/*-
* Copyright (c) 2014 Ruslan Bukin
*
* This software was developed by SRI International and the University of
* Cambridge Computer Laboratory under DARPA/AFRL contract (FA8750-10-C-0237)
* ("CTSRD"), as part of the DARPA CRASH research programme.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define WATCHDOG_TIMEOUT_SECS 5
#define DMA_RESET_TIMEOUT 100
/* TX descriptors - TDESC0 is almost unified */
#define TDESC0_OWN (1U << 31)
#define TDESC0_IHE (1U << 16) /* IP Header Error */
#define TDESC0_ES (1U << 15) /* Error Summary */
#define TDESC0_JT (1U << 14) /* Jabber Timeout */
#define TDESC0_FF (1U << 13) /* Frame Flushed */
#define TDESC0_PCE (1U << 12) /* Payload Checksum Error */
#define TDESC0_LOC (1U << 11) /* Loss of Carrier */
#define TDESC0_NC (1U << 10) /* No Carrier */
#define TDESC0_LC (1U << 9) /* Late Collision */
#define TDESC0_EC (1U << 8) /* Excessive Collision */
#define TDESC0_VF (1U << 7) /* VLAN Frame */
#define TDESC0_CC_MASK 0xf
#define TDESC0_CC_SHIFT 3 /* Collision Count */
#define TDESC0_ED (1U << 2) /* Excessive Deferral */
#define TDESC0_UF (1U << 1) /* Underflow Error */
#define TDESC0_DB (1U << 0) /* Deferred Bit */
/* TX descriptors - TDESC0 extended format only */
#define ETDESC0_IC (1U << 30) /* Interrupt on Completion */
#define ETDESC0_LS (1U << 29) /* Last Segment */
#define ETDESC0_FS (1U << 28) /* First Segment */
#define ETDESC0_DC (1U << 27) /* Disable CRC */
#define ETDESC0_DP (1U << 26) /* Disable Padding */
#define ETDESC0_CIC_NONE (0U << 22) /* Checksum Insertion Control */
#define ETDESC0_CIC_HDR (1U << 22)
#define ETDESC0_CIC_SEG (2U << 22)
#define ETDESC0_CIC_FULL (3U << 22)
#define ETDESC0_TER (1U << 21) /* Transmit End of Ring */
#define ETDESC0_TCH (1U << 20) /* Second Address Chained */
/* TX descriptors - TDESC1 normal format */
#define NTDESC1_IC (1U << 31) /* Interrupt on Completion */
#define NTDESC1_LS (1U << 30) /* Last Segment */
#define NTDESC1_FS (1U << 29) /* First Segment */
#define NTDESC1_CIC_NONE (0U << 27) /* Checksum Insertion Control */
#define NTDESC1_CIC_HDR (1U << 27)
#define NTDESC1_CIC_SEG (2U << 27)
#define NTDESC1_CIC_FULL (3U << 27)
#define NTDESC1_DC (1U << 26) /* Disable CRC */
#define NTDESC1_TER (1U << 25) /* Transmit End of Ring */
#define NTDESC1_TCH (1U << 24) /* Second Address Chained */
/* TX descriptors - TDESC1 extended format */
#define ETDESC1_DP (1U << 23) /* Disable Padding */
#define ETDESC1_TBS2_MASK 0x7ff
#define ETDESC1_TBS2_SHIFT 11 /* Receive Buffer 2 Size */
#define ETDESC1_TBS1_MASK 0x7ff
#define ETDESC1_TBS1_SHIFT 0 /* Receive Buffer 1 Size */
/* RX descriptor - RDESC0 is unified */
#define RDESC0_OWN (1U << 31)
#define RDESC0_AFM (1U << 30) /* Dest. Address Filter Fail */
#define RDESC0_FL_MASK 0x3fff
#define RDESC0_FL_SHIFT 16 /* Frame Length */
#define RDESC0_ES (1U << 15) /* Error Summary */
#define RDESC0_DE (1U << 14) /* Descriptor Error */
#define RDESC0_SAF (1U << 13) /* Source Address Filter Fail */
#define RDESC0_LE (1U << 12) /* Length Error */
#define RDESC0_OE (1U << 11) /* Overflow Error */
#define RDESC0_VLAN (1U << 10) /* VLAN Tag */
#define RDESC0_FS (1U << 9) /* First Descriptor */
#define RDESC0_LS (1U << 8) /* Last Descriptor */
#define RDESC0_ICE (1U << 7) /* IPC Checksum Error */
#define RDESC0_LC (1U << 6) /* Late Collision */
#define RDESC0_FT (1U << 5) /* Frame Type */
#define RDESC0_RWT (1U << 4) /* Receive Watchdog Timeout */
#define RDESC0_RE (1U << 3) /* Receive Error */
#define RDESC0_DBE (1U << 2) /* Dribble Bit Error */
#define RDESC0_CE (1U << 1) /* CRC Error */
#define RDESC0_PCE (1U << 0) /* Payload Checksum Error */
#define RDESC0_RXMA (1U << 0) /* Rx MAC Address */
/* RX descriptors - RDESC1 normal format */
#define NRDESC1_DIC (1U << 31) /* Disable Intr on Completion */
#define NRDESC1_RER (1U << 25) /* Receive End of Ring */
#define NRDESC1_RCH (1U << 24) /* Second Address Chained */
#define NRDESC1_RBS2_MASK 0x7ff
#define NRDESC1_RBS2_SHIFT 11 /* Receive Buffer 2 Size */
#define NRDESC1_RBS1_MASK 0x7ff
#define NRDESC1_RBS1_SHIFT 0 /* Receive Buffer 1 Size */
/* RX descriptors - RDESC1 enhanced format */
#define ERDESC1_DIC (1U << 31) /* Disable Intr on Completion */
#define ERDESC1_RBS2_MASK 0x7ffff
#define ERDESC1_RBS2_SHIFT 16 /* Receive Buffer 2 Size */
#define ERDESC1_RER (1U << 15) /* Receive End of Ring */
#define ERDESC1_RCH (1U << 14) /* Second Address Chained */
#define ERDESC1_RBS1_MASK 0x7ffff
#define ERDESC1_RBS1_SHIFT 0 /* Receive Buffer 1 Size */
/*
* The hardware imposes alignment restrictions on various objects involved in
* DMA transfers. These values are expressed in bytes (not bits).
*/
#define DWC_DESC_RING_ALIGN 2048
static inline uint32_t
next_txidx(struct dwc_softc *sc, uint32_t curidx)
{
return ((curidx + 1) % TX_DESC_COUNT);
}
static inline uint32_t
next_rxidx(struct dwc_softc *sc, uint32_t curidx)
{
return ((curidx + 1) % RX_DESC_COUNT);
}
static void
dwc_get1paddr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
{
if (error != 0)
return;
*(bus_addr_t *)arg = segs[0].ds_addr;
}
inline static void
txdesc_clear(struct dwc_softc *sc, int idx)
{
sc->tx_desccount--;
sc->txdesc_ring[idx].addr1 = (uint32_t)(0);
sc->txdesc_ring[idx].desc0 = 0;
sc->txdesc_ring[idx].desc1 = 0;
}
inline static void
txdesc_setup(struct dwc_softc *sc, int idx, bus_addr_t paddr,
uint32_t len, uint32_t flags, bool first, bool last)
{
uint32_t desc0, desc1;
if (!sc->dma_ext_desc) {
desc0 = 0;
desc1 = NTDESC1_TCH | len | flags;
if (first)
desc1 |= NTDESC1_FS;
if (last)
desc1 |= NTDESC1_LS | NTDESC1_IC;
} else {
desc0 = ETDESC0_TCH | flags;
if (first)
desc0 |= ETDESC0_FS;
if (last)
desc0 |= ETDESC0_LS | ETDESC0_IC;
desc1 = len;
}
++sc->tx_desccount;
sc->txdesc_ring[idx].addr1 = (uint32_t)(paddr);
sc->txdesc_ring[idx].desc0 = desc0;
sc->txdesc_ring[idx].desc1 = desc1;
wmb();
sc->txdesc_ring[idx].desc0 |= TDESC0_OWN;
wmb();
}
inline static uint32_t
rxdesc_setup(struct dwc_softc *sc, int idx, bus_addr_t paddr)
{
uint32_t nidx;
sc->rxdesc_ring[idx].addr1 = (uint32_t)paddr;
nidx = next_rxidx(sc, idx);
sc->rxdesc_ring[idx].addr2 = sc->rxdesc_ring_paddr +
(nidx * sizeof(struct dwc_hwdesc));
if (!sc->dma_ext_desc)
sc->rxdesc_ring[idx].desc1 = NRDESC1_RCH |
MIN(MCLBYTES, NRDESC1_RBS1_MASK);
else
sc->rxdesc_ring[idx].desc1 = ERDESC1_RCH |
MIN(MCLBYTES, ERDESC1_RBS1_MASK);
wmb();
sc->rxdesc_ring[idx].desc0 = RDESC0_OWN;
wmb();
return (nidx);
}
int
dma1000_setup_txbuf(struct dwc_softc *sc, int idx, struct mbuf **mp)
{
struct bus_dma_segment segs[TX_MAP_MAX_SEGS];
int error, nsegs;
struct mbuf * m;
uint32_t flags = 0;
int i;
int last;
error = bus_dmamap_load_mbuf_sg(sc->txbuf_tag, sc->txbuf_map[idx].map,
*mp, segs, &nsegs, 0);
if (error == EFBIG) {
/*
* The map may be partially mapped from the first call.
* Make sure to reset it.
*/
bus_dmamap_unload(sc->txbuf_tag, sc->txbuf_map[idx].map);
if ((m = m_defrag(*mp, M_NOWAIT)) == NULL)
return (ENOMEM);
*mp = m;
error = bus_dmamap_load_mbuf_sg(sc->txbuf_tag, sc->txbuf_map[idx].map,
*mp, segs, &nsegs, 0);
}
if (error != 0)
return (ENOMEM);
if (sc->tx_desccount + nsegs > TX_DESC_COUNT) {
bus_dmamap_unload(sc->txbuf_tag, sc->txbuf_map[idx].map);
return (ENOMEM);
}
m = *mp;
if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0) {
if ((m->m_pkthdr.csum_flags & (CSUM_TCP|CSUM_UDP)) != 0) {
if (!sc->dma_ext_desc)
flags = NTDESC1_CIC_FULL;
else
flags = ETDESC0_CIC_FULL;
} else {
if (!sc->dma_ext_desc)
flags = NTDESC1_CIC_HDR;
else
flags = ETDESC0_CIC_HDR;
}
}
bus_dmamap_sync(sc->txbuf_tag, sc->txbuf_map[idx].map,
BUS_DMASYNC_PREWRITE);
sc->txbuf_map[idx].mbuf = m;
for (i = 0; i < nsegs; i++) {
txdesc_setup(sc, sc->tx_desc_head,
segs[i].ds_addr, segs[i].ds_len,
(i == 0) ? flags : 0, /* only first desc needs flags */
(i == 0),
(i == nsegs - 1));
last = sc->tx_desc_head;
sc->tx_desc_head = next_txidx(sc, sc->tx_desc_head);
}
sc->txbuf_map[idx].last_desc_idx = last;
return (0);
}
static int
dma1000_setup_rxbuf(struct dwc_softc *sc, int idx, struct mbuf *m)
{
struct bus_dma_segment seg;
int error, nsegs;
m_adj(m, ETHER_ALIGN);
error = bus_dmamap_load_mbuf_sg(sc->rxbuf_tag, sc->rxbuf_map[idx].map,
m, &seg, &nsegs, 0);
if (error != 0)
return (error);
KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
bus_dmamap_sync(sc->rxbuf_tag, sc->rxbuf_map[idx].map,
BUS_DMASYNC_PREREAD);
sc->rxbuf_map[idx].mbuf = m;
rxdesc_setup(sc, idx, seg.ds_addr);
return (0);
}
static struct mbuf *
dwc_alloc_mbufcl(struct dwc_softc *sc)
{
struct mbuf *m;
m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
if (m != NULL)
m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
return (m);
}
static struct mbuf *
dwc_rxfinish_one(struct dwc_softc *sc, struct dwc_hwdesc *desc,
struct dwc_bufmap *map)
{
if_t ifp;
struct mbuf *m, *m0;
int len;
uint32_t rdesc0;
m = map->mbuf;
ifp = sc->ifp;
rdesc0 = desc ->desc0;
if ((rdesc0 & (RDESC0_FS | RDESC0_LS)) !=
(RDESC0_FS | RDESC0_LS)) {
/*
* Something very wrong happens. The whole packet should be
* received in one descriptor. Report problem.
*/
device_printf(sc->dev,
"%s: RX descriptor without FIRST and LAST bit set: 0x%08X",
__func__, rdesc0);
return (NULL);
}
len = (rdesc0 >> RDESC0_FL_SHIFT) & RDESC0_FL_MASK;
if (len < 64) {
/*
* Lenght is invalid, recycle old mbuf
* Probably impossible case
*/
return (NULL);
}
/* Allocate new buffer */
m0 = dwc_alloc_mbufcl(sc);
if (m0 == NULL) {
/* no new mbuf available, recycle old */
if_inc_counter(sc->ifp, IFCOUNTER_IQDROPS, 1);
return (NULL);
}
/* Do dmasync for newly received packet */
bus_dmamap_sync(sc->rxbuf_tag, map->map, BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->rxbuf_tag, map->map);
/* Received packet is valid, process it */
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = len;
m->m_len = len;
if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0 &&
(rdesc0 & RDESC0_FT) != 0) {
m->m_pkthdr.csum_flags = CSUM_IP_CHECKED;
if ((rdesc0 & RDESC0_ICE) == 0)
m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
if ((rdesc0 & RDESC0_PCE) == 0) {
m->m_pkthdr.csum_flags |=
CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
m->m_pkthdr.csum_data = 0xffff;
}
}
/* Remove trailing FCS */
m_adj(m, -ETHER_CRC_LEN);
DWC_UNLOCK(sc);
if_input(ifp, m);
DWC_LOCK(sc);
return (m0);
}
void
dma1000_txfinish_locked(struct dwc_softc *sc)
{
struct dwc_bufmap *bmap;
struct dwc_hwdesc *desc;
if_t ifp;
int idx, last_idx;
bool map_finished;
DWC_ASSERT_LOCKED(sc);
ifp = sc->ifp;
/* check if all descriptors of the map are done */
while (sc->tx_map_tail != sc->tx_map_head) {
map_finished = true;
bmap = &sc->txbuf_map[sc->tx_map_tail];
idx = sc->tx_desc_tail;
last_idx = next_txidx(sc, bmap->last_desc_idx);
while (idx != last_idx) {
desc = &sc->txdesc_ring[idx];
if ((desc->desc0 & TDESC0_OWN) != 0) {
map_finished = false;
break;
}
idx = next_txidx(sc, idx);
}
if (!map_finished)
break;
bus_dmamap_sync(sc->txbuf_tag, bmap->map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->txbuf_tag, bmap->map);
m_freem(bmap->mbuf);
bmap->mbuf = NULL;
sc->tx_mapcount--;
while (sc->tx_desc_tail != last_idx) {
txdesc_clear(sc, sc->tx_desc_tail);
sc->tx_desc_tail = next_txidx(sc, sc->tx_desc_tail);
}
sc->tx_map_tail = next_txidx(sc, sc->tx_map_tail);
if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
}
/* If there are no buffers outstanding, muzzle the watchdog. */
if (sc->tx_desc_tail == sc->tx_desc_head) {
sc->tx_watchdog_count = 0;
}
}
void
dma1000_txstart(struct dwc_softc *sc)
{
int enqueued;
struct mbuf *m;
enqueued = 0;
for (;;) {
if (sc->tx_desccount > (TX_DESC_COUNT - TX_MAP_MAX_SEGS + 1)) {
if_setdrvflagbits(sc->ifp, IFF_DRV_OACTIVE, 0);
break;
}
if (sc->tx_mapcount == (TX_MAP_COUNT - 1)) {
if_setdrvflagbits(sc->ifp, IFF_DRV_OACTIVE, 0);
break;
}
m = if_dequeue(sc->ifp);
if (m == NULL)
break;
if (dma1000_setup_txbuf(sc, sc->tx_map_head, &m) != 0) {
if_sendq_prepend(sc->ifp, m);
if_setdrvflagbits(sc->ifp, IFF_DRV_OACTIVE, 0);
break;
}
bpf_mtap_if(sc->ifp, m);
sc->tx_map_head = next_txidx(sc, sc->tx_map_head);
sc->tx_mapcount++;
++enqueued;
}
if (enqueued != 0) {
WRITE4(sc, TRANSMIT_POLL_DEMAND, 0x1);
sc->tx_watchdog_count = WATCHDOG_TIMEOUT_SECS;
}
}
void
dma1000_rxfinish_locked(struct dwc_softc *sc)
{
struct mbuf *m;
int error, idx;
struct dwc_hwdesc *desc;
DWC_ASSERT_LOCKED(sc);
for (;;) {
idx = sc->rx_idx;
desc = sc->rxdesc_ring + idx;
if ((desc->desc0 & RDESC0_OWN) != 0)
break;
m = dwc_rxfinish_one(sc, desc, sc->rxbuf_map + idx);
if (m == NULL) {
wmb();
desc->desc0 = RDESC0_OWN;
wmb();
} else {
/* We cannot create hole in RX ring */
error = dma1000_setup_rxbuf(sc, idx, m);
if (error != 0)
panic("dma1000_setup_rxbuf failed: error %d\n",
error);
}
sc->rx_idx = next_rxidx(sc, sc->rx_idx);
}
}
/*
* Start the DMA controller
*/
void
dma1000_start(struct dwc_softc *sc)
{
uint32_t reg;
DWC_ASSERT_LOCKED(sc);
/* Initializa DMA and enable transmitters */
reg = READ4(sc, OPERATION_MODE);
reg |= (MODE_TSF | MODE_OSF | MODE_FUF);
reg &= ~(MODE_RSF);
reg |= (MODE_RTC_LEV32 << MODE_RTC_SHIFT);
WRITE4(sc, OPERATION_MODE, reg);
WRITE4(sc, INTERRUPT_ENABLE, INT_EN_DEFAULT);
/* Start DMA */
reg = READ4(sc, OPERATION_MODE);
reg |= (MODE_ST | MODE_SR);
WRITE4(sc, OPERATION_MODE, reg);
}
/*
* Stop the DMA controller
*/
void
dma1000_stop(struct dwc_softc *sc)
{
uint32_t reg;
DWC_ASSERT_LOCKED(sc);
/* Stop DMA TX */
reg = READ4(sc, OPERATION_MODE);
reg &= ~(MODE_ST);
WRITE4(sc, OPERATION_MODE, reg);
/* Flush TX */
reg = READ4(sc, OPERATION_MODE);
reg |= (MODE_FTF);
WRITE4(sc, OPERATION_MODE, reg);
/* Stop DMA RX */
reg = READ4(sc, OPERATION_MODE);
reg &= ~(MODE_SR);
WRITE4(sc, OPERATION_MODE, reg);
}
int
dma1000_reset(struct dwc_softc *sc)
{
uint32_t reg;
int i;
reg = READ4(sc, BUS_MODE);
reg |= (BUS_MODE_SWR);
WRITE4(sc, BUS_MODE, reg);
for (i = 0; i < DMA_RESET_TIMEOUT; i++) {
if ((READ4(sc, BUS_MODE) & BUS_MODE_SWR) == 0)
break;
DELAY(10);
}
if (i >= DMA_RESET_TIMEOUT) {
return (ENXIO);
}
return (0);
}
/*
* Create the bus_dma resources
*/
int
dma1000_init(struct dwc_softc *sc)
{
struct mbuf *m;
uint32_t reg;
int error;
int nidx;
int idx;
reg = BUS_MODE_USP;
if (!sc->nopblx8)
reg |= BUS_MODE_EIGHTXPBL;
reg |= (sc->txpbl << BUS_MODE_PBL_SHIFT);
reg |= (sc->rxpbl << BUS_MODE_RPBL_SHIFT);
if (sc->fixed_burst)
reg |= BUS_MODE_FIXEDBURST;
if (sc->mixed_burst)
reg |= BUS_MODE_MIXEDBURST;
if (sc->aal)
reg |= BUS_MODE_AAL;
WRITE4(sc, BUS_MODE, reg);
reg = READ4(sc, HW_FEATURE);
if (reg & HW_FEATURE_EXT_DESCRIPTOR)
sc->dma_ext_desc = true;
/*
* DMA must be stop while changing descriptor list addresses.
*/
reg = READ4(sc, OPERATION_MODE);
reg &= ~(MODE_ST | MODE_SR);
WRITE4(sc, OPERATION_MODE, reg);
/*
* Set up TX descriptor ring, descriptors, and dma maps.
*/
error = bus_dma_tag_create(
bus_get_dma_tag(sc->dev), /* Parent tag. */
DWC_DESC_RING_ALIGN, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
TX_DESC_SIZE, 1, /* maxsize, nsegments */
TX_DESC_SIZE, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->txdesc_tag);
if (error != 0) {
device_printf(sc->dev,
"could not create TX ring DMA tag.\n");
goto out;
}
error = bus_dmamem_alloc(sc->txdesc_tag, (void**)&sc->txdesc_ring,
BUS_DMA_COHERENT | BUS_DMA_WAITOK | BUS_DMA_ZERO,
&sc->txdesc_map);
if (error != 0) {
device_printf(sc->dev,
"could not allocate TX descriptor ring.\n");
goto out;
}
error = bus_dmamap_load(sc->txdesc_tag, sc->txdesc_map,
sc->txdesc_ring, TX_DESC_SIZE, dwc_get1paddr,
&sc->txdesc_ring_paddr, 0);
if (error != 0) {
device_printf(sc->dev,
"could not load TX descriptor ring map.\n");
goto out;
}
for (idx = 0; idx < TX_DESC_COUNT; idx++) {
nidx = next_txidx(sc, idx);
sc->txdesc_ring[idx].addr2 = sc->txdesc_ring_paddr +
(nidx * sizeof(struct dwc_hwdesc));
}
error = bus_dma_tag_create(
bus_get_dma_tag(sc->dev), /* Parent tag. */
1, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MCLBYTES*TX_MAP_MAX_SEGS, /* maxsize */
TX_MAP_MAX_SEGS, /* nsegments */
MCLBYTES, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->txbuf_tag);
if (error != 0) {
device_printf(sc->dev,
"could not create TX ring DMA tag.\n");
goto out;
}
for (idx = 0; idx < TX_MAP_COUNT; idx++) {
error = bus_dmamap_create(sc->txbuf_tag, BUS_DMA_COHERENT,
&sc->txbuf_map[idx].map);
if (error != 0) {
device_printf(sc->dev,
"could not create TX buffer DMA map.\n");
goto out;
}
}
for (idx = 0; idx < TX_DESC_COUNT; idx++)
txdesc_clear(sc, idx);
WRITE4(sc, TX_DESCR_LIST_ADDR, sc->txdesc_ring_paddr);
/*
* Set up RX descriptor ring, descriptors, dma maps, and mbufs.
*/
error = bus_dma_tag_create(
bus_get_dma_tag(sc->dev), /* Parent tag. */
DWC_DESC_RING_ALIGN, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
RX_DESC_SIZE, 1, /* maxsize, nsegments */
RX_DESC_SIZE, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->rxdesc_tag);
if (error != 0) {
device_printf(sc->dev,
"could not create RX ring DMA tag.\n");
goto out;
}
error = bus_dmamem_alloc(sc->rxdesc_tag, (void **)&sc->rxdesc_ring,
BUS_DMA_COHERENT | BUS_DMA_WAITOK | BUS_DMA_ZERO,
&sc->rxdesc_map);
if (error != 0) {
device_printf(sc->dev,
"could not allocate RX descriptor ring.\n");
goto out;
}
error = bus_dmamap_load(sc->rxdesc_tag, sc->rxdesc_map,
sc->rxdesc_ring, RX_DESC_SIZE, dwc_get1paddr,
&sc->rxdesc_ring_paddr, 0);
if (error != 0) {
device_printf(sc->dev,
"could not load RX descriptor ring map.\n");
goto out;
}
error = bus_dma_tag_create(
bus_get_dma_tag(sc->dev), /* Parent tag. */
1, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MCLBYTES, 1, /* maxsize, nsegments */
MCLBYTES, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->rxbuf_tag);
if (error != 0) {
device_printf(sc->dev,
"could not create RX buf DMA tag.\n");
goto out;
}
for (idx = 0; idx < RX_DESC_COUNT; idx++) {
error = bus_dmamap_create(sc->rxbuf_tag, BUS_DMA_COHERENT,
&sc->rxbuf_map[idx].map);
if (error != 0) {
device_printf(sc->dev,
"could not create RX buffer DMA map.\n");
goto out;
}
if ((m = dwc_alloc_mbufcl(sc)) == NULL) {
device_printf(sc->dev, "Could not alloc mbuf\n");
error = ENOMEM;
goto out;
}
if ((error = dma1000_setup_rxbuf(sc, idx, m)) != 0) {
device_printf(sc->dev,
"could not create new RX buffer.\n");
goto out;
}
}
WRITE4(sc, RX_DESCR_LIST_ADDR, sc->rxdesc_ring_paddr);
out:
if (error != 0)
return (ENXIO);
return (0);
}
/*
* Free the bus_dma resources
*/
void
dma1000_free(struct dwc_softc *sc)
{
bus_dmamap_t map;
int idx;
/* Clean up RX DMA resources and free mbufs. */
for (idx = 0; idx < RX_DESC_COUNT; ++idx) {
if ((map = sc->rxbuf_map[idx].map) != NULL) {
bus_dmamap_unload(sc->rxbuf_tag, map);
bus_dmamap_destroy(sc->rxbuf_tag, map);
m_freem(sc->rxbuf_map[idx].mbuf);
}
}
if (sc->rxbuf_tag != NULL)
bus_dma_tag_destroy(sc->rxbuf_tag);
if (sc->rxdesc_map != NULL) {
bus_dmamap_unload(sc->rxdesc_tag, sc->rxdesc_map);
bus_dmamem_free(sc->rxdesc_tag, sc->rxdesc_ring,
sc->rxdesc_map);
}
if (sc->rxdesc_tag != NULL)
bus_dma_tag_destroy(sc->rxdesc_tag);
/* Clean up TX DMA resources. */
for (idx = 0; idx < TX_DESC_COUNT; ++idx) {
if ((map = sc->txbuf_map[idx].map) != NULL) {
/* TX maps are already unloaded. */
bus_dmamap_destroy(sc->txbuf_tag, map);
}
}
if (sc->txbuf_tag != NULL)
bus_dma_tag_destroy(sc->txbuf_tag);
if (sc->txdesc_map != NULL) {
bus_dmamap_unload(sc->txdesc_tag, sc->txdesc_map);
bus_dmamem_free(sc->txdesc_tag, sc->txdesc_ring,
sc->txdesc_map);
}
if (sc->txdesc_tag != NULL)
bus_dma_tag_destroy(sc->txdesc_tag);
}
/*
* Interrupt function
*/
int
dma1000_intr(struct dwc_softc *sc)
{
uint32_t reg;
int rv;
DWC_ASSERT_LOCKED(sc);
rv = 0;
reg = READ4(sc, DMA_STATUS);
if (reg & DMA_STATUS_NIS) {
if (reg & DMA_STATUS_RI)
dma1000_rxfinish_locked(sc);
if (reg & DMA_STATUS_TI) {
dma1000_txfinish_locked(sc);
dma1000_txstart(sc);
}
}
if (reg & DMA_STATUS_AIS) {
if (reg & DMA_STATUS_FBI) {
/* Fatal bus error */
rv = EIO;
}
}
WRITE4(sc, DMA_STATUS, reg & DMA_STATUS_INTR_MASK);
return (rv);
}