/*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2012 Chelsio Communications, Inc. * All rights reserved. * Written by: Navdeep Parhar * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include "opt_inet6.h" #include "opt_kern_tls.h" #include "opt_ratelimit.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define TCPSTATES #include #include #include #include #include #include #ifdef TCP_OFFLOAD #include "common/common.h" #include "common/t4_msg.h" #include "common/t4_regs.h" #include "common/t4_regs_values.h" #include "common/t4_tcb.h" #include "t4_clip.h" #include "tom/t4_tom_l2t.h" #include "tom/t4_tom.h" #include "tom/t4_tls.h" static struct protosw toe_protosw; static struct protosw toe6_protosw; /* Module ops */ static int t4_tom_mod_load(void); static int t4_tom_mod_unload(void); static int t4_tom_modevent(module_t, int, void *); /* ULD ops and helpers */ static int t4_tom_activate(struct adapter *); static int t4_tom_deactivate(struct adapter *); static struct uld_info tom_uld_info = { .uld_id = ULD_TOM, .activate = t4_tom_activate, .deactivate = t4_tom_deactivate, }; static void release_offload_resources(struct toepcb *); static int alloc_tid_tabs(struct tid_info *); static void free_tid_tabs(struct tid_info *); static void free_tom_data(struct adapter *, struct tom_data *); static void reclaim_wr_resources(void *, int); struct toepcb * alloc_toepcb(struct vi_info *vi, int flags) { struct port_info *pi = vi->pi; struct adapter *sc = pi->adapter; struct toepcb *toep; int tx_credits, txsd_total, len; /* * The firmware counts tx work request credits in units of 16 bytes * each. Reserve room for an ABORT_REQ so the driver never has to worry * about tx credits if it wants to abort a connection. */ tx_credits = sc->params.ofldq_wr_cred; tx_credits -= howmany(sizeof(struct cpl_abort_req), 16); /* * Shortest possible tx work request is a fw_ofld_tx_data_wr + 1 byte * immediate payload, and firmware counts tx work request credits in * units of 16 byte. Calculate the maximum work requests possible. */ txsd_total = tx_credits / howmany(sizeof(struct fw_ofld_tx_data_wr) + 1, 16); len = offsetof(struct toepcb, txsd) + txsd_total * sizeof(struct ofld_tx_sdesc); toep = malloc(len, M_CXGBE, M_ZERO | flags); if (toep == NULL) return (NULL); refcount_init(&toep->refcount, 1); toep->td = sc->tom_softc; toep->vi = vi; toep->tid = -1; toep->tx_total = tx_credits; toep->tx_credits = tx_credits; mbufq_init(&toep->ulp_pduq, INT_MAX); mbufq_init(&toep->ulp_pdu_reclaimq, INT_MAX); toep->txsd_total = txsd_total; toep->txsd_avail = txsd_total; toep->txsd_pidx = 0; toep->txsd_cidx = 0; aiotx_init_toep(toep); return (toep); } /* * Initialize a toepcb after its params have been filled out. */ int init_toepcb(struct vi_info *vi, struct toepcb *toep) { struct conn_params *cp = &toep->params; struct port_info *pi = vi->pi; struct adapter *sc = pi->adapter; struct tx_cl_rl_params *tc; if (cp->tc_idx >= 0 && cp->tc_idx < sc->params.nsched_cls) { tc = &pi->sched_params->cl_rl[cp->tc_idx]; mtx_lock(&sc->tc_lock); if (tc->state != CS_HW_CONFIGURED) { CH_ERR(vi, "tid %d cannot be bound to traffic class %d " "because it is not configured (its state is %d)\n", toep->tid, cp->tc_idx, tc->state); cp->tc_idx = -1; } else { tc->refcount++; } mtx_unlock(&sc->tc_lock); } toep->ofld_txq = &sc->sge.ofld_txq[cp->txq_idx]; toep->ofld_rxq = &sc->sge.ofld_rxq[cp->rxq_idx]; toep->ctrlq = &sc->sge.ctrlq[pi->port_id]; tls_init_toep(toep); if (ulp_mode(toep) == ULP_MODE_TCPDDP) ddp_init_toep(toep); toep->flags |= TPF_INITIALIZED; return (0); } struct toepcb * hold_toepcb(struct toepcb *toep) { refcount_acquire(&toep->refcount); return (toep); } void free_toepcb(struct toepcb *toep) { if (refcount_release(&toep->refcount) == 0) return; KASSERT(!(toep->flags & TPF_ATTACHED), ("%s: attached to an inpcb", __func__)); KASSERT(!(toep->flags & TPF_CPL_PENDING), ("%s: CPL pending", __func__)); if (toep->flags & TPF_INITIALIZED) { if (ulp_mode(toep) == ULP_MODE_TCPDDP) ddp_uninit_toep(toep); tls_uninit_toep(toep); } free(toep, M_CXGBE); } /* * Set up the socket for TCP offload. */ void offload_socket(struct socket *so, struct toepcb *toep) { struct tom_data *td = toep->td; struct inpcb *inp = sotoinpcb(so); struct tcpcb *tp = intotcpcb(inp); struct sockbuf *sb; INP_WLOCK_ASSERT(inp); /* Update socket */ sb = &so->so_snd; SOCKBUF_LOCK(sb); sb->sb_flags |= SB_NOCOALESCE; SOCKBUF_UNLOCK(sb); sb = &so->so_rcv; SOCKBUF_LOCK(sb); sb->sb_flags |= SB_NOCOALESCE; if (inp->inp_vflag & INP_IPV6) so->so_proto = &toe6_protosw; else so->so_proto = &toe_protosw; SOCKBUF_UNLOCK(sb); /* Update TCP PCB */ tp->tod = &td->tod; tp->t_toe = toep; tp->t_flags |= TF_TOE; /* Install an extra hold on inp */ toep->inp = inp; toep->flags |= TPF_ATTACHED; in_pcbref(inp); /* Add the TOE PCB to the active list */ mtx_lock(&td->toep_list_lock); TAILQ_INSERT_HEAD(&td->toep_list, toep, link); mtx_unlock(&td->toep_list_lock); } void restore_so_proto(struct socket *so, bool v6) { if (v6) so->so_proto = &tcp6_protosw; else so->so_proto = &tcp_protosw; } /* This is _not_ the normal way to "unoffload" a socket. */ void undo_offload_socket(struct socket *so) { struct inpcb *inp = sotoinpcb(so); struct tcpcb *tp = intotcpcb(inp); struct toepcb *toep = tp->t_toe; struct tom_data *td = toep->td; struct sockbuf *sb; INP_WLOCK_ASSERT(inp); sb = &so->so_snd; SOCKBUF_LOCK(sb); sb->sb_flags &= ~SB_NOCOALESCE; SOCKBUF_UNLOCK(sb); sb = &so->so_rcv; SOCKBUF_LOCK(sb); sb->sb_flags &= ~SB_NOCOALESCE; restore_so_proto(so, inp->inp_vflag & INP_IPV6); SOCKBUF_UNLOCK(sb); tp->tod = NULL; tp->t_toe = NULL; tp->t_flags &= ~TF_TOE; toep->inp = NULL; toep->flags &= ~TPF_ATTACHED; if (in_pcbrele_wlocked(inp)) panic("%s: inp freed.", __func__); mtx_lock(&td->toep_list_lock); TAILQ_REMOVE(&td->toep_list, toep, link); mtx_unlock(&td->toep_list_lock); } static void release_offload_resources(struct toepcb *toep) { struct tom_data *td = toep->td; struct adapter *sc = td_adapter(td); int tid = toep->tid; KASSERT(!(toep->flags & TPF_CPL_PENDING), ("%s: %p has CPL pending.", __func__, toep)); KASSERT(!(toep->flags & TPF_ATTACHED), ("%s: %p is still attached.", __func__, toep)); CTR5(KTR_CXGBE, "%s: toep %p (tid %d, l2te %p, ce %p)", __func__, toep, tid, toep->l2te, toep->ce); /* * These queues should have been emptied at approximately the same time * that a normal connection's socket's so_snd would have been purged or * drained. Do _not_ clean up here. */ MPASS(mbufq_len(&toep->ulp_pduq) == 0); MPASS(mbufq_len(&toep->ulp_pdu_reclaimq) == 0); #ifdef INVARIANTS if (ulp_mode(toep) == ULP_MODE_TCPDDP) ddp_assert_empty(toep); #endif MPASS(TAILQ_EMPTY(&toep->aiotx_jobq)); if (toep->l2te) t4_l2t_release(toep->l2te); if (tid >= 0) { remove_tid(sc, tid, toep->ce ? 2 : 1); release_tid(sc, tid, toep->ctrlq); } if (toep->ce) t4_release_clip_entry(sc, toep->ce); if (toep->params.tc_idx != -1) t4_release_cl_rl(sc, toep->vi->pi->port_id, toep->params.tc_idx); mtx_lock(&td->toep_list_lock); TAILQ_REMOVE(&td->toep_list, toep, link); mtx_unlock(&td->toep_list_lock); free_toepcb(toep); } /* * The kernel is done with the TCP PCB and this is our opportunity to unhook the * toepcb hanging off of it. If the TOE driver is also done with the toepcb (no * pending CPL) then it is time to release all resources tied to the toepcb. * * Also gets called when an offloaded active open fails and the TOM wants the * kernel to take the TCP PCB back. */ static void t4_pcb_detach(struct toedev *tod __unused, struct tcpcb *tp) { #if defined(KTR) || defined(INVARIANTS) struct inpcb *inp = tp->t_inpcb; #endif struct toepcb *toep = tp->t_toe; INP_WLOCK_ASSERT(inp); KASSERT(toep != NULL, ("%s: toep is NULL", __func__)); KASSERT(toep->flags & TPF_ATTACHED, ("%s: not attached", __func__)); #ifdef KTR if (tp->t_state == TCPS_SYN_SENT) { CTR6(KTR_CXGBE, "%s: atid %d, toep %p (0x%x), inp %p (0x%x)", __func__, toep->tid, toep, toep->flags, inp, inp->inp_flags); } else { CTR6(KTR_CXGBE, "t4_pcb_detach: tid %d (%s), toep %p (0x%x), inp %p (0x%x)", toep->tid, tcpstates[tp->t_state], toep, toep->flags, inp, inp->inp_flags); } #endif if (ulp_mode(toep) == ULP_MODE_TLS) tls_detach(toep); tp->tod = NULL; tp->t_toe = NULL; tp->t_flags &= ~TF_TOE; toep->flags &= ~TPF_ATTACHED; if (!(toep->flags & TPF_CPL_PENDING)) release_offload_resources(toep); } /* * setsockopt handler. */ static void t4_ctloutput(struct toedev *tod, struct tcpcb *tp, int dir, int name) { struct adapter *sc = tod->tod_softc; struct toepcb *toep = tp->t_toe; if (dir == SOPT_GET) return; CTR4(KTR_CXGBE, "%s: tp %p, dir %u, name %u", __func__, tp, dir, name); switch (name) { case TCP_NODELAY: if (tp->t_state != TCPS_ESTABLISHED) break; toep->params.nagle = tp->t_flags & TF_NODELAY ? 0 : 1; t4_set_tcb_field(sc, toep->ctrlq, toep, W_TCB_T_FLAGS, V_TF_NAGLE(1), V_TF_NAGLE(toep->params.nagle), 0, 0); break; default: break; } } static inline uint64_t get_tcb_tflags(const uint64_t *tcb) { return ((be64toh(tcb[14]) << 32) | (be64toh(tcb[15]) >> 32)); } static inline uint32_t get_tcb_field(const uint64_t *tcb, u_int word, uint32_t mask, u_int shift) { #define LAST_WORD ((TCB_SIZE / 4) - 1) uint64_t t1, t2; int flit_idx; MPASS(mask != 0); MPASS(word <= LAST_WORD); MPASS(shift < 32); flit_idx = (LAST_WORD - word) / 2; if (word & 0x1) shift += 32; t1 = be64toh(tcb[flit_idx]) >> shift; t2 = 0; if (fls(mask) > 64 - shift) { /* * Will spill over into the next logical flit, which is the flit * before this one. The flit_idx before this one must be valid. */ MPASS(flit_idx > 0); t2 = be64toh(tcb[flit_idx - 1]) << (64 - shift); } return ((t2 | t1) & mask); #undef LAST_WORD } #define GET_TCB_FIELD(tcb, F) \ get_tcb_field(tcb, W_TCB_##F, M_TCB_##F, S_TCB_##F) /* * Issues a CPL_GET_TCB to read the entire TCB for the tid. */ static int send_get_tcb(struct adapter *sc, u_int tid) { struct cpl_get_tcb *cpl; struct wrq_cookie cookie; MPASS(tid < sc->tids.ntids); cpl = start_wrq_wr(&sc->sge.ctrlq[0], howmany(sizeof(*cpl), 16), &cookie); if (__predict_false(cpl == NULL)) return (ENOMEM); bzero(cpl, sizeof(*cpl)); INIT_TP_WR(cpl, tid); OPCODE_TID(cpl) = htobe32(MK_OPCODE_TID(CPL_GET_TCB, tid)); cpl->reply_ctrl = htobe16(V_REPLY_CHAN(0) | V_QUEUENO(sc->sge.ofld_rxq[0].iq.cntxt_id)); cpl->cookie = 0xff; commit_wrq_wr(&sc->sge.ctrlq[0], cpl, &cookie); return (0); } static struct tcb_histent * alloc_tcb_histent(struct adapter *sc, u_int tid, int flags) { struct tcb_histent *te; MPASS(flags == M_NOWAIT || flags == M_WAITOK); te = malloc(sizeof(*te), M_CXGBE, M_ZERO | flags); if (te == NULL) return (NULL); mtx_init(&te->te_lock, "TCB entry", NULL, MTX_DEF); callout_init_mtx(&te->te_callout, &te->te_lock, 0); te->te_adapter = sc; te->te_tid = tid; return (te); } static void free_tcb_histent(struct tcb_histent *te) { mtx_destroy(&te->te_lock); free(te, M_CXGBE); } /* * Start tracking the tid in the TCB history. */ int add_tid_to_history(struct adapter *sc, u_int tid) { struct tcb_histent *te = NULL; struct tom_data *td = sc->tom_softc; int rc; MPASS(tid < sc->tids.ntids); if (td->tcb_history == NULL) return (ENXIO); rw_wlock(&td->tcb_history_lock); if (td->tcb_history[tid] != NULL) { rc = EEXIST; goto done; } te = alloc_tcb_histent(sc, tid, M_NOWAIT); if (te == NULL) { rc = ENOMEM; goto done; } mtx_lock(&te->te_lock); rc = send_get_tcb(sc, tid); if (rc == 0) { te->te_flags |= TE_RPL_PENDING; td->tcb_history[tid] = te; } else { free(te, M_CXGBE); } mtx_unlock(&te->te_lock); done: rw_wunlock(&td->tcb_history_lock); return (rc); } static void remove_tcb_histent(struct tcb_histent *te) { struct adapter *sc = te->te_adapter; struct tom_data *td = sc->tom_softc; rw_assert(&td->tcb_history_lock, RA_WLOCKED); mtx_assert(&te->te_lock, MA_OWNED); MPASS(td->tcb_history[te->te_tid] == te); td->tcb_history[te->te_tid] = NULL; free_tcb_histent(te); rw_wunlock(&td->tcb_history_lock); } static inline struct tcb_histent * lookup_tcb_histent(struct adapter *sc, u_int tid, bool addrem) { struct tcb_histent *te; struct tom_data *td = sc->tom_softc; MPASS(tid < sc->tids.ntids); if (td->tcb_history == NULL) return (NULL); if (addrem) rw_wlock(&td->tcb_history_lock); else rw_rlock(&td->tcb_history_lock); te = td->tcb_history[tid]; if (te != NULL) { mtx_lock(&te->te_lock); return (te); /* with both locks held */ } if (addrem) rw_wunlock(&td->tcb_history_lock); else rw_runlock(&td->tcb_history_lock); return (te); } static inline void release_tcb_histent(struct tcb_histent *te) { struct adapter *sc = te->te_adapter; struct tom_data *td = sc->tom_softc; mtx_assert(&te->te_lock, MA_OWNED); mtx_unlock(&te->te_lock); rw_assert(&td->tcb_history_lock, RA_RLOCKED); rw_runlock(&td->tcb_history_lock); } static void request_tcb(void *arg) { struct tcb_histent *te = arg; mtx_assert(&te->te_lock, MA_OWNED); /* Noone else is supposed to update the histent. */ MPASS(!(te->te_flags & TE_RPL_PENDING)); if (send_get_tcb(te->te_adapter, te->te_tid) == 0) te->te_flags |= TE_RPL_PENDING; else callout_schedule(&te->te_callout, hz / 100); } static void update_tcb_histent(struct tcb_histent *te, const uint64_t *tcb) { struct tom_data *td = te->te_adapter->tom_softc; uint64_t tflags = get_tcb_tflags(tcb); uint8_t sample = 0; if (GET_TCB_FIELD(tcb, SND_MAX_RAW) != GET_TCB_FIELD(tcb, SND_UNA_RAW)) { if (GET_TCB_FIELD(tcb, T_RXTSHIFT) != 0) sample |= TS_RTO; if (GET_TCB_FIELD(tcb, T_DUPACKS) != 0) sample |= TS_DUPACKS; if (GET_TCB_FIELD(tcb, T_DUPACKS) >= td->dupack_threshold) sample |= TS_FASTREXMT; } if (GET_TCB_FIELD(tcb, SND_MAX_RAW) != 0) { uint32_t snd_wnd; sample |= TS_SND_BACKLOGGED; /* for whatever reason. */ snd_wnd = GET_TCB_FIELD(tcb, RCV_ADV); if (tflags & V_TF_RECV_SCALE(1)) snd_wnd <<= GET_TCB_FIELD(tcb, RCV_SCALE); if (GET_TCB_FIELD(tcb, SND_CWND) < snd_wnd) sample |= TS_CWND_LIMITED; /* maybe due to CWND */ } if (tflags & V_TF_CCTRL_ECN(1)) { /* * CE marker on incoming IP hdr, echoing ECE back in the TCP * hdr. Indicates congestion somewhere on the way from the peer * to this node. */ if (tflags & V_TF_CCTRL_ECE(1)) sample |= TS_ECN_ECE; /* * ECE seen and CWR sent (or about to be sent). Might indicate * congestion on the way to the peer. This node is reducing its * congestion window in response. */ if (tflags & (V_TF_CCTRL_CWR(1) | V_TF_CCTRL_RFR(1))) sample |= TS_ECN_CWR; } te->te_sample[te->te_pidx] = sample; if (++te->te_pidx == nitems(te->te_sample)) te->te_pidx = 0; memcpy(te->te_tcb, tcb, TCB_SIZE); te->te_flags |= TE_ACTIVE; } static int do_get_tcb_rpl(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) { struct adapter *sc = iq->adapter; const struct cpl_get_tcb_rpl *cpl = mtod(m, const void *); const uint64_t *tcb = (const uint64_t *)(const void *)(cpl + 1); struct tcb_histent *te; const u_int tid = GET_TID(cpl); bool remove; remove = GET_TCB_FIELD(tcb, T_STATE) == TCPS_CLOSED; te = lookup_tcb_histent(sc, tid, remove); if (te == NULL) { /* Not in the history. Who issued the GET_TCB for this? */ device_printf(sc->dev, "tcb %u: flags 0x%016jx, state %u, " "srtt %u, sscale %u, rscale %u, cookie 0x%x\n", tid, (uintmax_t)get_tcb_tflags(tcb), GET_TCB_FIELD(tcb, T_STATE), GET_TCB_FIELD(tcb, T_SRTT), GET_TCB_FIELD(tcb, SND_SCALE), GET_TCB_FIELD(tcb, RCV_SCALE), cpl->cookie); goto done; } MPASS(te->te_flags & TE_RPL_PENDING); te->te_flags &= ~TE_RPL_PENDING; if (remove) { remove_tcb_histent(te); } else { update_tcb_histent(te, tcb); callout_reset(&te->te_callout, hz / 10, request_tcb, te); release_tcb_histent(te); } done: m_freem(m); return (0); } static void fill_tcp_info_from_tcb(struct adapter *sc, uint64_t *tcb, struct tcp_info *ti) { uint32_t v; ti->tcpi_state = GET_TCB_FIELD(tcb, T_STATE); v = GET_TCB_FIELD(tcb, T_SRTT); ti->tcpi_rtt = tcp_ticks_to_us(sc, v); v = GET_TCB_FIELD(tcb, T_RTTVAR); ti->tcpi_rttvar = tcp_ticks_to_us(sc, v); ti->tcpi_snd_ssthresh = GET_TCB_FIELD(tcb, SND_SSTHRESH); ti->tcpi_snd_cwnd = GET_TCB_FIELD(tcb, SND_CWND); ti->tcpi_rcv_nxt = GET_TCB_FIELD(tcb, RCV_NXT); v = GET_TCB_FIELD(tcb, TX_MAX); ti->tcpi_snd_nxt = v - GET_TCB_FIELD(tcb, SND_NXT_RAW); /* Receive window being advertised by us. */ ti->tcpi_rcv_wscale = GET_TCB_FIELD(tcb, SND_SCALE); /* Yes, SND. */ ti->tcpi_rcv_space = GET_TCB_FIELD(tcb, RCV_WND); /* Send window */ ti->tcpi_snd_wscale = GET_TCB_FIELD(tcb, RCV_SCALE); /* Yes, RCV. */ ti->tcpi_snd_wnd = GET_TCB_FIELD(tcb, RCV_ADV); if (get_tcb_tflags(tcb) & V_TF_RECV_SCALE(1)) ti->tcpi_snd_wnd <<= ti->tcpi_snd_wscale; else ti->tcpi_snd_wscale = 0; } static void fill_tcp_info_from_history(struct adapter *sc, struct tcb_histent *te, struct tcp_info *ti) { fill_tcp_info_from_tcb(sc, te->te_tcb, ti); } /* * Reads the TCB for the given tid using a memory window and copies it to 'buf' * in the same format as CPL_GET_TCB_RPL. */ static void read_tcb_using_memwin(struct adapter *sc, u_int tid, uint64_t *buf) { int i, j, k, rc; uint32_t addr; u_char *tcb, tmp; MPASS(tid < sc->tids.ntids); addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE) + tid * TCB_SIZE; rc = read_via_memwin(sc, 2, addr, (uint32_t *)buf, TCB_SIZE); if (rc != 0) return; tcb = (u_char *)buf; for (i = 0, j = TCB_SIZE - 16; i < j; i += 16, j -= 16) { for (k = 0; k < 16; k++) { tmp = tcb[i + k]; tcb[i + k] = tcb[j + k]; tcb[j + k] = tmp; } } } static void fill_tcp_info(struct adapter *sc, u_int tid, struct tcp_info *ti) { uint64_t tcb[TCB_SIZE / sizeof(uint64_t)]; struct tcb_histent *te; ti->tcpi_toe_tid = tid; te = lookup_tcb_histent(sc, tid, false); if (te != NULL) { fill_tcp_info_from_history(sc, te, ti); release_tcb_histent(te); } else { if (!(sc->debug_flags & DF_DISABLE_TCB_CACHE)) { /* XXX: tell firmware to flush TCB cache. */ } read_tcb_using_memwin(sc, tid, tcb); fill_tcp_info_from_tcb(sc, tcb, ti); } } /* * Called by the kernel to allow the TOE driver to "refine" values filled up in * the tcp_info for an offloaded connection. */ static void t4_tcp_info(struct toedev *tod, struct tcpcb *tp, struct tcp_info *ti) { struct adapter *sc = tod->tod_softc; struct toepcb *toep = tp->t_toe; INP_WLOCK_ASSERT(tp->t_inpcb); MPASS(ti != NULL); fill_tcp_info(sc, toep->tid, ti); } #ifdef KERN_TLS static int t4_alloc_tls_session(struct toedev *tod, struct tcpcb *tp, struct ktls_session *tls, int direction) { struct toepcb *toep = tp->t_toe; INP_WLOCK_ASSERT(tp->t_inpcb); MPASS(tls != NULL); return (tls_alloc_ktls(toep, tls, direction)); } #endif /* SET_TCB_FIELD sent as a ULP command looks like this */ #define LEN__SET_TCB_FIELD_ULP (sizeof(struct ulp_txpkt) + \ sizeof(struct ulptx_idata) + sizeof(struct cpl_set_tcb_field_core)) static void * mk_set_tcb_field_ulp(struct ulp_txpkt *ulpmc, uint64_t word, uint64_t mask, uint64_t val, uint32_t tid) { struct ulptx_idata *ulpsc; struct cpl_set_tcb_field_core *req; ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0)); ulpmc->len = htobe32(howmany(LEN__SET_TCB_FIELD_ULP, 16)); ulpsc = (struct ulptx_idata *)(ulpmc + 1); ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); ulpsc->len = htobe32(sizeof(*req)); req = (struct cpl_set_tcb_field_core *)(ulpsc + 1); OPCODE_TID(req) = htobe32(MK_OPCODE_TID(CPL_SET_TCB_FIELD, tid)); req->reply_ctrl = htobe16(V_NO_REPLY(1)); req->word_cookie = htobe16(V_WORD(word) | V_COOKIE(0)); req->mask = htobe64(mask); req->val = htobe64(val); ulpsc = (struct ulptx_idata *)(req + 1); if (LEN__SET_TCB_FIELD_ULP % 16) { ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_NOOP)); ulpsc->len = htobe32(0); return (ulpsc + 1); } return (ulpsc); } static void send_mss_flowc_wr(struct adapter *sc, struct toepcb *toep) { struct wrq_cookie cookie; struct fw_flowc_wr *flowc; struct ofld_tx_sdesc *txsd; const int flowclen = sizeof(*flowc) + sizeof(struct fw_flowc_mnemval); const int flowclen16 = howmany(flowclen, 16); if (toep->tx_credits < flowclen16 || toep->txsd_avail == 0) { CH_ERR(sc, "%s: tid %u out of tx credits (%d, %d).\n", __func__, toep->tid, toep->tx_credits, toep->txsd_avail); return; } flowc = start_wrq_wr(&toep->ofld_txq->wrq, flowclen16, &cookie); if (__predict_false(flowc == NULL)) { CH_ERR(sc, "ENOMEM in %s for tid %u.\n", __func__, toep->tid); return; } flowc->op_to_nparams = htobe32(V_FW_WR_OP(FW_FLOWC_WR) | V_FW_FLOWC_WR_NPARAMS(1)); flowc->flowid_len16 = htonl(V_FW_WR_LEN16(flowclen16) | V_FW_WR_FLOWID(toep->tid)); flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_MSS; flowc->mnemval[0].val = htobe32(toep->params.emss); txsd = &toep->txsd[toep->txsd_pidx]; txsd->tx_credits = flowclen16; txsd->plen = 0; toep->tx_credits -= txsd->tx_credits; if (__predict_false(++toep->txsd_pidx == toep->txsd_total)) toep->txsd_pidx = 0; toep->txsd_avail--; commit_wrq_wr(&toep->ofld_txq->wrq, flowc, &cookie); } static void t4_pmtu_update(struct toedev *tod, struct tcpcb *tp, tcp_seq seq, int mtu) { struct work_request_hdr *wrh; struct ulp_txpkt *ulpmc; int idx, len; struct wrq_cookie cookie; struct inpcb *inp = tp->t_inpcb; struct toepcb *toep = tp->t_toe; struct adapter *sc = td_adapter(toep->td); unsigned short *mtus = &sc->params.mtus[0]; INP_WLOCK_ASSERT(inp); MPASS(mtu > 0); /* kernel is supposed to provide something usable. */ /* tp->snd_una and snd_max are in host byte order too. */ seq = be32toh(seq); CTR6(KTR_CXGBE, "%s: tid %d, seq 0x%08x, mtu %u, mtu_idx %u (%d)", __func__, toep->tid, seq, mtu, toep->params.mtu_idx, mtus[toep->params.mtu_idx]); if (ulp_mode(toep) == ULP_MODE_NONE && /* XXX: Read TCB otherwise? */ (SEQ_LT(seq, tp->snd_una) || SEQ_GEQ(seq, tp->snd_max))) { CTR5(KTR_CXGBE, "%s: tid %d, seq 0x%08x not in range [0x%08x, 0x%08x).", __func__, toep->tid, seq, tp->snd_una, tp->snd_max); return; } /* Find the best mtu_idx for the suggested MTU. */ for (idx = 0; idx < NMTUS - 1 && mtus[idx + 1] <= mtu; idx++) continue; if (idx >= toep->params.mtu_idx) return; /* Never increase the PMTU (just like the kernel). */ /* * We'll send a compound work request with 2 SET_TCB_FIELDs -- the first * one updates the mtu_idx and the second one triggers a retransmit. */ len = sizeof(*wrh) + 2 * roundup2(LEN__SET_TCB_FIELD_ULP, 16); wrh = start_wrq_wr(toep->ctrlq, howmany(len, 16), &cookie); if (wrh == NULL) { CH_ERR(sc, "failed to change mtu_idx of tid %d (%u -> %u).\n", toep->tid, toep->params.mtu_idx, idx); return; } INIT_ULPTX_WRH(wrh, len, 1, 0); /* atomic */ ulpmc = (struct ulp_txpkt *)(wrh + 1); ulpmc = mk_set_tcb_field_ulp(ulpmc, W_TCB_T_MAXSEG, V_TCB_T_MAXSEG(M_TCB_T_MAXSEG), V_TCB_T_MAXSEG(idx), toep->tid); ulpmc = mk_set_tcb_field_ulp(ulpmc, W_TCB_TIMESTAMP, V_TCB_TIMESTAMP(0x7FFFFULL << 11), 0, toep->tid); commit_wrq_wr(toep->ctrlq, wrh, &cookie); /* Update the software toepcb and tcpcb. */ toep->params.mtu_idx = idx; tp->t_maxseg = mtus[toep->params.mtu_idx]; if (inp->inp_inc.inc_flags & INC_ISIPV6) tp->t_maxseg -= sizeof(struct ip6_hdr) + sizeof(struct tcphdr); else tp->t_maxseg -= sizeof(struct ip) + sizeof(struct tcphdr); toep->params.emss = tp->t_maxseg; if (tp->t_flags & TF_RCVD_TSTMP) toep->params.emss -= TCPOLEN_TSTAMP_APPA; /* Update the firmware flowc. */ send_mss_flowc_wr(sc, toep); /* Update the MTU in the kernel's hostcache. */ if (sc->tt.update_hc_on_pmtu_change != 0) { struct in_conninfo inc = {0}; inc.inc_fibnum = inp->inp_inc.inc_fibnum; if (inp->inp_inc.inc_flags & INC_ISIPV6) { inc.inc_flags |= INC_ISIPV6; inc.inc6_faddr = inp->inp_inc.inc6_faddr; } else { inc.inc_faddr = inp->inp_inc.inc_faddr; } tcp_hc_updatemtu(&inc, mtu); } CTR6(KTR_CXGBE, "%s: tid %d, mtu_idx %u (%u), t_maxseg %u, emss %u", __func__, toep->tid, toep->params.mtu_idx, mtus[toep->params.mtu_idx], tp->t_maxseg, toep->params.emss); } /* * The TOE driver will not receive any more CPLs for the tid associated with the * toepcb; release the hold on the inpcb. */ void final_cpl_received(struct toepcb *toep) { struct inpcb *inp = toep->inp; bool need_wakeup; KASSERT(inp != NULL, ("%s: inp is NULL", __func__)); INP_WLOCK_ASSERT(inp); KASSERT(toep->flags & TPF_CPL_PENDING, ("%s: CPL not pending already?", __func__)); CTR6(KTR_CXGBE, "%s: tid %d, toep %p (0x%x), inp %p (0x%x)", __func__, toep->tid, toep, toep->flags, inp, inp->inp_flags); if (ulp_mode(toep) == ULP_MODE_TCPDDP) release_ddp_resources(toep); else if (ulp_mode(toep) == ULP_MODE_TLS) tls_detach(toep); toep->inp = NULL; need_wakeup = (toep->flags & TPF_WAITING_FOR_FINAL) != 0; toep->flags &= ~(TPF_CPL_PENDING | TPF_WAITING_FOR_FINAL); mbufq_drain(&toep->ulp_pduq); mbufq_drain(&toep->ulp_pdu_reclaimq); if (!(toep->flags & TPF_ATTACHED)) release_offload_resources(toep); if (!in_pcbrele_wlocked(inp)) INP_WUNLOCK(inp); if (need_wakeup) { struct mtx *lock = mtx_pool_find(mtxpool_sleep, toep); mtx_lock(lock); wakeup(toep); mtx_unlock(lock); } } void insert_tid(struct adapter *sc, int tid, void *ctx, int ntids) { struct tid_info *t = &sc->tids; MPASS(tid >= t->tid_base); MPASS(tid - t->tid_base < t->ntids); t->tid_tab[tid - t->tid_base] = ctx; atomic_add_int(&t->tids_in_use, ntids); } void * lookup_tid(struct adapter *sc, int tid) { struct tid_info *t = &sc->tids; return (t->tid_tab[tid - t->tid_base]); } void update_tid(struct adapter *sc, int tid, void *ctx) { struct tid_info *t = &sc->tids; t->tid_tab[tid - t->tid_base] = ctx; } void remove_tid(struct adapter *sc, int tid, int ntids) { struct tid_info *t = &sc->tids; t->tid_tab[tid - t->tid_base] = NULL; atomic_subtract_int(&t->tids_in_use, ntids); } /* * What mtu_idx to use, given a 4-tuple. Note that both s->mss and tcp_mssopt * have the MSS that we should advertise in our SYN. Advertised MSS doesn't * account for any TCP options so the effective MSS (only payload, no headers or * options) could be different. */ static int find_best_mtu_idx(struct adapter *sc, struct in_conninfo *inc, struct offload_settings *s) { unsigned short *mtus = &sc->params.mtus[0]; int i, mss, mtu; MPASS(inc != NULL); mss = s->mss > 0 ? s->mss : tcp_mssopt(inc); if (inc->inc_flags & INC_ISIPV6) mtu = mss + sizeof(struct ip6_hdr) + sizeof(struct tcphdr); else mtu = mss + sizeof(struct ip) + sizeof(struct tcphdr); for (i = 0; i < NMTUS - 1 && mtus[i + 1] <= mtu; i++) continue; return (i); } /* * Determine the receive window size for a socket. */ u_long select_rcv_wnd(struct socket *so) { unsigned long wnd; SOCKBUF_LOCK_ASSERT(&so->so_rcv); wnd = sbspace(&so->so_rcv); if (wnd < MIN_RCV_WND) wnd = MIN_RCV_WND; return min(wnd, MAX_RCV_WND); } int select_rcv_wscale(void) { int wscale = 0; unsigned long space = sb_max; if (space > MAX_RCV_WND) space = MAX_RCV_WND; while (wscale < TCP_MAX_WINSHIFT && (TCP_MAXWIN << wscale) < space) wscale++; return (wscale); } __be64 calc_options0(struct vi_info *vi, struct conn_params *cp) { uint64_t opt0 = 0; opt0 |= F_TCAM_BYPASS; MPASS(cp->wscale >= 0 && cp->wscale <= M_WND_SCALE); opt0 |= V_WND_SCALE(cp->wscale); MPASS(cp->mtu_idx >= 0 && cp->mtu_idx < NMTUS); opt0 |= V_MSS_IDX(cp->mtu_idx); MPASS(cp->ulp_mode >= 0 && cp->ulp_mode <= M_ULP_MODE); opt0 |= V_ULP_MODE(cp->ulp_mode); MPASS(cp->opt0_bufsize >= 0 && cp->opt0_bufsize <= M_RCV_BUFSIZ); opt0 |= V_RCV_BUFSIZ(cp->opt0_bufsize); MPASS(cp->l2t_idx >= 0 && cp->l2t_idx < vi->adapter->vres.l2t.size); opt0 |= V_L2T_IDX(cp->l2t_idx); opt0 |= V_SMAC_SEL(vi->smt_idx); opt0 |= V_TX_CHAN(vi->pi->tx_chan); MPASS(cp->keepalive == 0 || cp->keepalive == 1); opt0 |= V_KEEP_ALIVE(cp->keepalive); MPASS(cp->nagle == 0 || cp->nagle == 1); opt0 |= V_NAGLE(cp->nagle); return (htobe64(opt0)); } __be32 calc_options2(struct vi_info *vi, struct conn_params *cp) { uint32_t opt2 = 0; struct port_info *pi = vi->pi; struct adapter *sc = pi->adapter; /* * rx flow control, rx coalesce, congestion control, and tx pace are all * explicitly set by the driver. On T5+ the ISS is also set by the * driver to the value picked by the kernel. */ if (is_t4(sc)) { opt2 |= F_RX_FC_VALID | F_RX_COALESCE_VALID; opt2 |= F_CONG_CNTRL_VALID | F_PACE_VALID; } else { opt2 |= F_T5_OPT_2_VALID; /* all 4 valid */ opt2 |= F_T5_ISS; /* ISS provided in CPL */ } MPASS(cp->sack == 0 || cp->sack == 1); opt2 |= V_SACK_EN(cp->sack); MPASS(cp->tstamp == 0 || cp->tstamp == 1); opt2 |= V_TSTAMPS_EN(cp->tstamp); if (cp->wscale > 0) opt2 |= F_WND_SCALE_EN; MPASS(cp->ecn == 0 || cp->ecn == 1); opt2 |= V_CCTRL_ECN(cp->ecn); /* XXX: F_RX_CHANNEL for multiple rx c-chan support goes here. */ opt2 |= V_TX_QUEUE(sc->params.tp.tx_modq[pi->tx_chan]); opt2 |= V_PACE(0); opt2 |= F_RSS_QUEUE_VALID; opt2 |= V_RSS_QUEUE(sc->sge.ofld_rxq[cp->rxq_idx].iq.abs_id); MPASS(cp->cong_algo >= 0 && cp->cong_algo <= M_CONG_CNTRL); opt2 |= V_CONG_CNTRL(cp->cong_algo); MPASS(cp->rx_coalesce == 0 || cp->rx_coalesce == 1); if (cp->rx_coalesce == 1) opt2 |= V_RX_COALESCE(M_RX_COALESCE); opt2 |= V_RX_FC_DDP(0) | V_RX_FC_DISABLE(0); #ifdef USE_DDP_RX_FLOW_CONTROL if (cp->ulp_mode == ULP_MODE_TCPDDP) opt2 |= F_RX_FC_DDP; #endif return (htobe32(opt2)); } uint64_t select_ntuple(struct vi_info *vi, struct l2t_entry *e) { struct adapter *sc = vi->adapter; struct tp_params *tp = &sc->params.tp; uint64_t ntuple = 0; /* * Initialize each of the fields which we care about which are present * in the Compressed Filter Tuple. */ if (tp->vlan_shift >= 0 && EVL_VLANOFTAG(e->vlan) != CPL_L2T_VLAN_NONE) ntuple |= (uint64_t)(F_FT_VLAN_VLD | e->vlan) << tp->vlan_shift; if (tp->port_shift >= 0) ntuple |= (uint64_t)e->lport << tp->port_shift; if (tp->protocol_shift >= 0) ntuple |= (uint64_t)IPPROTO_TCP << tp->protocol_shift; if (tp->vnic_shift >= 0 && tp->vnic_mode == FW_VNIC_MODE_PF_VF) { ntuple |= (uint64_t)(V_FT_VNID_ID_VF(vi->vin) | V_FT_VNID_ID_PF(sc->pf) | V_FT_VNID_ID_VLD(vi->vfvld)) << tp->vnic_shift; } if (is_t4(sc)) return (htobe32((uint32_t)ntuple)); else return (htobe64(V_FILTER_TUPLE(ntuple))); } static int is_tls_sock(struct socket *so, struct adapter *sc) { struct inpcb *inp = sotoinpcb(so); int i, rc; /* XXX: Eventually add a SO_WANT_TLS socket option perhaps? */ rc = 0; ADAPTER_LOCK(sc); for (i = 0; i < sc->tt.num_tls_rx_ports; i++) { if (inp->inp_lport == htons(sc->tt.tls_rx_ports[i]) || inp->inp_fport == htons(sc->tt.tls_rx_ports[i])) { rc = 1; break; } } ADAPTER_UNLOCK(sc); return (rc); } /* * Initialize various connection parameters. */ void init_conn_params(struct vi_info *vi , struct offload_settings *s, struct in_conninfo *inc, struct socket *so, const struct tcp_options *tcpopt, int16_t l2t_idx, struct conn_params *cp) { struct port_info *pi = vi->pi; struct adapter *sc = pi->adapter; struct tom_tunables *tt = &sc->tt; struct inpcb *inp = sotoinpcb(so); struct tcpcb *tp = intotcpcb(inp); u_long wnd; u_int q_idx; MPASS(s->offload != 0); /* Congestion control algorithm */ if (s->cong_algo >= 0) cp->cong_algo = s->cong_algo & M_CONG_CNTRL; else if (sc->tt.cong_algorithm >= 0) cp->cong_algo = tt->cong_algorithm & M_CONG_CNTRL; else { struct cc_algo *cc = CC_ALGO(tp); if (strcasecmp(cc->name, "reno") == 0) cp->cong_algo = CONG_ALG_RENO; else if (strcasecmp(cc->name, "tahoe") == 0) cp->cong_algo = CONG_ALG_TAHOE; if (strcasecmp(cc->name, "newreno") == 0) cp->cong_algo = CONG_ALG_NEWRENO; if (strcasecmp(cc->name, "highspeed") == 0) cp->cong_algo = CONG_ALG_HIGHSPEED; else { /* * Use newreno in case the algorithm selected by the * host stack is not supported by the hardware. */ cp->cong_algo = CONG_ALG_NEWRENO; } } /* Tx traffic scheduling class. */ if (s->sched_class >= 0 && s->sched_class < sc->params.nsched_cls) cp->tc_idx = s->sched_class; else cp->tc_idx = -1; /* Nagle's algorithm. */ if (s->nagle >= 0) cp->nagle = s->nagle > 0 ? 1 : 0; else cp->nagle = tp->t_flags & TF_NODELAY ? 0 : 1; /* TCP Keepalive. */ if (V_tcp_always_keepalive || so_options_get(so) & SO_KEEPALIVE) cp->keepalive = 1; else cp->keepalive = 0; /* Optimization that's specific to T5 @ 40G. */ if (tt->tx_align >= 0) cp->tx_align = tt->tx_align > 0 ? 1 : 0; else if (chip_id(sc) == CHELSIO_T5 && (port_top_speed(pi) > 10 || sc->params.nports > 2)) cp->tx_align = 1; else cp->tx_align = 0; /* ULP mode. */ if (can_tls_offload(sc) && (s->tls > 0 || (s->tls < 0 && is_tls_sock(so, sc)))) cp->ulp_mode = ULP_MODE_TLS; else if (s->ddp > 0 || (s->ddp < 0 && sc->tt.ddp && (so_options_get(so) & SO_NO_DDP) == 0)) cp->ulp_mode = ULP_MODE_TCPDDP; else cp->ulp_mode = ULP_MODE_NONE; /* Rx coalescing. */ if (s->rx_coalesce >= 0) cp->rx_coalesce = s->rx_coalesce > 0 ? 1 : 0; else if (cp->ulp_mode == ULP_MODE_TLS) cp->rx_coalesce = 0; else if (tt->rx_coalesce >= 0) cp->rx_coalesce = tt->rx_coalesce > 0 ? 1 : 0; else cp->rx_coalesce = 1; /* default */ /* * Index in the PMTU table. This controls the MSS that we announce in * our SYN initially, but after ESTABLISHED it controls the MSS that we * use to send data. */ cp->mtu_idx = find_best_mtu_idx(sc, inc, s); /* Tx queue for this connection. */ if (s->txq == QUEUE_RANDOM) q_idx = arc4random(); else if (s->txq == QUEUE_ROUNDROBIN) q_idx = atomic_fetchadd_int(&vi->txq_rr, 1); else q_idx = s->txq; cp->txq_idx = vi->first_ofld_txq + q_idx % vi->nofldtxq; /* Rx queue for this connection. */ if (s->rxq == QUEUE_RANDOM) q_idx = arc4random(); else if (s->rxq == QUEUE_ROUNDROBIN) q_idx = atomic_fetchadd_int(&vi->rxq_rr, 1); else q_idx = s->rxq; cp->rxq_idx = vi->first_ofld_rxq + q_idx % vi->nofldrxq; if (SOLISTENING(so)) { /* Passive open */ MPASS(tcpopt != NULL); /* TCP timestamp option */ if (tcpopt->tstamp && (s->tstamp > 0 || (s->tstamp < 0 && V_tcp_do_rfc1323))) cp->tstamp = 1; else cp->tstamp = 0; /* SACK */ if (tcpopt->sack && (s->sack > 0 || (s->sack < 0 && V_tcp_do_sack))) cp->sack = 1; else cp->sack = 0; /* Receive window scaling. */ if (tcpopt->wsf > 0 && tcpopt->wsf < 15 && V_tcp_do_rfc1323) cp->wscale = select_rcv_wscale(); else cp->wscale = 0; /* ECN */ if (tcpopt->ecn && /* XXX: review. */ (s->ecn > 0 || (s->ecn < 0 && V_tcp_do_ecn))) cp->ecn = 1; else cp->ecn = 0; wnd = max(so->sol_sbrcv_hiwat, MIN_RCV_WND); cp->opt0_bufsize = min(wnd >> 10, M_RCV_BUFSIZ); if (tt->sndbuf > 0) cp->sndbuf = tt->sndbuf; else if (so->sol_sbsnd_flags & SB_AUTOSIZE && V_tcp_do_autosndbuf) cp->sndbuf = 256 * 1024; else cp->sndbuf = so->sol_sbsnd_hiwat; } else { /* Active open */ /* TCP timestamp option */ if (s->tstamp > 0 || (s->tstamp < 0 && (tp->t_flags & TF_REQ_TSTMP))) cp->tstamp = 1; else cp->tstamp = 0; /* SACK */ if (s->sack > 0 || (s->sack < 0 && (tp->t_flags & TF_SACK_PERMIT))) cp->sack = 1; else cp->sack = 0; /* Receive window scaling */ if (tp->t_flags & TF_REQ_SCALE) cp->wscale = select_rcv_wscale(); else cp->wscale = 0; /* ECN */ if (s->ecn > 0 || (s->ecn < 0 && V_tcp_do_ecn == 1)) cp->ecn = 1; else cp->ecn = 0; SOCKBUF_LOCK(&so->so_rcv); wnd = max(select_rcv_wnd(so), MIN_RCV_WND); SOCKBUF_UNLOCK(&so->so_rcv); cp->opt0_bufsize = min(wnd >> 10, M_RCV_BUFSIZ); if (tt->sndbuf > 0) cp->sndbuf = tt->sndbuf; else { SOCKBUF_LOCK(&so->so_snd); if (so->so_snd.sb_flags & SB_AUTOSIZE && V_tcp_do_autosndbuf) cp->sndbuf = 256 * 1024; else cp->sndbuf = so->so_snd.sb_hiwat; SOCKBUF_UNLOCK(&so->so_snd); } } cp->l2t_idx = l2t_idx; /* This will be initialized on ESTABLISHED. */ cp->emss = 0; } int negative_advice(int status) { return (status == CPL_ERR_RTX_NEG_ADVICE || status == CPL_ERR_PERSIST_NEG_ADVICE || status == CPL_ERR_KEEPALV_NEG_ADVICE); } static int alloc_tid_tab(struct tid_info *t, int flags) { MPASS(t->ntids > 0); MPASS(t->tid_tab == NULL); t->tid_tab = malloc(t->ntids * sizeof(*t->tid_tab), M_CXGBE, M_ZERO | flags); if (t->tid_tab == NULL) return (ENOMEM); atomic_store_rel_int(&t->tids_in_use, 0); return (0); } static void free_tid_tab(struct tid_info *t) { KASSERT(t->tids_in_use == 0, ("%s: %d tids still in use.", __func__, t->tids_in_use)); free(t->tid_tab, M_CXGBE); t->tid_tab = NULL; } static int alloc_stid_tab(struct tid_info *t, int flags) { MPASS(t->nstids > 0); MPASS(t->stid_tab == NULL); t->stid_tab = malloc(t->nstids * sizeof(*t->stid_tab), M_CXGBE, M_ZERO | flags); if (t->stid_tab == NULL) return (ENOMEM); mtx_init(&t->stid_lock, "stid lock", NULL, MTX_DEF); t->stids_in_use = 0; TAILQ_INIT(&t->stids); t->nstids_free_head = t->nstids; return (0); } static void free_stid_tab(struct tid_info *t) { KASSERT(t->stids_in_use == 0, ("%s: %d tids still in use.", __func__, t->stids_in_use)); if (mtx_initialized(&t->stid_lock)) mtx_destroy(&t->stid_lock); free(t->stid_tab, M_CXGBE); t->stid_tab = NULL; } static void free_tid_tabs(struct tid_info *t) { free_tid_tab(t); free_stid_tab(t); } static int alloc_tid_tabs(struct tid_info *t) { int rc; rc = alloc_tid_tab(t, M_NOWAIT); if (rc != 0) goto failed; rc = alloc_stid_tab(t, M_NOWAIT); if (rc != 0) goto failed; return (0); failed: free_tid_tabs(t); return (rc); } static inline void alloc_tcb_history(struct adapter *sc, struct tom_data *td) { if (sc->tids.ntids == 0 || sc->tids.ntids > 1024) return; rw_init(&td->tcb_history_lock, "TCB history"); td->tcb_history = malloc(sc->tids.ntids * sizeof(*td->tcb_history), M_CXGBE, M_ZERO | M_NOWAIT); td->dupack_threshold = G_DUPACKTHRESH(t4_read_reg(sc, A_TP_PARA_REG0)); } static inline void free_tcb_history(struct adapter *sc, struct tom_data *td) { #ifdef INVARIANTS int i; if (td->tcb_history != NULL) { for (i = 0; i < sc->tids.ntids; i++) { MPASS(td->tcb_history[i] == NULL); } } #endif free(td->tcb_history, M_CXGBE); if (rw_initialized(&td->tcb_history_lock)) rw_destroy(&td->tcb_history_lock); } static void free_tom_data(struct adapter *sc, struct tom_data *td) { ASSERT_SYNCHRONIZED_OP(sc); KASSERT(TAILQ_EMPTY(&td->toep_list), ("%s: TOE PCB list is not empty.", __func__)); KASSERT(td->lctx_count == 0, ("%s: lctx hash table is not empty.", __func__)); t4_free_ppod_region(&td->pr); if (td->listen_mask != 0) hashdestroy(td->listen_hash, M_CXGBE, td->listen_mask); if (mtx_initialized(&td->unsent_wr_lock)) mtx_destroy(&td->unsent_wr_lock); if (mtx_initialized(&td->lctx_hash_lock)) mtx_destroy(&td->lctx_hash_lock); if (mtx_initialized(&td->toep_list_lock)) mtx_destroy(&td->toep_list_lock); free_tcb_history(sc, td); free_tid_tabs(&sc->tids); free(td, M_CXGBE); } static char * prepare_pkt(int open_type, uint16_t vtag, struct inpcb *inp, int *pktlen, int *buflen) { char *pkt; struct tcphdr *th; int ipv6, len; const int maxlen = max(sizeof(struct ether_header), sizeof(struct ether_vlan_header)) + max(sizeof(struct ip), sizeof(struct ip6_hdr)) + sizeof(struct tcphdr); MPASS(open_type == OPEN_TYPE_ACTIVE || open_type == OPEN_TYPE_LISTEN); pkt = malloc(maxlen, M_CXGBE, M_ZERO | M_NOWAIT); if (pkt == NULL) return (NULL); ipv6 = inp->inp_vflag & INP_IPV6; len = 0; if (EVL_VLANOFTAG(vtag) == 0xfff) { struct ether_header *eh = (void *)pkt; if (ipv6) eh->ether_type = htons(ETHERTYPE_IPV6); else eh->ether_type = htons(ETHERTYPE_IP); len += sizeof(*eh); } else { struct ether_vlan_header *evh = (void *)pkt; evh->evl_encap_proto = htons(ETHERTYPE_VLAN); evh->evl_tag = htons(vtag); if (ipv6) evh->evl_proto = htons(ETHERTYPE_IPV6); else evh->evl_proto = htons(ETHERTYPE_IP); len += sizeof(*evh); } if (ipv6) { struct ip6_hdr *ip6 = (void *)&pkt[len]; ip6->ip6_vfc = IPV6_VERSION; ip6->ip6_plen = htons(sizeof(struct tcphdr)); ip6->ip6_nxt = IPPROTO_TCP; if (open_type == OPEN_TYPE_ACTIVE) { ip6->ip6_src = inp->in6p_laddr; ip6->ip6_dst = inp->in6p_faddr; } else if (open_type == OPEN_TYPE_LISTEN) { ip6->ip6_src = inp->in6p_laddr; ip6->ip6_dst = ip6->ip6_src; } len += sizeof(*ip6); } else { struct ip *ip = (void *)&pkt[len]; ip->ip_v = IPVERSION; ip->ip_hl = sizeof(*ip) >> 2; ip->ip_tos = inp->inp_ip_tos; ip->ip_len = htons(sizeof(struct ip) + sizeof(struct tcphdr)); ip->ip_ttl = inp->inp_ip_ttl; ip->ip_p = IPPROTO_TCP; if (open_type == OPEN_TYPE_ACTIVE) { ip->ip_src = inp->inp_laddr; ip->ip_dst = inp->inp_faddr; } else if (open_type == OPEN_TYPE_LISTEN) { ip->ip_src = inp->inp_laddr; ip->ip_dst = ip->ip_src; } len += sizeof(*ip); } th = (void *)&pkt[len]; if (open_type == OPEN_TYPE_ACTIVE) { th->th_sport = inp->inp_lport; /* network byte order already */ th->th_dport = inp->inp_fport; /* ditto */ } else if (open_type == OPEN_TYPE_LISTEN) { th->th_sport = inp->inp_lport; /* network byte order already */ th->th_dport = th->th_sport; } len += sizeof(th); *pktlen = *buflen = len; return (pkt); } const struct offload_settings * lookup_offload_policy(struct adapter *sc, int open_type, struct mbuf *m, uint16_t vtag, struct inpcb *inp) { const struct t4_offload_policy *op; char *pkt; struct offload_rule *r; int i, matched, pktlen, buflen; static const struct offload_settings allow_offloading_settings = { .offload = 1, .rx_coalesce = -1, .cong_algo = -1, .sched_class = -1, .tstamp = -1, .sack = -1, .nagle = -1, .ecn = -1, .ddp = -1, .tls = -1, .txq = QUEUE_RANDOM, .rxq = QUEUE_RANDOM, .mss = -1, }; static const struct offload_settings disallow_offloading_settings = { .offload = 0, /* rest is irrelevant when offload is off. */ }; rw_assert(&sc->policy_lock, RA_LOCKED); /* * If there's no Connection Offloading Policy attached to the device * then we need to return a default static policy. If * "cop_managed_offloading" is true, then we need to disallow * offloading until a COP is attached to the device. Otherwise we * allow offloading ... */ op = sc->policy; if (op == NULL) { if (sc->tt.cop_managed_offloading) return (&disallow_offloading_settings); else return (&allow_offloading_settings); } switch (open_type) { case OPEN_TYPE_ACTIVE: case OPEN_TYPE_LISTEN: pkt = prepare_pkt(open_type, vtag, inp, &pktlen, &buflen); break; case OPEN_TYPE_PASSIVE: MPASS(m != NULL); pkt = mtod(m, char *); MPASS(*pkt == CPL_PASS_ACCEPT_REQ); pkt += sizeof(struct cpl_pass_accept_req); pktlen = m->m_pkthdr.len - sizeof(struct cpl_pass_accept_req); buflen = m->m_len - sizeof(struct cpl_pass_accept_req); break; default: MPASS(0); return (&disallow_offloading_settings); } if (pkt == NULL || pktlen == 0 || buflen == 0) return (&disallow_offloading_settings); matched = 0; r = &op->rule[0]; for (i = 0; i < op->nrules; i++, r++) { if (r->open_type != open_type && r->open_type != OPEN_TYPE_DONTCARE) { continue; } matched = bpf_filter(r->bpf_prog.bf_insns, pkt, pktlen, buflen); if (matched) break; } if (open_type == OPEN_TYPE_ACTIVE || open_type == OPEN_TYPE_LISTEN) free(pkt, M_CXGBE); return (matched ? &r->settings : &disallow_offloading_settings); } static void reclaim_wr_resources(void *arg, int count) { struct tom_data *td = arg; STAILQ_HEAD(, wrqe) twr_list = STAILQ_HEAD_INITIALIZER(twr_list); struct cpl_act_open_req *cpl; u_int opcode, atid, tid; struct wrqe *wr; struct adapter *sc = td_adapter(td); mtx_lock(&td->unsent_wr_lock); STAILQ_SWAP(&td->unsent_wr_list, &twr_list, wrqe); mtx_unlock(&td->unsent_wr_lock); while ((wr = STAILQ_FIRST(&twr_list)) != NULL) { STAILQ_REMOVE_HEAD(&twr_list, link); cpl = wrtod(wr); opcode = GET_OPCODE(cpl); switch (opcode) { case CPL_ACT_OPEN_REQ: case CPL_ACT_OPEN_REQ6: atid = G_TID_TID(be32toh(OPCODE_TID(cpl))); CTR2(KTR_CXGBE, "%s: atid %u ", __func__, atid); act_open_failure_cleanup(sc, atid, EHOSTUNREACH); free(wr, M_CXGBE); break; case CPL_PASS_ACCEPT_RPL: tid = GET_TID(cpl); CTR2(KTR_CXGBE, "%s: tid %u ", __func__, tid); synack_failure_cleanup(sc, tid); free(wr, M_CXGBE); break; default: log(LOG_ERR, "%s: leaked work request %p, wr_len %d, " "opcode %x\n", __func__, wr, wr->wr_len, opcode); /* WR not freed here; go look at it with a debugger. */ } } } /* * Ground control to Major TOM * Commencing countdown, engines on */ static int t4_tom_activate(struct adapter *sc) { struct tom_data *td; struct toedev *tod; struct vi_info *vi; int i, rc, v; ASSERT_SYNCHRONIZED_OP(sc); /* per-adapter softc for TOM */ td = malloc(sizeof(*td), M_CXGBE, M_ZERO | M_NOWAIT); if (td == NULL) return (ENOMEM); /* List of TOE PCBs and associated lock */ mtx_init(&td->toep_list_lock, "PCB list lock", NULL, MTX_DEF); TAILQ_INIT(&td->toep_list); /* Listen context */ mtx_init(&td->lctx_hash_lock, "lctx hash lock", NULL, MTX_DEF); td->listen_hash = hashinit_flags(LISTEN_HASH_SIZE, M_CXGBE, &td->listen_mask, HASH_NOWAIT); /* List of WRs for which L2 resolution failed */ mtx_init(&td->unsent_wr_lock, "Unsent WR list lock", NULL, MTX_DEF); STAILQ_INIT(&td->unsent_wr_list); TASK_INIT(&td->reclaim_wr_resources, 0, reclaim_wr_resources, td); /* TID tables */ rc = alloc_tid_tabs(&sc->tids); if (rc != 0) goto done; rc = t4_init_ppod_region(&td->pr, &sc->vres.ddp, t4_read_reg(sc, A_ULP_RX_TDDP_PSZ), "TDDP page pods"); if (rc != 0) goto done; t4_set_reg_field(sc, A_ULP_RX_TDDP_TAGMASK, V_TDDPTAGMASK(M_TDDPTAGMASK), td->pr.pr_tag_mask); alloc_tcb_history(sc, td); /* toedev ops */ tod = &td->tod; init_toedev(tod); tod->tod_softc = sc; tod->tod_connect = t4_connect; tod->tod_listen_start = t4_listen_start; tod->tod_listen_stop = t4_listen_stop; tod->tod_rcvd = t4_rcvd; tod->tod_output = t4_tod_output; tod->tod_send_rst = t4_send_rst; tod->tod_send_fin = t4_send_fin; tod->tod_pcb_detach = t4_pcb_detach; tod->tod_l2_update = t4_l2_update; tod->tod_syncache_added = t4_syncache_added; tod->tod_syncache_removed = t4_syncache_removed; tod->tod_syncache_respond = t4_syncache_respond; tod->tod_offload_socket = t4_offload_socket; tod->tod_ctloutput = t4_ctloutput; tod->tod_tcp_info = t4_tcp_info; #ifdef KERN_TLS tod->tod_alloc_tls_session = t4_alloc_tls_session; #endif tod->tod_pmtu_update = t4_pmtu_update; for_each_port(sc, i) { for_each_vi(sc->port[i], v, vi) { TOEDEV(vi->ifp) = &td->tod; } } sc->tom_softc = td; register_toedev(sc->tom_softc); done: if (rc != 0) free_tom_data(sc, td); return (rc); } static int t4_tom_deactivate(struct adapter *sc) { int rc = 0; struct tom_data *td = sc->tom_softc; ASSERT_SYNCHRONIZED_OP(sc); if (td == NULL) return (0); /* XXX. KASSERT? */ if (sc->offload_map != 0) return (EBUSY); /* at least one port has IFCAP_TOE enabled */ if (uld_active(sc, ULD_IWARP) || uld_active(sc, ULD_ISCSI)) return (EBUSY); /* both iWARP and iSCSI rely on the TOE. */ mtx_lock(&td->toep_list_lock); if (!TAILQ_EMPTY(&td->toep_list)) rc = EBUSY; mtx_unlock(&td->toep_list_lock); mtx_lock(&td->lctx_hash_lock); if (td->lctx_count > 0) rc = EBUSY; mtx_unlock(&td->lctx_hash_lock); taskqueue_drain(taskqueue_thread, &td->reclaim_wr_resources); mtx_lock(&td->unsent_wr_lock); if (!STAILQ_EMPTY(&td->unsent_wr_list)) rc = EBUSY; mtx_unlock(&td->unsent_wr_lock); if (rc == 0) { unregister_toedev(sc->tom_softc); free_tom_data(sc, td); sc->tom_softc = NULL; } return (rc); } static int t4_aio_queue_tom(struct socket *so, struct kaiocb *job) { struct tcpcb *tp = so_sototcpcb(so); struct toepcb *toep = tp->t_toe; int error; /* * No lock is needed as TOE sockets never change between * active and passive. */ if (SOLISTENING(so)) return (EINVAL); if (ulp_mode(toep) == ULP_MODE_TCPDDP) { error = t4_aio_queue_ddp(so, job); if (error != EOPNOTSUPP) return (error); } return (t4_aio_queue_aiotx(so, job)); } static int t4_tom_mod_load(void) { /* CPL handlers */ t4_register_cpl_handler(CPL_GET_TCB_RPL, do_get_tcb_rpl); t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL, do_l2t_write_rpl2, CPL_COOKIE_TOM); t4_init_connect_cpl_handlers(); t4_init_listen_cpl_handlers(); t4_init_cpl_io_handlers(); t4_ddp_mod_load(); t4_tls_mod_load(); bcopy(&tcp_protosw, &toe_protosw, sizeof(toe_protosw)); toe_protosw.pr_aio_queue = t4_aio_queue_tom; bcopy(&tcp6_protosw, &toe6_protosw, sizeof(toe6_protosw)); toe6_protosw.pr_aio_queue = t4_aio_queue_tom; return (t4_register_uld(&tom_uld_info)); } static void tom_uninit(struct adapter *sc, void *arg __unused) { if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4tomun")) return; /* Try to free resources (works only if no port has IFCAP_TOE) */ if (uld_active(sc, ULD_TOM)) t4_deactivate_uld(sc, ULD_TOM); end_synchronized_op(sc, 0); } static int t4_tom_mod_unload(void) { t4_iterate(tom_uninit, NULL); if (t4_unregister_uld(&tom_uld_info) == EBUSY) return (EBUSY); t4_tls_mod_unload(); t4_ddp_mod_unload(); t4_uninit_connect_cpl_handlers(); t4_uninit_listen_cpl_handlers(); t4_uninit_cpl_io_handlers(); t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL, NULL, CPL_COOKIE_TOM); t4_register_cpl_handler(CPL_GET_TCB_RPL, NULL); return (0); } #endif /* TCP_OFFLOAD */ static int t4_tom_modevent(module_t mod, int cmd, void *arg) { int rc = 0; #ifdef TCP_OFFLOAD switch (cmd) { case MOD_LOAD: rc = t4_tom_mod_load(); break; case MOD_UNLOAD: rc = t4_tom_mod_unload(); break; default: rc = EINVAL; } #else printf("t4_tom: compiled without TCP_OFFLOAD support.\n"); rc = EOPNOTSUPP; #endif return (rc); } static moduledata_t t4_tom_moddata= { "t4_tom", t4_tom_modevent, 0 }; MODULE_VERSION(t4_tom, 1); MODULE_DEPEND(t4_tom, toecore, 1, 1, 1); MODULE_DEPEND(t4_tom, t4nex, 1, 1, 1); DECLARE_MODULE(t4_tom, t4_tom_moddata, SI_SUB_EXEC, SI_ORDER_ANY);