * If after graceful period interrupt is still not * received, we schedule a reset. */ ena_log(pdev, ERR, "Potential MSIX issue on Tx side Queue = %d. " "Reset the device\n", tx_ring->qid); ena_trigger_reset(adapter, ENA_REGS_RESET_MISS_INTERRUPT); return (EIO); } /* Check again if packet is still waiting */ if (unlikely(time_offset > adapter->missing_tx_timeout)) { if (!tx_buf->print_once) ena_log(pdev, WARN, "Found a Tx that wasn't " "completed on time, qid %d, index %d.\n", tx_ring->qid, i); tx_buf->print_once = true; missed_tx++; } } if (unlikely(missed_tx > adapter->missing_tx_threshold)) { ena_log(pdev, ERR, "The number of lost tx completion is above the threshold " "(%d > %d). Reset the device\n", missed_tx, adapter->missing_tx_threshold); ena_trigger_reset(adapter, ENA_REGS_RESET_MISS_TX_CMPL); rc = EIO; } counter_u64_add(tx_ring->tx_stats.missing_tx_comp, missed_tx); return (rc); } /* * Check for TX which were not completed on time. * Timeout is defined by "missing_tx_timeout". * Reset will be performed if number of incompleted * transactions exceeds "missing_tx_threshold". */ static void check_for_missing_completions(struct ena_adapter *adapter) { struct ena_ring *tx_ring; struct ena_ring *rx_ring; int i, budget, rc; /* Make sure the driver doesn't turn the device in other process */ rmb(); if (!ENA_FLAG_ISSET(ENA_FLAG_DEV_UP, adapter)) return; if (ENA_FLAG_ISSET(ENA_FLAG_TRIGGER_RESET, adapter)) return; if (adapter->missing_tx_timeout == ENA_HW_HINTS_NO_TIMEOUT) return; budget = adapter->missing_tx_max_queues; for (i = adapter->next_monitored_tx_qid; i < adapter->num_io_queues; i++) { tx_ring = &adapter->tx_ring[i]; rx_ring = &adapter->rx_ring[i]; rc = check_missing_comp_in_tx_queue(adapter, tx_ring); if (unlikely(rc != 0)) return; rc = check_for_rx_interrupt_queue(adapter, rx_ring); if (unlikely(rc != 0)) return; budget--; if (budget == 0) { i++; break; } } adapter->next_monitored_tx_qid = i % adapter->num_io_queues; } /* trigger rx cleanup after 2 consecutive detections */ #define EMPTY_RX_REFILL 2 /* For the rare case where the device runs out of Rx descriptors and the * msix handler failed to refill new Rx descriptors (due to a lack of memory * for example). * This case will lead to a deadlock: * The device won't send interrupts since all the new Rx packets will be dropped * The msix handler won't allocate new Rx descriptors so the device won't be * able to send new packets. * * When such a situation is detected - execute rx cleanup task in another thread */ static void check_for_empty_rx_ring(struct ena_adapter *adapter) { struct ena_ring *rx_ring; int i, refill_required; if (!ENA_FLAG_ISSET(ENA_FLAG_DEV_UP, adapter)) return; if (ENA_FLAG_ISSET(ENA_FLAG_TRIGGER_RESET, adapter)) return; for (i = 0; i < adapter->num_io_queues; i++) { rx_ring = &adapter->rx_ring[i]; refill_required = ena_com_free_q_entries(rx_ring->ena_com_io_sq); if (unlikely(refill_required == (rx_ring->ring_size - 1))) { rx_ring->empty_rx_queue++; if (rx_ring->empty_rx_queue >= EMPTY_RX_REFILL) { counter_u64_add(rx_ring->rx_stats.empty_rx_ring, 1); ena_log(adapter->pdev, WARN, "Rx ring %d is stalled. Triggering the refill function\n", i); taskqueue_enqueue(rx_ring->que->cleanup_tq, &rx_ring->que->cleanup_task); rx_ring->empty_rx_queue = 0; } } else { rx_ring->empty_rx_queue = 0; } } } static void ena_update_hints(struct ena_adapter *adapter, struct ena_admin_ena_hw_hints *hints) { struct ena_com_dev *ena_dev = adapter->ena_dev; if (hints->admin_completion_tx_timeout) ena_dev->admin_queue.completion_timeout = hints->admin_completion_tx_timeout * 1000; if (hints->mmio_read_timeout) /* convert to usec */ ena_dev->mmio_read.reg_read_to = hints->mmio_read_timeout * 1000; if (hints->missed_tx_completion_count_threshold_to_reset) adapter->missing_tx_threshold = hints->missed_tx_completion_count_threshold_to_reset; if (hints->missing_tx_completion_timeout) { if (hints->missing_tx_completion_timeout == ENA_HW_HINTS_NO_TIMEOUT) adapter->missing_tx_timeout = ENA_HW_HINTS_NO_TIMEOUT; else adapter->missing_tx_timeout = SBT_1MS * hints->missing_tx_completion_timeout; } if (hints->driver_watchdog_timeout) { if (hints->driver_watchdog_timeout == ENA_HW_HINTS_NO_TIMEOUT) adapter->keep_alive_timeout = ENA_HW_HINTS_NO_TIMEOUT; else adapter->keep_alive_timeout = SBT_1MS * hints->driver_watchdog_timeout; } } /** * ena_copy_eni_metrics - Get and copy ENI metrics from the HW. * @adapter: ENA device adapter * * Returns 0 on success, EOPNOTSUPP if current HW doesn't support those metrics * and other error codes on failure. * * This function can possibly cause a race with other calls to the admin queue. * Because of that, the caller should either lock this function or make sure * that there is no race in the current context. */ static int ena_copy_eni_metrics(struct ena_adapter *adapter) { static bool print_once = true; int rc; rc = ena_com_get_eni_stats(adapter->ena_dev, &adapter->eni_metrics); if (rc != 0) { if (rc == ENA_COM_UNSUPPORTED) { if (print_once) { ena_log(adapter->pdev, WARN, "Retrieving ENI metrics is not supported.\n"); print_once = false; } else { ena_log(adapter->pdev, DBG, "Retrieving ENI metrics is not supported.\n"); } } else { ena_log(adapter->pdev, ERR, "Failed to get ENI metrics: %d\n", rc); } } return (rc); } static void ena_timer_service(void *data) { struct ena_adapter *adapter = (struct ena_adapter *)data; struct ena_admin_host_info *host_info = adapter->ena_dev->host_attr.host_info; check_for_missing_keep_alive(adapter); check_for_admin_com_state(adapter); check_for_missing_completions(adapter); check_for_empty_rx_ring(adapter); /* * User controller update of the ENI metrics. * If the delay was set to 0, then the stats shouldn't be updated at * all. * Otherwise, wait 'eni_metrics_sample_interval' seconds, before * updating stats. * As timer service is executed every second, it's enough to increment * appropriate counter each time the timer service is executed. */ if ((adapter->eni_metrics_sample_interval != 0) && (++adapter->eni_metrics_sample_interval_cnt >= adapter->eni_metrics_sample_interval)) { /* * There is no race with other admin queue calls, as: * - Timer service runs after interface is up, so all * configuration calls to the admin queue are finished. * - After interface is up, the driver doesn't use (at least * for now) other functions writing to the admin queue. * * It may change in the future, so in that situation, the lock * will be needed. ENA_LOCK_*() cannot be used for that purpose, * as callout ena_timer_service is protected by them. It could * lead to the deadlock if callout_drain() would hold the lock * before ena_copy_eni_metrics() was executed. It's advised to * use separate lock in that situation which will be used only * for the admin queue. */ (void)ena_copy_eni_metrics(adapter); adapter->eni_metrics_sample_interval_cnt = 0; } if (host_info != NULL) ena_update_host_info(host_info, adapter->ifp); if (unlikely(ENA_FLAG_ISSET(ENA_FLAG_TRIGGER_RESET, adapter))) { ena_log(adapter->pdev, WARN, "Trigger reset is on\n"); taskqueue_enqueue(adapter->reset_tq, &adapter->reset_task); return; } /* * Schedule another timeout one second from now. */ callout_schedule_sbt(&adapter->timer_service, SBT_1S, SBT_1S, 0); } void ena_destroy_device(struct ena_adapter *adapter, bool graceful) { if_t ifp = adapter->ifp; struct ena_com_dev *ena_dev = adapter->ena_dev; bool dev_up; if (!ENA_FLAG_ISSET(ENA_FLAG_DEVICE_RUNNING, adapter)) return; if_link_state_change(ifp, LINK_STATE_DOWN); callout_drain(&adapter->timer_service); dev_up = ENA_FLAG_ISSET(ENA_FLAG_DEV_UP, adapter); if (dev_up) ENA_FLAG_SET_ATOMIC(ENA_FLAG_DEV_UP_BEFORE_RESET, adapter); if (!graceful) ena_com_set_admin_running_state(ena_dev, false); if (ENA_FLAG_ISSET(ENA_FLAG_DEV_UP, adapter)) ena_down(adapter); /* * Stop the device from sending AENQ events (if the device was up, and * the trigger reset was on, ena_down already performs device reset) */ if (!(ENA_FLAG_ISSET(ENA_FLAG_TRIGGER_RESET, adapter) && dev_up)) ena_com_dev_reset(adapter->ena_dev, adapter->reset_reason); ena_free_mgmnt_irq(adapter); ena_disable_msix(adapter); /* * IO rings resources should be freed because `ena_restore_device()` * calls (not directly) `ena_enable_msix()`, which re-allocates MSIX * vectors. The amount of MSIX vectors after destroy-restore may be * different than before. Therefore, IO rings resources should be * established from scratch each time. */ ena_free_all_io_rings_resources(adapter); ena_com_abort_admin_commands(ena_dev); ena_com_wait_for_abort_completion(ena_dev); ena_com_admin_destroy(ena_dev); ena_com_mmio_reg_read_request_destroy(ena_dev); adapter->reset_reason = ENA_REGS_RESET_NORMAL; ENA_FLAG_CLEAR_ATOMIC(ENA_FLAG_TRIGGER_RESET, adapter); ENA_FLAG_CLEAR_ATOMIC(ENA_FLAG_DEVICE_RUNNING, adapter); } static int ena_device_validate_params(struct ena_adapter *adapter, struct ena_com_dev_get_features_ctx *get_feat_ctx) { if (memcmp(get_feat_ctx->dev_attr.mac_addr, adapter->mac_addr, ETHER_ADDR_LEN) != 0) { ena_log(adapter->pdev, ERR, "Error, mac addresses differ\n"); return (EINVAL); } if (get_feat_ctx->dev_attr.max_mtu < if_getmtu(adapter->ifp)) { ena_log(adapter->pdev, ERR, "Error, device max mtu is smaller than ifp MTU\n"); return (EINVAL); } return 0; } int ena_restore_device(struct ena_adapter *adapter) { struct ena_com_dev_get_features_ctx get_feat_ctx; struct ena_com_dev *ena_dev = adapter->ena_dev; if_t ifp = adapter->ifp; device_t dev = adapter->pdev; int wd_active; int rc; ENA_FLAG_SET_ATOMIC(ENA_FLAG_ONGOING_RESET, adapter); rc = ena_device_init(adapter, dev, &get_feat_ctx, &wd_active); if (rc != 0) { ena_log(dev, ERR, "Cannot initialize device\n"); goto err; } /* * Only enable WD if it was enabled before reset, so it won't override * value set by the user by the sysctl. */ if (adapter->wd_active != 0) adapter->wd_active = wd_active; rc = ena_device_validate_params(adapter, &get_feat_ctx); if (rc != 0) { ena_log(dev, ERR, "Validation of device parameters failed\n"); goto err_device_destroy; } ENA_FLAG_CLEAR_ATOMIC(ENA_FLAG_ONGOING_RESET, adapter); /* Make sure we don't have a race with AENQ Links state handler */ if (ENA_FLAG_ISSET(ENA_FLAG_LINK_UP, adapter)) if_link_state_change(ifp, LINK_STATE_UP); rc = ena_enable_msix_and_set_admin_interrupts(adapter); if (rc != 0) { ena_log(dev, ERR, "Enable MSI-X failed\n"); goto err_device_destroy; } /* * Effective value of used MSIX vectors should be the same as before * `ena_destroy_device()`, if possible, or closest to it if less vectors * are available. */ if ((adapter->msix_vecs - ENA_ADMIN_MSIX_VEC) < adapter->num_io_queues) adapter->num_io_queues = adapter->msix_vecs - ENA_ADMIN_MSIX_VEC; /* Re-initialize rings basic information */ ena_init_io_rings(adapter); /* If the interface was up before the reset bring it up */ if (ENA_FLAG_ISSET(ENA_FLAG_DEV_UP_BEFORE_RESET, adapter)) { rc = ena_up(adapter); if (rc != 0) { ena_log(dev, ERR, "Failed to create I/O queues\n"); goto err_disable_msix; } } /* Indicate that device is running again and ready to work */ ENA_FLAG_SET_ATOMIC(ENA_FLAG_DEVICE_RUNNING, adapter); if (ENA_FLAG_ISSET(ENA_FLAG_DEV_UP_BEFORE_RESET, adapter)) { /* * As the AENQ handlers weren't executed during reset because * the flag ENA_FLAG_DEVICE_RUNNING was turned off, the * timestamp must be updated again That will prevent next reset * caused by missing keep alive. */ adapter->keep_alive_timestamp = getsbinuptime(); callout_reset_sbt(&adapter->timer_service, SBT_1S, SBT_1S, ena_timer_service, (void *)adapter, 0); } ENA_FLAG_CLEAR_ATOMIC(ENA_FLAG_DEV_UP_BEFORE_RESET, adapter); ena_log(dev, INFO, "Device reset completed successfully, Driver info: %s\n", ena_version); return (rc); err_disable_msix: ena_free_mgmnt_irq(adapter); ena_disable_msix(adapter); err_device_destroy: ena_com_abort_admin_commands(ena_dev); ena_com_wait_for_abort_completion(ena_dev); ena_com_admin_destroy(ena_dev); ena_com_dev_reset(ena_dev, ENA_REGS_RESET_DRIVER_INVALID_STATE); ena_com_mmio_reg_read_request_destroy(ena_dev); err: ENA_FLAG_CLEAR_ATOMIC(ENA_FLAG_DEVICE_RUNNING, adapter); ENA_FLAG_CLEAR_ATOMIC(ENA_FLAG_ONGOING_RESET, adapter); ena_log(dev, ERR, "Reset attempt failed. Can not reset the device\n"); return (rc); } static void ena_reset_task(void *arg, int pending) { struct ena_adapter *adapter = (struct ena_adapter *)arg; ENA_LOCK_LOCK(adapter); if (likely(ENA_FLAG_ISSET(ENA_FLAG_TRIGGER_RESET, adapter))) { ena_destroy_device(adapter, false); ena_restore_device(adapter); } ENA_LOCK_UNLOCK(adapter); } /** * ena_attach - Device Initialization Routine * @pdev: device information struct * * Returns 0 on success, otherwise on failure. * * ena_attach initializes an adapter identified by a device structure. * The OS initialization, configuring of the adapter private structure, * and a hardware reset occur. **/ static int ena_attach(device_t pdev) { struct ena_com_dev_get_features_ctx get_feat_ctx; struct ena_llq_configurations llq_config; struct ena_calc_queue_size_ctx calc_queue_ctx = { 0 }; static int version_printed; struct ena_adapter *adapter; struct ena_com_dev *ena_dev = NULL; uint32_t max_num_io_queues; int msix_rid; int rid, rc; adapter = device_get_softc(pdev); adapter->pdev = pdev; ENA_LOCK_INIT(adapter); /* * Set up the timer service - driver is responsible for avoiding * concurrency, as the callout won't be using any locking inside. */ callout_init(&adapter->timer_service, true); adapter->keep_alive_timeout = DEFAULT_KEEP_ALIVE_TO; adapter->missing_tx_timeout = DEFAULT_TX_CMP_TO; adapter->missing_tx_max_queues = DEFAULT_TX_MONITORED_QUEUES; adapter->missing_tx_threshold = DEFAULT_TX_CMP_THRESHOLD; if (version_printed++ == 0) ena_log(pdev, INFO, "%s\n", ena_version); /* Allocate memory for ena_dev structure */ ena_dev = malloc(sizeof(struct ena_com_dev), M_DEVBUF, M_WAITOK | M_ZERO); adapter->ena_dev = ena_dev; ena_dev->dmadev = pdev; rid = PCIR_BAR(ENA_REG_BAR); adapter->memory = NULL; adapter->registers = bus_alloc_resource_any(pdev, SYS_RES_MEMORY, &rid, RF_ACTIVE); if (unlikely(adapter->registers == NULL)) { ena_log(pdev, ERR, "unable to allocate bus resource: registers!\n"); rc = ENOMEM; goto err_dev_free; } /* MSIx vector table may reside on BAR0 with registers or on BAR1. */ msix_rid = pci_msix_table_bar(pdev); if (msix_rid != rid) { adapter->msix = bus_alloc_resource_any(pdev, SYS_RES_MEMORY, &msix_rid, RF_ACTIVE); if (unlikely(adapter->msix == NULL)) { ena_log(pdev, ERR, "unable to allocate bus resource: msix!\n"); rc = ENOMEM; goto err_pci_free; } adapter->msix_rid = msix_rid; } ena_dev->bus = malloc(sizeof(struct ena_bus), M_DEVBUF, M_WAITOK | M_ZERO); /* Store register resources */ ((struct ena_bus*)(ena_dev->bus))->reg_bar_t = rman_get_bustag(adapter->registers); ((struct ena_bus*)(ena_dev->bus))->reg_bar_h = rman_get_bushandle(adapter->registers); if (unlikely(((struct ena_bus*)(ena_dev->bus))->reg_bar_h == 0)) { ena_log(pdev, ERR, "failed to pmap registers bar\n"); rc = ENXIO; goto err_bus_free; } ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST; /* Initially clear all the flags */ ENA_FLAG_ZERO(adapter); /* Device initialization */ rc = ena_device_init(adapter, pdev, &get_feat_ctx, &adapter->wd_active); if (unlikely(rc != 0)) { ena_log(pdev, ERR, "ENA device init failed! (err: %d)\n", rc); rc = ENXIO; goto err_bus_free; } set_default_llq_configurations(&llq_config, &get_feat_ctx.llq); rc = ena_set_queues_placement_policy(pdev, ena_dev, &get_feat_ctx.llq, &llq_config); if (unlikely(rc != 0)) { ena_log(pdev, ERR, "failed to set placement policy\n"); goto err_com_free; } if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) adapter->disable_meta_caching = !!(get_feat_ctx.llq.accel_mode.u.get.supported_flags & BIT(ENA_ADMIN_DISABLE_META_CACHING)); adapter->keep_alive_timestamp = getsbinuptime(); adapter->tx_offload_cap = get_feat_ctx.offload.tx; memcpy(adapter->mac_addr, get_feat_ctx.dev_attr.mac_addr, ETHER_ADDR_LEN); calc_queue_ctx.pdev = pdev; calc_queue_ctx.ena_dev = ena_dev; calc_queue_ctx.get_feat_ctx = &get_feat_ctx; /* Calculate initial and maximum IO queue number and size */ max_num_io_queues = ena_calc_max_io_queue_num(pdev, ena_dev, &get_feat_ctx); rc = ena_calc_io_queue_size(&calc_queue_ctx); if (unlikely((rc != 0) || (max_num_io_queues <= 0))) { rc = EFAULT; goto err_com_free; } adapter->requested_tx_ring_size = calc_queue_ctx.tx_queue_size; adapter->requested_rx_ring_size = calc_queue_ctx.rx_queue_size; adapter->max_tx_ring_size = calc_queue_ctx.max_tx_queue_size; adapter->max_rx_ring_size = calc_queue_ctx.max_rx_queue_size; adapter->max_tx_sgl_size = calc_queue_ctx.max_tx_sgl_size; adapter->max_rx_sgl_size = calc_queue_ctx.max_rx_sgl_size; adapter->max_num_io_queues = max_num_io_queues; adapter->buf_ring_size = ENA_DEFAULT_BUF_RING_SIZE; adapter->max_mtu = get_feat_ctx.dev_attr.max_mtu; adapter->reset_reason = ENA_REGS_RESET_NORMAL; /* set up dma tags for rx and tx buffers */ rc = ena_setup_tx_dma_tag(adapter); if (unlikely(rc != 0)) { ena_log(pdev, ERR, "Failed to create TX DMA tag\n"); goto err_com_free; } rc = ena_setup_rx_dma_tag(adapter); if (unlikely(rc != 0)) { ena_log(pdev, ERR, "Failed to create RX DMA tag\n"); goto err_tx_tag_free; } /* * The amount of requested MSIX vectors is equal to * adapter::max_num_io_queues (see `ena_enable_msix()`), plus a constant * number of admin queue interrupts. The former is initially determined * by HW capabilities (see `ena_calc_max_io_queue_num())` but may not be * achieved if there are not enough system resources. By default, the * number of effectively used IO queues is the same but later on it can * be limited by the user using sysctl interface. */ rc = ena_enable_msix_and_set_admin_interrupts(adapter); if (unlikely(rc != 0)) { ena_log(pdev, ERR, "Failed to enable and set the admin interrupts\n"); goto err_io_free; } /* By default all of allocated MSIX vectors are actively used */ adapter->num_io_queues = adapter->msix_vecs - ENA_ADMIN_MSIX_VEC; /* initialize rings basic information */ ena_init_io_rings(adapter); /* setup network interface */ rc = ena_setup_ifnet(pdev, adapter, &get_feat_ctx); if (unlikely(rc != 0)) { ena_log(pdev, ERR, "Error with network interface setup\n"); goto err_msix_free; } /* Initialize reset task queue */ TASK_INIT(&adapter->reset_task, 0, ena_reset_task, adapter); adapter->reset_tq = taskqueue_create("ena_reset_enqueue", M_WAITOK | M_ZERO, taskqueue_thread_enqueue, &adapter->reset_tq); taskqueue_start_threads(&adapter->reset_tq, 1, PI_NET, "%s rstq", device_get_nameunit(adapter->pdev)); /* Initialize statistics */ ena_alloc_counters((counter_u64_t *)&adapter->dev_stats, sizeof(struct ena_stats_dev)); ena_alloc_counters((counter_u64_t *)&adapter->hw_stats, sizeof(struct ena_hw_stats)); ena_sysctl_add_nodes(adapter); #ifdef DEV_NETMAP rc = ena_netmap_attach(adapter); if (rc != 0) { ena_log(pdev, ERR, "netmap attach failed: %d\n", rc); goto err_detach; } #endif /* DEV_NETMAP */ /* Tell the stack that the interface is not active */ if_setdrvflagbits(adapter->ifp, IFF_DRV_OACTIVE, IFF_DRV_RUNNING); ENA_FLAG_SET_ATOMIC(ENA_FLAG_DEVICE_RUNNING, adapter); return (0); #ifdef DEV_NETMAP err_detach: ether_ifdetach(adapter->ifp); #endif /* DEV_NETMAP */ err_msix_free: ena_com_dev_reset(adapter->ena_dev, ENA_REGS_RESET_INIT_ERR); ena_free_mgmnt_irq(adapter); ena_disable_msix(adapter); err_io_free: ena_free_all_io_rings_resources(adapter); ena_free_rx_dma_tag(adapter); err_tx_tag_free: ena_free_tx_dma_tag(adapter); err_com_free: ena_com_admin_destroy(ena_dev); ena_com_delete_host_info(ena_dev); ena_com_mmio_reg_read_request_destroy(ena_dev); err_bus_free: free(ena_dev->bus, M_DEVBUF); err_pci_free: ena_free_pci_resources(adapter); err_dev_free: free(ena_dev, M_DEVBUF); return (rc); } /** * ena_detach - Device Removal Routine * @pdev: device information struct * * ena_detach is called by the device subsystem to alert the driver * that it should release a PCI device. **/ static int ena_detach(device_t pdev) { struct ena_adapter *adapter = device_get_softc(pdev); struct ena_com_dev *ena_dev = adapter->ena_dev; int rc; /* Make sure VLANS are not using driver */ if (adapter->ifp->if_vlantrunk != NULL) { ena_log(adapter->pdev, ERR, "VLAN is in use, detach first\n"); return (EBUSY); } ether_ifdetach(adapter->ifp); /* Stop timer service */ ENA_LOCK_LOCK(adapter); callout_drain(&adapter->timer_service); ENA_LOCK_UNLOCK(adapter); /* Release reset task */ while (taskqueue_cancel(adapter->reset_tq, &adapter->reset_task, NULL)) taskqueue_drain(adapter->reset_tq, &adapter->reset_task); taskqueue_free(adapter->reset_tq); ENA_LOCK_LOCK(adapter); ena_down(adapter); ena_destroy_device(adapter, true); ENA_LOCK_UNLOCK(adapter); /* Restore unregistered sysctl queue nodes. */ ena_sysctl_update_queue_node_nb(adapter, adapter->num_io_queues, adapter->max_num_io_queues); #ifdef DEV_NETMAP netmap_detach(adapter->ifp); #endif /* DEV_NETMAP */ ena_free_counters((counter_u64_t *)&adapter->hw_stats, sizeof(struct ena_hw_stats)); ena_free_counters((counter_u64_t *)&adapter->dev_stats, sizeof(struct ena_stats_dev)); rc = ena_free_rx_dma_tag(adapter); if (unlikely(rc != 0)) ena_log(adapter->pdev, WARN, "Unmapped RX DMA tag associations\n"); rc = ena_free_tx_dma_tag(adapter); if (unlikely(rc != 0)) ena_log(adapter->pdev, WARN, "Unmapped TX DMA tag associations\n"); ena_free_irqs(adapter); ena_free_pci_resources(adapter); if (likely(ENA_FLAG_ISSET(ENA_FLAG_RSS_ACTIVE, adapter))) ena_com_rss_destroy(ena_dev); ena_com_delete_host_info(ena_dev); ENA_LOCK_DESTROY(adapter); if_free(adapter->ifp); free(ena_dev->bus, M_DEVBUF); free(ena_dev, M_DEVBUF); return (bus_generic_detach(pdev)); } /****************************************************************************** ******************************** AENQ Handlers ******************************* *****************************************************************************/ /** * ena_update_on_link_change: * Notify the network interface about the change in link status **/ static void ena_update_on_link_change(void *adapter_data, struct ena_admin_aenq_entry *aenq_e) { struct ena_adapter *adapter = (struct ena_adapter *)adapter_data; struct ena_admin_aenq_link_change_desc *aenq_desc; int status; if_t ifp; aenq_desc = (struct ena_admin_aenq_link_change_desc *)aenq_e; ifp = adapter->ifp; status = aenq_desc->flags & ENA_ADMIN_AENQ_LINK_CHANGE_DESC_LINK_STATUS_MASK; if (status != 0) { ena_log(adapter->pdev, INFO, "link is UP\n"); ENA_FLAG_SET_ATOMIC(ENA_FLAG_LINK_UP, adapter); if (!ENA_FLAG_ISSET(ENA_FLAG_ONGOING_RESET, adapter)) if_link_state_change(ifp, LINK_STATE_UP); } else { ena_log(adapter->pdev, INFO, "link is DOWN\n"); if_link_state_change(ifp, LINK_STATE_DOWN); ENA_FLAG_CLEAR_ATOMIC(ENA_FLAG_LINK_UP, adapter); } } static void ena_notification(void *adapter_data, struct ena_admin_aenq_entry *aenq_e) { struct ena_adapter *adapter = (struct ena_adapter *)adapter_data; struct ena_admin_ena_hw_hints *hints; ENA_WARN(aenq_e->aenq_common_desc.group != ENA_ADMIN_NOTIFICATION, adapter->ena_dev, "Invalid group(%x) expected %x\n", aenq_e->aenq_common_desc.group, ENA_ADMIN_NOTIFICATION); switch (aenq_e->aenq_common_desc.syndrome) { case ENA_ADMIN_UPDATE_HINTS: hints = (struct ena_admin_ena_hw_hints *)(&aenq_e->inline_data_w4); ena_update_hints(adapter, hints); break; default: ena_log(adapter->pdev, ERR, "Invalid aenq notification link state %d\n", aenq_e->aenq_common_desc.syndrome); } } /** * This handler will called for unknown event group or unimplemented handlers **/ static void unimplemented_aenq_handler(void *adapter_data, struct ena_admin_aenq_entry *aenq_e) { struct ena_adapter *adapter = (struct ena_adapter *)adapter_data; ena_log(adapter->pdev, ERR, "Unknown event was received or event with unimplemented handler\n"); } static struct ena_aenq_handlers aenq_handlers = { .handlers = { [ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change, [ENA_ADMIN_NOTIFICATION] = ena_notification, [ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive_wd, }, .unimplemented_handler = unimplemented_aenq_handler }; /********************************************************************* * FreeBSD Device Interface Entry Points *********************************************************************/ static device_method_t ena_methods[] = { /* Device interface */ DEVMETHOD(device_probe, ena_probe), DEVMETHOD(device_attach, ena_attach), DEVMETHOD(device_detach, ena_detach), DEVMETHOD_END }; static driver_t ena_driver = { "ena", ena_methods, sizeof(struct ena_adapter), }; devclass_t ena_devclass; DRIVER_MODULE(ena, pci, ena_driver, ena_devclass, 0, 0); MODULE_PNP_INFO("U16:vendor;U16:device", pci, ena, ena_vendor_info_array, nitems(ena_vendor_info_array) - 1); MODULE_DEPEND(ena, pci, 1, 1, 1); MODULE_DEPEND(ena, ether, 1, 1, 1); #ifdef DEV_NETMAP MODULE_DEPEND(ena, netmap, 1, 1, 1); #endif /* DEV_NETMAP */ /*********************************************************************/