/*- * Copyright (c) 2016 Nicole Graziano * Copyright (c) 2017 Matthew Macy * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* $FreeBSD$ */ #include "if_em.h" #ifdef RSS #include #include #endif #ifdef VERBOSE_DEBUG #define DPRINTF device_printf #else #define DPRINTF(...) #endif /********************************************************************* * Local Function prototypes *********************************************************************/ static int em_tso_setup(struct adapter *adapter, if_pkt_info_t pi, u32 *txd_upper, u32 *txd_lower); static int em_transmit_checksum_setup(struct adapter *adapter, if_pkt_info_t pi, u32 *txd_upper, u32 *txd_lower); static int em_isc_txd_encap(void *arg, if_pkt_info_t pi); static void em_isc_txd_flush(void *arg, uint16_t txqid, qidx_t pidx); static int em_isc_txd_credits_update(void *arg, uint16_t txqid, bool clear); static void em_isc_rxd_refill(void *arg, if_rxd_update_t iru); static void em_isc_rxd_flush(void *arg, uint16_t rxqid, uint8_t flid __unused, qidx_t pidx); static int em_isc_rxd_available(void *arg, uint16_t rxqid, qidx_t idx, qidx_t budget); static int em_isc_rxd_pkt_get(void *arg, if_rxd_info_t ri); static void lem_isc_rxd_refill(void *arg, if_rxd_update_t iru); static int lem_isc_rxd_available(void *arg, uint16_t rxqid, qidx_t idx, qidx_t budget); static int lem_isc_rxd_pkt_get(void *arg, if_rxd_info_t ri); static void lem_receive_checksum(int status, int errors, if_rxd_info_t ri); static void em_receive_checksum(uint32_t status, if_rxd_info_t ri); static int em_determine_rsstype(u32 pkt_info); extern int em_intr(void *arg); struct if_txrx em_txrx = { .ift_txd_encap = em_isc_txd_encap, .ift_txd_flush = em_isc_txd_flush, .ift_txd_credits_update = em_isc_txd_credits_update, .ift_rxd_available = em_isc_rxd_available, .ift_rxd_pkt_get = em_isc_rxd_pkt_get, .ift_rxd_refill = em_isc_rxd_refill, .ift_rxd_flush = em_isc_rxd_flush, .ift_legacy_intr = em_intr }; struct if_txrx lem_txrx = { .ift_txd_encap = em_isc_txd_encap, .ift_txd_flush = em_isc_txd_flush, .ift_txd_credits_update = em_isc_txd_credits_update, .ift_rxd_available = lem_isc_rxd_available, .ift_rxd_pkt_get = lem_isc_rxd_pkt_get, .ift_rxd_refill = lem_isc_rxd_refill, .ift_rxd_flush = em_isc_rxd_flush, .ift_legacy_intr = em_intr }; extern if_shared_ctx_t em_sctx; void em_dump_rs(struct adapter *adapter) { if_softc_ctx_t scctx = adapter->shared; struct em_tx_queue *que; struct tx_ring *txr; qidx_t i, ntxd, qid, cur; int16_t rs_cidx; uint8_t status; printf("\n"); ntxd = scctx->isc_ntxd[0]; for (qid = 0; qid < adapter->tx_num_queues; qid++) { que = &adapter->tx_queues[qid]; txr = &que->txr; rs_cidx = txr->tx_rs_cidx; if (rs_cidx != txr->tx_rs_pidx) { cur = txr->tx_rsq[rs_cidx]; status = txr->tx_base[cur].upper.fields.status; if (!(status & E1000_TXD_STAT_DD)) printf("qid[%d]->tx_rsq[%d]: %d clear ", qid, rs_cidx, cur); } else { rs_cidx = (rs_cidx-1)&(ntxd-1); cur = txr->tx_rsq[rs_cidx]; printf("qid[%d]->tx_rsq[rs_cidx-1=%d]: %d ", qid, rs_cidx, cur); } printf("cidx_prev=%d rs_pidx=%d ",txr->tx_cidx_processed, txr->tx_rs_pidx); for (i = 0; i < ntxd; i++) { if (txr->tx_base[i].upper.fields.status & E1000_TXD_STAT_DD) printf("%d set ", i); } printf("\n"); } } /********************************************************************** * * Setup work for hardware segmentation offload (TSO) on * adapters using advanced tx descriptors * **********************************************************************/ static int em_tso_setup(struct adapter *adapter, if_pkt_info_t pi, u32 *txd_upper, u32 *txd_lower) { if_softc_ctx_t scctx = adapter->shared; struct em_tx_queue *que = &adapter->tx_queues[pi->ipi_qsidx]; struct tx_ring *txr = &que->txr; struct e1000_context_desc *TXD; int cur, hdr_len; hdr_len = pi->ipi_ehdrlen + pi->ipi_ip_hlen + pi->ipi_tcp_hlen; *txd_lower = (E1000_TXD_CMD_DEXT | /* Extended descr type */ E1000_TXD_DTYP_D | /* Data descr type */ E1000_TXD_CMD_TSE); /* Do TSE on this packet */ /* IP and/or TCP header checksum calculation and insertion. */ *txd_upper = (E1000_TXD_POPTS_IXSM | E1000_TXD_POPTS_TXSM) << 8; cur = pi->ipi_pidx; TXD = (struct e1000_context_desc *)&txr->tx_base[cur]; /* * Start offset for header checksum calculation. * End offset for header checksum calculation. * Offset of place put the checksum. */ TXD->lower_setup.ip_fields.ipcss = pi->ipi_ehdrlen; TXD->lower_setup.ip_fields.ipcse = htole16(pi->ipi_ehdrlen + pi->ipi_ip_hlen - 1); TXD->lower_setup.ip_fields.ipcso = pi->ipi_ehdrlen + offsetof(struct ip, ip_sum); /* * Start offset for payload checksum calculation. * End offset for payload checksum calculation. * Offset of place to put the checksum. */ TXD->upper_setup.tcp_fields.tucss = pi->ipi_ehdrlen + pi->ipi_ip_hlen; TXD->upper_setup.tcp_fields.tucse = 0; TXD->upper_setup.tcp_fields.tucso = pi->ipi_ehdrlen + pi->ipi_ip_hlen + offsetof(struct tcphdr, th_sum); /* * Payload size per packet w/o any headers. * Length of all headers up to payload. */ TXD->tcp_seg_setup.fields.mss = htole16(pi->ipi_tso_segsz); TXD->tcp_seg_setup.fields.hdr_len = hdr_len; TXD->cmd_and_length = htole32(adapter->txd_cmd | E1000_TXD_CMD_DEXT | /* Extended descr */ E1000_TXD_CMD_TSE | /* TSE context */ E1000_TXD_CMD_IP | /* Do IP csum */ E1000_TXD_CMD_TCP | /* Do TCP checksum */ (pi->ipi_len - hdr_len)); /* Total len */ txr->tx_tso = TRUE; if (++cur == scctx->isc_ntxd[0]) { cur = 0; } DPRINTF(iflib_get_dev(adapter->ctx), "%s: pidx: %d cur: %d\n", __FUNCTION__, pi->ipi_pidx, cur); return (cur); } #define TSO_WORKAROUND 4 #define DONT_FORCE_CTX 1 /********************************************************************* * The offload context is protocol specific (TCP/UDP) and thus * only needs to be set when the protocol changes. The occasion * of a context change can be a performance detriment, and * might be better just disabled. The reason arises in the way * in which the controller supports pipelined requests from the * Tx data DMA. Up to four requests can be pipelined, and they may * belong to the same packet or to multiple packets. However all * requests for one packet are issued before a request is issued * for a subsequent packet and if a request for the next packet * requires a context change, that request will be stalled * until the previous request completes. This means setting up * a new context effectively disables pipelined Tx data DMA which * in turn greatly slow down performance to send small sized * frames. **********************************************************************/ static int em_transmit_checksum_setup(struct adapter *adapter, if_pkt_info_t pi, u32 *txd_upper, u32 *txd_lower) { struct e1000_context_desc *TXD = NULL; if_softc_ctx_t scctx = adapter->shared; struct em_tx_queue *que = &adapter->tx_queues[pi->ipi_qsidx]; struct tx_ring *txr = &que->txr; int csum_flags = pi->ipi_csum_flags; int cur, hdr_len; u32 cmd; cur = pi->ipi_pidx; hdr_len = pi->ipi_ehdrlen + pi->ipi_ip_hlen; cmd = adapter->txd_cmd; /* * The 82574L can only remember the *last* context used * regardless of queue that it was use for. We cannot reuse * contexts on this hardware platform and must generate a new * context every time. 82574L hardware spec, section 7.2.6, * second note. */ if (DONT_FORCE_CTX && adapter->tx_num_queues == 1 && txr->csum_lhlen == pi->ipi_ehdrlen && txr->csum_iphlen == pi->ipi_ip_hlen && txr->csum_flags == csum_flags) { /* * Same csum offload context as the previous packets; * just return. */ *txd_upper = txr->csum_txd_upper; *txd_lower = txr->csum_txd_lower; return (cur); } TXD = (struct e1000_context_desc *)&txr->tx_base[cur]; if (csum_flags & CSUM_IP) { *txd_upper |= E1000_TXD_POPTS_IXSM << 8; /* * Start offset for header checksum calculation. * End offset for header checksum calculation. * Offset of place to put the checksum. */ TXD->lower_setup.ip_fields.ipcss = pi->ipi_ehdrlen; TXD->lower_setup.ip_fields.ipcse = htole16(hdr_len); TXD->lower_setup.ip_fields.ipcso = pi->ipi_ehdrlen + offsetof(struct ip, ip_sum); cmd |= E1000_TXD_CMD_IP; } if (csum_flags & (CSUM_TCP|CSUM_UDP)) { uint8_t tucso; *txd_upper |= E1000_TXD_POPTS_TXSM << 8; *txd_lower = E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D; if (csum_flags & CSUM_TCP) { tucso = hdr_len + offsetof(struct tcphdr, th_sum); cmd |= E1000_TXD_CMD_TCP; } else tucso = hdr_len + offsetof(struct udphdr, uh_sum); TXD->upper_setup.tcp_fields.tucss = hdr_len; TXD->upper_setup.tcp_fields.tucse = htole16(0); TXD->upper_setup.tcp_fields.tucso = tucso; } txr->csum_lhlen = pi->ipi_ehdrlen; txr->csum_iphlen = pi->ipi_ip_hlen; txr->csum_flags = csum_flags; txr->csum_txd_upper = *txd_upper; txr->csum_txd_lower = *txd_lower; TXD->tcp_seg_setup.data = htole32(0); TXD->cmd_and_length = htole32(E1000_TXD_CMD_IFCS | E1000_TXD_CMD_DEXT | cmd); if (++cur == scctx->isc_ntxd[0]) { cur = 0; } DPRINTF(iflib_get_dev(adapter->ctx), "checksum_setup csum_flags=%x txd_upper=%x txd_lower=%x hdr_len=%d cmd=%x\n", csum_flags, *txd_upper, *txd_lower, hdr_len, cmd); return (cur); } static int em_isc_txd_encap(void *arg, if_pkt_info_t pi) { struct adapter *sc = arg; if_softc_ctx_t scctx = sc->shared; struct em_tx_queue *que = &sc->tx_queues[pi->ipi_qsidx]; struct tx_ring *txr = &que->txr; bus_dma_segment_t *segs = pi->ipi_segs; int nsegs = pi->ipi_nsegs; int csum_flags = pi->ipi_csum_flags; int i, j, first, pidx_last; u32 txd_flags, txd_upper = 0, txd_lower = 0; struct e1000_tx_desc *ctxd = NULL; bool do_tso, tso_desc; qidx_t ntxd; txd_flags = pi->ipi_flags & IPI_TX_INTR ? E1000_TXD_CMD_RS : 0; i = first = pi->ipi_pidx; do_tso = (csum_flags & CSUM_TSO); tso_desc = FALSE; ntxd = scctx->isc_ntxd[0]; /* * TSO Hardware workaround, if this packet is not * TSO, and is only a single descriptor long, and * it follows a TSO burst, then we need to add a * sentinel descriptor to prevent premature writeback. */ if ((!do_tso) && (txr->tx_tso == TRUE)) { if (nsegs == 1) tso_desc = TRUE; txr->tx_tso = FALSE; } /* Do hardware assists */ if (do_tso) { i = em_tso_setup(sc, pi, &txd_upper, &txd_lower); tso_desc = TRUE; } else if (csum_flags & EM_CSUM_OFFLOAD) { i = em_transmit_checksum_setup(sc, pi, &txd_upper, &txd_lower); } if (pi->ipi_mflags & M_VLANTAG) { /* Set the vlan id. */ txd_upper |= htole16(pi->ipi_vtag) << 16; /* Tell hardware to add tag */ txd_lower |= htole32(E1000_TXD_CMD_VLE); } DPRINTF(iflib_get_dev(sc->ctx), "encap: set up tx: nsegs=%d first=%d i=%d\n", nsegs, first, i); /* XXX adapter->pcix_82544 -- lem_fill_descriptors */ /* Set up our transmit descriptors */ for (j = 0; j < nsegs; j++) { bus_size_t seg_len; bus_addr_t seg_addr; uint32_t cmd; ctxd = &txr->tx_base[i]; seg_addr = segs[j].ds_addr; seg_len = segs[j].ds_len; cmd = E1000_TXD_CMD_IFCS | sc->txd_cmd; /* * TSO Workaround: * If this is the last descriptor, we want to * split it so we have a small final sentinel */ if (tso_desc && (j == (nsegs - 1)) && (seg_len > 8)) { seg_len -= TSO_WORKAROUND; ctxd->buffer_addr = htole64(seg_addr); ctxd->lower.data = htole32(cmd | txd_lower | seg_len); ctxd->upper.data = htole32(txd_upper); if (++i == scctx->isc_ntxd[0]) i = 0; /* Now make the sentinel */ ctxd = &txr->tx_base[i]; ctxd->buffer_addr = htole64(seg_addr + seg_len); ctxd->lower.data = htole32(cmd | txd_lower | TSO_WORKAROUND); ctxd->upper.data = htole32(txd_upper); pidx_last = i; if (++i == scctx->isc_ntxd[0]) i = 0; DPRINTF(iflib_get_dev(sc->ctx), "TSO path pidx_last=%d i=%d ntxd[0]=%d\n", pidx_last, i, scctx->isc_ntxd[0]); } else { ctxd->buffer_addr = htole64(seg_addr); ctxd->lower.data = htole32(cmd | txd_lower | seg_len); ctxd->upper.data = htole32(txd_upper); pidx_last = i; if (++i == scctx->isc_ntxd[0]) i = 0; DPRINTF(iflib_get_dev(sc->ctx), "pidx_last=%d i=%d ntxd[0]=%d\n", pidx_last, i, scctx->isc_ntxd[0]); } } /* * Last Descriptor of Packet * needs End Of Packet (EOP) * and Report Status (RS) */ if (txd_flags && nsegs) { txr->tx_rsq[txr->tx_rs_pidx] = pidx_last; DPRINTF(iflib_get_dev(sc->ctx), "setting to RS on %d rs_pidx %d first: %d\n", pidx_last, txr->tx_rs_pidx, first); txr->tx_rs_pidx = (txr->tx_rs_pidx+1) & (ntxd-1); MPASS(txr->tx_rs_pidx != txr->tx_rs_cidx); } ctxd->lower.data |= htole32(E1000_TXD_CMD_EOP | txd_flags); DPRINTF(iflib_get_dev(sc->ctx), "tx_buffers[%d]->eop = %d ipi_new_pidx=%d\n", first, pidx_last, i); pi->ipi_new_pidx = i; return (0); } static void em_isc_txd_flush(void *arg, uint16_t txqid, qidx_t pidx) { struct adapter *adapter = arg; struct em_tx_queue *que = &adapter->tx_queues[txqid]; struct tx_ring *txr = &que->txr; E1000_WRITE_REG(&adapter->hw, E1000_TDT(txr->me), pidx); } static int em_isc_txd_credits_update(void *arg, uint16_t txqid, bool clear) { struct adapter *adapter = arg; if_softc_ctx_t scctx = adapter->shared; struct em_tx_queue *que = &adapter->tx_queues[txqid]; struct tx_ring *txr = &que->txr; qidx_t processed = 0; int updated; qidx_t cur, prev, ntxd, rs_cidx; int32_t delta; uint8_t status; rs_cidx = txr->tx_rs_cidx; if (rs_cidx == txr->tx_rs_pidx) return (0); cur = txr->tx_rsq[rs_cidx]; MPASS(cur != QIDX_INVALID); status = txr->tx_base[cur].upper.fields.status; updated = !!(status & E1000_TXD_STAT_DD); if (!updated) return (0); /* If clear is false just let caller know that there * are descriptors to reclaim */ if (!clear) return (1); prev = txr->tx_cidx_processed; ntxd = scctx->isc_ntxd[0]; do { delta = (int32_t)cur - (int32_t)prev; MPASS(prev == 0 || delta != 0); if (delta < 0) delta += ntxd; DPRINTF(iflib_get_dev(adapter->ctx), "%s: cidx_processed=%u cur=%u clear=%d delta=%d\n", __FUNCTION__, prev, cur, clear, delta); processed += delta; prev = cur; rs_cidx = (rs_cidx + 1) & (ntxd-1); if (rs_cidx == txr->tx_rs_pidx) break; cur = txr->tx_rsq[rs_cidx]; MPASS(cur != QIDX_INVALID); status = txr->tx_base[cur].upper.fields.status; } while ((status & E1000_TXD_STAT_DD)); txr->tx_rs_cidx = rs_cidx; txr->tx_cidx_processed = prev; return(processed); } static void lem_isc_rxd_refill(void *arg, if_rxd_update_t iru) { struct adapter *sc = arg; if_softc_ctx_t scctx = sc->shared; struct em_rx_queue *que = &sc->rx_queues[iru->iru_qsidx]; struct rx_ring *rxr = &que->rxr; struct e1000_rx_desc *rxd; uint64_t *paddrs; uint32_t next_pidx, pidx; uint16_t count; int i; paddrs = iru->iru_paddrs; pidx = iru->iru_pidx; count = iru->iru_count; for (i = 0, next_pidx = pidx; i < count; i++) { rxd = (struct e1000_rx_desc *)&rxr->rx_base[next_pidx]; rxd->buffer_addr = htole64(paddrs[i]); /* status bits must be cleared */ rxd->status = 0; if (++next_pidx == scctx->isc_nrxd[0]) next_pidx = 0; } } static void em_isc_rxd_refill(void *arg, if_rxd_update_t iru) { struct adapter *sc = arg; if_softc_ctx_t scctx = sc->shared; uint16_t rxqid = iru->iru_qsidx; struct em_rx_queue *que = &sc->rx_queues[rxqid]; struct rx_ring *rxr = &que->rxr; union e1000_rx_desc_extended *rxd; uint64_t *paddrs; uint32_t next_pidx, pidx; uint16_t count; int i; paddrs = iru->iru_paddrs; pidx = iru->iru_pidx; count = iru->iru_count; for (i = 0, next_pidx = pidx; i < count; i++) { rxd = &rxr->rx_base[next_pidx]; rxd->read.buffer_addr = htole64(paddrs[i]); /* DD bits must be cleared */ rxd->wb.upper.status_error = 0; if (++next_pidx == scctx->isc_nrxd[0]) next_pidx = 0; } } static void em_isc_rxd_flush(void *arg, uint16_t rxqid, uint8_t flid __unused, qidx_t pidx) { struct adapter *sc = arg; struct em_rx_queue *que = &sc->rx_queues[rxqid]; struct rx_ring *rxr = &que->rxr; E1000_WRITE_REG(&sc->hw, E1000_RDT(rxr->me), pidx); } static int lem_isc_rxd_available(void *arg, uint16_t rxqid, qidx_t idx, qidx_t budget) { struct adapter *sc = arg; if_softc_ctx_t scctx = sc->shared; struct em_rx_queue *que = &sc->rx_queues[rxqid]; struct rx_ring *rxr = &que->rxr; struct e1000_rx_desc *rxd; u32 staterr = 0; int cnt, i; for (cnt = 0, i = idx; cnt < scctx->isc_nrxd[0] && cnt <= budget;) { rxd = (struct e1000_rx_desc *)&rxr->rx_base[i]; staterr = rxd->status; if ((staterr & E1000_RXD_STAT_DD) == 0) break; if (++i == scctx->isc_nrxd[0]) i = 0; if (staterr & E1000_RXD_STAT_EOP) cnt++; } return (cnt); } static int em_isc_rxd_available(void *arg, uint16_t rxqid, qidx_t idx, qidx_t budget) { struct adapter *sc = arg; if_softc_ctx_t scctx = sc->shared; struct em_rx_queue *que = &sc->rx_queues[rxqid]; struct rx_ring *rxr = &que->rxr; union e1000_rx_desc_extended *rxd; u32 staterr = 0; int cnt, i; for (cnt = 0, i = idx; cnt < scctx->isc_nrxd[0] && cnt <= budget;) { rxd = &rxr->rx_base[i]; staterr = le32toh(rxd->wb.upper.status_error); if ((staterr & E1000_RXD_STAT_DD) == 0) break; if (++i == scctx->isc_nrxd[0]) i = 0; if (staterr & E1000_RXD_STAT_EOP) cnt++; } return (cnt); } static int lem_isc_rxd_pkt_get(void *arg, if_rxd_info_t ri) { struct adapter *adapter = arg; if_softc_ctx_t scctx = adapter->shared; struct em_rx_queue *que = &adapter->rx_queues[ri->iri_qsidx]; struct rx_ring *rxr = &que->rxr; struct e1000_rx_desc *rxd; u16 len; u32 status, errors; bool eop; int i, cidx; status = errors = i = 0; cidx = ri->iri_cidx; do { rxd = (struct e1000_rx_desc *)&rxr->rx_base[cidx]; status = rxd->status; errors = rxd->errors; /* Error Checking then decrement count */ MPASS ((status & E1000_RXD_STAT_DD) != 0); len = le16toh(rxd->length); ri->iri_len += len; eop = (status & E1000_RXD_STAT_EOP) != 0; /* Make sure bad packets are discarded */ if (errors & E1000_RXD_ERR_FRAME_ERR_MASK) { adapter->dropped_pkts++; /* XXX fixup if common */ return (EBADMSG); } ri->iri_frags[i].irf_flid = 0; ri->iri_frags[i].irf_idx = cidx; ri->iri_frags[i].irf_len = len; /* Zero out the receive descriptors status. */ rxd->status = 0; if (++cidx == scctx->isc_nrxd[0]) cidx = 0; i++; } while (!eop); /* XXX add a faster way to look this up */ if (adapter->hw.mac.type >= e1000_82543 && !(status & E1000_RXD_STAT_IXSM)) lem_receive_checksum(status, errors, ri); if (status & E1000_RXD_STAT_VP) { ri->iri_vtag = le16toh(rxd->special); ri->iri_flags |= M_VLANTAG; } ri->iri_nfrags = i; return (0); } static int em_isc_rxd_pkt_get(void *arg, if_rxd_info_t ri) { struct adapter *adapter = arg; if_softc_ctx_t scctx = adapter->shared; struct em_rx_queue *que = &adapter->rx_queues[ri->iri_qsidx]; struct rx_ring *rxr = &que->rxr; union e1000_rx_desc_extended *rxd; u16 len; u32 pkt_info; u32 staterr = 0; bool eop; int i, cidx, vtag; i = vtag = 0; cidx = ri->iri_cidx; do { rxd = &rxr->rx_base[cidx]; staterr = le32toh(rxd->wb.upper.status_error); pkt_info = le32toh(rxd->wb.lower.mrq); /* Error Checking then decrement count */ MPASS ((staterr & E1000_RXD_STAT_DD) != 0); len = le16toh(rxd->wb.upper.length); ri->iri_len += len; eop = (staterr & E1000_RXD_STAT_EOP) != 0; /* Make sure bad packets are discarded */ if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) { adapter->dropped_pkts++; return EBADMSG; } ri->iri_frags[i].irf_flid = 0; ri->iri_frags[i].irf_idx = cidx; ri->iri_frags[i].irf_len = len; /* Zero out the receive descriptors status. */ rxd->wb.upper.status_error &= htole32(~0xFF); if (++cidx == scctx->isc_nrxd[0]) cidx = 0; i++; } while (!eop); /* XXX add a faster way to look this up */ if (adapter->hw.mac.type >= e1000_82543) em_receive_checksum(staterr, ri); if (staterr & E1000_RXD_STAT_VP) { vtag = le16toh(rxd->wb.upper.vlan); } ri->iri_vtag = vtag; if (vtag) ri->iri_flags |= M_VLANTAG; ri->iri_flowid = le32toh(rxd->wb.lower.hi_dword.rss); ri->iri_rsstype = em_determine_rsstype(pkt_info); ri->iri_nfrags = i; return (0); } /********************************************************************* * * Verify that the hardware indicated that the checksum is valid. * Inform the stack about the status of checksum so that stack * doesn't spend time verifying the checksum. * *********************************************************************/ static void lem_receive_checksum(int status, int errors, if_rxd_info_t ri) { /* Did it pass? */ if (status & E1000_RXD_STAT_IPCS && !(errors & E1000_RXD_ERR_IPE)) ri->iri_csum_flags = (CSUM_IP_CHECKED|CSUM_IP_VALID); if (status & E1000_RXD_STAT_TCPCS) { /* Did it pass? */ if (!(errors & E1000_RXD_ERR_TCPE)) { ri->iri_csum_flags |= (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); ri->iri_csum_data = htons(0xffff); } } } /******************************************************************** * * Parse the packet type to determine the appropriate hash * ******************************************************************/ static int em_determine_rsstype(u32 pkt_info) { switch (pkt_info & E1000_RXDADV_RSSTYPE_MASK) { case E1000_RXDADV_RSSTYPE_IPV4_TCP: return M_HASHTYPE_RSS_TCP_IPV4; case E1000_RXDADV_RSSTYPE_IPV4: return M_HASHTYPE_RSS_IPV4; case E1000_RXDADV_RSSTYPE_IPV6_TCP: return M_HASHTYPE_RSS_TCP_IPV6; case E1000_RXDADV_RSSTYPE_IPV6_EX: return M_HASHTYPE_RSS_IPV6_EX; case E1000_RXDADV_RSSTYPE_IPV6: return M_HASHTYPE_RSS_IPV6; case E1000_RXDADV_RSSTYPE_IPV6_TCP_EX: return M_HASHTYPE_RSS_TCP_IPV6_EX; default: return M_HASHTYPE_OPAQUE; } } static void em_receive_checksum(uint32_t status, if_rxd_info_t ri) { ri->iri_csum_flags = 0; /* Ignore Checksum bit is set */ if (status & E1000_RXD_STAT_IXSM) return; /* If the IP checksum exists and there is no IP Checksum error */ if ((status & (E1000_RXD_STAT_IPCS | E1000_RXDEXT_STATERR_IPE)) == E1000_RXD_STAT_IPCS) { ri->iri_csum_flags = (CSUM_IP_CHECKED | CSUM_IP_VALID); } /* TCP or UDP checksum */ if ((status & (E1000_RXD_STAT_TCPCS | E1000_RXDEXT_STATERR_TCPE)) == E1000_RXD_STAT_TCPCS) { ri->iri_csum_flags |= (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); ri->iri_csum_data = htons(0xffff); } if (status & E1000_RXD_STAT_UDPCS) { ri->iri_csum_flags |= (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); ri->iri_csum_data = htons(0xffff); } }