#include __FBSDID("$FreeBSD$"); #include #include #include MALLOC_DEFINE(DRM_MEM_DMA, "drm_dma", "DRM DMA Data Structures"); MALLOC_DEFINE(DRM_MEM_SAREA, "drm_sarea", "DRM SAREA Data Structures"); MALLOC_DEFINE(DRM_MEM_DRIVER, "drm_driver", "DRM DRIVER Data Structures"); MALLOC_DEFINE(DRM_MEM_MAGIC, "drm_magic", "DRM MAGIC Data Structures"); MALLOC_DEFINE(DRM_MEM_MINOR, "drm_minor", "DRM MINOR Data Structures"); MALLOC_DEFINE(DRM_MEM_IOCTLS, "drm_ioctls", "DRM IOCTL Data Structures"); MALLOC_DEFINE(DRM_MEM_MAPS, "drm_maps", "DRM MAP Data Structures"); MALLOC_DEFINE(DRM_MEM_BUFS, "drm_bufs", "DRM BUFFER Data Structures"); MALLOC_DEFINE(DRM_MEM_SEGS, "drm_segs", "DRM SEGMENTS Data Structures"); MALLOC_DEFINE(DRM_MEM_PAGES, "drm_pages", "DRM PAGES Data Structures"); MALLOC_DEFINE(DRM_MEM_FILES, "drm_files", "DRM FILE Data Structures"); MALLOC_DEFINE(DRM_MEM_QUEUES, "drm_queues", "DRM QUEUE Data Structures"); MALLOC_DEFINE(DRM_MEM_CMDS, "drm_cmds", "DRM COMMAND Data Structures"); MALLOC_DEFINE(DRM_MEM_MAPPINGS, "drm_mapping", "DRM MAPPING Data Structures"); MALLOC_DEFINE(DRM_MEM_BUFLISTS, "drm_buflists", "DRM BUFLISTS Data Structures"); MALLOC_DEFINE(DRM_MEM_AGPLISTS, "drm_agplists", "DRM AGPLISTS Data Structures"); MALLOC_DEFINE(DRM_MEM_CTXBITMAP, "drm_ctxbitmap", "DRM CTXBITMAP Data Structures"); MALLOC_DEFINE(DRM_MEM_SGLISTS, "drm_sglists", "DRM SGLISTS Data Structures"); MALLOC_DEFINE(DRM_MEM_MM, "drm_sman", "DRM MEMORY MANAGER Data Structures"); MALLOC_DEFINE(DRM_MEM_HASHTAB, "drm_hashtab", "DRM HASHTABLE Data Structures"); MALLOC_DEFINE(DRM_MEM_KMS, "drm_kms", "DRM KMS Data Structures"); MALLOC_DEFINE(DRM_MEM_VBLANK, "drm_vblank", "DRM VBLANK Handling Data"); const char *fb_mode_option = NULL; #define NSEC_PER_USEC 1000L #define NSEC_PER_SEC 1000000000L int64_t timeval_to_ns(const struct timeval *tv) { return ((int64_t)tv->tv_sec * NSEC_PER_SEC) + tv->tv_usec * NSEC_PER_USEC; } struct timeval ns_to_timeval(const int64_t nsec) { struct timeval tv; long rem; if (nsec == 0) { tv.tv_sec = 0; tv.tv_usec = 0; return (tv); } tv.tv_sec = nsec / NSEC_PER_SEC; rem = nsec % NSEC_PER_SEC; if (rem < 0) { tv.tv_sec--; rem += NSEC_PER_SEC; } tv.tv_usec = rem / 1000; return (tv); } /* Copied from OFED. */ unsigned long drm_linux_timer_hz_mask; static void drm_linux_timer_init(void *arg) { /* * Compute an internal HZ value which can divide 2**32 to * avoid timer rounding problems when the tick value wraps * around 2**32: */ drm_linux_timer_hz_mask = 1; while (drm_linux_timer_hz_mask < (unsigned long)hz) drm_linux_timer_hz_mask *= 2; drm_linux_timer_hz_mask--; } SYSINIT(drm_linux_timer, SI_SUB_DRIVERS, SI_ORDER_FIRST, drm_linux_timer_init, NULL); static const drm_pci_id_list_t * drm_find_description(int vendor, int device, const drm_pci_id_list_t *idlist) { int i = 0; for (i = 0; idlist[i].vendor != 0; i++) { if ((idlist[i].vendor == vendor) && ((idlist[i].device == device) || (idlist[i].device == 0))) { return (&idlist[i]); } } return (NULL); } /* * drm_probe_helper: called by a driver at the end of its probe * method. */ int drm_probe_helper(device_t kdev, const drm_pci_id_list_t *idlist) { const drm_pci_id_list_t *id_entry; int vendor, device; vendor = pci_get_vendor(kdev); device = pci_get_device(kdev); if (pci_get_class(kdev) != PCIC_DISPLAY || (pci_get_subclass(kdev) != PCIS_DISPLAY_VGA && pci_get_subclass(kdev) != PCIS_DISPLAY_OTHER)) return (-ENXIO); id_entry = drm_find_description(vendor, device, idlist); if (id_entry != NULL) { if (device_get_desc(kdev) == NULL) { DRM_DEBUG("%s desc: %s\n", device_get_nameunit(kdev), id_entry->name); device_set_desc(kdev, id_entry->name); } #if !defined(__arm__) DRM_OBSOLETE(kdev); #endif return (-BUS_PROBE_GENERIC); } return (-ENXIO); } /* * drm_attach_helper: called by a driver at the end of its attach * method. */ int drm_attach_helper(device_t kdev, const drm_pci_id_list_t *idlist, struct drm_driver *driver) { struct drm_device *dev; int vendor, device; int ret; dev = device_get_softc(kdev); vendor = pci_get_vendor(kdev); device = pci_get_device(kdev); dev->id_entry = drm_find_description(vendor, device, idlist); ret = drm_get_pci_dev(kdev, dev, driver); return (ret); } int drm_generic_suspend(device_t kdev) { struct drm_device *dev; int error; DRM_DEBUG_KMS("Starting suspend\n"); dev = device_get_softc(kdev); if (dev->driver->suspend) { pm_message_t state; state.event = PM_EVENT_SUSPEND; error = -dev->driver->suspend(dev, state); if (error) goto out; } error = bus_generic_suspend(kdev); out: DRM_DEBUG_KMS("Finished suspend: %d\n", error); return error; } int drm_generic_resume(device_t kdev) { struct drm_device *dev; int error; DRM_DEBUG_KMS("Starting resume\n"); dev = device_get_softc(kdev); if (dev->driver->resume) { error = -dev->driver->resume(dev); if (error) goto out; } error = bus_generic_resume(kdev); out: DRM_DEBUG_KMS("Finished resume: %d\n", error); return error; } int drm_generic_detach(device_t kdev) { struct drm_device *dev; int i; dev = device_get_softc(kdev); drm_put_dev(dev); /* Clean up PCI resources allocated by drm_bufs.c. We're not really * worried about resource consumption while the DRM is inactive (between * lastclose and firstopen or unload) because these aren't actually * taking up KVA, just keeping the PCI resource allocated. */ for (i = 0; i < DRM_MAX_PCI_RESOURCE; i++) { if (dev->pcir[i] == NULL) continue; bus_release_resource(dev->dev, SYS_RES_MEMORY, dev->pcirid[i], dev->pcir[i]); dev->pcir[i] = NULL; } if (pci_disable_busmaster(dev->dev)) DRM_ERROR("Request to disable bus-master failed.\n"); return (0); } int drm_add_busid_modesetting(struct drm_device *dev, struct sysctl_ctx_list *ctx, struct sysctl_oid *top) { struct sysctl_oid *oid; snprintf(dev->busid_str, sizeof(dev->busid_str), "pci:%04x:%02x:%02x.%d", dev->pci_domain, dev->pci_bus, dev->pci_slot, dev->pci_func); oid = SYSCTL_ADD_STRING(ctx, SYSCTL_CHILDREN(top), OID_AUTO, "busid", CTLFLAG_RD, dev->busid_str, 0, NULL); if (oid == NULL) return (-ENOMEM); dev->modesetting = (dev->driver->driver_features & DRIVER_MODESET) != 0; oid = SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(top), OID_AUTO, "modesetting", CTLFLAG_RD, &dev->modesetting, 0, NULL); if (oid == NULL) return (-ENOMEM); return (0); } static int drm_device_find_capability(struct drm_device *dev, int cap) { return (pci_find_cap(dev->dev, cap, NULL) == 0); } int drm_pci_device_is_agp(struct drm_device *dev) { if (dev->driver->device_is_agp != NULL) { int ret; /* device_is_agp returns a tristate, 0 = not AGP, 1 = definitely * AGP, 2 = fall back to PCI capability */ ret = (*dev->driver->device_is_agp)(dev); if (ret != DRM_MIGHT_BE_AGP) return ret; } return (drm_device_find_capability(dev, PCIY_AGP)); } int drm_pci_device_is_pcie(struct drm_device *dev) { return (drm_device_find_capability(dev, PCIY_EXPRESS)); } static bool dmi_found(const struct dmi_system_id *dsi) { char *hw_vendor, *hw_prod; int i, slot; bool res; hw_vendor = kern_getenv("smbios.planar.maker"); hw_prod = kern_getenv("smbios.planar.product"); res = true; for (i = 0; i < nitems(dsi->matches); i++) { slot = dsi->matches[i].slot; switch (slot) { case DMI_NONE: break; case DMI_SYS_VENDOR: case DMI_BOARD_VENDOR: if (hw_vendor != NULL && !strcmp(hw_vendor, dsi->matches[i].substr)) { break; } else { res = false; goto out; } case DMI_PRODUCT_NAME: case DMI_BOARD_NAME: if (hw_prod != NULL && !strcmp(hw_prod, dsi->matches[i].substr)) { break; } else { res = false; goto out; } default: res = false; goto out; } } out: freeenv(hw_vendor); freeenv(hw_prod); return (res); } bool dmi_check_system(const struct dmi_system_id *sysid) { const struct dmi_system_id *dsi; bool res; for (res = false, dsi = sysid; dsi->matches[0].slot != 0 ; dsi++) { if (dmi_found(dsi)) { res = true; if (dsi->callback != NULL && dsi->callback(dsi)) break; } } return (res); } #if __OS_HAS_MTRR int drm_mtrr_add(unsigned long offset, unsigned long size, unsigned int flags) { int act; struct mem_range_desc mrdesc; mrdesc.mr_base = offset; mrdesc.mr_len = size; mrdesc.mr_flags = flags; act = MEMRANGE_SET_UPDATE; strlcpy(mrdesc.mr_owner, "drm", sizeof(mrdesc.mr_owner)); return (-mem_range_attr_set(&mrdesc, &act)); } int drm_mtrr_del(int handle __unused, unsigned long offset, unsigned long size, unsigned int flags) { int act; struct mem_range_desc mrdesc; mrdesc.mr_base = offset; mrdesc.mr_len = size; mrdesc.mr_flags = flags; act = MEMRANGE_SET_REMOVE; strlcpy(mrdesc.mr_owner, "drm", sizeof(mrdesc.mr_owner)); return (-mem_range_attr_set(&mrdesc, &act)); } #endif void drm_clflush_pages(vm_page_t *pages, unsigned long num_pages) { #if defined(__i386__) || defined(__amd64__) pmap_invalidate_cache_pages(pages, num_pages); #else DRM_ERROR("drm_clflush_pages not implemented on this architecture"); #endif } void drm_clflush_virt_range(char *addr, unsigned long length) { #if defined(__i386__) || defined(__amd64__) pmap_force_invalidate_cache_range((vm_offset_t)addr, (vm_offset_t)addr + length); #else DRM_ERROR("drm_clflush_virt_range not implemented on this architecture"); #endif } void hex_dump_to_buffer(const void *buf, size_t len, int rowsize, int groupsize, char *linebuf, size_t linebuflen, bool ascii __unused) { int i, j, c; i = j = 0; while (i < len && j <= linebuflen) { c = ((const char *)buf)[i]; if (i != 0) { if (i % rowsize == 0) { /* Newline required. */ sprintf(linebuf + j, "\n"); ++j; } else if (i % groupsize == 0) { /* Space required. */ sprintf(linebuf + j, " "); ++j; } } if (j > linebuflen - 4) break; sprintf(linebuf + j, "%02X", c); j += 2; ++i; } if (j <= linebuflen) sprintf(linebuf + j, "\n"); } #if DRM_LINUX #include MODULE_DEPEND(DRIVER_NAME, linux, 1, 1, 1); #define LINUX_IOCTL_DRM_MIN 0x6400 #define LINUX_IOCTL_DRM_MAX 0x64ff static linux_ioctl_function_t drm_linux_ioctl; static struct linux_ioctl_handler drm_handler = {drm_linux_ioctl, LINUX_IOCTL_DRM_MIN, LINUX_IOCTL_DRM_MAX}; /* The bits for in/out are switched on Linux */ #define LINUX_IOC_IN IOC_OUT #define LINUX_IOC_OUT IOC_IN static int drm_linux_ioctl(DRM_STRUCTPROC *p, struct linux_ioctl_args* args) { int error; int cmd = args->cmd; args->cmd &= ~(LINUX_IOC_IN | LINUX_IOC_OUT); if (cmd & LINUX_IOC_IN) args->cmd |= IOC_IN; if (cmd & LINUX_IOC_OUT) args->cmd |= IOC_OUT; error = ioctl(p, (struct ioctl_args *)args); return error; } #endif /* DRM_LINUX */ static int drm_modevent(module_t mod, int type, void *data) { switch (type) { case MOD_LOAD: TUNABLE_INT_FETCH("drm.debug", &drm_debug); TUNABLE_INT_FETCH("drm.notyet", &drm_notyet); break; } return (0); } static moduledata_t drm_mod = { "drmn", drm_modevent, 0 }; DECLARE_MODULE(drmn, drm_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST); MODULE_VERSION(drmn, 1); MODULE_DEPEND(drmn, agp, 1, 1, 1); MODULE_DEPEND(drmn, pci, 1, 1, 1); MODULE_DEPEND(drmn, mem, 1, 1, 1); MODULE_DEPEND(drmn, iicbus, 1, 1, 1);