/*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2012 Chelsio Communications, Inc. * All rights reserved. * Written by: Navdeep Parhar * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define TCPSTATES #include #include #include #include #include #include #include #include #include #include #include #ifdef TCP_OFFLOAD #include "common/common.h" #include "common/t4_msg.h" #include "common/t4_regs.h" #include "common/t4_tcb.h" #include "tom/t4_tom.h" /* * Use the 'backend3' field in AIO jobs to store the amount of data * received by the AIO job so far. */ #define aio_received backend3 static void aio_ddp_requeue_task(void *context, int pending); static void ddp_complete_all(struct toepcb *toep, int error); static void t4_aio_cancel_active(struct kaiocb *job); static void t4_aio_cancel_queued(struct kaiocb *job); static TAILQ_HEAD(, pageset) ddp_orphan_pagesets; static struct mtx ddp_orphan_pagesets_lock; static struct task ddp_orphan_task; #define MAX_DDP_BUFFER_SIZE (M_TCB_RX_DDP_BUF0_LEN) /* * A page set holds information about a buffer used for DDP. The page * set holds resources such as the VM pages backing the buffer (either * held or wired) and the page pods associated with the buffer. * Recently used page sets are cached to allow for efficient reuse of * buffers (avoiding the need to re-fault in pages, hold them, etc.). * Note that cached page sets keep the backing pages wired. The * number of wired pages is capped by only allowing for two wired * pagesets per connection. This is not a perfect cap, but is a * trade-off for performance. * * If an application ping-pongs two buffers for a connection via * aio_read(2) then those buffers should remain wired and expensive VM * fault lookups should be avoided after each buffer has been used * once. If an application uses more than two buffers then this will * fall back to doing expensive VM fault lookups for each operation. */ static void free_pageset(struct tom_data *td, struct pageset *ps) { vm_page_t p; int i; if (ps->prsv.prsv_nppods > 0) t4_free_page_pods(&ps->prsv); for (i = 0; i < ps->npages; i++) { p = ps->pages[i]; vm_page_unwire(p, PQ_INACTIVE); } mtx_lock(&ddp_orphan_pagesets_lock); TAILQ_INSERT_TAIL(&ddp_orphan_pagesets, ps, link); taskqueue_enqueue(taskqueue_thread, &ddp_orphan_task); mtx_unlock(&ddp_orphan_pagesets_lock); } static void ddp_free_orphan_pagesets(void *context, int pending) { struct pageset *ps; mtx_lock(&ddp_orphan_pagesets_lock); while (!TAILQ_EMPTY(&ddp_orphan_pagesets)) { ps = TAILQ_FIRST(&ddp_orphan_pagesets); TAILQ_REMOVE(&ddp_orphan_pagesets, ps, link); mtx_unlock(&ddp_orphan_pagesets_lock); if (ps->vm) vmspace_free(ps->vm); free(ps, M_CXGBE); mtx_lock(&ddp_orphan_pagesets_lock); } mtx_unlock(&ddp_orphan_pagesets_lock); } static void recycle_pageset(struct toepcb *toep, struct pageset *ps) { DDP_ASSERT_LOCKED(toep); if (!(toep->ddp.flags & DDP_DEAD)) { KASSERT(toep->ddp.cached_count + toep->ddp.active_count < nitems(toep->ddp.db), ("too many wired pagesets")); TAILQ_INSERT_HEAD(&toep->ddp.cached_pagesets, ps, link); toep->ddp.cached_count++; } else free_pageset(toep->td, ps); } static void ddp_complete_one(struct kaiocb *job, int error) { long copied; /* * If this job had copied data out of the socket buffer before * it was cancelled, report it as a short read rather than an * error. */ copied = job->aio_received; if (copied != 0 || error == 0) aio_complete(job, copied, 0); else aio_complete(job, -1, error); } static void free_ddp_buffer(struct tom_data *td, struct ddp_buffer *db) { if (db->job) { /* * XXX: If we are un-offloading the socket then we * should requeue these on the socket somehow. If we * got a FIN from the remote end, then this completes * any remaining requests with an EOF read. */ if (!aio_clear_cancel_function(db->job)) ddp_complete_one(db->job, 0); } if (db->ps) free_pageset(td, db->ps); } void ddp_init_toep(struct toepcb *toep) { TAILQ_INIT(&toep->ddp.aiojobq); TASK_INIT(&toep->ddp.requeue_task, 0, aio_ddp_requeue_task, toep); toep->ddp.flags = DDP_OK; toep->ddp.active_id = -1; mtx_init(&toep->ddp.lock, "t4 ddp", NULL, MTX_DEF); } void ddp_uninit_toep(struct toepcb *toep) { mtx_destroy(&toep->ddp.lock); } void release_ddp_resources(struct toepcb *toep) { struct pageset *ps; int i; DDP_LOCK(toep); toep->ddp.flags |= DDP_DEAD; for (i = 0; i < nitems(toep->ddp.db); i++) { free_ddp_buffer(toep->td, &toep->ddp.db[i]); } while ((ps = TAILQ_FIRST(&toep->ddp.cached_pagesets)) != NULL) { TAILQ_REMOVE(&toep->ddp.cached_pagesets, ps, link); free_pageset(toep->td, ps); } ddp_complete_all(toep, 0); DDP_UNLOCK(toep); } #ifdef INVARIANTS void ddp_assert_empty(struct toepcb *toep) { int i; MPASS(!(toep->ddp.flags & DDP_TASK_ACTIVE)); for (i = 0; i < nitems(toep->ddp.db); i++) { MPASS(toep->ddp.db[i].job == NULL); MPASS(toep->ddp.db[i].ps == NULL); } MPASS(TAILQ_EMPTY(&toep->ddp.cached_pagesets)); MPASS(TAILQ_EMPTY(&toep->ddp.aiojobq)); } #endif static void complete_ddp_buffer(struct toepcb *toep, struct ddp_buffer *db, unsigned int db_idx) { unsigned int db_flag; toep->ddp.active_count--; if (toep->ddp.active_id == db_idx) { if (toep->ddp.active_count == 0) { KASSERT(toep->ddp.db[db_idx ^ 1].job == NULL, ("%s: active_count mismatch", __func__)); toep->ddp.active_id = -1; } else toep->ddp.active_id ^= 1; #ifdef VERBOSE_TRACES CTR3(KTR_CXGBE, "%s: tid %u, ddp_active_id = %d", __func__, toep->tid, toep->ddp.active_id); #endif } else { KASSERT(toep->ddp.active_count != 0 && toep->ddp.active_id != -1, ("%s: active count mismatch", __func__)); } db->cancel_pending = 0; db->job = NULL; recycle_pageset(toep, db->ps); db->ps = NULL; db_flag = db_idx == 1 ? DDP_BUF1_ACTIVE : DDP_BUF0_ACTIVE; KASSERT(toep->ddp.flags & db_flag, ("%s: DDP buffer not active. toep %p, ddp_flags 0x%x", __func__, toep, toep->ddp.flags)); toep->ddp.flags &= ~db_flag; } /* XXX: handle_ddp_data code duplication */ void insert_ddp_data(struct toepcb *toep, uint32_t n) { struct inpcb *inp = toep->inp; struct tcpcb *tp = intotcpcb(inp); struct ddp_buffer *db; struct kaiocb *job; size_t placed; long copied; unsigned int db_idx; #ifdef INVARIANTS unsigned int db_flag; #endif INP_WLOCK_ASSERT(inp); DDP_ASSERT_LOCKED(toep); tp->rcv_nxt += n; #ifndef USE_DDP_RX_FLOW_CONTROL KASSERT(tp->rcv_wnd >= n, ("%s: negative window size", __func__)); tp->rcv_wnd -= n; #endif CTR2(KTR_CXGBE, "%s: placed %u bytes before falling out of DDP", __func__, n); while (toep->ddp.active_count > 0) { MPASS(toep->ddp.active_id != -1); db_idx = toep->ddp.active_id; #ifdef INVARIANTS db_flag = db_idx == 1 ? DDP_BUF1_ACTIVE : DDP_BUF0_ACTIVE; #endif MPASS((toep->ddp.flags & db_flag) != 0); db = &toep->ddp.db[db_idx]; job = db->job; copied = job->aio_received; placed = n; if (placed > job->uaiocb.aio_nbytes - copied) placed = job->uaiocb.aio_nbytes - copied; if (placed > 0) job->msgrcv = 1; if (!aio_clear_cancel_function(job)) { /* * Update the copied length for when * t4_aio_cancel_active() completes this * request. */ job->aio_received += placed; } else if (copied + placed != 0) { CTR4(KTR_CXGBE, "%s: completing %p (copied %ld, placed %lu)", __func__, job, copied, placed); /* XXX: This always completes if there is some data. */ aio_complete(job, copied + placed, 0); } else if (aio_set_cancel_function(job, t4_aio_cancel_queued)) { TAILQ_INSERT_HEAD(&toep->ddp.aiojobq, job, list); toep->ddp.waiting_count++; } else aio_cancel(job); n -= placed; complete_ddp_buffer(toep, db, db_idx); } MPASS(n == 0); } /* SET_TCB_FIELD sent as a ULP command looks like this */ #define LEN__SET_TCB_FIELD_ULP (sizeof(struct ulp_txpkt) + \ sizeof(struct ulptx_idata) + sizeof(struct cpl_set_tcb_field_core)) /* RX_DATA_ACK sent as a ULP command looks like this */ #define LEN__RX_DATA_ACK_ULP (sizeof(struct ulp_txpkt) + \ sizeof(struct ulptx_idata) + sizeof(struct cpl_rx_data_ack_core)) static inline void * mk_set_tcb_field_ulp(struct ulp_txpkt *ulpmc, struct toepcb *toep, uint64_t word, uint64_t mask, uint64_t val) { struct ulptx_idata *ulpsc; struct cpl_set_tcb_field_core *req; ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0)); ulpmc->len = htobe32(howmany(LEN__SET_TCB_FIELD_ULP, 16)); ulpsc = (struct ulptx_idata *)(ulpmc + 1); ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); ulpsc->len = htobe32(sizeof(*req)); req = (struct cpl_set_tcb_field_core *)(ulpsc + 1); OPCODE_TID(req) = htobe32(MK_OPCODE_TID(CPL_SET_TCB_FIELD, toep->tid)); req->reply_ctrl = htobe16(V_NO_REPLY(1) | V_QUEUENO(toep->ofld_rxq->iq.abs_id)); req->word_cookie = htobe16(V_WORD(word) | V_COOKIE(0)); req->mask = htobe64(mask); req->val = htobe64(val); ulpsc = (struct ulptx_idata *)(req + 1); if (LEN__SET_TCB_FIELD_ULP % 16) { ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_NOOP)); ulpsc->len = htobe32(0); return (ulpsc + 1); } return (ulpsc); } static inline void * mk_rx_data_ack_ulp(struct ulp_txpkt *ulpmc, struct toepcb *toep) { struct ulptx_idata *ulpsc; struct cpl_rx_data_ack_core *req; ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0)); ulpmc->len = htobe32(howmany(LEN__RX_DATA_ACK_ULP, 16)); ulpsc = (struct ulptx_idata *)(ulpmc + 1); ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); ulpsc->len = htobe32(sizeof(*req)); req = (struct cpl_rx_data_ack_core *)(ulpsc + 1); OPCODE_TID(req) = htobe32(MK_OPCODE_TID(CPL_RX_DATA_ACK, toep->tid)); req->credit_dack = htobe32(F_RX_MODULATE_RX); ulpsc = (struct ulptx_idata *)(req + 1); if (LEN__RX_DATA_ACK_ULP % 16) { ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_NOOP)); ulpsc->len = htobe32(0); return (ulpsc + 1); } return (ulpsc); } static struct wrqe * mk_update_tcb_for_ddp(struct adapter *sc, struct toepcb *toep, int db_idx, struct pageset *ps, int offset, uint64_t ddp_flags, uint64_t ddp_flags_mask) { struct wrqe *wr; struct work_request_hdr *wrh; struct ulp_txpkt *ulpmc; int len; KASSERT(db_idx == 0 || db_idx == 1, ("%s: bad DDP buffer index %d", __func__, db_idx)); /* * We'll send a compound work request that has 3 SET_TCB_FIELDs and an * RX_DATA_ACK (with RX_MODULATE to speed up delivery). * * The work request header is 16B and always ends at a 16B boundary. * The ULPTX master commands that follow must all end at 16B boundaries * too so we round up the size to 16. */ len = sizeof(*wrh) + 3 * roundup2(LEN__SET_TCB_FIELD_ULP, 16) + roundup2(LEN__RX_DATA_ACK_ULP, 16); wr = alloc_wrqe(len, toep->ctrlq); if (wr == NULL) return (NULL); wrh = wrtod(wr); INIT_ULPTX_WRH(wrh, len, 1, 0); /* atomic */ ulpmc = (struct ulp_txpkt *)(wrh + 1); /* Write the buffer's tag */ ulpmc = mk_set_tcb_field_ulp(ulpmc, toep, W_TCB_RX_DDP_BUF0_TAG + db_idx, V_TCB_RX_DDP_BUF0_TAG(M_TCB_RX_DDP_BUF0_TAG), V_TCB_RX_DDP_BUF0_TAG(ps->prsv.prsv_tag)); /* Update the current offset in the DDP buffer and its total length */ if (db_idx == 0) ulpmc = mk_set_tcb_field_ulp(ulpmc, toep, W_TCB_RX_DDP_BUF0_OFFSET, V_TCB_RX_DDP_BUF0_OFFSET(M_TCB_RX_DDP_BUF0_OFFSET) | V_TCB_RX_DDP_BUF0_LEN(M_TCB_RX_DDP_BUF0_LEN), V_TCB_RX_DDP_BUF0_OFFSET(offset) | V_TCB_RX_DDP_BUF0_LEN(ps->len)); else ulpmc = mk_set_tcb_field_ulp(ulpmc, toep, W_TCB_RX_DDP_BUF1_OFFSET, V_TCB_RX_DDP_BUF1_OFFSET(M_TCB_RX_DDP_BUF1_OFFSET) | V_TCB_RX_DDP_BUF1_LEN((u64)M_TCB_RX_DDP_BUF1_LEN << 32), V_TCB_RX_DDP_BUF1_OFFSET(offset) | V_TCB_RX_DDP_BUF1_LEN((u64)ps->len << 32)); /* Update DDP flags */ ulpmc = mk_set_tcb_field_ulp(ulpmc, toep, W_TCB_RX_DDP_FLAGS, ddp_flags_mask, ddp_flags); /* Gratuitous RX_DATA_ACK with RX_MODULATE set to speed up delivery. */ ulpmc = mk_rx_data_ack_ulp(ulpmc, toep); return (wr); } static int handle_ddp_data(struct toepcb *toep, __be32 ddp_report, __be32 rcv_nxt, int len) { uint32_t report = be32toh(ddp_report); unsigned int db_idx; struct inpcb *inp = toep->inp; struct ddp_buffer *db; struct tcpcb *tp; struct socket *so; struct sockbuf *sb; struct kaiocb *job; long copied; db_idx = report & F_DDP_BUF_IDX ? 1 : 0; if (__predict_false(!(report & F_DDP_INV))) CXGBE_UNIMPLEMENTED("DDP buffer still valid"); INP_WLOCK(inp); so = inp_inpcbtosocket(inp); sb = &so->so_rcv; DDP_LOCK(toep); KASSERT(toep->ddp.active_id == db_idx, ("completed DDP buffer (%d) != active_id (%d) for tid %d", db_idx, toep->ddp.active_id, toep->tid)); db = &toep->ddp.db[db_idx]; job = db->job; if (__predict_false(inp->inp_flags & INP_DROPPED)) { /* * This can happen due to an administrative tcpdrop(8). * Just fail the request with ECONNRESET. */ CTR5(KTR_CXGBE, "%s: tid %u, seq 0x%x, len %d, inp_flags 0x%x", __func__, toep->tid, be32toh(rcv_nxt), len, inp->inp_flags); if (aio_clear_cancel_function(job)) ddp_complete_one(job, ECONNRESET); goto completed; } tp = intotcpcb(inp); /* * For RX_DDP_COMPLETE, len will be zero and rcv_nxt is the * sequence number of the next byte to receive. The length of * the data received for this message must be computed by * comparing the new and old values of rcv_nxt. * * For RX_DATA_DDP, len might be non-zero, but it is only the * length of the most recent DMA. It does not include the * total length of the data received since the previous update * for this DDP buffer. rcv_nxt is the sequence number of the * first received byte from the most recent DMA. */ len += be32toh(rcv_nxt) - tp->rcv_nxt; tp->rcv_nxt += len; tp->t_rcvtime = ticks; #ifndef USE_DDP_RX_FLOW_CONTROL KASSERT(tp->rcv_wnd >= len, ("%s: negative window size", __func__)); tp->rcv_wnd -= len; #endif #ifdef VERBOSE_TRACES CTR5(KTR_CXGBE, "%s: tid %u, DDP[%d] placed %d bytes (%#x)", __func__, toep->tid, db_idx, len, report); #endif /* receive buffer autosize */ MPASS(toep->vnet == so->so_vnet); CURVNET_SET(toep->vnet); SOCKBUF_LOCK(sb); if (sb->sb_flags & SB_AUTOSIZE && V_tcp_do_autorcvbuf && sb->sb_hiwat < V_tcp_autorcvbuf_max && len > (sbspace(sb) / 8 * 7)) { struct adapter *sc = td_adapter(toep->td); unsigned int hiwat = sb->sb_hiwat; unsigned int newsize = min(hiwat + sc->tt.autorcvbuf_inc, V_tcp_autorcvbuf_max); if (!sbreserve_locked(so, SO_RCV, newsize, NULL)) sb->sb_flags &= ~SB_AUTOSIZE; } SOCKBUF_UNLOCK(sb); CURVNET_RESTORE(); job->msgrcv = 1; if (db->cancel_pending) { /* * Update the job's length but defer completion to the * TCB_RPL callback. */ job->aio_received += len; goto out; } else if (!aio_clear_cancel_function(job)) { /* * Update the copied length for when * t4_aio_cancel_active() completes this request. */ job->aio_received += len; } else { copied = job->aio_received; #ifdef VERBOSE_TRACES CTR5(KTR_CXGBE, "%s: tid %u, completing %p (copied %ld, placed %d)", __func__, toep->tid, job, copied, len); #endif aio_complete(job, copied + len, 0); t4_rcvd(&toep->td->tod, tp); } completed: complete_ddp_buffer(toep, db, db_idx); if (toep->ddp.waiting_count > 0) ddp_queue_toep(toep); out: DDP_UNLOCK(toep); INP_WUNLOCK(inp); return (0); } void handle_ddp_indicate(struct toepcb *toep) { DDP_ASSERT_LOCKED(toep); MPASS(toep->ddp.active_count == 0); MPASS((toep->ddp.flags & (DDP_BUF0_ACTIVE | DDP_BUF1_ACTIVE)) == 0); if (toep->ddp.waiting_count == 0) { /* * The pending requests that triggered the request for an * an indicate were cancelled. Those cancels should have * already disabled DDP. Just ignore this as the data is * going into the socket buffer anyway. */ return; } CTR3(KTR_CXGBE, "%s: tid %d indicated (%d waiting)", __func__, toep->tid, toep->ddp.waiting_count); ddp_queue_toep(toep); } CTASSERT(CPL_COOKIE_DDP0 + 1 == CPL_COOKIE_DDP1); static int do_ddp_tcb_rpl(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) { struct adapter *sc = iq->adapter; const struct cpl_set_tcb_rpl *cpl = (const void *)(rss + 1); unsigned int tid = GET_TID(cpl); unsigned int db_idx; struct toepcb *toep; struct inpcb *inp; struct ddp_buffer *db; struct kaiocb *job; long copied; if (cpl->status != CPL_ERR_NONE) panic("XXX: tcp_rpl failed: %d", cpl->status); toep = lookup_tid(sc, tid); inp = toep->inp; switch (cpl->cookie) { case V_WORD(W_TCB_RX_DDP_FLAGS) | V_COOKIE(CPL_COOKIE_DDP0): case V_WORD(W_TCB_RX_DDP_FLAGS) | V_COOKIE(CPL_COOKIE_DDP1): /* * XXX: This duplicates a lot of code with handle_ddp_data(). */ db_idx = G_COOKIE(cpl->cookie) - CPL_COOKIE_DDP0; MPASS(db_idx < nitems(toep->ddp.db)); INP_WLOCK(inp); DDP_LOCK(toep); db = &toep->ddp.db[db_idx]; /* * handle_ddp_data() should leave the job around until * this callback runs once a cancel is pending. */ MPASS(db != NULL); MPASS(db->job != NULL); MPASS(db->cancel_pending); /* * XXX: It's not clear what happens if there is data * placed when the buffer is invalidated. I suspect we * need to read the TCB to see how much data was placed. * * For now this just pretends like nothing was placed. * * XXX: Note that if we did check the PCB we would need to * also take care of updating the tp, etc. */ job = db->job; copied = job->aio_received; if (copied == 0) { CTR2(KTR_CXGBE, "%s: cancelling %p", __func__, job); aio_cancel(job); } else { CTR3(KTR_CXGBE, "%s: completing %p (copied %ld)", __func__, job, copied); aio_complete(job, copied, 0); t4_rcvd(&toep->td->tod, intotcpcb(inp)); } complete_ddp_buffer(toep, db, db_idx); if (toep->ddp.waiting_count > 0) ddp_queue_toep(toep); DDP_UNLOCK(toep); INP_WUNLOCK(inp); break; default: panic("XXX: unknown tcb_rpl offset %#x, cookie %#x", G_WORD(cpl->cookie), G_COOKIE(cpl->cookie)); } return (0); } void handle_ddp_close(struct toepcb *toep, struct tcpcb *tp, __be32 rcv_nxt) { struct ddp_buffer *db; struct kaiocb *job; long copied; unsigned int db_idx; #ifdef INVARIANTS unsigned int db_flag; #endif int len, placed; INP_WLOCK_ASSERT(toep->inp); DDP_ASSERT_LOCKED(toep); /* - 1 is to ignore the byte for FIN */ len = be32toh(rcv_nxt) - tp->rcv_nxt - 1; tp->rcv_nxt += len; while (toep->ddp.active_count > 0) { MPASS(toep->ddp.active_id != -1); db_idx = toep->ddp.active_id; #ifdef INVARIANTS db_flag = db_idx == 1 ? DDP_BUF1_ACTIVE : DDP_BUF0_ACTIVE; #endif MPASS((toep->ddp.flags & db_flag) != 0); db = &toep->ddp.db[db_idx]; job = db->job; copied = job->aio_received; placed = len; if (placed > job->uaiocb.aio_nbytes - copied) placed = job->uaiocb.aio_nbytes - copied; if (placed > 0) job->msgrcv = 1; if (!aio_clear_cancel_function(job)) { /* * Update the copied length for when * t4_aio_cancel_active() completes this * request. */ job->aio_received += placed; } else { CTR4(KTR_CXGBE, "%s: tid %d completed buf %d len %d", __func__, toep->tid, db_idx, placed); aio_complete(job, copied + placed, 0); } len -= placed; complete_ddp_buffer(toep, db, db_idx); } MPASS(len == 0); ddp_complete_all(toep, 0); } #define DDP_ERR (F_DDP_PPOD_MISMATCH | F_DDP_LLIMIT_ERR | F_DDP_ULIMIT_ERR |\ F_DDP_PPOD_PARITY_ERR | F_DDP_PADDING_ERR | F_DDP_OFFSET_ERR |\ F_DDP_INVALID_TAG | F_DDP_COLOR_ERR | F_DDP_TID_MISMATCH |\ F_DDP_INVALID_PPOD | F_DDP_HDRCRC_ERR | F_DDP_DATACRC_ERR) extern cpl_handler_t t4_cpl_handler[]; static int do_rx_data_ddp(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) { struct adapter *sc = iq->adapter; const struct cpl_rx_data_ddp *cpl = (const void *)(rss + 1); unsigned int tid = GET_TID(cpl); uint32_t vld; struct toepcb *toep = lookup_tid(sc, tid); KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__)); KASSERT(toep->tid == tid, ("%s: toep tid/atid mismatch", __func__)); KASSERT(!(toep->flags & TPF_SYNQE), ("%s: toep %p claims to be a synq entry", __func__, toep)); vld = be32toh(cpl->ddpvld); if (__predict_false(vld & DDP_ERR)) { panic("%s: DDP error 0x%x (tid %d, toep %p)", __func__, vld, tid, toep); } if (ulp_mode(toep) == ULP_MODE_ISCSI) { t4_cpl_handler[CPL_RX_ISCSI_DDP](iq, rss, m); return (0); } handle_ddp_data(toep, cpl->u.ddp_report, cpl->seq, be16toh(cpl->len)); return (0); } static int do_rx_ddp_complete(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) { struct adapter *sc = iq->adapter; const struct cpl_rx_ddp_complete *cpl = (const void *)(rss + 1); unsigned int tid = GET_TID(cpl); struct toepcb *toep = lookup_tid(sc, tid); KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__)); KASSERT(toep->tid == tid, ("%s: toep tid/atid mismatch", __func__)); KASSERT(!(toep->flags & TPF_SYNQE), ("%s: toep %p claims to be a synq entry", __func__, toep)); handle_ddp_data(toep, cpl->ddp_report, cpl->rcv_nxt, 0); return (0); } static void enable_ddp(struct adapter *sc, struct toepcb *toep) { KASSERT((toep->ddp.flags & (DDP_ON | DDP_OK | DDP_SC_REQ)) == DDP_OK, ("%s: toep %p has bad ddp_flags 0x%x", __func__, toep, toep->ddp.flags)); CTR3(KTR_CXGBE, "%s: tid %u (time %u)", __func__, toep->tid, time_uptime); DDP_ASSERT_LOCKED(toep); toep->ddp.flags |= DDP_SC_REQ; t4_set_tcb_field(sc, toep->ctrlq, toep, W_TCB_RX_DDP_FLAGS, V_TF_DDP_OFF(1) | V_TF_DDP_INDICATE_OUT(1) | V_TF_DDP_BUF0_INDICATE(1) | V_TF_DDP_BUF1_INDICATE(1) | V_TF_DDP_BUF0_VALID(1) | V_TF_DDP_BUF1_VALID(1), V_TF_DDP_BUF0_INDICATE(1) | V_TF_DDP_BUF1_INDICATE(1), 0, 0); t4_set_tcb_field(sc, toep->ctrlq, toep, W_TCB_T_FLAGS, V_TF_RCV_COALESCE_ENABLE(1), 0, 0, 0); } static int calculate_hcf(int n1, int n2) { int a, b, t; if (n1 <= n2) { a = n1; b = n2; } else { a = n2; b = n1; } while (a != 0) { t = a; a = b % a; b = t; } return (b); } static inline int pages_to_nppods(int npages, int ddp_page_shift) { MPASS(ddp_page_shift >= PAGE_SHIFT); return (howmany(npages >> (ddp_page_shift - PAGE_SHIFT), PPOD_PAGES)); } static int alloc_page_pods(struct ppod_region *pr, u_int nppods, u_int pgsz_idx, struct ppod_reservation *prsv) { vmem_addr_t addr; /* relative to start of region */ if (vmem_alloc(pr->pr_arena, PPOD_SZ(nppods), M_NOWAIT | M_FIRSTFIT, &addr) != 0) return (ENOMEM); #ifdef VERBOSE_TRACES CTR5(KTR_CXGBE, "%-17s arena %p, addr 0x%08x, nppods %d, pgsz %d", __func__, pr->pr_arena, (uint32_t)addr & pr->pr_tag_mask, nppods, 1 << pr->pr_page_shift[pgsz_idx]); #endif /* * The hardware tagmask includes an extra invalid bit but the arena was * seeded with valid values only. An allocation out of this arena will * fit inside the tagmask but won't have the invalid bit set. */ MPASS((addr & pr->pr_tag_mask) == addr); MPASS((addr & pr->pr_invalid_bit) == 0); prsv->prsv_pr = pr; prsv->prsv_tag = V_PPOD_PGSZ(pgsz_idx) | addr; prsv->prsv_nppods = nppods; return (0); } static int t4_alloc_page_pods_for_vmpages(struct ppod_region *pr, vm_page_t *pages, int npages, struct ppod_reservation *prsv) { int i, hcf, seglen, idx, nppods; /* * The DDP page size is unrelated to the VM page size. We combine * contiguous physical pages into larger segments to get the best DDP * page size possible. This is the largest of the four sizes in * A_ULP_RX_TDDP_PSZ that evenly divides the HCF of the segment sizes in * the page list. */ hcf = 0; for (i = 0; i < npages; i++) { seglen = PAGE_SIZE; while (i < npages - 1 && VM_PAGE_TO_PHYS(pages[i]) + PAGE_SIZE == VM_PAGE_TO_PHYS(pages[i + 1])) { seglen += PAGE_SIZE; i++; } hcf = calculate_hcf(hcf, seglen); if (hcf < (1 << pr->pr_page_shift[1])) { idx = 0; goto have_pgsz; /* give up, short circuit */ } } #define PR_PAGE_MASK(x) ((1 << pr->pr_page_shift[(x)]) - 1) MPASS((hcf & PR_PAGE_MASK(0)) == 0); /* PAGE_SIZE is >= 4K everywhere */ for (idx = nitems(pr->pr_page_shift) - 1; idx > 0; idx--) { if ((hcf & PR_PAGE_MASK(idx)) == 0) break; } #undef PR_PAGE_MASK have_pgsz: MPASS(idx <= M_PPOD_PGSZ); nppods = pages_to_nppods(npages, pr->pr_page_shift[idx]); if (alloc_page_pods(pr, nppods, idx, prsv) != 0) return (ENOMEM); MPASS(prsv->prsv_nppods > 0); return (0); } int t4_alloc_page_pods_for_ps(struct ppod_region *pr, struct pageset *ps) { struct ppod_reservation *prsv = &ps->prsv; KASSERT(prsv->prsv_nppods == 0, ("%s: page pods already allocated", __func__)); return (t4_alloc_page_pods_for_vmpages(pr, ps->pages, ps->npages, prsv)); } int t4_alloc_page_pods_for_bio(struct ppod_region *pr, struct bio *bp, struct ppod_reservation *prsv) { MPASS(bp->bio_flags & BIO_UNMAPPED); return (t4_alloc_page_pods_for_vmpages(pr, bp->bio_ma, bp->bio_ma_n, prsv)); } int t4_alloc_page_pods_for_buf(struct ppod_region *pr, vm_offset_t buf, int len, struct ppod_reservation *prsv) { int hcf, seglen, idx, npages, nppods; uintptr_t start_pva, end_pva, pva, p1; MPASS(buf > 0); MPASS(len > 0); /* * The DDP page size is unrelated to the VM page size. We combine * contiguous physical pages into larger segments to get the best DDP * page size possible. This is the largest of the four sizes in * A_ULP_RX_ISCSI_PSZ that evenly divides the HCF of the segment sizes * in the page list. */ hcf = 0; start_pva = trunc_page(buf); end_pva = trunc_page(buf + len - 1); pva = start_pva; while (pva <= end_pva) { seglen = PAGE_SIZE; p1 = pmap_kextract(pva); pva += PAGE_SIZE; while (pva <= end_pva && p1 + seglen == pmap_kextract(pva)) { seglen += PAGE_SIZE; pva += PAGE_SIZE; } hcf = calculate_hcf(hcf, seglen); if (hcf < (1 << pr->pr_page_shift[1])) { idx = 0; goto have_pgsz; /* give up, short circuit */ } } #define PR_PAGE_MASK(x) ((1 << pr->pr_page_shift[(x)]) - 1) MPASS((hcf & PR_PAGE_MASK(0)) == 0); /* PAGE_SIZE is >= 4K everywhere */ for (idx = nitems(pr->pr_page_shift) - 1; idx > 0; idx--) { if ((hcf & PR_PAGE_MASK(idx)) == 0) break; } #undef PR_PAGE_MASK have_pgsz: MPASS(idx <= M_PPOD_PGSZ); npages = 1; npages += (end_pva - start_pva) >> pr->pr_page_shift[idx]; nppods = howmany(npages, PPOD_PAGES); if (alloc_page_pods(pr, nppods, idx, prsv) != 0) return (ENOMEM); MPASS(prsv->prsv_nppods > 0); return (0); } int t4_alloc_page_pods_for_sgl(struct ppod_region *pr, struct ctl_sg_entry *sgl, int entries, struct ppod_reservation *prsv) { int hcf, seglen, idx = 0, npages, nppods, i, len; uintptr_t start_pva, end_pva, pva, p1 ; vm_offset_t buf; struct ctl_sg_entry *sge; MPASS(entries > 0); MPASS(sgl); /* * The DDP page size is unrelated to the VM page size. We combine * contiguous physical pages into larger segments to get the best DDP * page size possible. This is the largest of the four sizes in * A_ULP_RX_ISCSI_PSZ that evenly divides the HCF of the segment sizes * in the page list. */ hcf = 0; for (i = entries - 1; i >= 0; i--) { sge = sgl + i; buf = (vm_offset_t)sge->addr; len = sge->len; start_pva = trunc_page(buf); end_pva = trunc_page(buf + len - 1); pva = start_pva; while (pva <= end_pva) { seglen = PAGE_SIZE; p1 = pmap_kextract(pva); pva += PAGE_SIZE; while (pva <= end_pva && p1 + seglen == pmap_kextract(pva)) { seglen += PAGE_SIZE; pva += PAGE_SIZE; } hcf = calculate_hcf(hcf, seglen); if (hcf < (1 << pr->pr_page_shift[1])) { idx = 0; goto have_pgsz; /* give up, short circuit */ } } } #define PR_PAGE_MASK(x) ((1 << pr->pr_page_shift[(x)]) - 1) MPASS((hcf & PR_PAGE_MASK(0)) == 0); /* PAGE_SIZE is >= 4K everywhere */ for (idx = nitems(pr->pr_page_shift) - 1; idx > 0; idx--) { if ((hcf & PR_PAGE_MASK(idx)) == 0) break; } #undef PR_PAGE_MASK have_pgsz: MPASS(idx <= M_PPOD_PGSZ); npages = 0; while (entries--) { npages++; start_pva = trunc_page((vm_offset_t)sgl->addr); end_pva = trunc_page((vm_offset_t)sgl->addr + sgl->len - 1); npages += (end_pva - start_pva) >> pr->pr_page_shift[idx]; sgl = sgl + 1; } nppods = howmany(npages, PPOD_PAGES); if (alloc_page_pods(pr, nppods, idx, prsv) != 0) return (ENOMEM); MPASS(prsv->prsv_nppods > 0); return (0); } void t4_free_page_pods(struct ppod_reservation *prsv) { struct ppod_region *pr = prsv->prsv_pr; vmem_addr_t addr; MPASS(prsv != NULL); MPASS(prsv->prsv_nppods != 0); addr = prsv->prsv_tag & pr->pr_tag_mask; MPASS((addr & pr->pr_invalid_bit) == 0); #ifdef VERBOSE_TRACES CTR4(KTR_CXGBE, "%-17s arena %p, addr 0x%08x, nppods %d", __func__, pr->pr_arena, addr, prsv->prsv_nppods); #endif vmem_free(pr->pr_arena, addr, PPOD_SZ(prsv->prsv_nppods)); prsv->prsv_nppods = 0; } #define NUM_ULP_TX_SC_IMM_PPODS (256 / PPOD_SIZE) int t4_write_page_pods_for_ps(struct adapter *sc, struct sge_wrq *wrq, int tid, struct pageset *ps) { struct wrqe *wr; struct ulp_mem_io *ulpmc; struct ulptx_idata *ulpsc; struct pagepod *ppod; int i, j, k, n, chunk, len, ddp_pgsz, idx; u_int ppod_addr; uint32_t cmd; struct ppod_reservation *prsv = &ps->prsv; struct ppod_region *pr = prsv->prsv_pr; vm_paddr_t pa; KASSERT(!(ps->flags & PS_PPODS_WRITTEN), ("%s: page pods already written", __func__)); MPASS(prsv->prsv_nppods > 0); cmd = htobe32(V_ULPTX_CMD(ULP_TX_MEM_WRITE)); if (is_t4(sc)) cmd |= htobe32(F_ULP_MEMIO_ORDER); else cmd |= htobe32(F_T5_ULP_MEMIO_IMM); ddp_pgsz = 1 << pr->pr_page_shift[G_PPOD_PGSZ(prsv->prsv_tag)]; ppod_addr = pr->pr_start + (prsv->prsv_tag & pr->pr_tag_mask); for (i = 0; i < prsv->prsv_nppods; ppod_addr += chunk) { /* How many page pods are we writing in this cycle */ n = min(prsv->prsv_nppods - i, NUM_ULP_TX_SC_IMM_PPODS); chunk = PPOD_SZ(n); len = roundup2(sizeof(*ulpmc) + sizeof(*ulpsc) + chunk, 16); wr = alloc_wrqe(len, wrq); if (wr == NULL) return (ENOMEM); /* ok to just bail out */ ulpmc = wrtod(wr); INIT_ULPTX_WR(ulpmc, len, 0, 0); ulpmc->cmd = cmd; ulpmc->dlen = htobe32(V_ULP_MEMIO_DATA_LEN(chunk / 32)); ulpmc->len16 = htobe32(howmany(len - sizeof(ulpmc->wr), 16)); ulpmc->lock_addr = htobe32(V_ULP_MEMIO_ADDR(ppod_addr >> 5)); ulpsc = (struct ulptx_idata *)(ulpmc + 1); ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); ulpsc->len = htobe32(chunk); ppod = (struct pagepod *)(ulpsc + 1); for (j = 0; j < n; i++, j++, ppod++) { ppod->vld_tid_pgsz_tag_color = htobe64(F_PPOD_VALID | V_PPOD_TID(tid) | prsv->prsv_tag); ppod->len_offset = htobe64(V_PPOD_LEN(ps->len) | V_PPOD_OFST(ps->offset)); ppod->rsvd = 0; idx = i * PPOD_PAGES * (ddp_pgsz / PAGE_SIZE); for (k = 0; k < nitems(ppod->addr); k++) { if (idx < ps->npages) { pa = VM_PAGE_TO_PHYS(ps->pages[idx]); ppod->addr[k] = htobe64(pa); idx += ddp_pgsz / PAGE_SIZE; } else ppod->addr[k] = 0; #if 0 CTR5(KTR_CXGBE, "%s: tid %d ppod[%d]->addr[%d] = %p", __func__, tid, i, k, be64toh(ppod->addr[k])); #endif } } t4_wrq_tx(sc, wr); } ps->flags |= PS_PPODS_WRITTEN; return (0); } static struct mbuf * alloc_raw_wr_mbuf(int len) { struct mbuf *m; if (len <= MHLEN) m = m_gethdr(M_NOWAIT, MT_DATA); else if (len <= MCLBYTES) m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); else m = NULL; if (m == NULL) return (NULL); m->m_pkthdr.len = len; m->m_len = len; set_mbuf_raw_wr(m, true); return (m); } int t4_write_page_pods_for_bio(struct adapter *sc, struct toepcb *toep, struct ppod_reservation *prsv, struct bio *bp, struct mbufq *wrq) { struct ulp_mem_io *ulpmc; struct ulptx_idata *ulpsc; struct pagepod *ppod; int i, j, k, n, chunk, len, ddp_pgsz, idx; u_int ppod_addr; uint32_t cmd; struct ppod_region *pr = prsv->prsv_pr; vm_paddr_t pa; struct mbuf *m; MPASS(bp->bio_flags & BIO_UNMAPPED); cmd = htobe32(V_ULPTX_CMD(ULP_TX_MEM_WRITE)); if (is_t4(sc)) cmd |= htobe32(F_ULP_MEMIO_ORDER); else cmd |= htobe32(F_T5_ULP_MEMIO_IMM); ddp_pgsz = 1 << pr->pr_page_shift[G_PPOD_PGSZ(prsv->prsv_tag)]; ppod_addr = pr->pr_start + (prsv->prsv_tag & pr->pr_tag_mask); for (i = 0; i < prsv->prsv_nppods; ppod_addr += chunk) { /* How many page pods are we writing in this cycle */ n = min(prsv->prsv_nppods - i, NUM_ULP_TX_SC_IMM_PPODS); MPASS(n > 0); chunk = PPOD_SZ(n); len = roundup2(sizeof(*ulpmc) + sizeof(*ulpsc) + chunk, 16); m = alloc_raw_wr_mbuf(len); if (m == NULL) return (ENOMEM); ulpmc = mtod(m, struct ulp_mem_io *); INIT_ULPTX_WR(ulpmc, len, 0, toep->tid); ulpmc->cmd = cmd; ulpmc->dlen = htobe32(V_ULP_MEMIO_DATA_LEN(chunk / 32)); ulpmc->len16 = htobe32(howmany(len - sizeof(ulpmc->wr), 16)); ulpmc->lock_addr = htobe32(V_ULP_MEMIO_ADDR(ppod_addr >> 5)); ulpsc = (struct ulptx_idata *)(ulpmc + 1); ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); ulpsc->len = htobe32(chunk); ppod = (struct pagepod *)(ulpsc + 1); for (j = 0; j < n; i++, j++, ppod++) { ppod->vld_tid_pgsz_tag_color = htobe64(F_PPOD_VALID | V_PPOD_TID(toep->tid) | (prsv->prsv_tag & ~V_PPOD_PGSZ(M_PPOD_PGSZ))); ppod->len_offset = htobe64(V_PPOD_LEN(bp->bio_bcount) | V_PPOD_OFST(bp->bio_ma_offset)); ppod->rsvd = 0; idx = i * PPOD_PAGES * (ddp_pgsz / PAGE_SIZE); for (k = 0; k < nitems(ppod->addr); k++) { if (idx < bp->bio_ma_n) { pa = VM_PAGE_TO_PHYS(bp->bio_ma[idx]); ppod->addr[k] = htobe64(pa); idx += ddp_pgsz / PAGE_SIZE; } else ppod->addr[k] = 0; #if 0 CTR5(KTR_CXGBE, "%s: tid %d ppod[%d]->addr[%d] = %p", __func__, toep->tid, i, k, be64toh(ppod->addr[k])); #endif } } mbufq_enqueue(wrq, m); } return (0); } int t4_write_page_pods_for_buf(struct adapter *sc, struct toepcb *toep, struct ppod_reservation *prsv, vm_offset_t buf, int buflen, struct mbufq *wrq) { struct ulp_mem_io *ulpmc; struct ulptx_idata *ulpsc; struct pagepod *ppod; int i, j, k, n, chunk, len, ddp_pgsz; u_int ppod_addr, offset; uint32_t cmd; struct ppod_region *pr = prsv->prsv_pr; uintptr_t end_pva, pva; vm_paddr_t pa; struct mbuf *m; cmd = htobe32(V_ULPTX_CMD(ULP_TX_MEM_WRITE)); if (is_t4(sc)) cmd |= htobe32(F_ULP_MEMIO_ORDER); else cmd |= htobe32(F_T5_ULP_MEMIO_IMM); ddp_pgsz = 1 << pr->pr_page_shift[G_PPOD_PGSZ(prsv->prsv_tag)]; offset = buf & PAGE_MASK; ppod_addr = pr->pr_start + (prsv->prsv_tag & pr->pr_tag_mask); pva = trunc_page(buf); end_pva = trunc_page(buf + buflen - 1); for (i = 0; i < prsv->prsv_nppods; ppod_addr += chunk) { /* How many page pods are we writing in this cycle */ n = min(prsv->prsv_nppods - i, NUM_ULP_TX_SC_IMM_PPODS); MPASS(n > 0); chunk = PPOD_SZ(n); len = roundup2(sizeof(*ulpmc) + sizeof(*ulpsc) + chunk, 16); m = alloc_raw_wr_mbuf(len); if (m == NULL) return (ENOMEM); ulpmc = mtod(m, struct ulp_mem_io *); INIT_ULPTX_WR(ulpmc, len, 0, toep->tid); ulpmc->cmd = cmd; ulpmc->dlen = htobe32(V_ULP_MEMIO_DATA_LEN(chunk / 32)); ulpmc->len16 = htobe32(howmany(len - sizeof(ulpmc->wr), 16)); ulpmc->lock_addr = htobe32(V_ULP_MEMIO_ADDR(ppod_addr >> 5)); ulpsc = (struct ulptx_idata *)(ulpmc + 1); ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); ulpsc->len = htobe32(chunk); ppod = (struct pagepod *)(ulpsc + 1); for (j = 0; j < n; i++, j++, ppod++) { ppod->vld_tid_pgsz_tag_color = htobe64(F_PPOD_VALID | V_PPOD_TID(toep->tid) | (prsv->prsv_tag & ~V_PPOD_PGSZ(M_PPOD_PGSZ))); ppod->len_offset = htobe64(V_PPOD_LEN(buflen) | V_PPOD_OFST(offset)); ppod->rsvd = 0; for (k = 0; k < nitems(ppod->addr); k++) { if (pva > end_pva) ppod->addr[k] = 0; else { pa = pmap_kextract(pva); ppod->addr[k] = htobe64(pa); pva += ddp_pgsz; } #if 0 CTR5(KTR_CXGBE, "%s: tid %d ppod[%d]->addr[%d] = %p", __func__, toep->tid, i, k, be64toh(ppod->addr[k])); #endif } /* * Walk back 1 segment so that the first address in the * next pod is the same as the last one in the current * pod. */ pva -= ddp_pgsz; } mbufq_enqueue(wrq, m); } MPASS(pva <= end_pva); return (0); } int t4_write_page_pods_for_sgl(struct adapter *sc, struct toepcb *toep, struct ppod_reservation *prsv, struct ctl_sg_entry *sgl, int entries, int xferlen, struct mbufq *wrq) { struct ulp_mem_io *ulpmc; struct ulptx_idata *ulpsc; struct pagepod *ppod; int i, j, k, n, chunk, len, ddp_pgsz; u_int ppod_addr, offset, sg_offset = 0; uint32_t cmd; struct ppod_region *pr = prsv->prsv_pr; uintptr_t pva; vm_paddr_t pa; struct mbuf *m; MPASS(sgl != NULL); MPASS(entries > 0); cmd = htobe32(V_ULPTX_CMD(ULP_TX_MEM_WRITE)); if (is_t4(sc)) cmd |= htobe32(F_ULP_MEMIO_ORDER); else cmd |= htobe32(F_T5_ULP_MEMIO_IMM); ddp_pgsz = 1 << pr->pr_page_shift[G_PPOD_PGSZ(prsv->prsv_tag)]; offset = (vm_offset_t)sgl->addr & PAGE_MASK; ppod_addr = pr->pr_start + (prsv->prsv_tag & pr->pr_tag_mask); pva = trunc_page((vm_offset_t)sgl->addr); for (i = 0; i < prsv->prsv_nppods; ppod_addr += chunk) { /* How many page pods are we writing in this cycle */ n = min(prsv->prsv_nppods - i, NUM_ULP_TX_SC_IMM_PPODS); MPASS(n > 0); chunk = PPOD_SZ(n); len = roundup2(sizeof(*ulpmc) + sizeof(*ulpsc) + chunk, 16); m = alloc_raw_wr_mbuf(len); if (m == NULL) return (ENOMEM); ulpmc = mtod(m, struct ulp_mem_io *); INIT_ULPTX_WR(ulpmc, len, 0, toep->tid); ulpmc->cmd = cmd; ulpmc->dlen = htobe32(V_ULP_MEMIO_DATA_LEN(chunk / 32)); ulpmc->len16 = htobe32(howmany(len - sizeof(ulpmc->wr), 16)); ulpmc->lock_addr = htobe32(V_ULP_MEMIO_ADDR(ppod_addr >> 5)); ulpsc = (struct ulptx_idata *)(ulpmc + 1); ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM)); ulpsc->len = htobe32(chunk); ppod = (struct pagepod *)(ulpsc + 1); for (j = 0; j < n; i++, j++, ppod++) { ppod->vld_tid_pgsz_tag_color = htobe64(F_PPOD_VALID | V_PPOD_TID(toep->tid) | (prsv->prsv_tag & ~V_PPOD_PGSZ(M_PPOD_PGSZ))); ppod->len_offset = htobe64(V_PPOD_LEN(xferlen) | V_PPOD_OFST(offset)); ppod->rsvd = 0; for (k = 0; k < nitems(ppod->addr); k++) { if (entries != 0) { pa = pmap_kextract(pva + sg_offset); ppod->addr[k] = htobe64(pa); } else ppod->addr[k] = 0; #if 0 CTR5(KTR_CXGBE, "%s: tid %d ppod[%d]->addr[%d] = %p", __func__, toep->tid, i, k, be64toh(ppod->addr[k])); #endif /* * If this is the last entry in a pod, * reuse the same entry for first address * in the next pod. */ if (k + 1 == nitems(ppod->addr)) break; /* * Don't move to the next DDP page if the * sgl is already finished. */ if (entries == 0) continue; sg_offset += ddp_pgsz; if (sg_offset == sgl->len) { /* * This sgl entry is done. Go * to the next. */ entries--; sgl++; sg_offset = 0; if (entries != 0) pva = trunc_page( (vm_offset_t)sgl->addr); } } } mbufq_enqueue(wrq, m); } return (0); } /* * Prepare a pageset for DDP. This sets up page pods. */ static int prep_pageset(struct adapter *sc, struct toepcb *toep, struct pageset *ps) { struct tom_data *td = sc->tom_softc; if (ps->prsv.prsv_nppods == 0 && t4_alloc_page_pods_for_ps(&td->pr, ps) != 0) { return (0); } if (!(ps->flags & PS_PPODS_WRITTEN) && t4_write_page_pods_for_ps(sc, toep->ctrlq, toep->tid, ps) != 0) { return (0); } return (1); } int t4_init_ppod_region(struct ppod_region *pr, struct t4_range *r, u_int psz, const char *name) { int i; MPASS(pr != NULL); MPASS(r->size > 0); pr->pr_start = r->start; pr->pr_len = r->size; pr->pr_page_shift[0] = 12 + G_HPZ0(psz); pr->pr_page_shift[1] = 12 + G_HPZ1(psz); pr->pr_page_shift[2] = 12 + G_HPZ2(psz); pr->pr_page_shift[3] = 12 + G_HPZ3(psz); /* The SGL -> page pod algorithm requires the sizes to be in order. */ for (i = 1; i < nitems(pr->pr_page_shift); i++) { if (pr->pr_page_shift[i] <= pr->pr_page_shift[i - 1]) return (ENXIO); } pr->pr_tag_mask = ((1 << fls(r->size)) - 1) & V_PPOD_TAG(M_PPOD_TAG); pr->pr_alias_mask = V_PPOD_TAG(M_PPOD_TAG) & ~pr->pr_tag_mask; if (pr->pr_tag_mask == 0 || pr->pr_alias_mask == 0) return (ENXIO); pr->pr_alias_shift = fls(pr->pr_tag_mask); pr->pr_invalid_bit = 1 << (pr->pr_alias_shift - 1); pr->pr_arena = vmem_create(name, 0, pr->pr_len, PPOD_SIZE, 0, M_FIRSTFIT | M_NOWAIT); if (pr->pr_arena == NULL) return (ENOMEM); return (0); } void t4_free_ppod_region(struct ppod_region *pr) { MPASS(pr != NULL); if (pr->pr_arena) vmem_destroy(pr->pr_arena); bzero(pr, sizeof(*pr)); } static int pscmp(struct pageset *ps, struct vmspace *vm, vm_offset_t start, int npages, int pgoff, int len) { if (ps->start != start || ps->npages != npages || ps->offset != pgoff || ps->len != len) return (1); return (ps->vm != vm || ps->vm_timestamp != vm->vm_map.timestamp); } static int hold_aio(struct toepcb *toep, struct kaiocb *job, struct pageset **pps) { struct vmspace *vm; vm_map_t map; vm_offset_t start, end, pgoff; struct pageset *ps; int n; DDP_ASSERT_LOCKED(toep); /* * The AIO subsystem will cancel and drain all requests before * permitting a process to exit or exec, so p_vmspace should * be stable here. */ vm = job->userproc->p_vmspace; map = &vm->vm_map; start = (uintptr_t)job->uaiocb.aio_buf; pgoff = start & PAGE_MASK; end = round_page(start + job->uaiocb.aio_nbytes); start = trunc_page(start); if (end - start > MAX_DDP_BUFFER_SIZE) { /* * Truncate the request to a short read. * Alternatively, we could DDP in chunks to the larger * buffer, but that would be quite a bit more work. * * When truncating, round the request down to avoid * crossing a cache line on the final transaction. */ end = rounddown2(start + MAX_DDP_BUFFER_SIZE, CACHE_LINE_SIZE); #ifdef VERBOSE_TRACES CTR4(KTR_CXGBE, "%s: tid %d, truncating size from %lu to %lu", __func__, toep->tid, (unsigned long)job->uaiocb.aio_nbytes, (unsigned long)(end - (start + pgoff))); job->uaiocb.aio_nbytes = end - (start + pgoff); #endif end = round_page(end); } n = atop(end - start); /* * Try to reuse a cached pageset. */ TAILQ_FOREACH(ps, &toep->ddp.cached_pagesets, link) { if (pscmp(ps, vm, start, n, pgoff, job->uaiocb.aio_nbytes) == 0) { TAILQ_REMOVE(&toep->ddp.cached_pagesets, ps, link); toep->ddp.cached_count--; *pps = ps; return (0); } } /* * If there are too many cached pagesets to create a new one, * free a pageset before creating a new one. */ KASSERT(toep->ddp.active_count + toep->ddp.cached_count <= nitems(toep->ddp.db), ("%s: too many wired pagesets", __func__)); if (toep->ddp.active_count + toep->ddp.cached_count == nitems(toep->ddp.db)) { KASSERT(toep->ddp.cached_count > 0, ("no cached pageset to free")); ps = TAILQ_LAST(&toep->ddp.cached_pagesets, pagesetq); TAILQ_REMOVE(&toep->ddp.cached_pagesets, ps, link); toep->ddp.cached_count--; free_pageset(toep->td, ps); } DDP_UNLOCK(toep); /* Create a new pageset. */ ps = malloc(sizeof(*ps) + n * sizeof(vm_page_t), M_CXGBE, M_WAITOK | M_ZERO); ps->pages = (vm_page_t *)(ps + 1); ps->vm_timestamp = map->timestamp; ps->npages = vm_fault_quick_hold_pages(map, start, end - start, VM_PROT_WRITE, ps->pages, n); DDP_LOCK(toep); if (ps->npages < 0) { free(ps, M_CXGBE); return (EFAULT); } KASSERT(ps->npages == n, ("hold_aio: page count mismatch: %d vs %d", ps->npages, n)); ps->offset = pgoff; ps->len = job->uaiocb.aio_nbytes; refcount_acquire(&vm->vm_refcnt); ps->vm = vm; ps->start = start; CTR5(KTR_CXGBE, "%s: tid %d, new pageset %p for job %p, npages %d", __func__, toep->tid, ps, job, ps->npages); *pps = ps; return (0); } static void ddp_complete_all(struct toepcb *toep, int error) { struct kaiocb *job; DDP_ASSERT_LOCKED(toep); while (!TAILQ_EMPTY(&toep->ddp.aiojobq)) { job = TAILQ_FIRST(&toep->ddp.aiojobq); TAILQ_REMOVE(&toep->ddp.aiojobq, job, list); toep->ddp.waiting_count--; if (aio_clear_cancel_function(job)) ddp_complete_one(job, error); } } static void aio_ddp_cancel_one(struct kaiocb *job) { long copied; /* * If this job had copied data out of the socket buffer before * it was cancelled, report it as a short read rather than an * error. */ copied = job->aio_received; if (copied != 0) aio_complete(job, copied, 0); else aio_cancel(job); } /* * Called when the main loop wants to requeue a job to retry it later. * Deals with the race of the job being cancelled while it was being * examined. */ static void aio_ddp_requeue_one(struct toepcb *toep, struct kaiocb *job) { DDP_ASSERT_LOCKED(toep); if (!(toep->ddp.flags & DDP_DEAD) && aio_set_cancel_function(job, t4_aio_cancel_queued)) { TAILQ_INSERT_HEAD(&toep->ddp.aiojobq, job, list); toep->ddp.waiting_count++; } else aio_ddp_cancel_one(job); } static void aio_ddp_requeue(struct toepcb *toep) { struct adapter *sc = td_adapter(toep->td); struct socket *so; struct sockbuf *sb; struct inpcb *inp; struct kaiocb *job; struct ddp_buffer *db; size_t copied, offset, resid; struct pageset *ps; struct mbuf *m; uint64_t ddp_flags, ddp_flags_mask; struct wrqe *wr; int buf_flag, db_idx, error; DDP_ASSERT_LOCKED(toep); restart: if (toep->ddp.flags & DDP_DEAD) { MPASS(toep->ddp.waiting_count == 0); MPASS(toep->ddp.active_count == 0); return; } if (toep->ddp.waiting_count == 0 || toep->ddp.active_count == nitems(toep->ddp.db)) { return; } job = TAILQ_FIRST(&toep->ddp.aiojobq); so = job->fd_file->f_data; sb = &so->so_rcv; SOCKBUF_LOCK(sb); /* We will never get anything unless we are or were connected. */ if (!(so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED))) { SOCKBUF_UNLOCK(sb); ddp_complete_all(toep, ENOTCONN); return; } KASSERT(toep->ddp.active_count == 0 || sbavail(sb) == 0, ("%s: pending sockbuf data and DDP is active", __func__)); /* Abort if socket has reported problems. */ /* XXX: Wait for any queued DDP's to finish and/or flush them? */ if (so->so_error && sbavail(sb) == 0) { toep->ddp.waiting_count--; TAILQ_REMOVE(&toep->ddp.aiojobq, job, list); if (!aio_clear_cancel_function(job)) { SOCKBUF_UNLOCK(sb); goto restart; } /* * If this job has previously copied some data, report * a short read and leave the error to be reported by * a future request. */ copied = job->aio_received; if (copied != 0) { SOCKBUF_UNLOCK(sb); aio_complete(job, copied, 0); goto restart; } error = so->so_error; so->so_error = 0; SOCKBUF_UNLOCK(sb); aio_complete(job, -1, error); goto restart; } /* * Door is closed. If there is pending data in the socket buffer, * deliver it. If there are pending DDP requests, wait for those * to complete. Once they have completed, return EOF reads. */ if (sb->sb_state & SBS_CANTRCVMORE && sbavail(sb) == 0) { SOCKBUF_UNLOCK(sb); if (toep->ddp.active_count != 0) return; ddp_complete_all(toep, 0); return; } /* * If DDP is not enabled and there is no pending socket buffer * data, try to enable DDP. */ if (sbavail(sb) == 0 && (toep->ddp.flags & DDP_ON) == 0) { SOCKBUF_UNLOCK(sb); /* * Wait for the card to ACK that DDP is enabled before * queueing any buffers. Currently this waits for an * indicate to arrive. This could use a TCB_SET_FIELD_RPL * message to know that DDP was enabled instead of waiting * for the indicate which would avoid copying the indicate * if no data is pending. * * XXX: Might want to limit the indicate size to the size * of the first queued request. */ if ((toep->ddp.flags & DDP_SC_REQ) == 0) enable_ddp(sc, toep); return; } SOCKBUF_UNLOCK(sb); /* * If another thread is queueing a buffer for DDP, let it * drain any work and return. */ if (toep->ddp.queueing != NULL) return; /* Take the next job to prep it for DDP. */ toep->ddp.waiting_count--; TAILQ_REMOVE(&toep->ddp.aiojobq, job, list); if (!aio_clear_cancel_function(job)) goto restart; toep->ddp.queueing = job; /* NB: This drops DDP_LOCK while it holds the backing VM pages. */ error = hold_aio(toep, job, &ps); if (error != 0) { ddp_complete_one(job, error); toep->ddp.queueing = NULL; goto restart; } SOCKBUF_LOCK(sb); if (so->so_error && sbavail(sb) == 0) { copied = job->aio_received; if (copied != 0) { SOCKBUF_UNLOCK(sb); recycle_pageset(toep, ps); aio_complete(job, copied, 0); toep->ddp.queueing = NULL; goto restart; } error = so->so_error; so->so_error = 0; SOCKBUF_UNLOCK(sb); recycle_pageset(toep, ps); aio_complete(job, -1, error); toep->ddp.queueing = NULL; goto restart; } if (sb->sb_state & SBS_CANTRCVMORE && sbavail(sb) == 0) { SOCKBUF_UNLOCK(sb); recycle_pageset(toep, ps); if (toep->ddp.active_count != 0) { /* * The door is closed, but there are still pending * DDP buffers. Requeue. These jobs will all be * completed once those buffers drain. */ aio_ddp_requeue_one(toep, job); toep->ddp.queueing = NULL; return; } ddp_complete_one(job, 0); ddp_complete_all(toep, 0); toep->ddp.queueing = NULL; return; } sbcopy: /* * If the toep is dead, there shouldn't be any data in the socket * buffer, so the above case should have handled this. */ MPASS(!(toep->ddp.flags & DDP_DEAD)); /* * If there is pending data in the socket buffer (either * from before the requests were queued or a DDP indicate), * copy those mbufs out directly. */ copied = 0; offset = ps->offset + job->aio_received; MPASS(job->aio_received <= job->uaiocb.aio_nbytes); resid = job->uaiocb.aio_nbytes - job->aio_received; m = sb->sb_mb; KASSERT(m == NULL || toep->ddp.active_count == 0, ("%s: sockbuf data with active DDP", __func__)); while (m != NULL && resid > 0) { struct iovec iov[1]; struct uio uio; #ifdef INVARIANTS int error; #endif iov[0].iov_base = mtod(m, void *); iov[0].iov_len = m->m_len; if (iov[0].iov_len > resid) iov[0].iov_len = resid; uio.uio_iov = iov; uio.uio_iovcnt = 1; uio.uio_offset = 0; uio.uio_resid = iov[0].iov_len; uio.uio_segflg = UIO_SYSSPACE; uio.uio_rw = UIO_WRITE; #ifdef INVARIANTS error = uiomove_fromphys(ps->pages, offset + copied, uio.uio_resid, &uio); #else uiomove_fromphys(ps->pages, offset + copied, uio.uio_resid, &uio); #endif MPASS(error == 0 && uio.uio_resid == 0); copied += uio.uio_offset; resid -= uio.uio_offset; m = m->m_next; } if (copied != 0) { sbdrop_locked(sb, copied); job->aio_received += copied; job->msgrcv = 1; copied = job->aio_received; inp = sotoinpcb(so); if (!INP_TRY_WLOCK(inp)) { /* * The reference on the socket file descriptor in * the AIO job should keep 'sb' and 'inp' stable. * Our caller has a reference on the 'toep' that * keeps it stable. */ SOCKBUF_UNLOCK(sb); DDP_UNLOCK(toep); INP_WLOCK(inp); DDP_LOCK(toep); SOCKBUF_LOCK(sb); /* * If the socket has been closed, we should detect * that and complete this request if needed on * the next trip around the loop. */ } t4_rcvd_locked(&toep->td->tod, intotcpcb(inp)); INP_WUNLOCK(inp); if (resid == 0 || toep->ddp.flags & DDP_DEAD) { /* * We filled the entire buffer with socket * data, DDP is not being used, or the socket * is being shut down, so complete the * request. */ SOCKBUF_UNLOCK(sb); recycle_pageset(toep, ps); aio_complete(job, copied, 0); toep->ddp.queueing = NULL; goto restart; } /* * If DDP is not enabled, requeue this request and restart. * This will either enable DDP or wait for more data to * arrive on the socket buffer. */ if ((toep->ddp.flags & (DDP_ON | DDP_SC_REQ)) != DDP_ON) { SOCKBUF_UNLOCK(sb); recycle_pageset(toep, ps); aio_ddp_requeue_one(toep, job); toep->ddp.queueing = NULL; goto restart; } /* * An indicate might have arrived and been added to * the socket buffer while it was unlocked after the * copy to lock the INP. If so, restart the copy. */ if (sbavail(sb) != 0) goto sbcopy; } SOCKBUF_UNLOCK(sb); if (prep_pageset(sc, toep, ps) == 0) { recycle_pageset(toep, ps); aio_ddp_requeue_one(toep, job); toep->ddp.queueing = NULL; /* * XXX: Need to retry this later. Mostly need a trigger * when page pods are freed up. */ printf("%s: prep_pageset failed\n", __func__); return; } /* Determine which DDP buffer to use. */ if (toep->ddp.db[0].job == NULL) { db_idx = 0; } else { MPASS(toep->ddp.db[1].job == NULL); db_idx = 1; } ddp_flags = 0; ddp_flags_mask = 0; if (db_idx == 0) { ddp_flags |= V_TF_DDP_BUF0_VALID(1); if (so->so_state & SS_NBIO) ddp_flags |= V_TF_DDP_BUF0_FLUSH(1); ddp_flags_mask |= V_TF_DDP_PSH_NO_INVALIDATE0(1) | V_TF_DDP_PUSH_DISABLE_0(1) | V_TF_DDP_PSHF_ENABLE_0(1) | V_TF_DDP_BUF0_FLUSH(1) | V_TF_DDP_BUF0_VALID(1); buf_flag = DDP_BUF0_ACTIVE; } else { ddp_flags |= V_TF_DDP_BUF1_VALID(1); if (so->so_state & SS_NBIO) ddp_flags |= V_TF_DDP_BUF1_FLUSH(1); ddp_flags_mask |= V_TF_DDP_PSH_NO_INVALIDATE1(1) | V_TF_DDP_PUSH_DISABLE_1(1) | V_TF_DDP_PSHF_ENABLE_1(1) | V_TF_DDP_BUF1_FLUSH(1) | V_TF_DDP_BUF1_VALID(1); buf_flag = DDP_BUF1_ACTIVE; } MPASS((toep->ddp.flags & buf_flag) == 0); if ((toep->ddp.flags & (DDP_BUF0_ACTIVE | DDP_BUF1_ACTIVE)) == 0) { MPASS(db_idx == 0); MPASS(toep->ddp.active_id == -1); MPASS(toep->ddp.active_count == 0); ddp_flags_mask |= V_TF_DDP_ACTIVE_BUF(1); } /* * The TID for this connection should still be valid. If DDP_DEAD * is set, SBS_CANTRCVMORE should be set, so we shouldn't be * this far anyway. Even if the socket is closing on the other * end, the AIO job holds a reference on this end of the socket * which will keep it open and keep the TCP PCB attached until * after the job is completed. */ wr = mk_update_tcb_for_ddp(sc, toep, db_idx, ps, job->aio_received, ddp_flags, ddp_flags_mask); if (wr == NULL) { recycle_pageset(toep, ps); aio_ddp_requeue_one(toep, job); toep->ddp.queueing = NULL; /* * XXX: Need a way to kick a retry here. * * XXX: We know the fixed size needed and could * preallocate this using a blocking request at the * start of the task to avoid having to handle this * edge case. */ printf("%s: mk_update_tcb_for_ddp failed\n", __func__); return; } if (!aio_set_cancel_function(job, t4_aio_cancel_active)) { free_wrqe(wr); recycle_pageset(toep, ps); aio_ddp_cancel_one(job); toep->ddp.queueing = NULL; goto restart; } #ifdef VERBOSE_TRACES CTR6(KTR_CXGBE, "%s: tid %u, scheduling %p for DDP[%d] (flags %#lx/%#lx)", __func__, toep->tid, job, db_idx, ddp_flags, ddp_flags_mask); #endif /* Give the chip the go-ahead. */ t4_wrq_tx(sc, wr); db = &toep->ddp.db[db_idx]; db->cancel_pending = 0; db->job = job; db->ps = ps; toep->ddp.queueing = NULL; toep->ddp.flags |= buf_flag; toep->ddp.active_count++; if (toep->ddp.active_count == 1) { MPASS(toep->ddp.active_id == -1); toep->ddp.active_id = db_idx; CTR2(KTR_CXGBE, "%s: ddp_active_id = %d", __func__, toep->ddp.active_id); } goto restart; } void ddp_queue_toep(struct toepcb *toep) { DDP_ASSERT_LOCKED(toep); if (toep->ddp.flags & DDP_TASK_ACTIVE) return; toep->ddp.flags |= DDP_TASK_ACTIVE; hold_toepcb(toep); soaio_enqueue(&toep->ddp.requeue_task); } static void aio_ddp_requeue_task(void *context, int pending) { struct toepcb *toep = context; DDP_LOCK(toep); aio_ddp_requeue(toep); toep->ddp.flags &= ~DDP_TASK_ACTIVE; DDP_UNLOCK(toep); free_toepcb(toep); } static void t4_aio_cancel_active(struct kaiocb *job) { struct socket *so = job->fd_file->f_data; struct tcpcb *tp = sototcpcb(so); struct toepcb *toep = tp->t_toe; struct adapter *sc = td_adapter(toep->td); uint64_t valid_flag; int i; DDP_LOCK(toep); if (aio_cancel_cleared(job)) { DDP_UNLOCK(toep); aio_ddp_cancel_one(job); return; } for (i = 0; i < nitems(toep->ddp.db); i++) { if (toep->ddp.db[i].job == job) { /* Should only ever get one cancel request for a job. */ MPASS(toep->ddp.db[i].cancel_pending == 0); /* * Invalidate this buffer. It will be * cancelled or partially completed once the * card ACKs the invalidate. */ valid_flag = i == 0 ? V_TF_DDP_BUF0_VALID(1) : V_TF_DDP_BUF1_VALID(1); t4_set_tcb_field(sc, toep->ctrlq, toep, W_TCB_RX_DDP_FLAGS, valid_flag, 0, 1, CPL_COOKIE_DDP0 + i); toep->ddp.db[i].cancel_pending = 1; CTR2(KTR_CXGBE, "%s: request %p marked pending", __func__, job); break; } } DDP_UNLOCK(toep); } static void t4_aio_cancel_queued(struct kaiocb *job) { struct socket *so = job->fd_file->f_data; struct tcpcb *tp = sototcpcb(so); struct toepcb *toep = tp->t_toe; DDP_LOCK(toep); if (!aio_cancel_cleared(job)) { TAILQ_REMOVE(&toep->ddp.aiojobq, job, list); toep->ddp.waiting_count--; if (toep->ddp.waiting_count == 0) ddp_queue_toep(toep); } CTR2(KTR_CXGBE, "%s: request %p cancelled", __func__, job); DDP_UNLOCK(toep); aio_ddp_cancel_one(job); } int t4_aio_queue_ddp(struct socket *so, struct kaiocb *job) { struct tcpcb *tp = sototcpcb(so); struct toepcb *toep = tp->t_toe; /* Ignore writes. */ if (job->uaiocb.aio_lio_opcode != LIO_READ) return (EOPNOTSUPP); DDP_LOCK(toep); /* * XXX: Think about possibly returning errors for ENOTCONN, * etc. Perhaps the caller would only queue the request * if it failed with EOPNOTSUPP? */ #ifdef VERBOSE_TRACES CTR3(KTR_CXGBE, "%s: queueing %p for tid %u", __func__, job, toep->tid); #endif if (!aio_set_cancel_function(job, t4_aio_cancel_queued)) panic("new job was cancelled"); TAILQ_INSERT_TAIL(&toep->ddp.aiojobq, job, list); toep->ddp.waiting_count++; toep->ddp.flags |= DDP_OK; /* * Try to handle this request synchronously. If this has * to block because the task is running, it will just bail * and let the task handle it instead. */ aio_ddp_requeue(toep); DDP_UNLOCK(toep); return (0); } void t4_ddp_mod_load(void) { t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, do_ddp_tcb_rpl, CPL_COOKIE_DDP0); t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, do_ddp_tcb_rpl, CPL_COOKIE_DDP1); t4_register_cpl_handler(CPL_RX_DATA_DDP, do_rx_data_ddp); t4_register_cpl_handler(CPL_RX_DDP_COMPLETE, do_rx_ddp_complete); TAILQ_INIT(&ddp_orphan_pagesets); mtx_init(&ddp_orphan_pagesets_lock, "ddp orphans", NULL, MTX_DEF); TASK_INIT(&ddp_orphan_task, 0, ddp_free_orphan_pagesets, NULL); } void t4_ddp_mod_unload(void) { taskqueue_drain(taskqueue_thread, &ddp_orphan_task); MPASS(TAILQ_EMPTY(&ddp_orphan_pagesets)); mtx_destroy(&ddp_orphan_pagesets_lock); t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, NULL, CPL_COOKIE_DDP0); t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, NULL, CPL_COOKIE_DDP1); t4_register_cpl_handler(CPL_RX_DATA_DDP, NULL); t4_register_cpl_handler(CPL_RX_DDP_COMPLETE, NULL); } #endif