/************************************************************************** * * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ #include #include #include #include #include #define TTM_MEMORY_ALLOC_RETRIES 4 struct ttm_mem_zone { u_int kobj_ref; struct ttm_mem_global *glob; const char *name; uint64_t zone_mem; uint64_t emer_mem; uint64_t max_mem; uint64_t swap_limit; uint64_t used_mem; }; MALLOC_DEFINE(M_TTM_ZONE, "ttm_zone", "TTM Zone"); static void ttm_mem_zone_kobj_release(struct ttm_mem_zone *zone) { printf("[TTM] Zone %7s: Used memory at exit: %llu kiB\n", zone->name, (unsigned long long)zone->used_mem >> 10); free(zone, M_TTM_ZONE); } #if 0 /* XXXKIB sysctl */ static ssize_t ttm_mem_zone_show(struct ttm_mem_zone *zone; struct attribute *attr, char *buffer) { uint64_t val = 0; mtx_lock(&zone->glob->lock); if (attr == &ttm_mem_sys) val = zone->zone_mem; else if (attr == &ttm_mem_emer) val = zone->emer_mem; else if (attr == &ttm_mem_max) val = zone->max_mem; else if (attr == &ttm_mem_swap) val = zone->swap_limit; else if (attr == &ttm_mem_used) val = zone->used_mem; mtx_unlock(&zone->glob->lock); return snprintf(buffer, PAGE_SIZE, "%llu\n", (unsigned long long) val >> 10); } #endif static void ttm_check_swapping(struct ttm_mem_global *glob); #if 0 /* XXXKIB sysctl */ static ssize_t ttm_mem_zone_store(struct ttm_mem_zone *zone, struct attribute *attr, const char *buffer, size_t size) { int chars; unsigned long val; uint64_t val64; chars = sscanf(buffer, "%lu", &val); if (chars == 0) return size; val64 = val; val64 <<= 10; mtx_lock(&zone->glob->lock); if (val64 > zone->zone_mem) val64 = zone->zone_mem; if (attr == &ttm_mem_emer) { zone->emer_mem = val64; if (zone->max_mem > val64) zone->max_mem = val64; } else if (attr == &ttm_mem_max) { zone->max_mem = val64; if (zone->emer_mem < val64) zone->emer_mem = val64; } else if (attr == &ttm_mem_swap) zone->swap_limit = val64; mtx_unlock(&zone->glob->lock); ttm_check_swapping(zone->glob); return size; } #endif static void ttm_mem_global_kobj_release(struct ttm_mem_global *glob) { } static bool ttm_zones_above_swap_target(struct ttm_mem_global *glob, bool from_wq, uint64_t extra) { unsigned int i; struct ttm_mem_zone *zone; uint64_t target; for (i = 0; i < glob->num_zones; ++i) { zone = glob->zones[i]; if (from_wq) target = zone->swap_limit; else if (priv_check(curthread, PRIV_VM_MLOCK) == 0) target = zone->emer_mem; else target = zone->max_mem; target = (extra > target) ? 0ULL : target; if (zone->used_mem > target) return true; } return false; } /** * At this point we only support a single shrink callback. * Extend this if needed, perhaps using a linked list of callbacks. * Note that this function is reentrant: * many threads may try to swap out at any given time. */ static void ttm_shrink(struct ttm_mem_global *glob, bool from_wq, uint64_t extra) { int ret; struct ttm_mem_shrink *shrink; mtx_lock(&glob->lock); if (glob->shrink == NULL) goto out; while (ttm_zones_above_swap_target(glob, from_wq, extra)) { shrink = glob->shrink; mtx_unlock(&glob->lock); ret = shrink->do_shrink(shrink); mtx_lock(&glob->lock); if (unlikely(ret != 0)) goto out; } out: mtx_unlock(&glob->lock); } static void ttm_shrink_work(void *arg, int pending __unused) { struct ttm_mem_global *glob = arg; ttm_shrink(glob, true, 0ULL); } static int ttm_mem_init_kernel_zone(struct ttm_mem_global *glob, uint64_t mem) { struct ttm_mem_zone *zone; zone = malloc(sizeof(*zone), M_TTM_ZONE, M_WAITOK | M_ZERO); zone->name = "kernel"; zone->zone_mem = mem; zone->max_mem = mem >> 1; zone->emer_mem = (mem >> 1) + (mem >> 2); zone->swap_limit = zone->max_mem - (mem >> 3); zone->used_mem = 0; zone->glob = glob; glob->zone_kernel = zone; refcount_init(&zone->kobj_ref, 1); glob->zones[glob->num_zones++] = zone; return 0; } static int ttm_mem_init_dma32_zone(struct ttm_mem_global *glob, uint64_t mem) { struct ttm_mem_zone *zone; zone = malloc(sizeof(*zone), M_TTM_ZONE, M_WAITOK | M_ZERO); /** * No special dma32 zone needed. */ if (mem <= ((uint64_t) 1ULL << 32)) { free(zone, M_TTM_ZONE); return 0; } /* * Limit max dma32 memory to 4GB for now * until we can figure out how big this * zone really is. */ mem = ((uint64_t) 1ULL << 32); zone->name = "dma32"; zone->zone_mem = mem; zone->max_mem = mem >> 1; zone->emer_mem = (mem >> 1) + (mem >> 2); zone->swap_limit = zone->max_mem - (mem >> 3); zone->used_mem = 0; zone->glob = glob; glob->zone_dma32 = zone; refcount_init(&zone->kobj_ref, 1); glob->zones[glob->num_zones++] = zone; return 0; } int ttm_mem_global_init(struct ttm_mem_global *glob) { u_int64_t mem; int ret; int i; struct ttm_mem_zone *zone; mtx_init(&glob->lock, "ttmgz", NULL, MTX_DEF); glob->swap_queue = taskqueue_create("ttm_swap", M_WAITOK, taskqueue_thread_enqueue, &glob->swap_queue); taskqueue_start_threads(&glob->swap_queue, 1, PVM, "ttm swap"); TASK_INIT(&glob->work, 0, ttm_shrink_work, glob); refcount_init(&glob->kobj_ref, 1); mem = physmem * PAGE_SIZE; ret = ttm_mem_init_kernel_zone(glob, mem); if (unlikely(ret != 0)) goto out_no_zone; ret = ttm_mem_init_dma32_zone(glob, mem); if (unlikely(ret != 0)) goto out_no_zone; for (i = 0; i < glob->num_zones; ++i) { zone = glob->zones[i]; printf("[TTM] Zone %7s: Available graphics memory: %llu kiB\n", zone->name, (unsigned long long)zone->max_mem >> 10); } ttm_page_alloc_init(glob, glob->zone_kernel->max_mem/(2*PAGE_SIZE)); ttm_dma_page_alloc_init(glob, glob->zone_kernel->max_mem/(2*PAGE_SIZE)); return 0; out_no_zone: ttm_mem_global_release(glob); return ret; } void ttm_mem_global_release(struct ttm_mem_global *glob) { unsigned int i; struct ttm_mem_zone *zone; /* let the page allocator first stop the shrink work. */ ttm_page_alloc_fini(); ttm_dma_page_alloc_fini(); taskqueue_drain(glob->swap_queue, &glob->work); taskqueue_free(glob->swap_queue); glob->swap_queue = NULL; for (i = 0; i < glob->num_zones; ++i) { zone = glob->zones[i]; if (refcount_release(&zone->kobj_ref)) ttm_mem_zone_kobj_release(zone); } if (refcount_release(&glob->kobj_ref)) ttm_mem_global_kobj_release(glob); } static void ttm_check_swapping(struct ttm_mem_global *glob) { bool needs_swapping = false; unsigned int i; struct ttm_mem_zone *zone; mtx_lock(&glob->lock); for (i = 0; i < glob->num_zones; ++i) { zone = glob->zones[i]; if (zone->used_mem > zone->swap_limit) { needs_swapping = true; break; } } mtx_unlock(&glob->lock); if (unlikely(needs_swapping)) taskqueue_enqueue(glob->swap_queue, &glob->work); } static void ttm_mem_global_free_zone(struct ttm_mem_global *glob, struct ttm_mem_zone *single_zone, uint64_t amount) { unsigned int i; struct ttm_mem_zone *zone; mtx_lock(&glob->lock); for (i = 0; i < glob->num_zones; ++i) { zone = glob->zones[i]; if (single_zone && zone != single_zone) continue; zone->used_mem -= amount; } mtx_unlock(&glob->lock); } void ttm_mem_global_free(struct ttm_mem_global *glob, uint64_t amount) { return ttm_mem_global_free_zone(glob, NULL, amount); } static int ttm_mem_global_reserve(struct ttm_mem_global *glob, struct ttm_mem_zone *single_zone, uint64_t amount, bool reserve) { uint64_t limit; int ret = -ENOMEM; unsigned int i; struct ttm_mem_zone *zone; mtx_lock(&glob->lock); for (i = 0; i < glob->num_zones; ++i) { zone = glob->zones[i]; if (single_zone && zone != single_zone) continue; limit = (priv_check(curthread, PRIV_VM_MLOCK) == 0) ? zone->emer_mem : zone->max_mem; if (zone->used_mem > limit) goto out_unlock; } if (reserve) { for (i = 0; i < glob->num_zones; ++i) { zone = glob->zones[i]; if (single_zone && zone != single_zone) continue; zone->used_mem += amount; } } ret = 0; out_unlock: mtx_unlock(&glob->lock); ttm_check_swapping(glob); return ret; } static int ttm_mem_global_alloc_zone(struct ttm_mem_global *glob, struct ttm_mem_zone *single_zone, uint64_t memory, bool no_wait, bool interruptible) { int count = TTM_MEMORY_ALLOC_RETRIES; while (unlikely(ttm_mem_global_reserve(glob, single_zone, memory, true) != 0)) { if (no_wait) return -ENOMEM; if (unlikely(count-- == 0)) return -ENOMEM; ttm_shrink(glob, false, memory + (memory >> 2) + 16); } return 0; } int ttm_mem_global_alloc(struct ttm_mem_global *glob, uint64_t memory, bool no_wait, bool interruptible) { /** * Normal allocations of kernel memory are registered in * all zones. */ return ttm_mem_global_alloc_zone(glob, NULL, memory, no_wait, interruptible); } #define page_to_pfn(pp) OFF_TO_IDX(VM_PAGE_TO_PHYS(pp)) int ttm_mem_global_alloc_page(struct ttm_mem_global *glob, struct vm_page *page, bool no_wait, bool interruptible) { struct ttm_mem_zone *zone = NULL; /** * Page allocations may be registed in a single zone * only if highmem or !dma32. */ if (glob->zone_dma32 && page_to_pfn(page) > 0x00100000UL) zone = glob->zone_kernel; return ttm_mem_global_alloc_zone(glob, zone, PAGE_SIZE, no_wait, interruptible); } void ttm_mem_global_free_page(struct ttm_mem_global *glob, struct vm_page *page) { struct ttm_mem_zone *zone = NULL; if (glob->zone_dma32 && page_to_pfn(page) > 0x00100000UL) zone = glob->zone_kernel; ttm_mem_global_free_zone(glob, zone, PAGE_SIZE); } size_t ttm_round_pot(size_t size) { if ((size & (size - 1)) == 0) return size; else if (size > PAGE_SIZE) return PAGE_ALIGN(size); else { size_t tmp_size = 4; while (tmp_size < size) tmp_size <<= 1; return tmp_size; } return 0; }