/*- * Copyright (c) 2014 Ruslan Bukin * * This software was developed by SRI International and the University of * Cambridge Computer Laboratory under DARPA/AFRL contract (FA8750-10-C-0237) * ("CTSRD"), as part of the DARPA CRASH research programme. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define WATCHDOG_TIMEOUT_SECS 5 #define DMA_RESET_TIMEOUT 100 /* TX descriptors - TDESC0 is almost unified */ #define TDESC0_OWN (1U << 31) #define TDESC0_IHE (1U << 16) /* IP Header Error */ #define TDESC0_ES (1U << 15) /* Error Summary */ #define TDESC0_JT (1U << 14) /* Jabber Timeout */ #define TDESC0_FF (1U << 13) /* Frame Flushed */ #define TDESC0_PCE (1U << 12) /* Payload Checksum Error */ #define TDESC0_LOC (1U << 11) /* Loss of Carrier */ #define TDESC0_NC (1U << 10) /* No Carrier */ #define TDESC0_LC (1U << 9) /* Late Collision */ #define TDESC0_EC (1U << 8) /* Excessive Collision */ #define TDESC0_VF (1U << 7) /* VLAN Frame */ #define TDESC0_CC_MASK 0xf #define TDESC0_CC_SHIFT 3 /* Collision Count */ #define TDESC0_ED (1U << 2) /* Excessive Deferral */ #define TDESC0_UF (1U << 1) /* Underflow Error */ #define TDESC0_DB (1U << 0) /* Deferred Bit */ /* TX descriptors - TDESC0 extended format only */ #define ETDESC0_IC (1U << 30) /* Interrupt on Completion */ #define ETDESC0_LS (1U << 29) /* Last Segment */ #define ETDESC0_FS (1U << 28) /* First Segment */ #define ETDESC0_DC (1U << 27) /* Disable CRC */ #define ETDESC0_DP (1U << 26) /* Disable Padding */ #define ETDESC0_CIC_NONE (0U << 22) /* Checksum Insertion Control */ #define ETDESC0_CIC_HDR (1U << 22) #define ETDESC0_CIC_SEG (2U << 22) #define ETDESC0_CIC_FULL (3U << 22) #define ETDESC0_TER (1U << 21) /* Transmit End of Ring */ #define ETDESC0_TCH (1U << 20) /* Second Address Chained */ /* TX descriptors - TDESC1 normal format */ #define NTDESC1_IC (1U << 31) /* Interrupt on Completion */ #define NTDESC1_LS (1U << 30) /* Last Segment */ #define NTDESC1_FS (1U << 29) /* First Segment */ #define NTDESC1_CIC_NONE (0U << 27) /* Checksum Insertion Control */ #define NTDESC1_CIC_HDR (1U << 27) #define NTDESC1_CIC_SEG (2U << 27) #define NTDESC1_CIC_FULL (3U << 27) #define NTDESC1_DC (1U << 26) /* Disable CRC */ #define NTDESC1_TER (1U << 25) /* Transmit End of Ring */ #define NTDESC1_TCH (1U << 24) /* Second Address Chained */ /* TX descriptors - TDESC1 extended format */ #define ETDESC1_DP (1U << 23) /* Disable Padding */ #define ETDESC1_TBS2_MASK 0x7ff #define ETDESC1_TBS2_SHIFT 11 /* Receive Buffer 2 Size */ #define ETDESC1_TBS1_MASK 0x7ff #define ETDESC1_TBS1_SHIFT 0 /* Receive Buffer 1 Size */ /* RX descriptor - RDESC0 is unified */ #define RDESC0_OWN (1U << 31) #define RDESC0_AFM (1U << 30) /* Dest. Address Filter Fail */ #define RDESC0_FL_MASK 0x3fff #define RDESC0_FL_SHIFT 16 /* Frame Length */ #define RDESC0_ES (1U << 15) /* Error Summary */ #define RDESC0_DE (1U << 14) /* Descriptor Error */ #define RDESC0_SAF (1U << 13) /* Source Address Filter Fail */ #define RDESC0_LE (1U << 12) /* Length Error */ #define RDESC0_OE (1U << 11) /* Overflow Error */ #define RDESC0_VLAN (1U << 10) /* VLAN Tag */ #define RDESC0_FS (1U << 9) /* First Descriptor */ #define RDESC0_LS (1U << 8) /* Last Descriptor */ #define RDESC0_ICE (1U << 7) /* IPC Checksum Error */ #define RDESC0_LC (1U << 6) /* Late Collision */ #define RDESC0_FT (1U << 5) /* Frame Type */ #define RDESC0_RWT (1U << 4) /* Receive Watchdog Timeout */ #define RDESC0_RE (1U << 3) /* Receive Error */ #define RDESC0_DBE (1U << 2) /* Dribble Bit Error */ #define RDESC0_CE (1U << 1) /* CRC Error */ #define RDESC0_PCE (1U << 0) /* Payload Checksum Error */ #define RDESC0_RXMA (1U << 0) /* Rx MAC Address */ /* RX descriptors - RDESC1 normal format */ #define NRDESC1_DIC (1U << 31) /* Disable Intr on Completion */ #define NRDESC1_RER (1U << 25) /* Receive End of Ring */ #define NRDESC1_RCH (1U << 24) /* Second Address Chained */ #define NRDESC1_RBS2_MASK 0x7ff #define NRDESC1_RBS2_SHIFT 11 /* Receive Buffer 2 Size */ #define NRDESC1_RBS1_MASK 0x7ff #define NRDESC1_RBS1_SHIFT 0 /* Receive Buffer 1 Size */ /* RX descriptors - RDESC1 enhanced format */ #define ERDESC1_DIC (1U << 31) /* Disable Intr on Completion */ #define ERDESC1_RBS2_MASK 0x7ffff #define ERDESC1_RBS2_SHIFT 16 /* Receive Buffer 2 Size */ #define ERDESC1_RER (1U << 15) /* Receive End of Ring */ #define ERDESC1_RCH (1U << 14) /* Second Address Chained */ #define ERDESC1_RBS1_MASK 0x7ffff #define ERDESC1_RBS1_SHIFT 0 /* Receive Buffer 1 Size */ /* * The hardware imposes alignment restrictions on various objects involved in * DMA transfers. These values are expressed in bytes (not bits). */ #define DWC_DESC_RING_ALIGN 2048 static inline uint32_t next_txidx(struct dwc_softc *sc, uint32_t curidx) { return ((curidx + 1) % TX_DESC_COUNT); } static inline uint32_t next_rxidx(struct dwc_softc *sc, uint32_t curidx) { return ((curidx + 1) % RX_DESC_COUNT); } static void dwc_get1paddr(void *arg, bus_dma_segment_t *segs, int nsegs, int error) { if (error != 0) return; *(bus_addr_t *)arg = segs[0].ds_addr; } inline static void txdesc_clear(struct dwc_softc *sc, int idx) { sc->tx_desccount--; sc->txdesc_ring[idx].addr1 = (uint32_t)(0); sc->txdesc_ring[idx].desc0 = 0; sc->txdesc_ring[idx].desc1 = 0; } inline static void txdesc_setup(struct dwc_softc *sc, int idx, bus_addr_t paddr, uint32_t len, uint32_t flags, bool first, bool last) { uint32_t desc0, desc1; if (!sc->dma_ext_desc) { desc0 = 0; desc1 = NTDESC1_TCH | len | flags; if (first) desc1 |= NTDESC1_FS; if (last) desc1 |= NTDESC1_LS | NTDESC1_IC; } else { desc0 = ETDESC0_TCH | flags; if (first) desc0 |= ETDESC0_FS; if (last) desc0 |= ETDESC0_LS | ETDESC0_IC; desc1 = len; } ++sc->tx_desccount; sc->txdesc_ring[idx].addr1 = (uint32_t)(paddr); sc->txdesc_ring[idx].desc0 = desc0; sc->txdesc_ring[idx].desc1 = desc1; wmb(); sc->txdesc_ring[idx].desc0 |= TDESC0_OWN; wmb(); } inline static uint32_t rxdesc_setup(struct dwc_softc *sc, int idx, bus_addr_t paddr) { uint32_t nidx; sc->rxdesc_ring[idx].addr1 = (uint32_t)paddr; nidx = next_rxidx(sc, idx); sc->rxdesc_ring[idx].addr2 = sc->rxdesc_ring_paddr + (nidx * sizeof(struct dwc_hwdesc)); if (!sc->dma_ext_desc) sc->rxdesc_ring[idx].desc1 = NRDESC1_RCH | MIN(MCLBYTES, NRDESC1_RBS1_MASK); else sc->rxdesc_ring[idx].desc1 = ERDESC1_RCH | MIN(MCLBYTES, ERDESC1_RBS1_MASK); wmb(); sc->rxdesc_ring[idx].desc0 = RDESC0_OWN; wmb(); return (nidx); } int dma1000_setup_txbuf(struct dwc_softc *sc, int idx, struct mbuf **mp) { struct bus_dma_segment segs[TX_MAP_MAX_SEGS]; int error, nsegs; struct mbuf * m; uint32_t flags = 0; int i; int last; error = bus_dmamap_load_mbuf_sg(sc->txbuf_tag, sc->txbuf_map[idx].map, *mp, segs, &nsegs, 0); if (error == EFBIG) { /* * The map may be partially mapped from the first call. * Make sure to reset it. */ bus_dmamap_unload(sc->txbuf_tag, sc->txbuf_map[idx].map); if ((m = m_defrag(*mp, M_NOWAIT)) == NULL) return (ENOMEM); *mp = m; error = bus_dmamap_load_mbuf_sg(sc->txbuf_tag, sc->txbuf_map[idx].map, *mp, segs, &nsegs, 0); } if (error != 0) return (ENOMEM); if (sc->tx_desccount + nsegs > TX_DESC_COUNT) { bus_dmamap_unload(sc->txbuf_tag, sc->txbuf_map[idx].map); return (ENOMEM); } m = *mp; if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0) { if ((m->m_pkthdr.csum_flags & (CSUM_TCP|CSUM_UDP)) != 0) { if (!sc->dma_ext_desc) flags = NTDESC1_CIC_FULL; else flags = ETDESC0_CIC_FULL; } else { if (!sc->dma_ext_desc) flags = NTDESC1_CIC_HDR; else flags = ETDESC0_CIC_HDR; } } bus_dmamap_sync(sc->txbuf_tag, sc->txbuf_map[idx].map, BUS_DMASYNC_PREWRITE); sc->txbuf_map[idx].mbuf = m; for (i = 0; i < nsegs; i++) { txdesc_setup(sc, sc->tx_desc_head, segs[i].ds_addr, segs[i].ds_len, (i == 0) ? flags : 0, /* only first desc needs flags */ (i == 0), (i == nsegs - 1)); last = sc->tx_desc_head; sc->tx_desc_head = next_txidx(sc, sc->tx_desc_head); } sc->txbuf_map[idx].last_desc_idx = last; return (0); } static int dma1000_setup_rxbuf(struct dwc_softc *sc, int idx, struct mbuf *m) { struct bus_dma_segment seg; int error, nsegs; m_adj(m, ETHER_ALIGN); error = bus_dmamap_load_mbuf_sg(sc->rxbuf_tag, sc->rxbuf_map[idx].map, m, &seg, &nsegs, 0); if (error != 0) return (error); KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); bus_dmamap_sync(sc->rxbuf_tag, sc->rxbuf_map[idx].map, BUS_DMASYNC_PREREAD); sc->rxbuf_map[idx].mbuf = m; rxdesc_setup(sc, idx, seg.ds_addr); return (0); } static struct mbuf * dwc_alloc_mbufcl(struct dwc_softc *sc) { struct mbuf *m; m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); if (m != NULL) m->m_pkthdr.len = m->m_len = m->m_ext.ext_size; return (m); } static struct mbuf * dwc_rxfinish_one(struct dwc_softc *sc, struct dwc_hwdesc *desc, struct dwc_bufmap *map) { if_t ifp; struct mbuf *m, *m0; int len; uint32_t rdesc0; m = map->mbuf; ifp = sc->ifp; rdesc0 = desc ->desc0; if ((rdesc0 & (RDESC0_FS | RDESC0_LS)) != (RDESC0_FS | RDESC0_LS)) { /* * Something very wrong happens. The whole packet should be * received in one descriptor. Report problem. */ device_printf(sc->dev, "%s: RX descriptor without FIRST and LAST bit set: 0x%08X", __func__, rdesc0); return (NULL); } len = (rdesc0 >> RDESC0_FL_SHIFT) & RDESC0_FL_MASK; if (len < 64) { /* * Lenght is invalid, recycle old mbuf * Probably impossible case */ return (NULL); } /* Allocate new buffer */ m0 = dwc_alloc_mbufcl(sc); if (m0 == NULL) { /* no new mbuf available, recycle old */ if_inc_counter(sc->ifp, IFCOUNTER_IQDROPS, 1); return (NULL); } /* Do dmasync for newly received packet */ bus_dmamap_sync(sc->rxbuf_tag, map->map, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->rxbuf_tag, map->map); /* Received packet is valid, process it */ m->m_pkthdr.rcvif = ifp; m->m_pkthdr.len = len; m->m_len = len; if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0 && (rdesc0 & RDESC0_FT) != 0) { m->m_pkthdr.csum_flags = CSUM_IP_CHECKED; if ((rdesc0 & RDESC0_ICE) == 0) m->m_pkthdr.csum_flags |= CSUM_IP_VALID; if ((rdesc0 & RDESC0_PCE) == 0) { m->m_pkthdr.csum_flags |= CSUM_DATA_VALID | CSUM_PSEUDO_HDR; m->m_pkthdr.csum_data = 0xffff; } } /* Remove trailing FCS */ m_adj(m, -ETHER_CRC_LEN); DWC_UNLOCK(sc); if_input(ifp, m); DWC_LOCK(sc); return (m0); } void dma1000_txfinish_locked(struct dwc_softc *sc) { struct dwc_bufmap *bmap; struct dwc_hwdesc *desc; if_t ifp; int idx, last_idx; bool map_finished; DWC_ASSERT_LOCKED(sc); ifp = sc->ifp; /* check if all descriptors of the map are done */ while (sc->tx_map_tail != sc->tx_map_head) { map_finished = true; bmap = &sc->txbuf_map[sc->tx_map_tail]; idx = sc->tx_desc_tail; last_idx = next_txidx(sc, bmap->last_desc_idx); while (idx != last_idx) { desc = &sc->txdesc_ring[idx]; if ((desc->desc0 & TDESC0_OWN) != 0) { map_finished = false; break; } idx = next_txidx(sc, idx); } if (!map_finished) break; bus_dmamap_sync(sc->txbuf_tag, bmap->map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->txbuf_tag, bmap->map); m_freem(bmap->mbuf); bmap->mbuf = NULL; sc->tx_mapcount--; while (sc->tx_desc_tail != last_idx) { txdesc_clear(sc, sc->tx_desc_tail); sc->tx_desc_tail = next_txidx(sc, sc->tx_desc_tail); } sc->tx_map_tail = next_txidx(sc, sc->tx_map_tail); if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE); if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); } /* If there are no buffers outstanding, muzzle the watchdog. */ if (sc->tx_desc_tail == sc->tx_desc_head) { sc->tx_watchdog_count = 0; } } void dma1000_txstart(struct dwc_softc *sc) { int enqueued; struct mbuf *m; enqueued = 0; for (;;) { if (sc->tx_desccount > (TX_DESC_COUNT - TX_MAP_MAX_SEGS + 1)) { if_setdrvflagbits(sc->ifp, IFF_DRV_OACTIVE, 0); break; } if (sc->tx_mapcount == (TX_MAP_COUNT - 1)) { if_setdrvflagbits(sc->ifp, IFF_DRV_OACTIVE, 0); break; } m = if_dequeue(sc->ifp); if (m == NULL) break; if (dma1000_setup_txbuf(sc, sc->tx_map_head, &m) != 0) { if_sendq_prepend(sc->ifp, m); if_setdrvflagbits(sc->ifp, IFF_DRV_OACTIVE, 0); break; } bpf_mtap_if(sc->ifp, m); sc->tx_map_head = next_txidx(sc, sc->tx_map_head); sc->tx_mapcount++; ++enqueued; } if (enqueued != 0) { WRITE4(sc, TRANSMIT_POLL_DEMAND, 0x1); sc->tx_watchdog_count = WATCHDOG_TIMEOUT_SECS; } } void dma1000_rxfinish_locked(struct dwc_softc *sc) { struct mbuf *m; int error, idx; struct dwc_hwdesc *desc; DWC_ASSERT_LOCKED(sc); for (;;) { idx = sc->rx_idx; desc = sc->rxdesc_ring + idx; if ((desc->desc0 & RDESC0_OWN) != 0) break; m = dwc_rxfinish_one(sc, desc, sc->rxbuf_map + idx); if (m == NULL) { wmb(); desc->desc0 = RDESC0_OWN; wmb(); } else { /* We cannot create hole in RX ring */ error = dma1000_setup_rxbuf(sc, idx, m); if (error != 0) panic("dma1000_setup_rxbuf failed: error %d\n", error); } sc->rx_idx = next_rxidx(sc, sc->rx_idx); } } /* * Start the DMA controller */ void dma1000_start(struct dwc_softc *sc) { uint32_t reg; DWC_ASSERT_LOCKED(sc); /* Initializa DMA and enable transmitters */ reg = READ4(sc, OPERATION_MODE); reg |= (MODE_TSF | MODE_OSF | MODE_FUF); reg &= ~(MODE_RSF); reg |= (MODE_RTC_LEV32 << MODE_RTC_SHIFT); WRITE4(sc, OPERATION_MODE, reg); WRITE4(sc, INTERRUPT_ENABLE, INT_EN_DEFAULT); /* Start DMA */ reg = READ4(sc, OPERATION_MODE); reg |= (MODE_ST | MODE_SR); WRITE4(sc, OPERATION_MODE, reg); } /* * Stop the DMA controller */ void dma1000_stop(struct dwc_softc *sc) { uint32_t reg; DWC_ASSERT_LOCKED(sc); /* Stop DMA TX */ reg = READ4(sc, OPERATION_MODE); reg &= ~(MODE_ST); WRITE4(sc, OPERATION_MODE, reg); /* Flush TX */ reg = READ4(sc, OPERATION_MODE); reg |= (MODE_FTF); WRITE4(sc, OPERATION_MODE, reg); /* Stop DMA RX */ reg = READ4(sc, OPERATION_MODE); reg &= ~(MODE_SR); WRITE4(sc, OPERATION_MODE, reg); } int dma1000_reset(struct dwc_softc *sc) { uint32_t reg; int i; reg = READ4(sc, BUS_MODE); reg |= (BUS_MODE_SWR); WRITE4(sc, BUS_MODE, reg); for (i = 0; i < DMA_RESET_TIMEOUT; i++) { if ((READ4(sc, BUS_MODE) & BUS_MODE_SWR) == 0) break; DELAY(10); } if (i >= DMA_RESET_TIMEOUT) { return (ENXIO); } return (0); } /* * Create the bus_dma resources */ int dma1000_init(struct dwc_softc *sc) { struct mbuf *m; uint32_t reg; int error; int nidx; int idx; reg = BUS_MODE_USP; if (!sc->nopblx8) reg |= BUS_MODE_EIGHTXPBL; reg |= (sc->txpbl << BUS_MODE_PBL_SHIFT); reg |= (sc->rxpbl << BUS_MODE_RPBL_SHIFT); if (sc->fixed_burst) reg |= BUS_MODE_FIXEDBURST; if (sc->mixed_burst) reg |= BUS_MODE_MIXEDBURST; if (sc->aal) reg |= BUS_MODE_AAL; WRITE4(sc, BUS_MODE, reg); reg = READ4(sc, HW_FEATURE); if (reg & HW_FEATURE_EXT_DESCRIPTOR) sc->dma_ext_desc = true; /* * DMA must be stop while changing descriptor list addresses. */ reg = READ4(sc, OPERATION_MODE); reg &= ~(MODE_ST | MODE_SR); WRITE4(sc, OPERATION_MODE, reg); /* * Set up TX descriptor ring, descriptors, and dma maps. */ error = bus_dma_tag_create( bus_get_dma_tag(sc->dev), /* Parent tag. */ DWC_DESC_RING_ALIGN, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ TX_DESC_SIZE, 1, /* maxsize, nsegments */ TX_DESC_SIZE, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->txdesc_tag); if (error != 0) { device_printf(sc->dev, "could not create TX ring DMA tag.\n"); goto out; } error = bus_dmamem_alloc(sc->txdesc_tag, (void**)&sc->txdesc_ring, BUS_DMA_COHERENT | BUS_DMA_WAITOK | BUS_DMA_ZERO, &sc->txdesc_map); if (error != 0) { device_printf(sc->dev, "could not allocate TX descriptor ring.\n"); goto out; } error = bus_dmamap_load(sc->txdesc_tag, sc->txdesc_map, sc->txdesc_ring, TX_DESC_SIZE, dwc_get1paddr, &sc->txdesc_ring_paddr, 0); if (error != 0) { device_printf(sc->dev, "could not load TX descriptor ring map.\n"); goto out; } for (idx = 0; idx < TX_DESC_COUNT; idx++) { nidx = next_txidx(sc, idx); sc->txdesc_ring[idx].addr2 = sc->txdesc_ring_paddr + (nidx * sizeof(struct dwc_hwdesc)); } error = bus_dma_tag_create( bus_get_dma_tag(sc->dev), /* Parent tag. */ 1, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ MCLBYTES*TX_MAP_MAX_SEGS, /* maxsize */ TX_MAP_MAX_SEGS, /* nsegments */ MCLBYTES, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->txbuf_tag); if (error != 0) { device_printf(sc->dev, "could not create TX ring DMA tag.\n"); goto out; } for (idx = 0; idx < TX_MAP_COUNT; idx++) { error = bus_dmamap_create(sc->txbuf_tag, BUS_DMA_COHERENT, &sc->txbuf_map[idx].map); if (error != 0) { device_printf(sc->dev, "could not create TX buffer DMA map.\n"); goto out; } } for (idx = 0; idx < TX_DESC_COUNT; idx++) txdesc_clear(sc, idx); WRITE4(sc, TX_DESCR_LIST_ADDR, sc->txdesc_ring_paddr); /* * Set up RX descriptor ring, descriptors, dma maps, and mbufs. */ error = bus_dma_tag_create( bus_get_dma_tag(sc->dev), /* Parent tag. */ DWC_DESC_RING_ALIGN, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ RX_DESC_SIZE, 1, /* maxsize, nsegments */ RX_DESC_SIZE, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->rxdesc_tag); if (error != 0) { device_printf(sc->dev, "could not create RX ring DMA tag.\n"); goto out; } error = bus_dmamem_alloc(sc->rxdesc_tag, (void **)&sc->rxdesc_ring, BUS_DMA_COHERENT | BUS_DMA_WAITOK | BUS_DMA_ZERO, &sc->rxdesc_map); if (error != 0) { device_printf(sc->dev, "could not allocate RX descriptor ring.\n"); goto out; } error = bus_dmamap_load(sc->rxdesc_tag, sc->rxdesc_map, sc->rxdesc_ring, RX_DESC_SIZE, dwc_get1paddr, &sc->rxdesc_ring_paddr, 0); if (error != 0) { device_printf(sc->dev, "could not load RX descriptor ring map.\n"); goto out; } error = bus_dma_tag_create( bus_get_dma_tag(sc->dev), /* Parent tag. */ 1, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ MCLBYTES, 1, /* maxsize, nsegments */ MCLBYTES, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->rxbuf_tag); if (error != 0) { device_printf(sc->dev, "could not create RX buf DMA tag.\n"); goto out; } for (idx = 0; idx < RX_DESC_COUNT; idx++) { error = bus_dmamap_create(sc->rxbuf_tag, BUS_DMA_COHERENT, &sc->rxbuf_map[idx].map); if (error != 0) { device_printf(sc->dev, "could not create RX buffer DMA map.\n"); goto out; } if ((m = dwc_alloc_mbufcl(sc)) == NULL) { device_printf(sc->dev, "Could not alloc mbuf\n"); error = ENOMEM; goto out; } if ((error = dma1000_setup_rxbuf(sc, idx, m)) != 0) { device_printf(sc->dev, "could not create new RX buffer.\n"); goto out; } } WRITE4(sc, RX_DESCR_LIST_ADDR, sc->rxdesc_ring_paddr); out: if (error != 0) return (ENXIO); return (0); } /* * Free the bus_dma resources */ void dma1000_free(struct dwc_softc *sc) { bus_dmamap_t map; int idx; /* Clean up RX DMA resources and free mbufs. */ for (idx = 0; idx < RX_DESC_COUNT; ++idx) { if ((map = sc->rxbuf_map[idx].map) != NULL) { bus_dmamap_unload(sc->rxbuf_tag, map); bus_dmamap_destroy(sc->rxbuf_tag, map); m_freem(sc->rxbuf_map[idx].mbuf); } } if (sc->rxbuf_tag != NULL) bus_dma_tag_destroy(sc->rxbuf_tag); if (sc->rxdesc_map != NULL) { bus_dmamap_unload(sc->rxdesc_tag, sc->rxdesc_map); bus_dmamem_free(sc->rxdesc_tag, sc->rxdesc_ring, sc->rxdesc_map); } if (sc->rxdesc_tag != NULL) bus_dma_tag_destroy(sc->rxdesc_tag); /* Clean up TX DMA resources. */ for (idx = 0; idx < TX_DESC_COUNT; ++idx) { if ((map = sc->txbuf_map[idx].map) != NULL) { /* TX maps are already unloaded. */ bus_dmamap_destroy(sc->txbuf_tag, map); } } if (sc->txbuf_tag != NULL) bus_dma_tag_destroy(sc->txbuf_tag); if (sc->txdesc_map != NULL) { bus_dmamap_unload(sc->txdesc_tag, sc->txdesc_map); bus_dmamem_free(sc->txdesc_tag, sc->txdesc_ring, sc->txdesc_map); } if (sc->txdesc_tag != NULL) bus_dma_tag_destroy(sc->txdesc_tag); } /* * Interrupt function */ int dma1000_intr(struct dwc_softc *sc) { uint32_t reg; int rv; DWC_ASSERT_LOCKED(sc); rv = 0; reg = READ4(sc, DMA_STATUS); if (reg & DMA_STATUS_NIS) { if (reg & DMA_STATUS_RI) dma1000_rxfinish_locked(sc); if (reg & DMA_STATUS_TI) { dma1000_txfinish_locked(sc); dma1000_txstart(sc); } } if (reg & DMA_STATUS_AIS) { if (reg & DMA_STATUS_FBI) { /* Fatal bus error */ rv = EIO; } } WRITE4(sc, DMA_STATUS, reg & DMA_STATUS_INTR_MASK); return (rv); }