/*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2011 Chelsio Communications, Inc. * All rights reserved. * Written by: Navdeep Parhar * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include "opt_inet.h" #include "opt_inet6.h" #include "opt_kern_tls.h" #include "opt_ratelimit.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef DEV_NETMAP #include #include #include #include #include #endif #include "common/common.h" #include "common/t4_regs.h" #include "common/t4_regs_values.h" #include "common/t4_msg.h" #include "t4_l2t.h" #include "t4_mp_ring.h" #define RX_COPY_THRESHOLD MINCLSIZE /* * Ethernet frames are DMA'd at this byte offset into the freelist buffer. * 0-7 are valid values. */ static int fl_pktshift = 0; SYSCTL_INT(_hw_cxgbe, OID_AUTO, fl_pktshift, CTLFLAG_RDTUN, &fl_pktshift, 0, "payload DMA offset in rx buffer (bytes)"); /* * Pad ethernet payload up to this boundary. * -1: driver should figure out a good value. * 0: disable padding. * Any power of 2 from 32 to 4096 (both inclusive) is also a valid value. */ int fl_pad = -1; SYSCTL_INT(_hw_cxgbe, OID_AUTO, fl_pad, CTLFLAG_RDTUN, &fl_pad, 0, "payload pad boundary (bytes)"); /* * Status page length. * -1: driver should figure out a good value. * 64 or 128 are the only other valid values. */ static int spg_len = -1; SYSCTL_INT(_hw_cxgbe, OID_AUTO, spg_len, CTLFLAG_RDTUN, &spg_len, 0, "status page size (bytes)"); /* * Congestion drops. * -1: no congestion feedback (not recommended). * 0: backpressure the channel instead of dropping packets right away. * 1: no backpressure, drop packets for the congested queue immediately. * 2: both backpressure and drop. */ static int cong_drop = 0; SYSCTL_INT(_hw_cxgbe, OID_AUTO, cong_drop, CTLFLAG_RDTUN, &cong_drop, 0, "Congestion control for NIC RX queues (0 = backpressure, 1 = drop, 2 = both"); #ifdef TCP_OFFLOAD static int ofld_cong_drop = 0; SYSCTL_INT(_hw_cxgbe, OID_AUTO, ofld_cong_drop, CTLFLAG_RDTUN, &ofld_cong_drop, 0, "Congestion control for TOE RX queues (0 = backpressure, 1 = drop, 2 = both"); #endif /* * Deliver multiple frames in the same free list buffer if they fit. * -1: let the driver decide whether to enable buffer packing or not. * 0: disable buffer packing. * 1: enable buffer packing. */ static int buffer_packing = -1; SYSCTL_INT(_hw_cxgbe, OID_AUTO, buffer_packing, CTLFLAG_RDTUN, &buffer_packing, 0, "Enable buffer packing"); /* * Start next frame in a packed buffer at this boundary. * -1: driver should figure out a good value. * T4: driver will ignore this and use the same value as fl_pad above. * T5: 16, or a power of 2 from 64 to 4096 (both inclusive) is a valid value. */ static int fl_pack = -1; SYSCTL_INT(_hw_cxgbe, OID_AUTO, fl_pack, CTLFLAG_RDTUN, &fl_pack, 0, "payload pack boundary (bytes)"); /* * Largest rx cluster size that the driver is allowed to allocate. */ static int largest_rx_cluster = MJUM16BYTES; SYSCTL_INT(_hw_cxgbe, OID_AUTO, largest_rx_cluster, CTLFLAG_RDTUN, &largest_rx_cluster, 0, "Largest rx cluster (bytes)"); /* * Size of cluster allocation that's most likely to succeed. The driver will * fall back to this size if it fails to allocate clusters larger than this. */ static int safest_rx_cluster = PAGE_SIZE; SYSCTL_INT(_hw_cxgbe, OID_AUTO, safest_rx_cluster, CTLFLAG_RDTUN, &safest_rx_cluster, 0, "Safe rx cluster (bytes)"); #ifdef RATELIMIT /* * Knob to control TCP timestamp rewriting, and the granularity of the tick used * for rewriting. -1 and 0-3 are all valid values. * -1: hardware should leave the TCP timestamps alone. * 0: 1ms * 1: 100us * 2: 10us * 3: 1us */ static int tsclk = -1; SYSCTL_INT(_hw_cxgbe, OID_AUTO, tsclk, CTLFLAG_RDTUN, &tsclk, 0, "Control TCP timestamp rewriting when using pacing"); static int eo_max_backlog = 1024 * 1024; SYSCTL_INT(_hw_cxgbe, OID_AUTO, eo_max_backlog, CTLFLAG_RDTUN, &eo_max_backlog, 0, "Maximum backlog of ratelimited data per flow"); #endif /* * The interrupt holdoff timers are multiplied by this value on T6+. * 1 and 3-17 (both inclusive) are legal values. */ static int tscale = 1; SYSCTL_INT(_hw_cxgbe, OID_AUTO, tscale, CTLFLAG_RDTUN, &tscale, 0, "Interrupt holdoff timer scale on T6+"); /* * Number of LRO entries in the lro_ctrl structure per rx queue. */ static int lro_entries = TCP_LRO_ENTRIES; SYSCTL_INT(_hw_cxgbe, OID_AUTO, lro_entries, CTLFLAG_RDTUN, &lro_entries, 0, "Number of LRO entries per RX queue"); /* * This enables presorting of frames before they're fed into tcp_lro_rx. */ static int lro_mbufs = 0; SYSCTL_INT(_hw_cxgbe, OID_AUTO, lro_mbufs, CTLFLAG_RDTUN, &lro_mbufs, 0, "Enable presorting of LRO frames"); static counter_u64_t pullups; SYSCTL_COUNTER_U64(_hw_cxgbe, OID_AUTO, pullups, CTLFLAG_RD, &pullups, "Number of mbuf pullups performed"); static counter_u64_t defrags; SYSCTL_COUNTER_U64(_hw_cxgbe, OID_AUTO, defrags, CTLFLAG_RD, &defrags, "Number of mbuf defrags performed"); static int t4_tx_coalesce = 1; SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_coalesce, CTLFLAG_RWTUN, &t4_tx_coalesce, 0, "tx coalescing allowed"); /* * The driver will make aggressive attempts at tx coalescing if it sees these * many packets eligible for coalescing in quick succession, with no more than * the specified gap in between the eth_tx calls that delivered the packets. */ static int t4_tx_coalesce_pkts = 32; SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_coalesce_pkts, CTLFLAG_RWTUN, &t4_tx_coalesce_pkts, 0, "# of consecutive packets (1 - 255) that will trigger tx coalescing"); static int t4_tx_coalesce_gap = 5; SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_coalesce_gap, CTLFLAG_RWTUN, &t4_tx_coalesce_gap, 0, "tx gap (in microseconds)"); static int service_iq(struct sge_iq *, int); static int service_iq_fl(struct sge_iq *, int); static struct mbuf *get_fl_payload(struct adapter *, struct sge_fl *, uint32_t); static int eth_rx(struct adapter *, struct sge_rxq *, const struct iq_desc *, u_int); static inline void init_iq(struct sge_iq *, struct adapter *, int, int, int, int, int, int); static inline void init_fl(struct adapter *, struct sge_fl *, int, int, char *); static inline void init_eq(struct adapter *, struct sge_eq *, int, int, uint8_t, struct sge_iq *, char *); static int alloc_iq_fl(struct vi_info *, struct sge_iq *, struct sge_fl *, struct sysctl_ctx_list *, struct sysctl_oid *); static void free_iq_fl(struct adapter *, struct sge_iq *, struct sge_fl *); static void add_iq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *, struct sge_iq *); static void add_fl_sysctls(struct adapter *, struct sysctl_ctx_list *, struct sysctl_oid *, struct sge_fl *); static int alloc_iq_fl_hwq(struct vi_info *, struct sge_iq *, struct sge_fl *); static int free_iq_fl_hwq(struct adapter *, struct sge_iq *, struct sge_fl *); static int alloc_fwq(struct adapter *); static void free_fwq(struct adapter *); static int alloc_ctrlq(struct adapter *, int); static void free_ctrlq(struct adapter *, int); static int alloc_rxq(struct vi_info *, struct sge_rxq *, int, int, int); static void free_rxq(struct vi_info *, struct sge_rxq *); static void add_rxq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *, struct sge_rxq *); #ifdef TCP_OFFLOAD static int alloc_ofld_rxq(struct vi_info *, struct sge_ofld_rxq *, int, int, int); static void free_ofld_rxq(struct vi_info *, struct sge_ofld_rxq *); static void add_ofld_rxq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *, struct sge_ofld_rxq *); #endif static int ctrl_eq_alloc(struct adapter *, struct sge_eq *); static int eth_eq_alloc(struct adapter *, struct vi_info *, struct sge_eq *); #if defined(TCP_OFFLOAD) || defined(RATELIMIT) static int ofld_eq_alloc(struct adapter *, struct vi_info *, struct sge_eq *); #endif static int alloc_eq(struct adapter *, struct sge_eq *, struct sysctl_ctx_list *, struct sysctl_oid *); static void free_eq(struct adapter *, struct sge_eq *); static void add_eq_sysctls(struct adapter *, struct sysctl_ctx_list *, struct sysctl_oid *, struct sge_eq *); static int alloc_eq_hwq(struct adapter *, struct vi_info *, struct sge_eq *); static int free_eq_hwq(struct adapter *, struct vi_info *, struct sge_eq *); static int alloc_wrq(struct adapter *, struct vi_info *, struct sge_wrq *, struct sysctl_ctx_list *, struct sysctl_oid *); static void free_wrq(struct adapter *, struct sge_wrq *); static void add_wrq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *, struct sge_wrq *); static int alloc_txq(struct vi_info *, struct sge_txq *, int); static void free_txq(struct vi_info *, struct sge_txq *); static void add_txq_sysctls(struct vi_info *, struct sysctl_ctx_list *, struct sysctl_oid *, struct sge_txq *); #if defined(TCP_OFFLOAD) || defined(RATELIMIT) static int alloc_ofld_txq(struct vi_info *, struct sge_ofld_txq *, int); static void free_ofld_txq(struct vi_info *, struct sge_ofld_txq *); static void add_ofld_txq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *, struct sge_ofld_txq *); #endif static void oneseg_dma_callback(void *, bus_dma_segment_t *, int, int); static inline void ring_fl_db(struct adapter *, struct sge_fl *); static int refill_fl(struct adapter *, struct sge_fl *, int); static void refill_sfl(void *); static int find_refill_source(struct adapter *, int, bool); static void add_fl_to_sfl(struct adapter *, struct sge_fl *); static inline void get_pkt_gl(struct mbuf *, struct sglist *); static inline u_int txpkt_len16(u_int, const u_int); static inline u_int txpkt_vm_len16(u_int, const u_int); static inline void calculate_mbuf_len16(struct mbuf *, bool); static inline u_int txpkts0_len16(u_int); static inline u_int txpkts1_len16(void); static u_int write_raw_wr(struct sge_txq *, void *, struct mbuf *, u_int); static u_int write_txpkt_wr(struct adapter *, struct sge_txq *, struct mbuf *, u_int); static u_int write_txpkt_vm_wr(struct adapter *, struct sge_txq *, struct mbuf *); static int add_to_txpkts_vf(struct adapter *, struct sge_txq *, struct mbuf *, int, bool *); static int add_to_txpkts_pf(struct adapter *, struct sge_txq *, struct mbuf *, int, bool *); static u_int write_txpkts_wr(struct adapter *, struct sge_txq *); static u_int write_txpkts_vm_wr(struct adapter *, struct sge_txq *); static void write_gl_to_txd(struct sge_txq *, struct mbuf *, caddr_t *, int); static inline void copy_to_txd(struct sge_eq *, caddr_t, caddr_t *, int); static inline void ring_eq_db(struct adapter *, struct sge_eq *, u_int); static inline uint16_t read_hw_cidx(struct sge_eq *); static inline u_int reclaimable_tx_desc(struct sge_eq *); static inline u_int total_available_tx_desc(struct sge_eq *); static u_int reclaim_tx_descs(struct sge_txq *, u_int); static void tx_reclaim(void *, int); static __be64 get_flit(struct sglist_seg *, int, int); static int handle_sge_egr_update(struct sge_iq *, const struct rss_header *, struct mbuf *); static int handle_fw_msg(struct sge_iq *, const struct rss_header *, struct mbuf *); static int t4_handle_wrerr_rpl(struct adapter *, const __be64 *); static void wrq_tx_drain(void *, int); static void drain_wrq_wr_list(struct adapter *, struct sge_wrq *); static int sysctl_bufsizes(SYSCTL_HANDLER_ARGS); #ifdef RATELIMIT static int ethofld_fw4_ack(struct sge_iq *, const struct rss_header *, struct mbuf *); #if defined(INET) || defined(INET6) static inline u_int txpkt_eo_len16(u_int, u_int, u_int); static int ethofld_transmit(if_t, struct mbuf *); #endif #endif static counter_u64_t extfree_refs; static counter_u64_t extfree_rels; an_handler_t t4_an_handler; fw_msg_handler_t t4_fw_msg_handler[NUM_FW6_TYPES]; cpl_handler_t t4_cpl_handler[NUM_CPL_CMDS]; cpl_handler_t set_tcb_rpl_handlers[NUM_CPL_COOKIES]; cpl_handler_t l2t_write_rpl_handlers[NUM_CPL_COOKIES]; cpl_handler_t act_open_rpl_handlers[NUM_CPL_COOKIES]; cpl_handler_t abort_rpl_rss_handlers[NUM_CPL_COOKIES]; cpl_handler_t fw4_ack_handlers[NUM_CPL_COOKIES]; void t4_register_an_handler(an_handler_t h) { uintptr_t *loc; MPASS(h == NULL || t4_an_handler == NULL); loc = (uintptr_t *)&t4_an_handler; atomic_store_rel_ptr(loc, (uintptr_t)h); } void t4_register_fw_msg_handler(int type, fw_msg_handler_t h) { uintptr_t *loc; MPASS(type < nitems(t4_fw_msg_handler)); MPASS(h == NULL || t4_fw_msg_handler[type] == NULL); /* * These are dispatched by the handler for FW{4|6}_CPL_MSG using the CPL * handler dispatch table. Reject any attempt to install a handler for * this subtype. */ MPASS(type != FW_TYPE_RSSCPL); MPASS(type != FW6_TYPE_RSSCPL); loc = (uintptr_t *)&t4_fw_msg_handler[type]; atomic_store_rel_ptr(loc, (uintptr_t)h); } void t4_register_cpl_handler(int opcode, cpl_handler_t h) { uintptr_t *loc; MPASS(opcode < nitems(t4_cpl_handler)); MPASS(h == NULL || t4_cpl_handler[opcode] == NULL); loc = (uintptr_t *)&t4_cpl_handler[opcode]; atomic_store_rel_ptr(loc, (uintptr_t)h); } static int set_tcb_rpl_handler(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) { const struct cpl_set_tcb_rpl *cpl = (const void *)(rss + 1); u_int tid; int cookie; MPASS(m == NULL); tid = GET_TID(cpl); if (is_hpftid(iq->adapter, tid) || is_ftid(iq->adapter, tid)) { /* * The return code for filter-write is put in the CPL cookie so * we have to rely on the hardware tid (is_ftid) to determine * that this is a response to a filter. */ cookie = CPL_COOKIE_FILTER; } else { cookie = G_COOKIE(cpl->cookie); } MPASS(cookie > CPL_COOKIE_RESERVED); MPASS(cookie < nitems(set_tcb_rpl_handlers)); return (set_tcb_rpl_handlers[cookie](iq, rss, m)); } static int l2t_write_rpl_handler(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) { const struct cpl_l2t_write_rpl *rpl = (const void *)(rss + 1); unsigned int cookie; MPASS(m == NULL); cookie = GET_TID(rpl) & F_SYNC_WR ? CPL_COOKIE_TOM : CPL_COOKIE_FILTER; return (l2t_write_rpl_handlers[cookie](iq, rss, m)); } static int act_open_rpl_handler(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) { const struct cpl_act_open_rpl *cpl = (const void *)(rss + 1); u_int cookie = G_TID_COOKIE(G_AOPEN_ATID(be32toh(cpl->atid_status))); MPASS(m == NULL); MPASS(cookie != CPL_COOKIE_RESERVED); return (act_open_rpl_handlers[cookie](iq, rss, m)); } static int abort_rpl_rss_handler(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) { struct adapter *sc = iq->adapter; u_int cookie; MPASS(m == NULL); if (is_hashfilter(sc)) cookie = CPL_COOKIE_HASHFILTER; else cookie = CPL_COOKIE_TOM; return (abort_rpl_rss_handlers[cookie](iq, rss, m)); } static int fw4_ack_handler(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) { struct adapter *sc = iq->adapter; const struct cpl_fw4_ack *cpl = (const void *)(rss + 1); unsigned int tid = G_CPL_FW4_ACK_FLOWID(be32toh(OPCODE_TID(cpl))); u_int cookie; MPASS(m == NULL); if (is_etid(sc, tid)) cookie = CPL_COOKIE_ETHOFLD; else cookie = CPL_COOKIE_TOM; return (fw4_ack_handlers[cookie](iq, rss, m)); } static void t4_init_shared_cpl_handlers(void) { t4_register_cpl_handler(CPL_SET_TCB_RPL, set_tcb_rpl_handler); t4_register_cpl_handler(CPL_L2T_WRITE_RPL, l2t_write_rpl_handler); t4_register_cpl_handler(CPL_ACT_OPEN_RPL, act_open_rpl_handler); t4_register_cpl_handler(CPL_ABORT_RPL_RSS, abort_rpl_rss_handler); t4_register_cpl_handler(CPL_FW4_ACK, fw4_ack_handler); } void t4_register_shared_cpl_handler(int opcode, cpl_handler_t h, int cookie) { uintptr_t *loc; MPASS(opcode < nitems(t4_cpl_handler)); MPASS(cookie > CPL_COOKIE_RESERVED); MPASS(cookie < NUM_CPL_COOKIES); MPASS(t4_cpl_handler[opcode] != NULL); switch (opcode) { case CPL_SET_TCB_RPL: loc = (uintptr_t *)&set_tcb_rpl_handlers[cookie]; break; case CPL_L2T_WRITE_RPL: loc = (uintptr_t *)&l2t_write_rpl_handlers[cookie]; break; case CPL_ACT_OPEN_RPL: loc = (uintptr_t *)&act_open_rpl_handlers[cookie]; break; case CPL_ABORT_RPL_RSS: loc = (uintptr_t *)&abort_rpl_rss_handlers[cookie]; break; case CPL_FW4_ACK: loc = (uintptr_t *)&fw4_ack_handlers[cookie]; break; default: MPASS(0); return; } MPASS(h == NULL || *loc == (uintptr_t)NULL); atomic_store_rel_ptr(loc, (uintptr_t)h); } /* * Called on MOD_LOAD. Validates and calculates the SGE tunables. */ void t4_sge_modload(void) { if (fl_pktshift < 0 || fl_pktshift > 7) { printf("Invalid hw.cxgbe.fl_pktshift value (%d)," " using 0 instead.\n", fl_pktshift); fl_pktshift = 0; } if (spg_len != 64 && spg_len != 128) { int len; #if defined(__i386__) || defined(__amd64__) len = cpu_clflush_line_size > 64 ? 128 : 64; #else len = 64; #endif if (spg_len != -1) { printf("Invalid hw.cxgbe.spg_len value (%d)," " using %d instead.\n", spg_len, len); } spg_len = len; } if (cong_drop < -1 || cong_drop > 2) { printf("Invalid hw.cxgbe.cong_drop value (%d)," " using 0 instead.\n", cong_drop); cong_drop = 0; } #ifdef TCP_OFFLOAD if (ofld_cong_drop < -1 || ofld_cong_drop > 2) { printf("Invalid hw.cxgbe.ofld_cong_drop value (%d)," " using 0 instead.\n", ofld_cong_drop); ofld_cong_drop = 0; } #endif if (tscale != 1 && (tscale < 3 || tscale > 17)) { printf("Invalid hw.cxgbe.tscale value (%d)," " using 1 instead.\n", tscale); tscale = 1; } if (largest_rx_cluster != MCLBYTES && largest_rx_cluster != MJUMPAGESIZE && largest_rx_cluster != MJUM9BYTES && largest_rx_cluster != MJUM16BYTES) { printf("Invalid hw.cxgbe.largest_rx_cluster value (%d)," " using %d instead.\n", largest_rx_cluster, MJUM16BYTES); largest_rx_cluster = MJUM16BYTES; } if (safest_rx_cluster != MCLBYTES && safest_rx_cluster != MJUMPAGESIZE && safest_rx_cluster != MJUM9BYTES && safest_rx_cluster != MJUM16BYTES) { printf("Invalid hw.cxgbe.safest_rx_cluster value (%d)," " using %d instead.\n", safest_rx_cluster, MJUMPAGESIZE); safest_rx_cluster = MJUMPAGESIZE; } extfree_refs = counter_u64_alloc(M_WAITOK); extfree_rels = counter_u64_alloc(M_WAITOK); pullups = counter_u64_alloc(M_WAITOK); defrags = counter_u64_alloc(M_WAITOK); counter_u64_zero(extfree_refs); counter_u64_zero(extfree_rels); counter_u64_zero(pullups); counter_u64_zero(defrags); t4_init_shared_cpl_handlers(); t4_register_cpl_handler(CPL_FW4_MSG, handle_fw_msg); t4_register_cpl_handler(CPL_FW6_MSG, handle_fw_msg); t4_register_cpl_handler(CPL_SGE_EGR_UPDATE, handle_sge_egr_update); #ifdef RATELIMIT t4_register_shared_cpl_handler(CPL_FW4_ACK, ethofld_fw4_ack, CPL_COOKIE_ETHOFLD); #endif t4_register_fw_msg_handler(FW6_TYPE_CMD_RPL, t4_handle_fw_rpl); t4_register_fw_msg_handler(FW6_TYPE_WRERR_RPL, t4_handle_wrerr_rpl); } void t4_sge_modunload(void) { counter_u64_free(extfree_refs); counter_u64_free(extfree_rels); counter_u64_free(pullups); counter_u64_free(defrags); } uint64_t t4_sge_extfree_refs(void) { uint64_t refs, rels; rels = counter_u64_fetch(extfree_rels); refs = counter_u64_fetch(extfree_refs); return (refs - rels); } /* max 4096 */ #define MAX_PACK_BOUNDARY 512 static inline void setup_pad_and_pack_boundaries(struct adapter *sc) { uint32_t v, m; int pad, pack, pad_shift; pad_shift = chip_id(sc) > CHELSIO_T5 ? X_T6_INGPADBOUNDARY_SHIFT : X_INGPADBOUNDARY_SHIFT; pad = fl_pad; if (fl_pad < (1 << pad_shift) || fl_pad > (1 << (pad_shift + M_INGPADBOUNDARY)) || !powerof2(fl_pad)) { /* * If there is any chance that we might use buffer packing and * the chip is a T4, then pick 64 as the pad/pack boundary. Set * it to the minimum allowed in all other cases. */ pad = is_t4(sc) && buffer_packing ? 64 : 1 << pad_shift; /* * For fl_pad = 0 we'll still write a reasonable value to the * register but all the freelists will opt out of padding. * We'll complain here only if the user tried to set it to a * value greater than 0 that was invalid. */ if (fl_pad > 0) { device_printf(sc->dev, "Invalid hw.cxgbe.fl_pad value" " (%d), using %d instead.\n", fl_pad, pad); } } m = V_INGPADBOUNDARY(M_INGPADBOUNDARY); v = V_INGPADBOUNDARY(ilog2(pad) - pad_shift); t4_set_reg_field(sc, A_SGE_CONTROL, m, v); if (is_t4(sc)) { if (fl_pack != -1 && fl_pack != pad) { /* Complain but carry on. */ device_printf(sc->dev, "hw.cxgbe.fl_pack (%d) ignored," " using %d instead.\n", fl_pack, pad); } return; } pack = fl_pack; if (fl_pack < 16 || fl_pack == 32 || fl_pack > 4096 || !powerof2(fl_pack)) { if (sc->params.pci.mps > MAX_PACK_BOUNDARY) pack = MAX_PACK_BOUNDARY; else pack = max(sc->params.pci.mps, CACHE_LINE_SIZE); MPASS(powerof2(pack)); if (pack < 16) pack = 16; if (pack == 32) pack = 64; if (pack > 4096) pack = 4096; if (fl_pack != -1) { device_printf(sc->dev, "Invalid hw.cxgbe.fl_pack value" " (%d), using %d instead.\n", fl_pack, pack); } } m = V_INGPACKBOUNDARY(M_INGPACKBOUNDARY); if (pack == 16) v = V_INGPACKBOUNDARY(0); else v = V_INGPACKBOUNDARY(ilog2(pack) - 5); MPASS(!is_t4(sc)); /* T4 doesn't have SGE_CONTROL2 */ t4_set_reg_field(sc, A_SGE_CONTROL2, m, v); } /* * adap->params.vpd.cclk must be set up before this is called. */ void t4_tweak_chip_settings(struct adapter *sc) { int i, reg; uint32_t v, m; int intr_timer[SGE_NTIMERS] = {1, 5, 10, 50, 100, 200}; int timer_max = M_TIMERVALUE0 * 1000 / sc->params.vpd.cclk; int intr_pktcount[SGE_NCOUNTERS] = {1, 8, 16, 32}; /* 63 max */ uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE); static int sw_buf_sizes[] = { MCLBYTES, MJUMPAGESIZE, MJUM9BYTES, MJUM16BYTES }; KASSERT(sc->flags & MASTER_PF, ("%s: trying to change chip settings when not master.", __func__)); m = V_PKTSHIFT(M_PKTSHIFT) | F_RXPKTCPLMODE | F_EGRSTATUSPAGESIZE; v = V_PKTSHIFT(fl_pktshift) | F_RXPKTCPLMODE | V_EGRSTATUSPAGESIZE(spg_len == 128); t4_set_reg_field(sc, A_SGE_CONTROL, m, v); setup_pad_and_pack_boundaries(sc); v = V_HOSTPAGESIZEPF0(PAGE_SHIFT - 10) | V_HOSTPAGESIZEPF1(PAGE_SHIFT - 10) | V_HOSTPAGESIZEPF2(PAGE_SHIFT - 10) | V_HOSTPAGESIZEPF3(PAGE_SHIFT - 10) | V_HOSTPAGESIZEPF4(PAGE_SHIFT - 10) | V_HOSTPAGESIZEPF5(PAGE_SHIFT - 10) | V_HOSTPAGESIZEPF6(PAGE_SHIFT - 10) | V_HOSTPAGESIZEPF7(PAGE_SHIFT - 10); t4_write_reg(sc, A_SGE_HOST_PAGE_SIZE, v); t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE0, 4096); t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE1, 65536); reg = A_SGE_FL_BUFFER_SIZE2; for (i = 0; i < nitems(sw_buf_sizes); i++) { MPASS(reg <= A_SGE_FL_BUFFER_SIZE15); t4_write_reg(sc, reg, sw_buf_sizes[i]); reg += 4; MPASS(reg <= A_SGE_FL_BUFFER_SIZE15); t4_write_reg(sc, reg, sw_buf_sizes[i] - CL_METADATA_SIZE); reg += 4; } v = V_THRESHOLD_0(intr_pktcount[0]) | V_THRESHOLD_1(intr_pktcount[1]) | V_THRESHOLD_2(intr_pktcount[2]) | V_THRESHOLD_3(intr_pktcount[3]); t4_write_reg(sc, A_SGE_INGRESS_RX_THRESHOLD, v); KASSERT(intr_timer[0] <= timer_max, ("%s: not a single usable timer (%d, %d)", __func__, intr_timer[0], timer_max)); for (i = 1; i < nitems(intr_timer); i++) { KASSERT(intr_timer[i] >= intr_timer[i - 1], ("%s: timers not listed in increasing order (%d)", __func__, i)); while (intr_timer[i] > timer_max) { if (i == nitems(intr_timer) - 1) { intr_timer[i] = timer_max; break; } intr_timer[i] += intr_timer[i - 1]; intr_timer[i] /= 2; } } v = V_TIMERVALUE0(us_to_core_ticks(sc, intr_timer[0])) | V_TIMERVALUE1(us_to_core_ticks(sc, intr_timer[1])); t4_write_reg(sc, A_SGE_TIMER_VALUE_0_AND_1, v); v = V_TIMERVALUE2(us_to_core_ticks(sc, intr_timer[2])) | V_TIMERVALUE3(us_to_core_ticks(sc, intr_timer[3])); t4_write_reg(sc, A_SGE_TIMER_VALUE_2_AND_3, v); v = V_TIMERVALUE4(us_to_core_ticks(sc, intr_timer[4])) | V_TIMERVALUE5(us_to_core_ticks(sc, intr_timer[5])); t4_write_reg(sc, A_SGE_TIMER_VALUE_4_AND_5, v); if (chip_id(sc) >= CHELSIO_T6) { m = V_TSCALE(M_TSCALE); if (tscale == 1) v = 0; else v = V_TSCALE(tscale - 2); t4_set_reg_field(sc, A_SGE_ITP_CONTROL, m, v); if (sc->debug_flags & DF_DISABLE_TCB_CACHE) { m = V_RDTHRESHOLD(M_RDTHRESHOLD) | F_WRTHRTHRESHEN | V_WRTHRTHRESH(M_WRTHRTHRESH); t4_tp_pio_read(sc, &v, 1, A_TP_CMM_CONFIG, 1); v &= ~m; v |= V_RDTHRESHOLD(1) | F_WRTHRTHRESHEN | V_WRTHRTHRESH(16); t4_tp_pio_write(sc, &v, 1, A_TP_CMM_CONFIG, 1); } } /* 4K, 16K, 64K, 256K DDP "page sizes" for TDDP */ v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6); t4_write_reg(sc, A_ULP_RX_TDDP_PSZ, v); /* * 4K, 8K, 16K, 64K DDP "page sizes" for iSCSI DDP. These have been * chosen with MAXPHYS = 128K in mind. The largest DDP buffer that we * may have to deal with is MAXPHYS + 1 page. */ v = V_HPZ0(0) | V_HPZ1(1) | V_HPZ2(2) | V_HPZ3(4); t4_write_reg(sc, A_ULP_RX_ISCSI_PSZ, v); /* We use multiple DDP page sizes both in plain-TOE and ISCSI modes. */ m = v = F_TDDPTAGTCB | F_ISCSITAGTCB; t4_set_reg_field(sc, A_ULP_RX_CTL, m, v); m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET | F_RESETDDPOFFSET; v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET; t4_set_reg_field(sc, A_TP_PARA_REG5, m, v); } /* * SGE wants the buffer to be at least 64B and then a multiple of 16. Its * address mut be 16B aligned. If padding is in use the buffer's start and end * need to be aligned to the pad boundary as well. We'll just make sure that * the size is a multiple of the pad boundary here, it is up to the buffer * allocation code to make sure the start of the buffer is aligned. */ static inline int hwsz_ok(struct adapter *sc, int hwsz) { int mask = fl_pad ? sc->params.sge.pad_boundary - 1 : 16 - 1; return (hwsz >= 64 && (hwsz & mask) == 0); } /* * Initialize the rx buffer sizes and figure out which zones the buffers will * be allocated from. */ void t4_init_rx_buf_info(struct adapter *sc) { struct sge *s = &sc->sge; struct sge_params *sp = &sc->params.sge; int i, j, n; static int sw_buf_sizes[] = { /* Sorted by size */ MCLBYTES, MJUMPAGESIZE, MJUM9BYTES, MJUM16BYTES }; struct rx_buf_info *rxb; s->safe_zidx = -1; rxb = &s->rx_buf_info[0]; for (i = 0; i < SW_ZONE_SIZES; i++, rxb++) { rxb->size1 = sw_buf_sizes[i]; rxb->zone = m_getzone(rxb->size1); rxb->type = m_gettype(rxb->size1); rxb->size2 = 0; rxb->hwidx1 = -1; rxb->hwidx2 = -1; for (j = 0; j < SGE_FLBUF_SIZES; j++) { int hwsize = sp->sge_fl_buffer_size[j]; if (!hwsz_ok(sc, hwsize)) continue; /* hwidx for size1 */ if (rxb->hwidx1 == -1 && rxb->size1 == hwsize) rxb->hwidx1 = j; /* hwidx for size2 (buffer packing) */ if (rxb->size1 - CL_METADATA_SIZE < hwsize) continue; n = rxb->size1 - hwsize - CL_METADATA_SIZE; if (n == 0) { rxb->hwidx2 = j; rxb->size2 = hwsize; break; /* stop looking */ } if (rxb->hwidx2 != -1) { if (n < sp->sge_fl_buffer_size[rxb->hwidx2] - hwsize - CL_METADATA_SIZE) { rxb->hwidx2 = j; rxb->size2 = hwsize; } } else if (n <= 2 * CL_METADATA_SIZE) { rxb->hwidx2 = j; rxb->size2 = hwsize; } } if (rxb->hwidx2 != -1) sc->flags |= BUF_PACKING_OK; if (s->safe_zidx == -1 && rxb->size1 == safest_rx_cluster) s->safe_zidx = i; } } /* * Verify some basic SGE settings for the PF and VF driver, and other * miscellaneous settings for the PF driver. */ int t4_verify_chip_settings(struct adapter *sc) { struct sge_params *sp = &sc->params.sge; uint32_t m, v, r; int rc = 0; const uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE); m = F_RXPKTCPLMODE; v = F_RXPKTCPLMODE; r = sp->sge_control; if ((r & m) != v) { device_printf(sc->dev, "invalid SGE_CONTROL(0x%x)\n", r); rc = EINVAL; } /* * If this changes then every single use of PAGE_SHIFT in the driver * needs to be carefully reviewed for PAGE_SHIFT vs sp->page_shift. */ if (sp->page_shift != PAGE_SHIFT) { device_printf(sc->dev, "invalid SGE_HOST_PAGE_SIZE(0x%x)\n", r); rc = EINVAL; } if (sc->flags & IS_VF) return (0); v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6); r = t4_read_reg(sc, A_ULP_RX_TDDP_PSZ); if (r != v) { device_printf(sc->dev, "invalid ULP_RX_TDDP_PSZ(0x%x)\n", r); if (sc->vres.ddp.size != 0) rc = EINVAL; } m = v = F_TDDPTAGTCB; r = t4_read_reg(sc, A_ULP_RX_CTL); if ((r & m) != v) { device_printf(sc->dev, "invalid ULP_RX_CTL(0x%x)\n", r); if (sc->vres.ddp.size != 0) rc = EINVAL; } m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET | F_RESETDDPOFFSET; v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET; r = t4_read_reg(sc, A_TP_PARA_REG5); if ((r & m) != v) { device_printf(sc->dev, "invalid TP_PARA_REG5(0x%x)\n", r); if (sc->vres.ddp.size != 0) rc = EINVAL; } return (rc); } int t4_create_dma_tag(struct adapter *sc) { int rc; rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE, BUS_SPACE_UNRESTRICTED, BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL, NULL, &sc->dmat); if (rc != 0) { device_printf(sc->dev, "failed to create main DMA tag: %d\n", rc); } return (rc); } void t4_sge_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx, struct sysctl_oid_list *children) { struct sge_params *sp = &sc->params.sge; SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "buffer_sizes", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, sysctl_bufsizes, "A", "freelist buffer sizes"); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pktshift", CTLFLAG_RD, NULL, sp->fl_pktshift, "payload DMA offset in rx buffer (bytes)"); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pad", CTLFLAG_RD, NULL, sp->pad_boundary, "payload pad boundary (bytes)"); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "spg_len", CTLFLAG_RD, NULL, sp->spg_len, "status page size (bytes)"); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_drop", CTLFLAG_RD, NULL, cong_drop, "congestion drop setting"); #ifdef TCP_OFFLOAD SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ofld_cong_drop", CTLFLAG_RD, NULL, ofld_cong_drop, "congestion drop setting"); #endif SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pack", CTLFLAG_RD, NULL, sp->pack_boundary, "payload pack boundary (bytes)"); } int t4_destroy_dma_tag(struct adapter *sc) { if (sc->dmat) bus_dma_tag_destroy(sc->dmat); return (0); } /* * Allocate and initialize the firmware event queue, control queues, and special * purpose rx queues owned by the adapter. * * Returns errno on failure. Resources allocated up to that point may still be * allocated. Caller is responsible for cleanup in case this function fails. */ int t4_setup_adapter_queues(struct adapter *sc) { int rc, i; ADAPTER_LOCK_ASSERT_NOTOWNED(sc); /* * Firmware event queue */ rc = alloc_fwq(sc); if (rc != 0) return (rc); /* * That's all for the VF driver. */ if (sc->flags & IS_VF) return (rc); /* * XXX: General purpose rx queues, one per port. */ /* * Control queues, one per port. */ for_each_port(sc, i) { rc = alloc_ctrlq(sc, i); if (rc != 0) return (rc); } return (rc); } /* * Idempotent */ int t4_teardown_adapter_queues(struct adapter *sc) { int i; ADAPTER_LOCK_ASSERT_NOTOWNED(sc); if (sc->sge.ctrlq != NULL) { MPASS(!(sc->flags & IS_VF)); /* VFs don't allocate ctrlq. */ for_each_port(sc, i) free_ctrlq(sc, i); } free_fwq(sc); return (0); } /* Maximum payload that could arrive with a single iq descriptor. */ static inline int max_rx_payload(struct adapter *sc, if_t ifp, const bool ofld) { int maxp; /* large enough even when hw VLAN extraction is disabled */ maxp = sc->params.sge.fl_pktshift + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + if_getmtu(ifp); if (ofld && sc->tt.tls && sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS && maxp < sc->params.tp.max_rx_pdu) maxp = sc->params.tp.max_rx_pdu; return (maxp); } int t4_setup_vi_queues(struct vi_info *vi) { int rc = 0, i, intr_idx; struct sge_rxq *rxq; struct sge_txq *txq; #ifdef TCP_OFFLOAD struct sge_ofld_rxq *ofld_rxq; #endif #if defined(TCP_OFFLOAD) || defined(RATELIMIT) struct sge_ofld_txq *ofld_txq; #endif #ifdef DEV_NETMAP int saved_idx, iqidx; struct sge_nm_rxq *nm_rxq; struct sge_nm_txq *nm_txq; #endif struct adapter *sc = vi->adapter; if_t ifp = vi->ifp; int maxp; /* Interrupt vector to start from (when using multiple vectors) */ intr_idx = vi->first_intr; #ifdef DEV_NETMAP saved_idx = intr_idx; if (if_getcapabilities(ifp) & IFCAP_NETMAP) { /* netmap is supported with direct interrupts only. */ MPASS(!forwarding_intr_to_fwq(sc)); MPASS(vi->first_intr >= 0); /* * We don't have buffers to back the netmap rx queues * right now so we create the queues in a way that * doesn't set off any congestion signal in the chip. */ for_each_nm_rxq(vi, i, nm_rxq) { rc = alloc_nm_rxq(vi, nm_rxq, intr_idx, i); if (rc != 0) goto done; intr_idx++; } for_each_nm_txq(vi, i, nm_txq) { iqidx = vi->first_nm_rxq + (i % vi->nnmrxq); rc = alloc_nm_txq(vi, nm_txq, iqidx, i); if (rc != 0) goto done; } } /* Normal rx queues and netmap rx queues share the same interrupts. */ intr_idx = saved_idx; #endif /* * Allocate rx queues first because a default iqid is required when * creating a tx queue. */ maxp = max_rx_payload(sc, ifp, false); for_each_rxq(vi, i, rxq) { rc = alloc_rxq(vi, rxq, i, intr_idx, maxp); if (rc != 0) goto done; if (!forwarding_intr_to_fwq(sc)) intr_idx++; } #ifdef DEV_NETMAP if (if_getcapabilities(ifp) & IFCAP_NETMAP) intr_idx = saved_idx + max(vi->nrxq, vi->nnmrxq); #endif #ifdef TCP_OFFLOAD maxp = max_rx_payload(sc, ifp, true); for_each_ofld_rxq(vi, i, ofld_rxq) { rc = alloc_ofld_rxq(vi, ofld_rxq, i, intr_idx, maxp); if (rc != 0) goto done; if (!forwarding_intr_to_fwq(sc)) intr_idx++; } #endif /* * Now the tx queues. */ for_each_txq(vi, i, txq) { rc = alloc_txq(vi, txq, i); if (rc != 0) goto done; } #if defined(TCP_OFFLOAD) || defined(RATELIMIT) for_each_ofld_txq(vi, i, ofld_txq) { rc = alloc_ofld_txq(vi, ofld_txq, i); if (rc != 0) goto done; } #endif done: if (rc) t4_teardown_vi_queues(vi); return (rc); } /* * Idempotent */ int t4_teardown_vi_queues(struct vi_info *vi) { int i; struct sge_rxq *rxq; struct sge_txq *txq; #if defined(TCP_OFFLOAD) || defined(RATELIMIT) struct sge_ofld_txq *ofld_txq; #endif #ifdef TCP_OFFLOAD struct sge_ofld_rxq *ofld_rxq; #endif #ifdef DEV_NETMAP struct sge_nm_rxq *nm_rxq; struct sge_nm_txq *nm_txq; #endif #ifdef DEV_NETMAP if (if_getcapabilities(vi->ifp) & IFCAP_NETMAP) { for_each_nm_txq(vi, i, nm_txq) { free_nm_txq(vi, nm_txq); } for_each_nm_rxq(vi, i, nm_rxq) { free_nm_rxq(vi, nm_rxq); } } #endif /* * Take down all the tx queues first, as they reference the rx queues * (for egress updates, etc.). */ for_each_txq(vi, i, txq) { free_txq(vi, txq); } #if defined(TCP_OFFLOAD) || defined(RATELIMIT) for_each_ofld_txq(vi, i, ofld_txq) { free_ofld_txq(vi, ofld_txq); } #endif /* * Then take down the rx queues. */ for_each_rxq(vi, i, rxq) { free_rxq(vi, rxq); } #ifdef TCP_OFFLOAD for_each_ofld_rxq(vi, i, ofld_rxq) { free_ofld_rxq(vi, ofld_rxq); } #endif return (0); } /* * Interrupt handler when the driver is using only 1 interrupt. This is a very * unusual scenario. * * a) Deals with errors, if any. * b) Services firmware event queue, which is taking interrupts for all other * queues. */ void t4_intr_all(void *arg) { struct adapter *sc = arg; struct sge_iq *fwq = &sc->sge.fwq; MPASS(sc->intr_count == 1); if (sc->intr_type == INTR_INTX) t4_write_reg(sc, MYPF_REG(A_PCIE_PF_CLI), 0); t4_intr_err(arg); t4_intr_evt(fwq); } /* * Interrupt handler for errors (installed directly when multiple interrupts are * being used, or called by t4_intr_all). */ void t4_intr_err(void *arg) { struct adapter *sc = arg; uint32_t v; const bool verbose = (sc->debug_flags & DF_VERBOSE_SLOWINTR) != 0; if (atomic_load_int(&sc->error_flags) & ADAP_FATAL_ERR) return; v = t4_read_reg(sc, MYPF_REG(A_PL_PF_INT_CAUSE)); if (v & F_PFSW) { sc->swintr++; t4_write_reg(sc, MYPF_REG(A_PL_PF_INT_CAUSE), v); } if (t4_slow_intr_handler(sc, verbose)) t4_fatal_err(sc, false); } /* * Interrupt handler for iq-only queues. The firmware event queue is the only * such queue right now. */ void t4_intr_evt(void *arg) { struct sge_iq *iq = arg; if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) { service_iq(iq, 0); (void) atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE); } } /* * Interrupt handler for iq+fl queues. */ void t4_intr(void *arg) { struct sge_iq *iq = arg; if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) { service_iq_fl(iq, 0); (void) atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE); } } #ifdef DEV_NETMAP /* * Interrupt handler for netmap rx queues. */ void t4_nm_intr(void *arg) { struct sge_nm_rxq *nm_rxq = arg; if (atomic_cmpset_int(&nm_rxq->nm_state, NM_ON, NM_BUSY)) { service_nm_rxq(nm_rxq); (void) atomic_cmpset_int(&nm_rxq->nm_state, NM_BUSY, NM_ON); } } /* * Interrupt handler for vectors shared between NIC and netmap rx queues. */ void t4_vi_intr(void *arg) { struct irq *irq = arg; MPASS(irq->nm_rxq != NULL); t4_nm_intr(irq->nm_rxq); MPASS(irq->rxq != NULL); t4_intr(irq->rxq); } #endif /* * Deals with interrupts on an iq-only (no freelist) queue. */ static int service_iq(struct sge_iq *iq, int budget) { struct sge_iq *q; struct adapter *sc = iq->adapter; struct iq_desc *d = &iq->desc[iq->cidx]; int ndescs = 0, limit; int rsp_type; uint32_t lq; STAILQ_HEAD(, sge_iq) iql = STAILQ_HEAD_INITIALIZER(iql); KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq)); KASSERT((iq->flags & IQ_HAS_FL) == 0, ("%s: called for iq %p with fl (iq->flags 0x%x)", __func__, iq, iq->flags)); MPASS((iq->flags & IQ_ADJ_CREDIT) == 0); MPASS((iq->flags & IQ_LRO_ENABLED) == 0); limit = budget ? budget : iq->qsize / 16; /* * We always come back and check the descriptor ring for new indirect * interrupts and other responses after running a single handler. */ for (;;) { while ((d->rsp.u.type_gen & F_RSPD_GEN) == iq->gen) { rmb(); rsp_type = G_RSPD_TYPE(d->rsp.u.type_gen); lq = be32toh(d->rsp.pldbuflen_qid); switch (rsp_type) { case X_RSPD_TYPE_FLBUF: panic("%s: data for an iq (%p) with no freelist", __func__, iq); /* NOTREACHED */ case X_RSPD_TYPE_CPL: KASSERT(d->rss.opcode < NUM_CPL_CMDS, ("%s: bad opcode %02x.", __func__, d->rss.opcode)); t4_cpl_handler[d->rss.opcode](iq, &d->rss, NULL); break; case X_RSPD_TYPE_INTR: /* * There are 1K interrupt-capable queues (qids 0 * through 1023). A response type indicating a * forwarded interrupt with a qid >= 1K is an * iWARP async notification. */ if (__predict_true(lq >= 1024)) { t4_an_handler(iq, &d->rsp); break; } q = sc->sge.iqmap[lq - sc->sge.iq_start - sc->sge.iq_base]; if (atomic_cmpset_int(&q->state, IQS_IDLE, IQS_BUSY)) { if (service_iq_fl(q, q->qsize / 16) == 0) { (void) atomic_cmpset_int(&q->state, IQS_BUSY, IQS_IDLE); } else { STAILQ_INSERT_TAIL(&iql, q, link); } } break; default: KASSERT(0, ("%s: illegal response type %d on iq %p", __func__, rsp_type, iq)); log(LOG_ERR, "%s: illegal response type %d on iq %p", device_get_nameunit(sc->dev), rsp_type, iq); break; } d++; if (__predict_false(++iq->cidx == iq->sidx)) { iq->cidx = 0; iq->gen ^= F_RSPD_GEN; d = &iq->desc[0]; } if (__predict_false(++ndescs == limit)) { t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) | V_INGRESSQID(iq->cntxt_id) | V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX))); ndescs = 0; if (budget) { return (EINPROGRESS); } } } if (STAILQ_EMPTY(&iql)) break; /* * Process the head only, and send it to the back of the list if * it's still not done. */ q = STAILQ_FIRST(&iql); STAILQ_REMOVE_HEAD(&iql, link); if (service_iq_fl(q, q->qsize / 8) == 0) (void) atomic_cmpset_int(&q->state, IQS_BUSY, IQS_IDLE); else STAILQ_INSERT_TAIL(&iql, q, link); } t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) | V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params)); return (0); } #if defined(INET) || defined(INET6) static inline int sort_before_lro(struct lro_ctrl *lro) { return (lro->lro_mbuf_max != 0); } #endif #define CGBE_SHIFT_SCALE 10 static inline uint64_t t4_tstmp_to_ns(struct adapter *sc, uint64_t lf) { struct clock_sync *cur, dcur; uint64_t hw_clocks; uint64_t hw_clk_div; sbintime_t sbt_cur_to_prev, sbt; uint64_t hw_tstmp = lf & 0xfffffffffffffffULL; /* 60b, not 64b. */ seqc_t gen; for (;;) { cur = &sc->cal_info[sc->cal_current]; gen = seqc_read(&cur->gen); if (gen == 0) return (0); dcur = *cur; if (seqc_consistent(&cur->gen, gen)) break; } /* * Our goal here is to have a result that is: * * ( (cur_time - prev_time) ) * ((hw_tstmp - hw_prev) * ----------------------------- ) + prev_time * ( (hw_cur - hw_prev) ) * * With the constraints that we cannot use float and we * don't want to overflow the uint64_t numbers we are using. */ hw_clocks = hw_tstmp - dcur.hw_prev; sbt_cur_to_prev = (dcur.sbt_cur - dcur.sbt_prev); hw_clk_div = dcur.hw_cur - dcur.hw_prev; sbt = hw_clocks * sbt_cur_to_prev / hw_clk_div + dcur.sbt_prev; return (sbttons(sbt)); } static inline void move_to_next_rxbuf(struct sge_fl *fl) { fl->rx_offset = 0; if (__predict_false((++fl->cidx & 7) == 0)) { uint16_t cidx = fl->cidx >> 3; if (__predict_false(cidx == fl->sidx)) fl->cidx = cidx = 0; fl->hw_cidx = cidx; } } /* * Deals with interrupts on an iq+fl queue. */ static int service_iq_fl(struct sge_iq *iq, int budget) { struct sge_rxq *rxq = iq_to_rxq(iq); struct sge_fl *fl; struct adapter *sc = iq->adapter; struct iq_desc *d = &iq->desc[iq->cidx]; int ndescs, limit; int rsp_type, starved; uint32_t lq; uint16_t fl_hw_cidx; struct mbuf *m0; #if defined(INET) || defined(INET6) const struct timeval lro_timeout = {0, sc->lro_timeout}; struct lro_ctrl *lro = &rxq->lro; #endif KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq)); MPASS(iq->flags & IQ_HAS_FL); ndescs = 0; #if defined(INET) || defined(INET6) if (iq->flags & IQ_ADJ_CREDIT) { MPASS(sort_before_lro(lro)); iq->flags &= ~IQ_ADJ_CREDIT; if ((d->rsp.u.type_gen & F_RSPD_GEN) != iq->gen) { tcp_lro_flush_all(lro); t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(1) | V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params)); return (0); } ndescs = 1; } #else MPASS((iq->flags & IQ_ADJ_CREDIT) == 0); #endif limit = budget ? budget : iq->qsize / 16; fl = &rxq->fl; fl_hw_cidx = fl->hw_cidx; /* stable snapshot */ while ((d->rsp.u.type_gen & F_RSPD_GEN) == iq->gen) { rmb(); m0 = NULL; rsp_type = G_RSPD_TYPE(d->rsp.u.type_gen); lq = be32toh(d->rsp.pldbuflen_qid); switch (rsp_type) { case X_RSPD_TYPE_FLBUF: if (lq & F_RSPD_NEWBUF) { if (fl->rx_offset > 0) move_to_next_rxbuf(fl); lq = G_RSPD_LEN(lq); } if (IDXDIFF(fl->hw_cidx, fl_hw_cidx, fl->sidx) > 4) { FL_LOCK(fl); refill_fl(sc, fl, 64); FL_UNLOCK(fl); fl_hw_cidx = fl->hw_cidx; } if (d->rss.opcode == CPL_RX_PKT) { if (__predict_true(eth_rx(sc, rxq, d, lq) == 0)) break; goto out; } m0 = get_fl_payload(sc, fl, lq); if (__predict_false(m0 == NULL)) goto out; /* fall through */ case X_RSPD_TYPE_CPL: KASSERT(d->rss.opcode < NUM_CPL_CMDS, ("%s: bad opcode %02x.", __func__, d->rss.opcode)); t4_cpl_handler[d->rss.opcode](iq, &d->rss, m0); break; case X_RSPD_TYPE_INTR: /* * There are 1K interrupt-capable queues (qids 0 * through 1023). A response type indicating a * forwarded interrupt with a qid >= 1K is an * iWARP async notification. That is the only * acceptable indirect interrupt on this queue. */ if (__predict_false(lq < 1024)) { panic("%s: indirect interrupt on iq_fl %p " "with qid %u", __func__, iq, lq); } t4_an_handler(iq, &d->rsp); break; default: KASSERT(0, ("%s: illegal response type %d on iq %p", __func__, rsp_type, iq)); log(LOG_ERR, "%s: illegal response type %d on iq %p", device_get_nameunit(sc->dev), rsp_type, iq); break; } d++; if (__predict_false(++iq->cidx == iq->sidx)) { iq->cidx = 0; iq->gen ^= F_RSPD_GEN; d = &iq->desc[0]; } if (__predict_false(++ndescs == limit)) { t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) | V_INGRESSQID(iq->cntxt_id) | V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX))); #if defined(INET) || defined(INET6) if (iq->flags & IQ_LRO_ENABLED && !sort_before_lro(lro) && sc->lro_timeout != 0) { tcp_lro_flush_inactive(lro, &lro_timeout); } #endif if (budget) return (EINPROGRESS); ndescs = 0; } } out: #if defined(INET) || defined(INET6) if (iq->flags & IQ_LRO_ENABLED) { if (ndescs > 0 && lro->lro_mbuf_count > 8) { MPASS(sort_before_lro(lro)); /* hold back one credit and don't flush LRO state */ iq->flags |= IQ_ADJ_CREDIT; ndescs--; } else { tcp_lro_flush_all(lro); } } #endif t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) | V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params)); FL_LOCK(fl); starved = refill_fl(sc, fl, 64); FL_UNLOCK(fl); if (__predict_false(starved != 0)) add_fl_to_sfl(sc, fl); return (0); } static inline struct cluster_metadata * cl_metadata(struct fl_sdesc *sd) { return ((void *)(sd->cl + sd->moff)); } static void rxb_free(struct mbuf *m) { struct cluster_metadata *clm = m->m_ext.ext_arg1; uma_zfree(clm->zone, clm->cl); counter_u64_add(extfree_rels, 1); } /* * The mbuf returned comes from zone_muf and carries the payload in one of these * ways * a) complete frame inside the mbuf * b) m_cljset (for clusters without metadata) * d) m_extaddref (cluster with metadata) */ static struct mbuf * get_scatter_segment(struct adapter *sc, struct sge_fl *fl, int fr_offset, int remaining) { struct mbuf *m; struct fl_sdesc *sd = &fl->sdesc[fl->cidx]; struct rx_buf_info *rxb = &sc->sge.rx_buf_info[sd->zidx]; struct cluster_metadata *clm; int len, blen; caddr_t payload; if (fl->flags & FL_BUF_PACKING) { u_int l, pad; blen = rxb->size2 - fl->rx_offset; /* max possible in this buf */ len = min(remaining, blen); payload = sd->cl + fl->rx_offset; l = fr_offset + len; pad = roundup2(l, fl->buf_boundary) - l; if (fl->rx_offset + len + pad < rxb->size2) blen = len + pad; MPASS(fl->rx_offset + blen <= rxb->size2); } else { MPASS(fl->rx_offset == 0); /* not packing */ blen = rxb->size1; len = min(remaining, blen); payload = sd->cl; } if (fr_offset == 0) { m = m_gethdr(M_NOWAIT, MT_DATA); if (__predict_false(m == NULL)) return (NULL); m->m_pkthdr.len = remaining; } else { m = m_get(M_NOWAIT, MT_DATA); if (__predict_false(m == NULL)) return (NULL); } m->m_len = len; kmsan_mark(payload, len, KMSAN_STATE_INITED); if (sc->sc_do_rxcopy && len < RX_COPY_THRESHOLD) { /* copy data to mbuf */ bcopy(payload, mtod(m, caddr_t), len); if (fl->flags & FL_BUF_PACKING) { fl->rx_offset += blen; MPASS(fl->rx_offset <= rxb->size2); if (fl->rx_offset < rxb->size2) return (m); /* without advancing the cidx */ } } else if (fl->flags & FL_BUF_PACKING) { clm = cl_metadata(sd); if (sd->nmbuf++ == 0) { clm->refcount = 1; clm->zone = rxb->zone; clm->cl = sd->cl; counter_u64_add(extfree_refs, 1); } m_extaddref(m, payload, blen, &clm->refcount, rxb_free, clm, NULL); fl->rx_offset += blen; MPASS(fl->rx_offset <= rxb->size2); if (fl->rx_offset < rxb->size2) return (m); /* without advancing the cidx */ } else { m_cljset(m, sd->cl, rxb->type); sd->cl = NULL; /* consumed, not a recycle candidate */ } move_to_next_rxbuf(fl); return (m); } static struct mbuf * get_fl_payload(struct adapter *sc, struct sge_fl *fl, const u_int plen) { struct mbuf *m0, *m, **pnext; u_int remaining; if (__predict_false(fl->flags & FL_BUF_RESUME)) { M_ASSERTPKTHDR(fl->m0); MPASS(fl->m0->m_pkthdr.len == plen); MPASS(fl->remaining < plen); m0 = fl->m0; pnext = fl->pnext; remaining = fl->remaining; fl->flags &= ~FL_BUF_RESUME; goto get_segment; } /* * Payload starts at rx_offset in the current hw buffer. Its length is * 'len' and it may span multiple hw buffers. */ m0 = get_scatter_segment(sc, fl, 0, plen); if (m0 == NULL) return (NULL); remaining = plen - m0->m_len; pnext = &m0->m_next; while (remaining > 0) { get_segment: MPASS(fl->rx_offset == 0); m = get_scatter_segment(sc, fl, plen - remaining, remaining); if (__predict_false(m == NULL)) { fl->m0 = m0; fl->pnext = pnext; fl->remaining = remaining; fl->flags |= FL_BUF_RESUME; return (NULL); } *pnext = m; pnext = &m->m_next; remaining -= m->m_len; } *pnext = NULL; M_ASSERTPKTHDR(m0); return (m0); } static int skip_scatter_segment(struct adapter *sc, struct sge_fl *fl, int fr_offset, int remaining) { struct fl_sdesc *sd = &fl->sdesc[fl->cidx]; struct rx_buf_info *rxb = &sc->sge.rx_buf_info[sd->zidx]; int len, blen; if (fl->flags & FL_BUF_PACKING) { u_int l, pad; blen = rxb->size2 - fl->rx_offset; /* max possible in this buf */ len = min(remaining, blen); l = fr_offset + len; pad = roundup2(l, fl->buf_boundary) - l; if (fl->rx_offset + len + pad < rxb->size2) blen = len + pad; fl->rx_offset += blen; MPASS(fl->rx_offset <= rxb->size2); if (fl->rx_offset < rxb->size2) return (len); /* without advancing the cidx */ } else { MPASS(fl->rx_offset == 0); /* not packing */ blen = rxb->size1; len = min(remaining, blen); } move_to_next_rxbuf(fl); return (len); } static inline void skip_fl_payload(struct adapter *sc, struct sge_fl *fl, int plen) { int remaining, fr_offset, len; fr_offset = 0; remaining = plen; while (remaining > 0) { len = skip_scatter_segment(sc, fl, fr_offset, remaining); fr_offset += len; remaining -= len; } } static inline int get_segment_len(struct adapter *sc, struct sge_fl *fl, int plen) { int len; struct fl_sdesc *sd = &fl->sdesc[fl->cidx]; struct rx_buf_info *rxb = &sc->sge.rx_buf_info[sd->zidx]; if (fl->flags & FL_BUF_PACKING) len = rxb->size2 - fl->rx_offset; else len = rxb->size1; return (min(plen, len)); } static int eth_rx(struct adapter *sc, struct sge_rxq *rxq, const struct iq_desc *d, u_int plen) { struct mbuf *m0; if_t ifp = rxq->ifp; struct sge_fl *fl = &rxq->fl; struct vi_info *vi = if_getsoftc(ifp); const struct cpl_rx_pkt *cpl; #if defined(INET) || defined(INET6) struct lro_ctrl *lro = &rxq->lro; #endif uint16_t err_vec, tnl_type, tnlhdr_len; static const int sw_hashtype[4][2] = { {M_HASHTYPE_NONE, M_HASHTYPE_NONE}, {M_HASHTYPE_RSS_IPV4, M_HASHTYPE_RSS_IPV6}, {M_HASHTYPE_RSS_TCP_IPV4, M_HASHTYPE_RSS_TCP_IPV6}, {M_HASHTYPE_RSS_UDP_IPV4, M_HASHTYPE_RSS_UDP_IPV6}, }; static const int sw_csum_flags[2][2] = { { /* IP, inner IP */ CSUM_ENCAP_VXLAN | CSUM_L3_CALC | CSUM_L3_VALID | CSUM_L4_CALC | CSUM_L4_VALID | CSUM_INNER_L3_CALC | CSUM_INNER_L3_VALID | CSUM_INNER_L4_CALC | CSUM_INNER_L4_VALID, /* IP, inner IP6 */ CSUM_ENCAP_VXLAN | CSUM_L3_CALC | CSUM_L3_VALID | CSUM_L4_CALC | CSUM_L4_VALID | CSUM_INNER_L4_CALC | CSUM_INNER_L4_VALID, }, { /* IP6, inner IP */ CSUM_ENCAP_VXLAN | CSUM_L4_CALC | CSUM_L4_VALID | CSUM_INNER_L3_CALC | CSUM_INNER_L3_VALID | CSUM_INNER_L4_CALC | CSUM_INNER_L4_VALID, /* IP6, inner IP6 */ CSUM_ENCAP_VXLAN | CSUM_L4_CALC | CSUM_L4_VALID | CSUM_INNER_L4_CALC | CSUM_INNER_L4_VALID, }, }; MPASS(plen > sc->params.sge.fl_pktshift); if (vi->pfil != NULL && PFIL_HOOKED_IN(vi->pfil) && __predict_true((fl->flags & FL_BUF_RESUME) == 0)) { struct fl_sdesc *sd = &fl->sdesc[fl->cidx]; caddr_t frame; int rc, slen; slen = get_segment_len(sc, fl, plen) - sc->params.sge.fl_pktshift; frame = sd->cl + fl->rx_offset + sc->params.sge.fl_pktshift; CURVNET_SET_QUIET(if_getvnet(ifp)); rc = pfil_mem_in(vi->pfil, frame, slen, ifp, &m0); CURVNET_RESTORE(); if (rc == PFIL_DROPPED || rc == PFIL_CONSUMED) { skip_fl_payload(sc, fl, plen); return (0); } if (rc == PFIL_REALLOCED) { skip_fl_payload(sc, fl, plen); goto have_mbuf; } } m0 = get_fl_payload(sc, fl, plen); if (__predict_false(m0 == NULL)) return (ENOMEM); m0->m_pkthdr.len -= sc->params.sge.fl_pktshift; m0->m_len -= sc->params.sge.fl_pktshift; m0->m_data += sc->params.sge.fl_pktshift; have_mbuf: m0->m_pkthdr.rcvif = ifp; M_HASHTYPE_SET(m0, sw_hashtype[d->rss.hash_type][d->rss.ipv6]); m0->m_pkthdr.flowid = be32toh(d->rss.hash_val); cpl = (const void *)(&d->rss + 1); if (sc->params.tp.rx_pkt_encap) { const uint16_t ev = be16toh(cpl->err_vec); err_vec = G_T6_COMPR_RXERR_VEC(ev); tnl_type = G_T6_RX_TNL_TYPE(ev); tnlhdr_len = G_T6_RX_TNLHDR_LEN(ev); } else { err_vec = be16toh(cpl->err_vec); tnl_type = 0; tnlhdr_len = 0; } if (cpl->csum_calc && err_vec == 0) { int ipv6 = !!(cpl->l2info & htobe32(F_RXF_IP6)); /* checksum(s) calculated and found to be correct. */ MPASS((cpl->l2info & htobe32(F_RXF_IP)) ^ (cpl->l2info & htobe32(F_RXF_IP6))); m0->m_pkthdr.csum_data = be16toh(cpl->csum); if (tnl_type == 0) { if (!ipv6 && if_getcapenable(ifp) & IFCAP_RXCSUM) { m0->m_pkthdr.csum_flags = CSUM_L3_CALC | CSUM_L3_VALID | CSUM_L4_CALC | CSUM_L4_VALID; } else if (ipv6 && if_getcapenable(ifp) & IFCAP_RXCSUM_IPV6) { m0->m_pkthdr.csum_flags = CSUM_L4_CALC | CSUM_L4_VALID; } rxq->rxcsum++; } else { MPASS(tnl_type == RX_PKT_TNL_TYPE_VXLAN); M_HASHTYPE_SETINNER(m0); if (__predict_false(cpl->ip_frag)) { /* * csum_data is for the inner frame (which is an * IP fragment) and is not 0xffff. There is no * way to pass the inner csum_data to the stack. * We don't want the stack to use the inner * csum_data to validate the outer frame or it * will get rejected. So we fix csum_data here * and let sw do the checksum of inner IP * fragments. * * XXX: Need 32b for csum_data2 in an rx mbuf. * Maybe stuff it into rcv_tstmp? */ m0->m_pkthdr.csum_data = 0xffff; if (ipv6) { m0->m_pkthdr.csum_flags = CSUM_L4_CALC | CSUM_L4_VALID; } else { m0->m_pkthdr.csum_flags = CSUM_L3_CALC | CSUM_L3_VALID | CSUM_L4_CALC | CSUM_L4_VALID; } } else { int outer_ipv6; MPASS(m0->m_pkthdr.csum_data == 0xffff); outer_ipv6 = tnlhdr_len >= sizeof(struct ether_header) + sizeof(struct ip6_hdr); m0->m_pkthdr.csum_flags = sw_csum_flags[outer_ipv6][ipv6]; } rxq->vxlan_rxcsum++; } } if (cpl->vlan_ex) { if (sc->flags & IS_VF && sc->vlan_id) { /* * HW is not setup correctly if extracted vlan_id does * not match the VF's setting. */ MPASS(be16toh(cpl->vlan) == sc->vlan_id); } else { m0->m_pkthdr.ether_vtag = be16toh(cpl->vlan); m0->m_flags |= M_VLANTAG; rxq->vlan_extraction++; } } if (rxq->iq.flags & IQ_RX_TIMESTAMP) { /* * Fill up rcv_tstmp but do not set M_TSTMP as * long as we get a non-zero back from t4_tstmp_to_ns(). */ m0->m_pkthdr.rcv_tstmp = t4_tstmp_to_ns(sc, be64toh(d->rsp.u.last_flit)); if (m0->m_pkthdr.rcv_tstmp != 0) m0->m_flags |= M_TSTMP; } #ifdef NUMA m0->m_pkthdr.numa_domain = if_getnumadomain(ifp); #endif #if defined(INET) || defined(INET6) if (rxq->iq.flags & IQ_LRO_ENABLED && tnl_type == 0 && (M_HASHTYPE_GET(m0) == M_HASHTYPE_RSS_TCP_IPV4 || M_HASHTYPE_GET(m0) == M_HASHTYPE_RSS_TCP_IPV6)) { if (sort_before_lro(lro)) { tcp_lro_queue_mbuf(lro, m0); return (0); /* queued for sort, then LRO */ } if (tcp_lro_rx(lro, m0, 0) == 0) return (0); /* queued for LRO */ } #endif if_input(ifp, m0); return (0); } /* * Must drain the wrq or make sure that someone else will. */ static void wrq_tx_drain(void *arg, int n) { struct sge_wrq *wrq = arg; struct sge_eq *eq = &wrq->eq; EQ_LOCK(eq); if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list)) drain_wrq_wr_list(wrq->adapter, wrq); EQ_UNLOCK(eq); } static void drain_wrq_wr_list(struct adapter *sc, struct sge_wrq *wrq) { struct sge_eq *eq = &wrq->eq; u_int available, dbdiff; /* # of hardware descriptors */ u_int n; struct wrqe *wr; struct fw_eth_tx_pkt_wr *dst; /* any fw WR struct will do */ EQ_LOCK_ASSERT_OWNED(eq); MPASS(TAILQ_EMPTY(&wrq->incomplete_wrs)); wr = STAILQ_FIRST(&wrq->wr_list); MPASS(wr != NULL); /* Must be called with something useful to do */ MPASS(eq->pidx == eq->dbidx); dbdiff = 0; do { eq->cidx = read_hw_cidx(eq); if (eq->pidx == eq->cidx) available = eq->sidx - 1; else available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1; MPASS(wr->wrq == wrq); n = howmany(wr->wr_len, EQ_ESIZE); if (available < n) break; dst = (void *)&eq->desc[eq->pidx]; if (__predict_true(eq->sidx - eq->pidx > n)) { /* Won't wrap, won't end exactly at the status page. */ bcopy(&wr->wr[0], dst, wr->wr_len); eq->pidx += n; } else { int first_portion = (eq->sidx - eq->pidx) * EQ_ESIZE; bcopy(&wr->wr[0], dst, first_portion); if (wr->wr_len > first_portion) { bcopy(&wr->wr[first_portion], &eq->desc[0], wr->wr_len - first_portion); } eq->pidx = n - (eq->sidx - eq->pidx); } wrq->tx_wrs_copied++; if (available < eq->sidx / 4 && atomic_cmpset_int(&eq->equiq, 0, 1)) { /* * XXX: This is not 100% reliable with some * types of WRs. But this is a very unusual * situation for an ofld/ctrl queue anyway. */ dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ | F_FW_WR_EQUEQ); } dbdiff += n; if (dbdiff >= 16) { ring_eq_db(sc, eq, dbdiff); dbdiff = 0; } STAILQ_REMOVE_HEAD(&wrq->wr_list, link); free_wrqe(wr); MPASS(wrq->nwr_pending > 0); wrq->nwr_pending--; MPASS(wrq->ndesc_needed >= n); wrq->ndesc_needed -= n; } while ((wr = STAILQ_FIRST(&wrq->wr_list)) != NULL); if (dbdiff) ring_eq_db(sc, eq, dbdiff); } /* * Doesn't fail. Holds on to work requests it can't send right away. */ void t4_wrq_tx_locked(struct adapter *sc, struct sge_wrq *wrq, struct wrqe *wr) { #ifdef INVARIANTS struct sge_eq *eq = &wrq->eq; #endif EQ_LOCK_ASSERT_OWNED(eq); MPASS(wr != NULL); MPASS(wr->wr_len > 0 && wr->wr_len <= SGE_MAX_WR_LEN); MPASS((wr->wr_len & 0x7) == 0); STAILQ_INSERT_TAIL(&wrq->wr_list, wr, link); wrq->nwr_pending++; wrq->ndesc_needed += howmany(wr->wr_len, EQ_ESIZE); if (!TAILQ_EMPTY(&wrq->incomplete_wrs)) return; /* commit_wrq_wr will drain wr_list as well. */ drain_wrq_wr_list(sc, wrq); /* Doorbell must have caught up to the pidx. */ MPASS(eq->pidx == eq->dbidx); } void t4_update_fl_bufsize(if_t ifp) { struct vi_info *vi = if_getsoftc(ifp); struct adapter *sc = vi->adapter; struct sge_rxq *rxq; #ifdef TCP_OFFLOAD struct sge_ofld_rxq *ofld_rxq; #endif struct sge_fl *fl; int i, maxp; maxp = max_rx_payload(sc, ifp, false); for_each_rxq(vi, i, rxq) { fl = &rxq->fl; FL_LOCK(fl); fl->zidx = find_refill_source(sc, maxp, fl->flags & FL_BUF_PACKING); FL_UNLOCK(fl); } #ifdef TCP_OFFLOAD maxp = max_rx_payload(sc, ifp, true); for_each_ofld_rxq(vi, i, ofld_rxq) { fl = &ofld_rxq->fl; FL_LOCK(fl); fl->zidx = find_refill_source(sc, maxp, fl->flags & FL_BUF_PACKING); FL_UNLOCK(fl); } #endif } #ifdef RATELIMIT static inline int mbuf_eo_nsegs(struct mbuf *m) { M_ASSERTPKTHDR(m); return (m->m_pkthdr.PH_loc.eight[1]); } #if defined(INET) || defined(INET6) static inline void set_mbuf_eo_nsegs(struct mbuf *m, uint8_t nsegs) { M_ASSERTPKTHDR(m); m->m_pkthdr.PH_loc.eight[1] = nsegs; } #endif static inline int mbuf_eo_len16(struct mbuf *m) { int n; M_ASSERTPKTHDR(m); n = m->m_pkthdr.PH_loc.eight[2]; MPASS(n > 0 && n <= SGE_MAX_WR_LEN / 16); return (n); } #if defined(INET) || defined(INET6) static inline void set_mbuf_eo_len16(struct mbuf *m, uint8_t len16) { M_ASSERTPKTHDR(m); m->m_pkthdr.PH_loc.eight[2] = len16; } #endif static inline int mbuf_eo_tsclk_tsoff(struct mbuf *m) { M_ASSERTPKTHDR(m); return (m->m_pkthdr.PH_loc.eight[3]); } #if defined(INET) || defined(INET6) static inline void set_mbuf_eo_tsclk_tsoff(struct mbuf *m, uint8_t tsclk_tsoff) { M_ASSERTPKTHDR(m); m->m_pkthdr.PH_loc.eight[3] = tsclk_tsoff; } #endif static inline int needs_eo(struct m_snd_tag *mst) { return (mst != NULL && mst->sw->type == IF_SND_TAG_TYPE_RATE_LIMIT); } #endif /* * Try to allocate an mbuf to contain a raw work request. To make it * easy to construct the work request, don't allocate a chain but a * single mbuf. */ struct mbuf * alloc_wr_mbuf(int len, int how) { struct mbuf *m; if (len <= MHLEN) m = m_gethdr(how, MT_DATA); else if (len <= MCLBYTES) m = m_getcl(how, MT_DATA, M_PKTHDR); else m = NULL; if (m == NULL) return (NULL); m->m_pkthdr.len = len; m->m_len = len; set_mbuf_cflags(m, MC_RAW_WR); set_mbuf_len16(m, howmany(len, 16)); return (m); } static inline bool needs_hwcsum(struct mbuf *m) { const uint32_t csum_flags = CSUM_IP | CSUM_IP_UDP | CSUM_IP_TCP | CSUM_IP_TSO | CSUM_INNER_IP | CSUM_INNER_IP_UDP | CSUM_INNER_IP_TCP | CSUM_INNER_IP_TSO | CSUM_IP6_UDP | CSUM_IP6_TCP | CSUM_IP6_TSO | CSUM_INNER_IP6_UDP | CSUM_INNER_IP6_TCP | CSUM_INNER_IP6_TSO; M_ASSERTPKTHDR(m); return (m->m_pkthdr.csum_flags & csum_flags); } static inline bool needs_tso(struct mbuf *m) { const uint32_t csum_flags = CSUM_IP_TSO | CSUM_IP6_TSO | CSUM_INNER_IP_TSO | CSUM_INNER_IP6_TSO; M_ASSERTPKTHDR(m); return (m->m_pkthdr.csum_flags & csum_flags); } static inline bool needs_vxlan_csum(struct mbuf *m) { M_ASSERTPKTHDR(m); return (m->m_pkthdr.csum_flags & CSUM_ENCAP_VXLAN); } static inline bool needs_vxlan_tso(struct mbuf *m) { const uint32_t csum_flags = CSUM_ENCAP_VXLAN | CSUM_INNER_IP_TSO | CSUM_INNER_IP6_TSO; M_ASSERTPKTHDR(m); return ((m->m_pkthdr.csum_flags & csum_flags) != 0 && (m->m_pkthdr.csum_flags & csum_flags) != CSUM_ENCAP_VXLAN); } #if defined(INET) || defined(INET6) static inline bool needs_inner_tcp_csum(struct mbuf *m) { const uint32_t csum_flags = CSUM_INNER_IP_TSO | CSUM_INNER_IP6_TSO; M_ASSERTPKTHDR(m); return (m->m_pkthdr.csum_flags & csum_flags); } #endif static inline bool needs_l3_csum(struct mbuf *m) { const uint32_t csum_flags = CSUM_IP | CSUM_IP_TSO | CSUM_INNER_IP | CSUM_INNER_IP_TSO; M_ASSERTPKTHDR(m); return (m->m_pkthdr.csum_flags & csum_flags); } static inline bool needs_outer_tcp_csum(struct mbuf *m) { const uint32_t csum_flags = CSUM_IP_TCP | CSUM_IP_TSO | CSUM_IP6_TCP | CSUM_IP6_TSO; M_ASSERTPKTHDR(m); return (m->m_pkthdr.csum_flags & csum_flags); } #ifdef RATELIMIT static inline bool needs_outer_l4_csum(struct mbuf *m) { const uint32_t csum_flags = CSUM_IP_UDP | CSUM_IP_TCP | CSUM_IP_TSO | CSUM_IP6_UDP | CSUM_IP6_TCP | CSUM_IP6_TSO; M_ASSERTPKTHDR(m); return (m->m_pkthdr.csum_flags & csum_flags); } static inline bool needs_outer_udp_csum(struct mbuf *m) { const uint32_t csum_flags = CSUM_IP_UDP | CSUM_IP6_UDP; M_ASSERTPKTHDR(m); return (m->m_pkthdr.csum_flags & csum_flags); } #endif static inline bool needs_vlan_insertion(struct mbuf *m) { M_ASSERTPKTHDR(m); return (m->m_flags & M_VLANTAG); } #if defined(INET) || defined(INET6) static void * m_advance(struct mbuf **pm, int *poffset, int len) { struct mbuf *m = *pm; int offset = *poffset; uintptr_t p = 0; MPASS(len > 0); for (;;) { if (offset + len < m->m_len) { offset += len; p = mtod(m, uintptr_t) + offset; break; } len -= m->m_len - offset; m = m->m_next; offset = 0; MPASS(m != NULL); } *poffset = offset; *pm = m; return ((void *)p); } #endif static inline int count_mbuf_ext_pgs(struct mbuf *m, int skip, vm_paddr_t *nextaddr) { vm_paddr_t paddr; int i, len, off, pglen, pgoff, seglen, segoff; int nsegs = 0; M_ASSERTEXTPG(m); off = mtod(m, vm_offset_t); len = m->m_len; off += skip; len -= skip; if (m->m_epg_hdrlen != 0) { if (off >= m->m_epg_hdrlen) { off -= m->m_epg_hdrlen; } else { seglen = m->m_epg_hdrlen - off; segoff = off; seglen = min(seglen, len); off = 0; len -= seglen; paddr = pmap_kextract( (vm_offset_t)&m->m_epg_hdr[segoff]); if (*nextaddr != paddr) nsegs++; *nextaddr = paddr + seglen; } } pgoff = m->m_epg_1st_off; for (i = 0; i < m->m_epg_npgs && len > 0; i++) { pglen = m_epg_pagelen(m, i, pgoff); if (off >= pglen) { off -= pglen; pgoff = 0; continue; } seglen = pglen - off; segoff = pgoff + off; off = 0; seglen = min(seglen, len); len -= seglen; paddr = m->m_epg_pa[i] + segoff; if (*nextaddr != paddr) nsegs++; *nextaddr = paddr + seglen; pgoff = 0; }; if (len != 0) { seglen = min(len, m->m_epg_trllen - off); len -= seglen; paddr = pmap_kextract((vm_offset_t)&m->m_epg_trail[off]); if (*nextaddr != paddr) nsegs++; *nextaddr = paddr + seglen; } return (nsegs); } /* * Can deal with empty mbufs in the chain that have m_len = 0, but the chain * must have at least one mbuf that's not empty. It is possible for this * routine to return 0 if skip accounts for all the contents of the mbuf chain. */ static inline int count_mbuf_nsegs(struct mbuf *m, int skip, uint8_t *cflags) { vm_paddr_t nextaddr, paddr; vm_offset_t va; int len, nsegs; M_ASSERTPKTHDR(m); MPASS(m->m_pkthdr.len > 0); MPASS(m->m_pkthdr.len >= skip); nsegs = 0; nextaddr = 0; for (; m; m = m->m_next) { len = m->m_len; if (__predict_false(len == 0)) continue; if (skip >= len) { skip -= len; continue; } if ((m->m_flags & M_EXTPG) != 0) { *cflags |= MC_NOMAP; nsegs += count_mbuf_ext_pgs(m, skip, &nextaddr); skip = 0; continue; } va = mtod(m, vm_offset_t) + skip; len -= skip; skip = 0; paddr = pmap_kextract(va); nsegs += sglist_count((void *)(uintptr_t)va, len); if (paddr == nextaddr) nsegs--; nextaddr = pmap_kextract(va + len - 1) + 1; } return (nsegs); } /* * The maximum number of segments that can fit in a WR. */ static int max_nsegs_allowed(struct mbuf *m, bool vm_wr) { if (vm_wr) { if (needs_tso(m)) return (TX_SGL_SEGS_VM_TSO); return (TX_SGL_SEGS_VM); } if (needs_tso(m)) { if (needs_vxlan_tso(m)) return (TX_SGL_SEGS_VXLAN_TSO); else return (TX_SGL_SEGS_TSO); } return (TX_SGL_SEGS); } static struct timeval txerr_ratecheck = {0}; static const struct timeval txerr_interval = {3, 0}; /* * Analyze the mbuf to determine its tx needs. The mbuf passed in may change: * a) caller can assume it's been freed if this function returns with an error. * b) it may get defragged up if the gather list is too long for the hardware. */ int parse_pkt(struct mbuf **mp, bool vm_wr) { struct mbuf *m0 = *mp, *m; int rc, nsegs, defragged = 0; struct ether_header *eh; #ifdef INET void *l3hdr; #endif #if defined(INET) || defined(INET6) int offset; struct tcphdr *tcp; #endif #if defined(KERN_TLS) || defined(RATELIMIT) struct m_snd_tag *mst; #endif uint16_t eh_type; uint8_t cflags; cflags = 0; M_ASSERTPKTHDR(m0); if (__predict_false(m0->m_pkthdr.len < ETHER_HDR_LEN)) { rc = EINVAL; fail: m_freem(m0); *mp = NULL; return (rc); } restart: /* * First count the number of gather list segments in the payload. * Defrag the mbuf if nsegs exceeds the hardware limit. */ M_ASSERTPKTHDR(m0); MPASS(m0->m_pkthdr.len > 0); nsegs = count_mbuf_nsegs(m0, 0, &cflags); #if defined(KERN_TLS) || defined(RATELIMIT) if (m0->m_pkthdr.csum_flags & CSUM_SND_TAG) mst = m0->m_pkthdr.snd_tag; else mst = NULL; #endif #ifdef KERN_TLS if (mst != NULL && mst->sw->type == IF_SND_TAG_TYPE_TLS) { cflags |= MC_TLS; set_mbuf_cflags(m0, cflags); rc = t6_ktls_parse_pkt(m0); if (rc != 0) goto fail; return (EINPROGRESS); } #endif if (nsegs > max_nsegs_allowed(m0, vm_wr)) { if (defragged++ > 0) { rc = EFBIG; goto fail; } counter_u64_add(defrags, 1); if ((m = m_defrag(m0, M_NOWAIT)) == NULL) { rc = ENOMEM; goto fail; } *mp = m0 = m; /* update caller's copy after defrag */ goto restart; } if (__predict_false(nsegs > 2 && m0->m_pkthdr.len <= MHLEN && !(cflags & MC_NOMAP))) { counter_u64_add(pullups, 1); m0 = m_pullup(m0, m0->m_pkthdr.len); if (m0 == NULL) { /* Should have left well enough alone. */ rc = EFBIG; goto fail; } *mp = m0; /* update caller's copy after pullup */ goto restart; } set_mbuf_nsegs(m0, nsegs); set_mbuf_cflags(m0, cflags); calculate_mbuf_len16(m0, vm_wr); #ifdef RATELIMIT /* * Ethofld is limited to TCP and UDP for now, and only when L4 hw * checksumming is enabled. needs_outer_l4_csum happens to check for * all the right things. */ if (__predict_false(needs_eo(mst) && !needs_outer_l4_csum(m0))) { m_snd_tag_rele(m0->m_pkthdr.snd_tag); m0->m_pkthdr.snd_tag = NULL; m0->m_pkthdr.csum_flags &= ~CSUM_SND_TAG; mst = NULL; } #endif if (!needs_hwcsum(m0) #ifdef RATELIMIT && !needs_eo(mst) #endif ) return (0); m = m0; eh = mtod(m, struct ether_header *); eh_type = ntohs(eh->ether_type); if (eh_type == ETHERTYPE_VLAN) { struct ether_vlan_header *evh = (void *)eh; eh_type = ntohs(evh->evl_proto); m0->m_pkthdr.l2hlen = sizeof(*evh); } else m0->m_pkthdr.l2hlen = sizeof(*eh); #if defined(INET) || defined(INET6) offset = 0; #ifdef INET l3hdr = m_advance(&m, &offset, m0->m_pkthdr.l2hlen); #else m_advance(&m, &offset, m0->m_pkthdr.l2hlen); #endif #endif switch (eh_type) { #ifdef INET6 case ETHERTYPE_IPV6: m0->m_pkthdr.l3hlen = sizeof(struct ip6_hdr); break; #endif #ifdef INET case ETHERTYPE_IP: { struct ip *ip = l3hdr; if (needs_vxlan_csum(m0)) { /* Driver will do the outer IP hdr checksum. */ ip->ip_sum = 0; if (needs_vxlan_tso(m0)) { const uint16_t ipl = ip->ip_len; ip->ip_len = 0; ip->ip_sum = ~in_cksum_hdr(ip); ip->ip_len = ipl; } else ip->ip_sum = in_cksum_hdr(ip); } m0->m_pkthdr.l3hlen = ip->ip_hl << 2; break; } #endif default: if (ratecheck(&txerr_ratecheck, &txerr_interval)) { log(LOG_ERR, "%s: ethertype 0x%04x unknown. " "if_cxgbe must be compiled with the same " "INET/INET6 options as the kernel.\n", __func__, eh_type); } rc = EINVAL; goto fail; } #if defined(INET) || defined(INET6) if (needs_vxlan_csum(m0)) { m0->m_pkthdr.l4hlen = sizeof(struct udphdr); m0->m_pkthdr.l5hlen = sizeof(struct vxlan_header); /* Inner headers. */ eh = m_advance(&m, &offset, m0->m_pkthdr.l3hlen + sizeof(struct udphdr) + sizeof(struct vxlan_header)); eh_type = ntohs(eh->ether_type); if (eh_type == ETHERTYPE_VLAN) { struct ether_vlan_header *evh = (void *)eh; eh_type = ntohs(evh->evl_proto); m0->m_pkthdr.inner_l2hlen = sizeof(*evh); } else m0->m_pkthdr.inner_l2hlen = sizeof(*eh); #ifdef INET l3hdr = m_advance(&m, &offset, m0->m_pkthdr.inner_l2hlen); #else m_advance(&m, &offset, m0->m_pkthdr.inner_l2hlen); #endif switch (eh_type) { #ifdef INET6 case ETHERTYPE_IPV6: m0->m_pkthdr.inner_l3hlen = sizeof(struct ip6_hdr); break; #endif #ifdef INET case ETHERTYPE_IP: { struct ip *ip = l3hdr; m0->m_pkthdr.inner_l3hlen = ip->ip_hl << 2; break; } #endif default: if (ratecheck(&txerr_ratecheck, &txerr_interval)) { log(LOG_ERR, "%s: VXLAN hw offload requested" "with unknown ethertype 0x%04x. if_cxgbe " "must be compiled with the same INET/INET6 " "options as the kernel.\n", __func__, eh_type); } rc = EINVAL; goto fail; } if (needs_inner_tcp_csum(m0)) { tcp = m_advance(&m, &offset, m0->m_pkthdr.inner_l3hlen); m0->m_pkthdr.inner_l4hlen = tcp->th_off * 4; } MPASS((m0->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0); m0->m_pkthdr.csum_flags &= CSUM_INNER_IP6_UDP | CSUM_INNER_IP6_TCP | CSUM_INNER_IP6_TSO | CSUM_INNER_IP | CSUM_INNER_IP_UDP | CSUM_INNER_IP_TCP | CSUM_INNER_IP_TSO | CSUM_ENCAP_VXLAN; } if (needs_outer_tcp_csum(m0)) { tcp = m_advance(&m, &offset, m0->m_pkthdr.l3hlen); m0->m_pkthdr.l4hlen = tcp->th_off * 4; #ifdef RATELIMIT if (tsclk >= 0 && *(uint32_t *)(tcp + 1) == ntohl(0x0101080a)) { set_mbuf_eo_tsclk_tsoff(m0, V_FW_ETH_TX_EO_WR_TSCLK(tsclk) | V_FW_ETH_TX_EO_WR_TSOFF(sizeof(*tcp) / 2 + 1)); } else set_mbuf_eo_tsclk_tsoff(m0, 0); } else if (needs_outer_udp_csum(m0)) { m0->m_pkthdr.l4hlen = sizeof(struct udphdr); #endif } #ifdef RATELIMIT if (needs_eo(mst)) { u_int immhdrs; /* EO WRs have the headers in the WR and not the GL. */ immhdrs = m0->m_pkthdr.l2hlen + m0->m_pkthdr.l3hlen + m0->m_pkthdr.l4hlen; cflags = 0; nsegs = count_mbuf_nsegs(m0, immhdrs, &cflags); MPASS(cflags == mbuf_cflags(m0)); set_mbuf_eo_nsegs(m0, nsegs); set_mbuf_eo_len16(m0, txpkt_eo_len16(nsegs, immhdrs, needs_tso(m0))); rc = ethofld_transmit(mst->ifp, m0); if (rc != 0) goto fail; return (EINPROGRESS); } #endif #endif MPASS(m0 == *mp); return (0); } void * start_wrq_wr(struct sge_wrq *wrq, int len16, struct wrq_cookie *cookie) { struct sge_eq *eq = &wrq->eq; struct adapter *sc = wrq->adapter; int ndesc, available; struct wrqe *wr; void *w; MPASS(len16 > 0); ndesc = tx_len16_to_desc(len16); MPASS(ndesc > 0 && ndesc <= SGE_MAX_WR_NDESC); EQ_LOCK(eq); if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list)) drain_wrq_wr_list(sc, wrq); if (!STAILQ_EMPTY(&wrq->wr_list)) { slowpath: EQ_UNLOCK(eq); wr = alloc_wrqe(len16 * 16, wrq); if (__predict_false(wr == NULL)) return (NULL); cookie->pidx = -1; cookie->ndesc = ndesc; return (&wr->wr); } eq->cidx = read_hw_cidx(eq); if (eq->pidx == eq->cidx) available = eq->sidx - 1; else available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1; if (available < ndesc) goto slowpath; cookie->pidx = eq->pidx; cookie->ndesc = ndesc; TAILQ_INSERT_TAIL(&wrq->incomplete_wrs, cookie, link); w = &eq->desc[eq->pidx]; IDXINCR(eq->pidx, ndesc, eq->sidx); if (__predict_false(cookie->pidx + ndesc > eq->sidx)) { w = &wrq->ss[0]; wrq->ss_pidx = cookie->pidx; wrq->ss_len = len16 * 16; } EQ_UNLOCK(eq); return (w); } void commit_wrq_wr(struct sge_wrq *wrq, void *w, struct wrq_cookie *cookie) { struct sge_eq *eq = &wrq->eq; struct adapter *sc = wrq->adapter; int ndesc, pidx; struct wrq_cookie *prev, *next; if (cookie->pidx == -1) { struct wrqe *wr = __containerof(w, struct wrqe, wr); t4_wrq_tx(sc, wr); return; } if (__predict_false(w == &wrq->ss[0])) { int n = (eq->sidx - wrq->ss_pidx) * EQ_ESIZE; MPASS(wrq->ss_len > n); /* WR had better wrap around. */ bcopy(&wrq->ss[0], &eq->desc[wrq->ss_pidx], n); bcopy(&wrq->ss[n], &eq->desc[0], wrq->ss_len - n); wrq->tx_wrs_ss++; } else wrq->tx_wrs_direct++; EQ_LOCK(eq); ndesc = cookie->ndesc; /* Can be more than SGE_MAX_WR_NDESC here. */ pidx = cookie->pidx; MPASS(pidx >= 0 && pidx < eq->sidx); prev = TAILQ_PREV(cookie, wrq_incomplete_wrs, link); next = TAILQ_NEXT(cookie, link); if (prev == NULL) { MPASS(pidx == eq->dbidx); if (next == NULL || ndesc >= 16) { int available; struct fw_eth_tx_pkt_wr *dst; /* any fw WR struct will do */ /* * Note that the WR via which we'll request tx updates * is at pidx and not eq->pidx, which has moved on * already. */ dst = (void *)&eq->desc[pidx]; available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1; if (available < eq->sidx / 4 && atomic_cmpset_int(&eq->equiq, 0, 1)) { /* * XXX: This is not 100% reliable with some * types of WRs. But this is a very unusual * situation for an ofld/ctrl queue anyway. */ dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ | F_FW_WR_EQUEQ); } ring_eq_db(wrq->adapter, eq, ndesc); } else { MPASS(IDXDIFF(next->pidx, pidx, eq->sidx) == ndesc); next->pidx = pidx; next->ndesc += ndesc; } } else { MPASS(IDXDIFF(pidx, prev->pidx, eq->sidx) == prev->ndesc); prev->ndesc += ndesc; } TAILQ_REMOVE(&wrq->incomplete_wrs, cookie, link); if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list)) drain_wrq_wr_list(sc, wrq); #ifdef INVARIANTS if (TAILQ_EMPTY(&wrq->incomplete_wrs)) { /* Doorbell must have caught up to the pidx. */ MPASS(wrq->eq.pidx == wrq->eq.dbidx); } #endif EQ_UNLOCK(eq); } static u_int can_resume_eth_tx(struct mp_ring *r) { struct sge_eq *eq = r->cookie; return (total_available_tx_desc(eq) > eq->sidx / 8); } static inline bool cannot_use_txpkts(struct mbuf *m) { /* maybe put a GL limit too, to avoid silliness? */ return (needs_tso(m) || (mbuf_cflags(m) & (MC_RAW_WR | MC_TLS)) != 0); } static inline int discard_tx(struct sge_eq *eq) { return ((eq->flags & (EQ_ENABLED | EQ_QFLUSH)) != EQ_ENABLED); } static inline int wr_can_update_eq(void *p) { struct fw_eth_tx_pkts_wr *wr = p; switch (G_FW_WR_OP(be32toh(wr->op_pkd))) { case FW_ULPTX_WR: case FW_ETH_TX_PKT_WR: case FW_ETH_TX_PKTS_WR: case FW_ETH_TX_PKTS2_WR: case FW_ETH_TX_PKT_VM_WR: case FW_ETH_TX_PKTS_VM_WR: return (1); default: return (0); } } static inline void set_txupdate_flags(struct sge_txq *txq, u_int avail, struct fw_eth_tx_pkt_wr *wr) { struct sge_eq *eq = &txq->eq; struct txpkts *txp = &txq->txp; if ((txp->npkt > 0 || avail < eq->sidx / 2) && atomic_cmpset_int(&eq->equiq, 0, 1)) { wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ | F_FW_WR_EQUIQ); eq->equeqidx = eq->pidx; } else if (IDXDIFF(eq->pidx, eq->equeqidx, eq->sidx) >= 32) { wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ); eq->equeqidx = eq->pidx; } } #if defined(__i386__) || defined(__amd64__) extern uint64_t tsc_freq; #endif static inline bool record_eth_tx_time(struct sge_txq *txq) { const uint64_t cycles = get_cyclecount(); const uint64_t last_tx = txq->last_tx; #if defined(__i386__) || defined(__amd64__) const uint64_t itg = tsc_freq * t4_tx_coalesce_gap / 1000000; #else const uint64_t itg = 0; #endif MPASS(cycles >= last_tx); txq->last_tx = cycles; return (cycles - last_tx < itg); } /* * r->items[cidx] to r->items[pidx], with a wraparound at r->size, are ready to * be consumed. Return the actual number consumed. 0 indicates a stall. */ static u_int eth_tx(struct mp_ring *r, u_int cidx, u_int pidx, bool *coalescing) { struct sge_txq *txq = r->cookie; if_t ifp = txq->ifp; struct sge_eq *eq = &txq->eq; struct txpkts *txp = &txq->txp; struct vi_info *vi = if_getsoftc(ifp); struct adapter *sc = vi->adapter; u_int total, remaining; /* # of packets */ u_int n, avail, dbdiff; /* # of hardware descriptors */ int i, rc; struct mbuf *m0; bool snd, recent_tx; void *wr; /* start of the last WR written to the ring */ TXQ_LOCK_ASSERT_OWNED(txq); recent_tx = record_eth_tx_time(txq); remaining = IDXDIFF(pidx, cidx, r->size); if (__predict_false(discard_tx(eq))) { for (i = 0; i < txp->npkt; i++) m_freem(txp->mb[i]); txp->npkt = 0; while (cidx != pidx) { m0 = r->items[cidx]; m_freem(m0); if (++cidx == r->size) cidx = 0; } reclaim_tx_descs(txq, eq->sidx); *coalescing = false; return (remaining); /* emptied */ } /* How many hardware descriptors do we have readily available. */ if (eq->pidx == eq->cidx) avail = eq->sidx - 1; else avail = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1; total = 0; if (remaining == 0) { txp->score = 0; txq->txpkts_flush++; goto send_txpkts; } dbdiff = 0; MPASS(remaining > 0); while (remaining > 0) { m0 = r->items[cidx]; M_ASSERTPKTHDR(m0); MPASS(m0->m_nextpkt == NULL); if (avail < 2 * SGE_MAX_WR_NDESC) avail += reclaim_tx_descs(txq, 64); if (t4_tx_coalesce == 0 && txp->npkt == 0) goto skip_coalescing; if (cannot_use_txpkts(m0)) txp->score = 0; else if (recent_tx) { if (++txp->score == 0) txp->score = UINT8_MAX; } else txp->score = 1; if (txp->npkt > 0 || remaining > 1 || txp->score >= t4_tx_coalesce_pkts || atomic_load_int(&txq->eq.equiq) != 0) { if (vi->flags & TX_USES_VM_WR) rc = add_to_txpkts_vf(sc, txq, m0, avail, &snd); else rc = add_to_txpkts_pf(sc, txq, m0, avail, &snd); } else { snd = false; rc = EINVAL; } if (snd) { MPASS(txp->npkt > 0); for (i = 0; i < txp->npkt; i++) ETHER_BPF_MTAP(ifp, txp->mb[i]); if (txp->npkt > 1) { MPASS(avail >= tx_len16_to_desc(txp->len16)); if (vi->flags & TX_USES_VM_WR) n = write_txpkts_vm_wr(sc, txq); else n = write_txpkts_wr(sc, txq); } else { MPASS(avail >= tx_len16_to_desc(mbuf_len16(txp->mb[0]))); if (vi->flags & TX_USES_VM_WR) n = write_txpkt_vm_wr(sc, txq, txp->mb[0]); else n = write_txpkt_wr(sc, txq, txp->mb[0], avail); } MPASS(n <= SGE_MAX_WR_NDESC); avail -= n; dbdiff += n; wr = &eq->desc[eq->pidx]; IDXINCR(eq->pidx, n, eq->sidx); txp->npkt = 0; /* emptied */ } if (rc == 0) { /* m0 was coalesced into txq->txpkts. */ goto next_mbuf; } if (rc == EAGAIN) { /* * m0 is suitable for tx coalescing but could not be * combined with the existing txq->txpkts, which has now * been transmitted. Start a new txpkts with m0. */ MPASS(snd); MPASS(txp->npkt == 0); continue; } MPASS(rc != 0 && rc != EAGAIN); MPASS(txp->npkt == 0); skip_coalescing: n = tx_len16_to_desc(mbuf_len16(m0)); if (__predict_false(avail < n)) { avail += reclaim_tx_descs(txq, min(n, 32)); if (avail < n) break; /* out of descriptors */ } wr = &eq->desc[eq->pidx]; if (mbuf_cflags(m0) & MC_RAW_WR) { n = write_raw_wr(txq, wr, m0, avail); #ifdef KERN_TLS } else if (mbuf_cflags(m0) & MC_TLS) { ETHER_BPF_MTAP(ifp, m0); n = t6_ktls_write_wr(txq, wr, m0, avail); #endif } else { ETHER_BPF_MTAP(ifp, m0); if (vi->flags & TX_USES_VM_WR) n = write_txpkt_vm_wr(sc, txq, m0); else n = write_txpkt_wr(sc, txq, m0, avail); } MPASS(n >= 1 && n <= avail); if (!(mbuf_cflags(m0) & MC_TLS)) MPASS(n <= SGE_MAX_WR_NDESC); avail -= n; dbdiff += n; IDXINCR(eq->pidx, n, eq->sidx); if (dbdiff >= 512 / EQ_ESIZE) { /* X_FETCHBURSTMAX_512B */ if (wr_can_update_eq(wr)) set_txupdate_flags(txq, avail, wr); ring_eq_db(sc, eq, dbdiff); avail += reclaim_tx_descs(txq, 32); dbdiff = 0; } next_mbuf: total++; remaining--; if (__predict_false(++cidx == r->size)) cidx = 0; } if (dbdiff != 0) { if (wr_can_update_eq(wr)) set_txupdate_flags(txq, avail, wr); ring_eq_db(sc, eq, dbdiff); reclaim_tx_descs(txq, 32); } else if (eq->pidx == eq->cidx && txp->npkt > 0 && atomic_load_int(&txq->eq.equiq) == 0) { /* * If nothing was submitted to the chip for tx (it was coalesced * into txpkts instead) and there is no tx update outstanding * then we need to send txpkts now. */ send_txpkts: MPASS(txp->npkt > 0); for (i = 0; i < txp->npkt; i++) ETHER_BPF_MTAP(ifp, txp->mb[i]); if (txp->npkt > 1) { MPASS(avail >= tx_len16_to_desc(txp->len16)); if (vi->flags & TX_USES_VM_WR) n = write_txpkts_vm_wr(sc, txq); else n = write_txpkts_wr(sc, txq); } else { MPASS(avail >= tx_len16_to_desc(mbuf_len16(txp->mb[0]))); if (vi->flags & TX_USES_VM_WR) n = write_txpkt_vm_wr(sc, txq, txp->mb[0]); else n = write_txpkt_wr(sc, txq, txp->mb[0], avail); } MPASS(n <= SGE_MAX_WR_NDESC); wr = &eq->desc[eq->pidx]; IDXINCR(eq->pidx, n, eq->sidx); txp->npkt = 0; /* emptied */ MPASS(wr_can_update_eq(wr)); set_txupdate_flags(txq, avail - n, wr); ring_eq_db(sc, eq, n); reclaim_tx_descs(txq, 32); } *coalescing = txp->npkt > 0; return (total); } static inline void init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx, int pktc_idx, int qsize, int intr_idx, int cong, int qtype) { KASSERT(tmr_idx >= 0 && tmr_idx < SGE_NTIMERS, ("%s: bad tmr_idx %d", __func__, tmr_idx)); KASSERT(pktc_idx < SGE_NCOUNTERS, /* -ve is ok, means don't use */ ("%s: bad pktc_idx %d", __func__, pktc_idx)); KASSERT(intr_idx >= -1 && intr_idx < sc->intr_count, ("%s: bad intr_idx %d", __func__, intr_idx)); KASSERT(qtype == FW_IQ_IQTYPE_OTHER || qtype == FW_IQ_IQTYPE_NIC || qtype == FW_IQ_IQTYPE_OFLD, ("%s: bad qtype %d", __func__, qtype)); iq->flags = 0; iq->state = IQS_DISABLED; iq->adapter = sc; iq->qtype = qtype; iq->intr_params = V_QINTR_TIMER_IDX(tmr_idx); iq->intr_pktc_idx = SGE_NCOUNTERS - 1; if (pktc_idx >= 0) { iq->intr_params |= F_QINTR_CNT_EN; iq->intr_pktc_idx = pktc_idx; } iq->qsize = roundup2(qsize, 16); /* See FW_IQ_CMD/iqsize */ iq->sidx = iq->qsize - sc->params.sge.spg_len / IQ_ESIZE; iq->intr_idx = intr_idx; iq->cong_drop = cong; } static inline void init_fl(struct adapter *sc, struct sge_fl *fl, int qsize, int maxp, char *name) { struct sge_params *sp = &sc->params.sge; fl->qsize = qsize; fl->sidx = qsize - sc->params.sge.spg_len / EQ_ESIZE; strlcpy(fl->lockname, name, sizeof(fl->lockname)); mtx_init(&fl->fl_lock, fl->lockname, NULL, MTX_DEF); if (sc->flags & BUF_PACKING_OK && ((!is_t4(sc) && buffer_packing) || /* T5+: enabled unless 0 */ (is_t4(sc) && buffer_packing == 1)))/* T4: disabled unless 1 */ fl->flags |= FL_BUF_PACKING; fl->zidx = find_refill_source(sc, maxp, fl->flags & FL_BUF_PACKING); fl->safe_zidx = sc->sge.safe_zidx; if (fl->flags & FL_BUF_PACKING) { fl->lowat = roundup2(sp->fl_starve_threshold2, 8); fl->buf_boundary = sp->pack_boundary; } else { fl->lowat = roundup2(sp->fl_starve_threshold, 8); fl->buf_boundary = 16; } if (fl_pad && fl->buf_boundary < sp->pad_boundary) fl->buf_boundary = sp->pad_boundary; } static inline void init_eq(struct adapter *sc, struct sge_eq *eq, int eqtype, int qsize, uint8_t port_id, struct sge_iq *iq, char *name) { KASSERT(eqtype >= EQ_CTRL && eqtype <= EQ_OFLD, ("%s: bad qtype %d", __func__, eqtype)); eq->type = eqtype; eq->port_id = port_id; eq->tx_chan = sc->port[port_id]->tx_chan; eq->iq = iq; eq->sidx = qsize - sc->params.sge.spg_len / EQ_ESIZE; strlcpy(eq->lockname, name, sizeof(eq->lockname)); mtx_init(&eq->eq_lock, eq->lockname, NULL, MTX_DEF); } int alloc_ring(struct adapter *sc, size_t len, bus_dma_tag_t *tag, bus_dmamap_t *map, bus_addr_t *pa, void **va) { int rc; rc = bus_dma_tag_create(sc->dmat, 512, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, len, 1, len, 0, NULL, NULL, tag); if (rc != 0) { CH_ERR(sc, "cannot allocate DMA tag: %d\n", rc); goto done; } rc = bus_dmamem_alloc(*tag, va, BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, map); if (rc != 0) { CH_ERR(sc, "cannot allocate DMA memory: %d\n", rc); goto done; } rc = bus_dmamap_load(*tag, *map, *va, len, oneseg_dma_callback, pa, 0); if (rc != 0) { CH_ERR(sc, "cannot load DMA map: %d\n", rc); goto done; } done: if (rc) free_ring(sc, *tag, *map, *pa, *va); return (rc); } int free_ring(struct adapter *sc, bus_dma_tag_t tag, bus_dmamap_t map, bus_addr_t pa, void *va) { if (pa) bus_dmamap_unload(tag, map); if (va) bus_dmamem_free(tag, va, map); if (tag) bus_dma_tag_destroy(tag); return (0); } /* * Allocates the software resources (mainly memory and sysctl nodes) for an * ingress queue and an optional freelist. * * Sets IQ_SW_ALLOCATED and returns 0 on success. */ static int alloc_iq_fl(struct vi_info *vi, struct sge_iq *iq, struct sge_fl *fl, struct sysctl_ctx_list *ctx, struct sysctl_oid *oid) { int rc; size_t len; struct adapter *sc = vi->adapter; MPASS(!(iq->flags & IQ_SW_ALLOCATED)); len = iq->qsize * IQ_ESIZE; rc = alloc_ring(sc, len, &iq->desc_tag, &iq->desc_map, &iq->ba, (void **)&iq->desc); if (rc != 0) return (rc); if (fl) { len = fl->qsize * EQ_ESIZE; rc = alloc_ring(sc, len, &fl->desc_tag, &fl->desc_map, &fl->ba, (void **)&fl->desc); if (rc) { free_ring(sc, iq->desc_tag, iq->desc_map, iq->ba, iq->desc); return (rc); } /* Allocate space for one software descriptor per buffer. */ fl->sdesc = malloc(fl->sidx * 8 * sizeof(struct fl_sdesc), M_CXGBE, M_ZERO | M_WAITOK); add_fl_sysctls(sc, ctx, oid, fl); iq->flags |= IQ_HAS_FL; } add_iq_sysctls(ctx, oid, iq); iq->flags |= IQ_SW_ALLOCATED; return (0); } /* * Frees all software resources (memory and locks) associated with an ingress * queue and an optional freelist. */ static void free_iq_fl(struct adapter *sc, struct sge_iq *iq, struct sge_fl *fl) { MPASS(iq->flags & IQ_SW_ALLOCATED); if (fl) { MPASS(iq->flags & IQ_HAS_FL); free_ring(sc, fl->desc_tag, fl->desc_map, fl->ba, fl->desc); free_fl_buffers(sc, fl); free(fl->sdesc, M_CXGBE); mtx_destroy(&fl->fl_lock); bzero(fl, sizeof(*fl)); } free_ring(sc, iq->desc_tag, iq->desc_map, iq->ba, iq->desc); bzero(iq, sizeof(*iq)); } /* * Allocates a hardware ingress queue and an optional freelist that will be * associated with it. * * Returns errno on failure. Resources allocated up to that point may still be * allocated. Caller is responsible for cleanup in case this function fails. */ static int alloc_iq_fl_hwq(struct vi_info *vi, struct sge_iq *iq, struct sge_fl *fl) { int rc, cntxt_id, cong_map; struct fw_iq_cmd c; struct adapter *sc = vi->adapter; struct port_info *pi = vi->pi; __be32 v = 0; MPASS (!(iq->flags & IQ_HW_ALLOCATED)); bzero(&c, sizeof(c)); c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(sc->pf) | V_FW_IQ_CMD_VFN(0)); c.alloc_to_len16 = htobe32(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART | FW_LEN16(c)); /* Special handling for firmware event queue */ if (iq == &sc->sge.fwq) v |= F_FW_IQ_CMD_IQASYNCH; if (iq->intr_idx < 0) { /* Forwarded interrupts, all headed to fwq */ v |= F_FW_IQ_CMD_IQANDST; v |= V_FW_IQ_CMD_IQANDSTINDEX(sc->sge.fwq.cntxt_id); } else { KASSERT(iq->intr_idx < sc->intr_count, ("%s: invalid direct intr_idx %d", __func__, iq->intr_idx)); v |= V_FW_IQ_CMD_IQANDSTINDEX(iq->intr_idx); } bzero(iq->desc, iq->qsize * IQ_ESIZE); c.type_to_iqandstindex = htobe32(v | V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) | V_FW_IQ_CMD_VIID(vi->viid) | V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_INTERRUPT)); c.iqdroprss_to_iqesize = htobe16(V_FW_IQ_CMD_IQPCIECH(pi->tx_chan) | F_FW_IQ_CMD_IQGTSMODE | V_FW_IQ_CMD_IQINTCNTTHRESH(iq->intr_pktc_idx) | V_FW_IQ_CMD_IQESIZE(ilog2(IQ_ESIZE) - 4)); c.iqsize = htobe16(iq->qsize); c.iqaddr = htobe64(iq->ba); c.iqns_to_fl0congen = htobe32(V_FW_IQ_CMD_IQTYPE(iq->qtype)); if (iq->cong_drop != -1) { cong_map = iq->qtype == IQ_ETH ? pi->rx_e_chan_map : 0; c.iqns_to_fl0congen |= htobe32(F_FW_IQ_CMD_IQFLINTCONGEN); } if (fl) { bzero(fl->desc, fl->sidx * EQ_ESIZE + sc->params.sge.spg_len); c.iqns_to_fl0congen |= htobe32(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE) | F_FW_IQ_CMD_FL0FETCHRO | F_FW_IQ_CMD_FL0DATARO | (fl_pad ? F_FW_IQ_CMD_FL0PADEN : 0) | (fl->flags & FL_BUF_PACKING ? F_FW_IQ_CMD_FL0PACKEN : 0)); if (iq->cong_drop != -1) { c.iqns_to_fl0congen |= htobe32(V_FW_IQ_CMD_FL0CNGCHMAP(cong_map) | F_FW_IQ_CMD_FL0CONGCIF | F_FW_IQ_CMD_FL0CONGEN); } c.fl0dcaen_to_fl0cidxfthresh = htobe16(V_FW_IQ_CMD_FL0FBMIN(chip_id(sc) <= CHELSIO_T5 ? X_FETCHBURSTMIN_128B : X_FETCHBURSTMIN_64B_T6) | V_FW_IQ_CMD_FL0FBMAX(chip_id(sc) <= CHELSIO_T5 ? X_FETCHBURSTMAX_512B : X_FETCHBURSTMAX_256B)); c.fl0size = htobe16(fl->qsize); c.fl0addr = htobe64(fl->ba); } rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c); if (rc != 0) { CH_ERR(sc, "failed to create hw ingress queue: %d\n", rc); return (rc); } iq->cidx = 0; iq->gen = F_RSPD_GEN; iq->cntxt_id = be16toh(c.iqid); iq->abs_id = be16toh(c.physiqid); cntxt_id = iq->cntxt_id - sc->sge.iq_start; if (cntxt_id >= sc->sge.iqmap_sz) { panic ("%s: iq->cntxt_id (%d) more than the max (%d)", __func__, cntxt_id, sc->sge.iqmap_sz - 1); } sc->sge.iqmap[cntxt_id] = iq; if (fl) { u_int qid; #ifdef INVARIANTS int i; MPASS(!(fl->flags & FL_BUF_RESUME)); for (i = 0; i < fl->sidx * 8; i++) MPASS(fl->sdesc[i].cl == NULL); #endif fl->cntxt_id = be16toh(c.fl0id); fl->pidx = fl->cidx = fl->hw_cidx = fl->dbidx = 0; fl->rx_offset = 0; fl->flags &= ~(FL_STARVING | FL_DOOMED); cntxt_id = fl->cntxt_id - sc->sge.eq_start; if (cntxt_id >= sc->sge.eqmap_sz) { panic("%s: fl->cntxt_id (%d) more than the max (%d)", __func__, cntxt_id, sc->sge.eqmap_sz - 1); } sc->sge.eqmap[cntxt_id] = (void *)fl; qid = fl->cntxt_id; if (isset(&sc->doorbells, DOORBELL_UDB)) { uint32_t s_qpp = sc->params.sge.eq_s_qpp; uint32_t mask = (1 << s_qpp) - 1; volatile uint8_t *udb; udb = sc->udbs_base + UDBS_DB_OFFSET; udb += (qid >> s_qpp) << PAGE_SHIFT; qid &= mask; if (qid < PAGE_SIZE / UDBS_SEG_SIZE) { udb += qid << UDBS_SEG_SHIFT; qid = 0; } fl->udb = (volatile void *)udb; } fl->dbval = V_QID(qid) | sc->chip_params->sge_fl_db; FL_LOCK(fl); /* Enough to make sure the SGE doesn't think it's starved */ refill_fl(sc, fl, fl->lowat); FL_UNLOCK(fl); } if (chip_id(sc) >= CHELSIO_T5 && !(sc->flags & IS_VF) && iq->cong_drop != -1) { t4_sge_set_conm_context(sc, iq->cntxt_id, iq->cong_drop, cong_map); } /* Enable IQ interrupts */ atomic_store_rel_int(&iq->state, IQS_IDLE); t4_write_reg(sc, sc->sge_gts_reg, V_SEINTARM(iq->intr_params) | V_INGRESSQID(iq->cntxt_id)); iq->flags |= IQ_HW_ALLOCATED; return (0); } static int free_iq_fl_hwq(struct adapter *sc, struct sge_iq *iq, struct sge_fl *fl) { int rc; MPASS(iq->flags & IQ_HW_ALLOCATED); rc = -t4_iq_free(sc, sc->mbox, sc->pf, 0, FW_IQ_TYPE_FL_INT_CAP, iq->cntxt_id, fl ? fl->cntxt_id : 0xffff, 0xffff); if (rc != 0) { CH_ERR(sc, "failed to free iq %p: %d\n", iq, rc); return (rc); } iq->flags &= ~IQ_HW_ALLOCATED; return (0); } static void add_iq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid, struct sge_iq *iq) { struct sysctl_oid_list *children; if (ctx == NULL || oid == NULL) return; children = SYSCTL_CHILDREN(oid); SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD, &iq->ba, "bus address of descriptor ring"); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL, iq->qsize * IQ_ESIZE, "descriptor ring size in bytes"); SYSCTL_ADD_U16(ctx, children, OID_AUTO, "abs_id", CTLFLAG_RD, &iq->abs_id, 0, "absolute id of the queue"); SYSCTL_ADD_U16(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD, &iq->cntxt_id, 0, "SGE context id of the queue"); SYSCTL_ADD_U16(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, &iq->cidx, 0, "consumer index"); } static void add_fl_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx, struct sysctl_oid *oid, struct sge_fl *fl) { struct sysctl_oid_list *children; if (ctx == NULL || oid == NULL) return; children = SYSCTL_CHILDREN(oid); oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "freelist"); children = SYSCTL_CHILDREN(oid); SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD, &fl->ba, "bus address of descriptor ring"); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL, fl->sidx * EQ_ESIZE + sc->params.sge.spg_len, "desc ring size in bytes"); SYSCTL_ADD_U16(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD, &fl->cntxt_id, 0, "SGE context id of the freelist"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "padding", CTLFLAG_RD, NULL, fl_pad ? 1 : 0, "padding enabled"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "packing", CTLFLAG_RD, NULL, fl->flags & FL_BUF_PACKING ? 1 : 0, "packing enabled"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, &fl->cidx, 0, "consumer index"); if (fl->flags & FL_BUF_PACKING) { SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_offset", CTLFLAG_RD, &fl->rx_offset, 0, "packing rx offset"); } SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD, &fl->pidx, 0, "producer index"); SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_allocated", CTLFLAG_RD, &fl->cl_allocated, "# of clusters allocated"); SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_recycled", CTLFLAG_RD, &fl->cl_recycled, "# of clusters recycled"); SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_fast_recycled", CTLFLAG_RD, &fl->cl_fast_recycled, "# of clusters recycled (fast)"); } /* * Idempotent. */ static int alloc_fwq(struct adapter *sc) { int rc, intr_idx; struct sge_iq *fwq = &sc->sge.fwq; struct vi_info *vi = &sc->port[0]->vi[0]; if (!(fwq->flags & IQ_SW_ALLOCATED)) { MPASS(!(fwq->flags & IQ_HW_ALLOCATED)); if (sc->flags & IS_VF) intr_idx = 0; else intr_idx = sc->intr_count > 1 ? 1 : 0; init_iq(fwq, sc, 0, 0, FW_IQ_QSIZE, intr_idx, -1, IQ_OTHER); rc = alloc_iq_fl(vi, fwq, NULL, &sc->ctx, sc->fwq_oid); if (rc != 0) { CH_ERR(sc, "failed to allocate fwq: %d\n", rc); return (rc); } MPASS(fwq->flags & IQ_SW_ALLOCATED); } if (!(fwq->flags & IQ_HW_ALLOCATED)) { MPASS(fwq->flags & IQ_SW_ALLOCATED); rc = alloc_iq_fl_hwq(vi, fwq, NULL); if (rc != 0) { CH_ERR(sc, "failed to create hw fwq: %d\n", rc); return (rc); } MPASS(fwq->flags & IQ_HW_ALLOCATED); } return (0); } /* * Idempotent. */ static void free_fwq(struct adapter *sc) { struct sge_iq *fwq = &sc->sge.fwq; if (fwq->flags & IQ_HW_ALLOCATED) { MPASS(fwq->flags & IQ_SW_ALLOCATED); free_iq_fl_hwq(sc, fwq, NULL); MPASS(!(fwq->flags & IQ_HW_ALLOCATED)); } if (fwq->flags & IQ_SW_ALLOCATED) { MPASS(!(fwq->flags & IQ_HW_ALLOCATED)); free_iq_fl(sc, fwq, NULL); MPASS(!(fwq->flags & IQ_SW_ALLOCATED)); } } /* * Idempotent. */ static int alloc_ctrlq(struct adapter *sc, int idx) { int rc; char name[16]; struct sysctl_oid *oid; struct sge_wrq *ctrlq = &sc->sge.ctrlq[idx]; MPASS(idx < sc->params.nports); if (!(ctrlq->eq.flags & EQ_SW_ALLOCATED)) { MPASS(!(ctrlq->eq.flags & EQ_HW_ALLOCATED)); snprintf(name, sizeof(name), "%d", idx); oid = SYSCTL_ADD_NODE(&sc->ctx, SYSCTL_CHILDREN(sc->ctrlq_oid), OID_AUTO, name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "ctrl queue"); snprintf(name, sizeof(name), "%s ctrlq%d", device_get_nameunit(sc->dev), idx); init_eq(sc, &ctrlq->eq, EQ_CTRL, CTRL_EQ_QSIZE, idx, &sc->sge.fwq, name); rc = alloc_wrq(sc, NULL, ctrlq, &sc->ctx, oid); if (rc != 0) { CH_ERR(sc, "failed to allocate ctrlq%d: %d\n", idx, rc); sysctl_remove_oid(oid, 1, 1); return (rc); } MPASS(ctrlq->eq.flags & EQ_SW_ALLOCATED); } if (!(ctrlq->eq.flags & EQ_HW_ALLOCATED)) { MPASS(ctrlq->eq.flags & EQ_SW_ALLOCATED); rc = alloc_eq_hwq(sc, NULL, &ctrlq->eq); if (rc != 0) { CH_ERR(sc, "failed to create hw ctrlq%d: %d\n", idx, rc); return (rc); } MPASS(ctrlq->eq.flags & EQ_HW_ALLOCATED); } return (0); } /* * Idempotent. */ static void free_ctrlq(struct adapter *sc, int idx) { struct sge_wrq *ctrlq = &sc->sge.ctrlq[idx]; if (ctrlq->eq.flags & EQ_HW_ALLOCATED) { MPASS(ctrlq->eq.flags & EQ_SW_ALLOCATED); free_eq_hwq(sc, NULL, &ctrlq->eq); MPASS(!(ctrlq->eq.flags & EQ_HW_ALLOCATED)); } if (ctrlq->eq.flags & EQ_SW_ALLOCATED) { MPASS(!(ctrlq->eq.flags & EQ_HW_ALLOCATED)); free_wrq(sc, ctrlq); MPASS(!(ctrlq->eq.flags & EQ_SW_ALLOCATED)); } } int t4_sge_set_conm_context(struct adapter *sc, int cntxt_id, int cong_drop, int cong_map) { const int cng_ch_bits_log = sc->chip_params->cng_ch_bits_log; uint32_t param, val; uint16_t ch_map; int cong_mode, rc, i; if (chip_id(sc) < CHELSIO_T5) return (ENOTSUP); /* Convert the driver knob to the mode understood by the firmware. */ switch (cong_drop) { case -1: cong_mode = X_CONMCTXT_CNGTPMODE_DISABLE; break; case 0: cong_mode = X_CONMCTXT_CNGTPMODE_CHANNEL; break; case 1: cong_mode = X_CONMCTXT_CNGTPMODE_QUEUE; break; case 2: cong_mode = X_CONMCTXT_CNGTPMODE_BOTH; break; default: MPASS(0); CH_ERR(sc, "cong_drop = %d is invalid (ingress queue %d).\n", cong_drop, cntxt_id); return (EINVAL); } param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) | V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) | V_FW_PARAMS_PARAM_YZ(cntxt_id); val = V_CONMCTXT_CNGTPMODE(cong_mode); if (cong_mode == X_CONMCTXT_CNGTPMODE_CHANNEL || cong_mode == X_CONMCTXT_CNGTPMODE_BOTH) { for (i = 0, ch_map = 0; i < 4; i++) { if (cong_map & (1 << i)) ch_map |= 1 << (i << cng_ch_bits_log); } val |= V_CONMCTXT_CNGCHMAP(ch_map); } rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); if (rc != 0) { CH_ERR(sc, "failed to set congestion manager context " "for ingress queue %d: %d\n", cntxt_id, rc); } return (rc); } /* * Idempotent. */ static int alloc_rxq(struct vi_info *vi, struct sge_rxq *rxq, int idx, int intr_idx, int maxp) { int rc; struct adapter *sc = vi->adapter; if_t ifp = vi->ifp; struct sysctl_oid *oid; char name[16]; if (!(rxq->iq.flags & IQ_SW_ALLOCATED)) { MPASS(!(rxq->iq.flags & IQ_HW_ALLOCATED)); #if defined(INET) || defined(INET6) rc = tcp_lro_init_args(&rxq->lro, ifp, lro_entries, lro_mbufs); if (rc != 0) return (rc); MPASS(rxq->lro.ifp == ifp); /* also indicates LRO init'ed */ #endif rxq->ifp = ifp; snprintf(name, sizeof(name), "%d", idx); oid = SYSCTL_ADD_NODE(&vi->ctx, SYSCTL_CHILDREN(vi->rxq_oid), OID_AUTO, name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "rx queue"); init_iq(&rxq->iq, sc, vi->tmr_idx, vi->pktc_idx, vi->qsize_rxq, intr_idx, cong_drop, IQ_ETH); #if defined(INET) || defined(INET6) if (if_getcapenable(ifp) & IFCAP_LRO) rxq->iq.flags |= IQ_LRO_ENABLED; #endif if (if_getcapenable(ifp) & IFCAP_HWRXTSTMP) rxq->iq.flags |= IQ_RX_TIMESTAMP; snprintf(name, sizeof(name), "%s rxq%d-fl", device_get_nameunit(vi->dev), idx); init_fl(sc, &rxq->fl, vi->qsize_rxq / 8, maxp, name); rc = alloc_iq_fl(vi, &rxq->iq, &rxq->fl, &vi->ctx, oid); if (rc != 0) { CH_ERR(vi, "failed to allocate rxq%d: %d\n", idx, rc); sysctl_remove_oid(oid, 1, 1); #if defined(INET) || defined(INET6) tcp_lro_free(&rxq->lro); rxq->lro.ifp = NULL; #endif return (rc); } MPASS(rxq->iq.flags & IQ_SW_ALLOCATED); add_rxq_sysctls(&vi->ctx, oid, rxq); } if (!(rxq->iq.flags & IQ_HW_ALLOCATED)) { MPASS(rxq->iq.flags & IQ_SW_ALLOCATED); rc = alloc_iq_fl_hwq(vi, &rxq->iq, &rxq->fl); if (rc != 0) { CH_ERR(vi, "failed to create hw rxq%d: %d\n", idx, rc); return (rc); } MPASS(rxq->iq.flags & IQ_HW_ALLOCATED); if (idx == 0) sc->sge.iq_base = rxq->iq.abs_id - rxq->iq.cntxt_id; else KASSERT(rxq->iq.cntxt_id + sc->sge.iq_base == rxq->iq.abs_id, ("iq_base mismatch")); KASSERT(sc->sge.iq_base == 0 || sc->flags & IS_VF, ("PF with non-zero iq_base")); /* * The freelist is just barely above the starvation threshold * right now, fill it up a bit more. */ FL_LOCK(&rxq->fl); refill_fl(sc, &rxq->fl, 128); FL_UNLOCK(&rxq->fl); } return (0); } /* * Idempotent. */ static void free_rxq(struct vi_info *vi, struct sge_rxq *rxq) { if (rxq->iq.flags & IQ_HW_ALLOCATED) { MPASS(rxq->iq.flags & IQ_SW_ALLOCATED); free_iq_fl_hwq(vi->adapter, &rxq->iq, &rxq->fl); MPASS(!(rxq->iq.flags & IQ_HW_ALLOCATED)); } if (rxq->iq.flags & IQ_SW_ALLOCATED) { MPASS(!(rxq->iq.flags & IQ_HW_ALLOCATED)); #if defined(INET) || defined(INET6) tcp_lro_free(&rxq->lro); #endif free_iq_fl(vi->adapter, &rxq->iq, &rxq->fl); MPASS(!(rxq->iq.flags & IQ_SW_ALLOCATED)); bzero(rxq, sizeof(*rxq)); } } static void add_rxq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid, struct sge_rxq *rxq) { struct sysctl_oid_list *children; if (ctx == NULL || oid == NULL) return; children = SYSCTL_CHILDREN(oid); #if defined(INET) || defined(INET6) SYSCTL_ADD_U64(ctx, children, OID_AUTO, "lro_queued", CTLFLAG_RD, &rxq->lro.lro_queued, 0, NULL); SYSCTL_ADD_U64(ctx, children, OID_AUTO, "lro_flushed", CTLFLAG_RD, &rxq->lro.lro_flushed, 0, NULL); #endif SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "rxcsum", CTLFLAG_RD, &rxq->rxcsum, "# of times hardware assisted with checksum"); SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "vlan_extraction", CTLFLAG_RD, &rxq->vlan_extraction, "# of times hardware extracted 802.1Q tag"); SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "vxlan_rxcsum", CTLFLAG_RD, &rxq->vxlan_rxcsum, "# of times hardware assisted with inner checksum (VXLAN)"); } #ifdef TCP_OFFLOAD /* * Idempotent. */ static int alloc_ofld_rxq(struct vi_info *vi, struct sge_ofld_rxq *ofld_rxq, int idx, int intr_idx, int maxp) { int rc; struct adapter *sc = vi->adapter; struct sysctl_oid *oid; char name[16]; if (!(ofld_rxq->iq.flags & IQ_SW_ALLOCATED)) { MPASS(!(ofld_rxq->iq.flags & IQ_HW_ALLOCATED)); snprintf(name, sizeof(name), "%d", idx); oid = SYSCTL_ADD_NODE(&vi->ctx, SYSCTL_CHILDREN(vi->ofld_rxq_oid), OID_AUTO, name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "offload rx queue"); init_iq(&ofld_rxq->iq, sc, vi->ofld_tmr_idx, vi->ofld_pktc_idx, vi->qsize_rxq, intr_idx, ofld_cong_drop, IQ_OFLD); snprintf(name, sizeof(name), "%s ofld_rxq%d-fl", device_get_nameunit(vi->dev), idx); init_fl(sc, &ofld_rxq->fl, vi->qsize_rxq / 8, maxp, name); rc = alloc_iq_fl(vi, &ofld_rxq->iq, &ofld_rxq->fl, &vi->ctx, oid); if (rc != 0) { CH_ERR(vi, "failed to allocate ofld_rxq%d: %d\n", idx, rc); sysctl_remove_oid(oid, 1, 1); return (rc); } MPASS(ofld_rxq->iq.flags & IQ_SW_ALLOCATED); ofld_rxq->rx_iscsi_ddp_setup_ok = counter_u64_alloc(M_WAITOK); ofld_rxq->rx_iscsi_ddp_setup_error = counter_u64_alloc(M_WAITOK); ofld_rxq->ddp_buffer_alloc = counter_u64_alloc(M_WAITOK); ofld_rxq->ddp_buffer_reuse = counter_u64_alloc(M_WAITOK); ofld_rxq->ddp_buffer_free = counter_u64_alloc(M_WAITOK); add_ofld_rxq_sysctls(&vi->ctx, oid, ofld_rxq); } if (!(ofld_rxq->iq.flags & IQ_HW_ALLOCATED)) { MPASS(ofld_rxq->iq.flags & IQ_SW_ALLOCATED); rc = alloc_iq_fl_hwq(vi, &ofld_rxq->iq, &ofld_rxq->fl); if (rc != 0) { CH_ERR(vi, "failed to create hw ofld_rxq%d: %d\n", idx, rc); return (rc); } MPASS(ofld_rxq->iq.flags & IQ_HW_ALLOCATED); } return (rc); } /* * Idempotent. */ static void free_ofld_rxq(struct vi_info *vi, struct sge_ofld_rxq *ofld_rxq) { if (ofld_rxq->iq.flags & IQ_HW_ALLOCATED) { MPASS(ofld_rxq->iq.flags & IQ_SW_ALLOCATED); free_iq_fl_hwq(vi->adapter, &ofld_rxq->iq, &ofld_rxq->fl); MPASS(!(ofld_rxq->iq.flags & IQ_HW_ALLOCATED)); } if (ofld_rxq->iq.flags & IQ_SW_ALLOCATED) { MPASS(!(ofld_rxq->iq.flags & IQ_HW_ALLOCATED)); free_iq_fl(vi->adapter, &ofld_rxq->iq, &ofld_rxq->fl); MPASS(!(ofld_rxq->iq.flags & IQ_SW_ALLOCATED)); counter_u64_free(ofld_rxq->rx_iscsi_ddp_setup_ok); counter_u64_free(ofld_rxq->rx_iscsi_ddp_setup_error); counter_u64_free(ofld_rxq->ddp_buffer_alloc); counter_u64_free(ofld_rxq->ddp_buffer_reuse); counter_u64_free(ofld_rxq->ddp_buffer_free); bzero(ofld_rxq, sizeof(*ofld_rxq)); } } static void add_ofld_rxq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid, struct sge_ofld_rxq *ofld_rxq) { struct sysctl_oid_list *children; if (ctx == NULL || oid == NULL) return; children = SYSCTL_CHILDREN(oid); SYSCTL_ADD_U64(ctx, children, OID_AUTO, "rx_aio_ddp_jobs", CTLFLAG_RD, &ofld_rxq->rx_aio_ddp_jobs, 0, "# of aio_read(2) jobs completed via DDP"); SYSCTL_ADD_U64(ctx, children, OID_AUTO, "rx_aio_ddp_octets", CTLFLAG_RD, &ofld_rxq->rx_aio_ddp_octets, 0, "# of octets placed directly for aio_read(2) jobs"); SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "rx_toe_tls_records", CTLFLAG_RD, &ofld_rxq->rx_toe_tls_records, "# of TOE TLS records received"); SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "rx_toe_tls_octets", CTLFLAG_RD, &ofld_rxq->rx_toe_tls_octets, "# of payload octets in received TOE TLS records"); SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "rx_toe_ddp_octets", CTLFLAG_RD, &ofld_rxq->rx_toe_ddp_octets, "# of payload octets received via TCP DDP"); SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "ddp_buffer_alloc", CTLFLAG_RD, &ofld_rxq->ddp_buffer_alloc, "# of DDP RCV buffers allocated"); SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "ddp_buffer_reuse", CTLFLAG_RD, &ofld_rxq->ddp_buffer_reuse, "# of DDP RCV buffers reused"); SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "ddp_buffer_free", CTLFLAG_RD, &ofld_rxq->ddp_buffer_free, "# of DDP RCV buffers freed"); oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "iscsi", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE iSCSI statistics"); children = SYSCTL_CHILDREN(oid); SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "ddp_setup_ok", CTLFLAG_RD, &ofld_rxq->rx_iscsi_ddp_setup_ok, "# of times DDP buffer was setup successfully."); SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "ddp_setup_error", CTLFLAG_RD, &ofld_rxq->rx_iscsi_ddp_setup_error, "# of times DDP buffer setup failed."); SYSCTL_ADD_U64(ctx, children, OID_AUTO, "ddp_octets", CTLFLAG_RD, &ofld_rxq->rx_iscsi_ddp_octets, 0, "# of octets placed directly"); SYSCTL_ADD_U64(ctx, children, OID_AUTO, "ddp_pdus", CTLFLAG_RD, &ofld_rxq->rx_iscsi_ddp_pdus, 0, "# of PDUs with data placed directly."); SYSCTL_ADD_U64(ctx, children, OID_AUTO, "fl_octets", CTLFLAG_RD, &ofld_rxq->rx_iscsi_fl_octets, 0, "# of data octets delivered in freelist"); SYSCTL_ADD_U64(ctx, children, OID_AUTO, "fl_pdus", CTLFLAG_RD, &ofld_rxq->rx_iscsi_fl_pdus, 0, "# of PDUs with data delivered in freelist"); SYSCTL_ADD_U64(ctx, children, OID_AUTO, "padding_errors", CTLFLAG_RD, &ofld_rxq->rx_iscsi_padding_errors, 0, "# of PDUs with invalid padding"); SYSCTL_ADD_U64(ctx, children, OID_AUTO, "header_digest_errors", CTLFLAG_RD, &ofld_rxq->rx_iscsi_header_digest_errors, 0, "# of PDUs with invalid header digests"); SYSCTL_ADD_U64(ctx, children, OID_AUTO, "data_digest_errors", CTLFLAG_RD, &ofld_rxq->rx_iscsi_data_digest_errors, 0, "# of PDUs with invalid data digests"); } #endif /* * Returns a reasonable automatic cidx flush threshold for a given queue size. */ static u_int qsize_to_fthresh(int qsize) { u_int fthresh; fthresh = qsize == 0 ? 0 : order_base_2(qsize); if (fthresh > X_CIDXFLUSHTHRESH_128) fthresh = X_CIDXFLUSHTHRESH_128; return (fthresh); } static int ctrl_eq_alloc(struct adapter *sc, struct sge_eq *eq) { int rc, cntxt_id; struct fw_eq_ctrl_cmd c; int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE; bzero(&c, sizeof(c)); c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_CTRL_CMD_PFN(sc->pf) | V_FW_EQ_CTRL_CMD_VFN(0)); c.alloc_to_len16 = htobe32(F_FW_EQ_CTRL_CMD_ALLOC | F_FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c)); c.cmpliqid_eqid = htonl(V_FW_EQ_CTRL_CMD_CMPLIQID(eq->iqid)); c.physeqid_pkd = htobe32(0); c.fetchszm_to_iqid = htobe32(V_FW_EQ_CTRL_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) | V_FW_EQ_CTRL_CMD_PCIECHN(eq->tx_chan) | F_FW_EQ_CTRL_CMD_FETCHRO | V_FW_EQ_CTRL_CMD_IQID(eq->iqid)); c.dcaen_to_eqsize = htobe32(V_FW_EQ_CTRL_CMD_FBMIN(chip_id(sc) <= CHELSIO_T5 ? X_FETCHBURSTMIN_64B : X_FETCHBURSTMIN_64B_T6) | V_FW_EQ_CTRL_CMD_FBMAX(X_FETCHBURSTMAX_512B) | V_FW_EQ_CTRL_CMD_CIDXFTHRESH(qsize_to_fthresh(qsize)) | V_FW_EQ_CTRL_CMD_EQSIZE(qsize)); c.eqaddr = htobe64(eq->ba); rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c); if (rc != 0) { CH_ERR(sc, "failed to create hw ctrlq for tx_chan %d: %d\n", eq->tx_chan, rc); return (rc); } eq->cntxt_id = G_FW_EQ_CTRL_CMD_EQID(be32toh(c.cmpliqid_eqid)); eq->abs_id = G_FW_EQ_CTRL_CMD_PHYSEQID(be32toh(c.physeqid_pkd)); cntxt_id = eq->cntxt_id - sc->sge.eq_start; if (cntxt_id >= sc->sge.eqmap_sz) panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__, cntxt_id, sc->sge.eqmap_sz - 1); sc->sge.eqmap[cntxt_id] = eq; return (rc); } static int eth_eq_alloc(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq) { int rc, cntxt_id; struct fw_eq_eth_cmd c; int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE; bzero(&c, sizeof(c)); c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(sc->pf) | V_FW_EQ_ETH_CMD_VFN(0)); c.alloc_to_len16 = htobe32(F_FW_EQ_ETH_CMD_ALLOC | F_FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c)); c.autoequiqe_to_viid = htobe32(F_FW_EQ_ETH_CMD_AUTOEQUIQE | F_FW_EQ_ETH_CMD_AUTOEQUEQE | V_FW_EQ_ETH_CMD_VIID(vi->viid)); c.fetchszm_to_iqid = htobe32(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) | V_FW_EQ_ETH_CMD_PCIECHN(eq->tx_chan) | F_FW_EQ_ETH_CMD_FETCHRO | V_FW_EQ_ETH_CMD_IQID(eq->iqid)); c.dcaen_to_eqsize = htobe32(V_FW_EQ_ETH_CMD_FBMIN(chip_id(sc) <= CHELSIO_T5 ? X_FETCHBURSTMIN_64B : X_FETCHBURSTMIN_64B_T6) | V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) | V_FW_EQ_ETH_CMD_EQSIZE(qsize)); c.eqaddr = htobe64(eq->ba); rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c); if (rc != 0) { device_printf(vi->dev, "failed to create Ethernet egress queue: %d\n", rc); return (rc); } eq->cntxt_id = G_FW_EQ_ETH_CMD_EQID(be32toh(c.eqid_pkd)); eq->abs_id = G_FW_EQ_ETH_CMD_PHYSEQID(be32toh(c.physeqid_pkd)); cntxt_id = eq->cntxt_id - sc->sge.eq_start; if (cntxt_id >= sc->sge.eqmap_sz) panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__, cntxt_id, sc->sge.eqmap_sz - 1); sc->sge.eqmap[cntxt_id] = eq; return (rc); } #if defined(TCP_OFFLOAD) || defined(RATELIMIT) static int ofld_eq_alloc(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq) { int rc, cntxt_id; struct fw_eq_ofld_cmd c; int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE; bzero(&c, sizeof(c)); c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_OFLD_CMD) | F_FW_CMD_REQUEST | F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_OFLD_CMD_PFN(sc->pf) | V_FW_EQ_OFLD_CMD_VFN(0)); c.alloc_to_len16 = htonl(F_FW_EQ_OFLD_CMD_ALLOC | F_FW_EQ_OFLD_CMD_EQSTART | FW_LEN16(c)); c.fetchszm_to_iqid = htonl(V_FW_EQ_OFLD_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) | V_FW_EQ_OFLD_CMD_PCIECHN(eq->tx_chan) | F_FW_EQ_OFLD_CMD_FETCHRO | V_FW_EQ_OFLD_CMD_IQID(eq->iqid)); c.dcaen_to_eqsize = htobe32(V_FW_EQ_OFLD_CMD_FBMIN(chip_id(sc) <= CHELSIO_T5 ? X_FETCHBURSTMIN_64B : X_FETCHBURSTMIN_64B_T6) | V_FW_EQ_OFLD_CMD_FBMAX(X_FETCHBURSTMAX_512B) | V_FW_EQ_OFLD_CMD_CIDXFTHRESH(qsize_to_fthresh(qsize)) | V_FW_EQ_OFLD_CMD_EQSIZE(qsize)); c.eqaddr = htobe64(eq->ba); rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c); if (rc != 0) { device_printf(vi->dev, "failed to create egress queue for TCP offload: %d\n", rc); return (rc); } eq->cntxt_id = G_FW_EQ_OFLD_CMD_EQID(be32toh(c.eqid_pkd)); eq->abs_id = G_FW_EQ_OFLD_CMD_PHYSEQID(be32toh(c.physeqid_pkd)); cntxt_id = eq->cntxt_id - sc->sge.eq_start; if (cntxt_id >= sc->sge.eqmap_sz) panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__, cntxt_id, sc->sge.eqmap_sz - 1); sc->sge.eqmap[cntxt_id] = eq; return (rc); } #endif /* SW only */ static int alloc_eq(struct adapter *sc, struct sge_eq *eq, struct sysctl_ctx_list *ctx, struct sysctl_oid *oid) { int rc, qsize; size_t len; MPASS(!(eq->flags & EQ_SW_ALLOCATED)); qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE; len = qsize * EQ_ESIZE; rc = alloc_ring(sc, len, &eq->desc_tag, &eq->desc_map, &eq->ba, (void **)&eq->desc); if (rc) return (rc); if (ctx != NULL && oid != NULL) add_eq_sysctls(sc, ctx, oid, eq); eq->flags |= EQ_SW_ALLOCATED; return (0); } /* SW only */ static void free_eq(struct adapter *sc, struct sge_eq *eq) { MPASS(eq->flags & EQ_SW_ALLOCATED); if (eq->type == EQ_ETH) MPASS(eq->pidx == eq->cidx); free_ring(sc, eq->desc_tag, eq->desc_map, eq->ba, eq->desc); mtx_destroy(&eq->eq_lock); bzero(eq, sizeof(*eq)); } static void add_eq_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx, struct sysctl_oid *oid, struct sge_eq *eq) { struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid); SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD, &eq->ba, "bus address of descriptor ring"); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL, eq->sidx * EQ_ESIZE + sc->params.sge.spg_len, "desc ring size in bytes"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "abs_id", CTLFLAG_RD, &eq->abs_id, 0, "absolute id of the queue"); SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD, &eq->cntxt_id, 0, "SGE context id of the queue"); SYSCTL_ADD_U16(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, &eq->cidx, 0, "consumer index"); SYSCTL_ADD_U16(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD, &eq->pidx, 0, "producer index"); SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sidx", CTLFLAG_RD, NULL, eq->sidx, "status page index"); } static int alloc_eq_hwq(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq) { int rc; MPASS(!(eq->flags & EQ_HW_ALLOCATED)); eq->iqid = eq->iq->cntxt_id; eq->pidx = eq->cidx = eq->dbidx = 0; /* Note that equeqidx is not used with sge_wrq (OFLD/CTRL) queues. */ eq->equeqidx = 0; eq->doorbells = sc->doorbells; bzero(eq->desc, eq->sidx * EQ_ESIZE + sc->params.sge.spg_len); switch (eq->type) { case EQ_CTRL: rc = ctrl_eq_alloc(sc, eq); break; case EQ_ETH: rc = eth_eq_alloc(sc, vi, eq); break; #if defined(TCP_OFFLOAD) || defined(RATELIMIT) case EQ_OFLD: rc = ofld_eq_alloc(sc, vi, eq); break; #endif default: panic("%s: invalid eq type %d.", __func__, eq->type); } if (rc != 0) { CH_ERR(sc, "failed to allocate egress queue(%d): %d\n", eq->type, rc); return (rc); } if (isset(&eq->doorbells, DOORBELL_UDB) || isset(&eq->doorbells, DOORBELL_UDBWC) || isset(&eq->doorbells, DOORBELL_WCWR)) { uint32_t s_qpp = sc->params.sge.eq_s_qpp; uint32_t mask = (1 << s_qpp) - 1; volatile uint8_t *udb; udb = sc->udbs_base + UDBS_DB_OFFSET; udb += (eq->cntxt_id >> s_qpp) << PAGE_SHIFT; /* pg offset */ eq->udb_qid = eq->cntxt_id & mask; /* id in page */ if (eq->udb_qid >= PAGE_SIZE / UDBS_SEG_SIZE) clrbit(&eq->doorbells, DOORBELL_WCWR); else { udb += eq->udb_qid << UDBS_SEG_SHIFT; /* seg offset */ eq->udb_qid = 0; } eq->udb = (volatile void *)udb; } eq->flags |= EQ_HW_ALLOCATED; return (0); } static int free_eq_hwq(struct adapter *sc, struct vi_info *vi __unused, struct sge_eq *eq) { int rc; MPASS(eq->flags & EQ_HW_ALLOCATED); switch (eq->type) { case EQ_CTRL: rc = -t4_ctrl_eq_free(sc, sc->mbox, sc->pf, 0, eq->cntxt_id); break; case EQ_ETH: rc = -t4_eth_eq_free(sc, sc->mbox, sc->pf, 0, eq->cntxt_id); break; #if defined(TCP_OFFLOAD) || defined(RATELIMIT) case EQ_OFLD: rc = -t4_ofld_eq_free(sc, sc->mbox, sc->pf, 0, eq->cntxt_id); break; #endif default: panic("%s: invalid eq type %d.", __func__, eq->type); } if (rc != 0) { CH_ERR(sc, "failed to free eq (type %d): %d\n", eq->type, rc); return (rc); } eq->flags &= ~EQ_HW_ALLOCATED; return (0); } static int alloc_wrq(struct adapter *sc, struct vi_info *vi, struct sge_wrq *wrq, struct sysctl_ctx_list *ctx, struct sysctl_oid *oid) { struct sge_eq *eq = &wrq->eq; int rc; MPASS(!(eq->flags & EQ_SW_ALLOCATED)); rc = alloc_eq(sc, eq, ctx, oid); if (rc) return (rc); MPASS(eq->flags & EQ_SW_ALLOCATED); /* Can't fail after this. */ wrq->adapter = sc; TASK_INIT(&wrq->wrq_tx_task, 0, wrq_tx_drain, wrq); TAILQ_INIT(&wrq->incomplete_wrs); STAILQ_INIT(&wrq->wr_list); wrq->nwr_pending = 0; wrq->ndesc_needed = 0; add_wrq_sysctls(ctx, oid, wrq); return (0); } static void free_wrq(struct adapter *sc, struct sge_wrq *wrq) { free_eq(sc, &wrq->eq); MPASS(wrq->nwr_pending == 0); MPASS(TAILQ_EMPTY(&wrq->incomplete_wrs)); MPASS(STAILQ_EMPTY(&wrq->wr_list)); bzero(wrq, sizeof(*wrq)); } static void add_wrq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid, struct sge_wrq *wrq) { struct sysctl_oid_list *children; if (ctx == NULL || oid == NULL) return; children = SYSCTL_CHILDREN(oid); SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_direct", CTLFLAG_RD, &wrq->tx_wrs_direct, "# of work requests (direct)"); SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_copied", CTLFLAG_RD, &wrq->tx_wrs_copied, "# of work requests (copied)"); SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_sspace", CTLFLAG_RD, &wrq->tx_wrs_ss, "# of work requests (copied from scratch space)"); } /* * Idempotent. */ static int alloc_txq(struct vi_info *vi, struct sge_txq *txq, int idx) { int rc, iqidx; struct port_info *pi = vi->pi; struct adapter *sc = vi->adapter; struct sge_eq *eq = &txq->eq; struct txpkts *txp; char name[16]; struct sysctl_oid *oid; if (!(eq->flags & EQ_SW_ALLOCATED)) { MPASS(!(eq->flags & EQ_HW_ALLOCATED)); snprintf(name, sizeof(name), "%d", idx); oid = SYSCTL_ADD_NODE(&vi->ctx, SYSCTL_CHILDREN(vi->txq_oid), OID_AUTO, name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "tx queue"); iqidx = vi->first_rxq + (idx % vi->nrxq); snprintf(name, sizeof(name), "%s txq%d", device_get_nameunit(vi->dev), idx); init_eq(sc, &txq->eq, EQ_ETH, vi->qsize_txq, pi->port_id, &sc->sge.rxq[iqidx].iq, name); rc = mp_ring_alloc(&txq->r, eq->sidx, txq, eth_tx, can_resume_eth_tx, M_CXGBE, &eq->eq_lock, M_WAITOK); if (rc != 0) { CH_ERR(vi, "failed to allocate mp_ring for txq%d: %d\n", idx, rc); failed: sysctl_remove_oid(oid, 1, 1); return (rc); } rc = alloc_eq(sc, eq, &vi->ctx, oid); if (rc) { CH_ERR(vi, "failed to allocate txq%d: %d\n", idx, rc); mp_ring_free(txq->r); goto failed; } MPASS(eq->flags & EQ_SW_ALLOCATED); /* Can't fail after this point. */ TASK_INIT(&txq->tx_reclaim_task, 0, tx_reclaim, eq); txq->ifp = vi->ifp; txq->gl = sglist_alloc(TX_SGL_SEGS, M_WAITOK); txq->sdesc = malloc(eq->sidx * sizeof(struct tx_sdesc), M_CXGBE, M_ZERO | M_WAITOK); add_txq_sysctls(vi, &vi->ctx, oid, txq); } if (!(eq->flags & EQ_HW_ALLOCATED)) { MPASS(eq->flags & EQ_SW_ALLOCATED); rc = alloc_eq_hwq(sc, vi, eq); if (rc != 0) { CH_ERR(vi, "failed to create hw txq%d: %d\n", idx, rc); return (rc); } MPASS(eq->flags & EQ_HW_ALLOCATED); /* Can't fail after this point. */ if (idx == 0) sc->sge.eq_base = eq->abs_id - eq->cntxt_id; else KASSERT(eq->cntxt_id + sc->sge.eq_base == eq->abs_id, ("eq_base mismatch")); KASSERT(sc->sge.eq_base == 0 || sc->flags & IS_VF, ("PF with non-zero eq_base")); txp = &txq->txp; MPASS(nitems(txp->mb) >= sc->params.max_pkts_per_eth_tx_pkts_wr); txq->txp.max_npkt = min(nitems(txp->mb), sc->params.max_pkts_per_eth_tx_pkts_wr); if (vi->flags & TX_USES_VM_WR && !(sc->flags & IS_VF)) txq->txp.max_npkt--; if (vi->flags & TX_USES_VM_WR) txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) | V_TXPKT_INTF(pi->tx_chan)); else txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) | V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(sc->pf) | V_TXPKT_VF(vi->vin) | V_TXPKT_VF_VLD(vi->vfvld)); txq->tc_idx = -1; } return (0); } /* * Idempotent. */ static void free_txq(struct vi_info *vi, struct sge_txq *txq) { struct adapter *sc = vi->adapter; struct sge_eq *eq = &txq->eq; if (eq->flags & EQ_HW_ALLOCATED) { MPASS(eq->flags & EQ_SW_ALLOCATED); free_eq_hwq(sc, NULL, eq); MPASS(!(eq->flags & EQ_HW_ALLOCATED)); } if (eq->flags & EQ_SW_ALLOCATED) { MPASS(!(eq->flags & EQ_HW_ALLOCATED)); sglist_free(txq->gl); free(txq->sdesc, M_CXGBE); mp_ring_free(txq->r); free_eq(sc, eq); MPASS(!(eq->flags & EQ_SW_ALLOCATED)); bzero(txq, sizeof(*txq)); } } static void add_txq_sysctls(struct vi_info *vi, struct sysctl_ctx_list *ctx, struct sysctl_oid *oid, struct sge_txq *txq) { struct adapter *sc; struct sysctl_oid_list *children; if (ctx == NULL || oid == NULL) return; sc = vi->adapter; children = SYSCTL_CHILDREN(oid); mp_ring_sysctls(txq->r, ctx, children); SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tc", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, txq - sc->sge.txq, sysctl_tc, "I", "traffic class (-1 means none)"); SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txcsum", CTLFLAG_RD, &txq->txcsum, "# of times hardware assisted with checksum"); SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "vlan_insertion", CTLFLAG_RD, &txq->vlan_insertion, "# of times hardware inserted 802.1Q tag"); SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tso_wrs", CTLFLAG_RD, &txq->tso_wrs, "# of TSO work requests"); SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "imm_wrs", CTLFLAG_RD, &txq->imm_wrs, "# of work requests with immediate data"); SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "sgl_wrs", CTLFLAG_RD, &txq->sgl_wrs, "# of work requests with direct SGL"); SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txpkt_wrs", CTLFLAG_RD, &txq->txpkt_wrs, "# of txpkt work requests (one pkt/WR)"); SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txpkts0_wrs", CTLFLAG_RD, &txq->txpkts0_wrs, "# of txpkts (type 0) work requests"); SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txpkts1_wrs", CTLFLAG_RD, &txq->txpkts1_wrs, "# of txpkts (type 1) work requests"); SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txpkts0_pkts", CTLFLAG_RD, &txq->txpkts0_pkts, "# of frames tx'd using type0 txpkts work requests"); SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txpkts1_pkts", CTLFLAG_RD, &txq->txpkts1_pkts, "# of frames tx'd using type1 txpkts work requests"); SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "txpkts_flush", CTLFLAG_RD, &txq->txpkts_flush, "# of times txpkts had to be flushed out by an egress-update"); SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "raw_wrs", CTLFLAG_RD, &txq->raw_wrs, "# of raw work requests (non-packets)"); SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "vxlan_tso_wrs", CTLFLAG_RD, &txq->vxlan_tso_wrs, "# of VXLAN TSO work requests"); SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "vxlan_txcsum", CTLFLAG_RD, &txq->vxlan_txcsum, "# of times hardware assisted with inner checksums (VXLAN)"); #ifdef KERN_TLS if (is_ktls(sc)) { SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_records", CTLFLAG_RD, &txq->kern_tls_records, "# of NIC TLS records transmitted"); SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_short", CTLFLAG_RD, &txq->kern_tls_short, "# of short NIC TLS records transmitted"); SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_partial", CTLFLAG_RD, &txq->kern_tls_partial, "# of partial NIC TLS records transmitted"); SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_full", CTLFLAG_RD, &txq->kern_tls_full, "# of full NIC TLS records transmitted"); SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_octets", CTLFLAG_RD, &txq->kern_tls_octets, "# of payload octets in transmitted NIC TLS records"); SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_waste", CTLFLAG_RD, &txq->kern_tls_waste, "# of octets DMAd but not transmitted in NIC TLS records"); SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_options", CTLFLAG_RD, &txq->kern_tls_options, "# of NIC TLS options-only packets transmitted"); SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_header", CTLFLAG_RD, &txq->kern_tls_header, "# of NIC TLS header-only packets transmitted"); SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_fin", CTLFLAG_RD, &txq->kern_tls_fin, "# of NIC TLS FIN-only packets transmitted"); SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_fin_short", CTLFLAG_RD, &txq->kern_tls_fin_short, "# of NIC TLS padded FIN packets on short TLS records"); SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_cbc", CTLFLAG_RD, &txq->kern_tls_cbc, "# of NIC TLS sessions using AES-CBC"); SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "kern_tls_gcm", CTLFLAG_RD, &txq->kern_tls_gcm, "# of NIC TLS sessions using AES-GCM"); } #endif } #if defined(TCP_OFFLOAD) || defined(RATELIMIT) /* * Idempotent. */ static int alloc_ofld_txq(struct vi_info *vi, struct sge_ofld_txq *ofld_txq, int idx) { struct sysctl_oid *oid; struct port_info *pi = vi->pi; struct adapter *sc = vi->adapter; struct sge_eq *eq = &ofld_txq->wrq.eq; int rc, iqidx; char name[16]; MPASS(idx >= 0); MPASS(idx < vi->nofldtxq); if (!(eq->flags & EQ_SW_ALLOCATED)) { snprintf(name, sizeof(name), "%d", idx); oid = SYSCTL_ADD_NODE(&vi->ctx, SYSCTL_CHILDREN(vi->ofld_txq_oid), OID_AUTO, name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "offload tx queue"); snprintf(name, sizeof(name), "%s ofld_txq%d", device_get_nameunit(vi->dev), idx); if (vi->nofldrxq > 0) { iqidx = vi->first_ofld_rxq + (idx % vi->nofldrxq); init_eq(sc, eq, EQ_OFLD, vi->qsize_txq, pi->port_id, &sc->sge.ofld_rxq[iqidx].iq, name); } else { iqidx = vi->first_rxq + (idx % vi->nrxq); init_eq(sc, eq, EQ_OFLD, vi->qsize_txq, pi->port_id, &sc->sge.rxq[iqidx].iq, name); } rc = alloc_wrq(sc, vi, &ofld_txq->wrq, &vi->ctx, oid); if (rc != 0) { CH_ERR(vi, "failed to allocate ofld_txq%d: %d\n", idx, rc); sysctl_remove_oid(oid, 1, 1); return (rc); } MPASS(eq->flags & EQ_SW_ALLOCATED); /* Can't fail after this point. */ ofld_txq->tx_iscsi_pdus = counter_u64_alloc(M_WAITOK); ofld_txq->tx_iscsi_octets = counter_u64_alloc(M_WAITOK); ofld_txq->tx_iscsi_iso_wrs = counter_u64_alloc(M_WAITOK); ofld_txq->tx_aio_jobs = counter_u64_alloc(M_WAITOK); ofld_txq->tx_aio_octets = counter_u64_alloc(M_WAITOK); ofld_txq->tx_toe_tls_records = counter_u64_alloc(M_WAITOK); ofld_txq->tx_toe_tls_octets = counter_u64_alloc(M_WAITOK); add_ofld_txq_sysctls(&vi->ctx, oid, ofld_txq); } if (!(eq->flags & EQ_HW_ALLOCATED)) { rc = alloc_eq_hwq(sc, vi, eq); if (rc != 0) { CH_ERR(vi, "failed to create hw ofld_txq%d: %d\n", idx, rc); return (rc); } MPASS(eq->flags & EQ_HW_ALLOCATED); } return (0); } /* * Idempotent. */ static void free_ofld_txq(struct vi_info *vi, struct sge_ofld_txq *ofld_txq) { struct adapter *sc = vi->adapter; struct sge_eq *eq = &ofld_txq->wrq.eq; if (eq->flags & EQ_HW_ALLOCATED) { MPASS(eq->flags & EQ_SW_ALLOCATED); free_eq_hwq(sc, NULL, eq); MPASS(!(eq->flags & EQ_HW_ALLOCATED)); } if (eq->flags & EQ_SW_ALLOCATED) { MPASS(!(eq->flags & EQ_HW_ALLOCATED)); counter_u64_free(ofld_txq->tx_iscsi_pdus); counter_u64_free(ofld_txq->tx_iscsi_octets); counter_u64_free(ofld_txq->tx_iscsi_iso_wrs); counter_u64_free(ofld_txq->tx_aio_jobs); counter_u64_free(ofld_txq->tx_aio_octets); counter_u64_free(ofld_txq->tx_toe_tls_records); counter_u64_free(ofld_txq->tx_toe_tls_octets); free_wrq(sc, &ofld_txq->wrq); MPASS(!(eq->flags & EQ_SW_ALLOCATED)); bzero(ofld_txq, sizeof(*ofld_txq)); } } static void add_ofld_txq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid, struct sge_ofld_txq *ofld_txq) { struct sysctl_oid_list *children; if (ctx == NULL || oid == NULL) return; children = SYSCTL_CHILDREN(oid); SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_iscsi_pdus", CTLFLAG_RD, &ofld_txq->tx_iscsi_pdus, "# of iSCSI PDUs transmitted"); SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_iscsi_octets", CTLFLAG_RD, &ofld_txq->tx_iscsi_octets, "# of payload octets in transmitted iSCSI PDUs"); SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_iscsi_iso_wrs", CTLFLAG_RD, &ofld_txq->tx_iscsi_iso_wrs, "# of iSCSI segmentation offload work requests"); SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_aio_jobs", CTLFLAG_RD, &ofld_txq->tx_aio_jobs, "# of zero-copy aio_write(2) jobs transmitted"); SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_aio_octets", CTLFLAG_RD, &ofld_txq->tx_aio_octets, "# of payload octets in transmitted zero-copy aio_write(2) jobs"); SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_toe_tls_records", CTLFLAG_RD, &ofld_txq->tx_toe_tls_records, "# of TOE TLS records transmitted"); SYSCTL_ADD_COUNTER_U64(ctx, children, OID_AUTO, "tx_toe_tls_octets", CTLFLAG_RD, &ofld_txq->tx_toe_tls_octets, "# of payload octets in transmitted TOE TLS records"); } #endif static void oneseg_dma_callback(void *arg, bus_dma_segment_t *segs, int nseg, int error) { bus_addr_t *ba = arg; KASSERT(nseg == 1, ("%s meant for single segment mappings only.", __func__)); *ba = error ? 0 : segs->ds_addr; } static inline void ring_fl_db(struct adapter *sc, struct sge_fl *fl) { uint32_t n, v; n = IDXDIFF(fl->pidx >> 3, fl->dbidx, fl->sidx); MPASS(n > 0); wmb(); v = fl->dbval | V_PIDX(n); if (fl->udb) *fl->udb = htole32(v); else t4_write_reg(sc, sc->sge_kdoorbell_reg, v); IDXINCR(fl->dbidx, n, fl->sidx); } /* * Fills up the freelist by allocating up to 'n' buffers. Buffers that are * recycled do not count towards this allocation budget. * * Returns non-zero to indicate that this freelist should be added to the list * of starving freelists. */ static int refill_fl(struct adapter *sc, struct sge_fl *fl, int n) { __be64 *d; struct fl_sdesc *sd; uintptr_t pa; caddr_t cl; struct rx_buf_info *rxb; struct cluster_metadata *clm; uint16_t max_pidx, zidx = fl->zidx; uint16_t hw_cidx = fl->hw_cidx; /* stable snapshot */ FL_LOCK_ASSERT_OWNED(fl); /* * We always stop at the beginning of the hardware descriptor that's just * before the one with the hw cidx. This is to avoid hw pidx = hw cidx, * which would mean an empty freelist to the chip. */ max_pidx = __predict_false(hw_cidx == 0) ? fl->sidx - 1 : hw_cidx - 1; if (fl->pidx == max_pidx * 8) return (0); d = &fl->desc[fl->pidx]; sd = &fl->sdesc[fl->pidx]; rxb = &sc->sge.rx_buf_info[zidx]; while (n > 0) { if (sd->cl != NULL) { if (sd->nmbuf == 0) { /* * Fast recycle without involving any atomics on * the cluster's metadata (if the cluster has * metadata). This happens when all frames * received in the cluster were small enough to * fit within a single mbuf each. */ fl->cl_fast_recycled++; goto recycled; } /* * Cluster is guaranteed to have metadata. Clusters * without metadata always take the fast recycle path * when they're recycled. */ clm = cl_metadata(sd); MPASS(clm != NULL); if (atomic_fetchadd_int(&clm->refcount, -1) == 1) { fl->cl_recycled++; counter_u64_add(extfree_rels, 1); goto recycled; } sd->cl = NULL; /* gave up my reference */ } MPASS(sd->cl == NULL); cl = uma_zalloc(rxb->zone, M_NOWAIT); if (__predict_false(cl == NULL)) { if (zidx != fl->safe_zidx) { zidx = fl->safe_zidx; rxb = &sc->sge.rx_buf_info[zidx]; cl = uma_zalloc(rxb->zone, M_NOWAIT); } if (cl == NULL) break; } fl->cl_allocated++; n--; pa = pmap_kextract((vm_offset_t)cl); sd->cl = cl; sd->zidx = zidx; if (fl->flags & FL_BUF_PACKING) { *d = htobe64(pa | rxb->hwidx2); sd->moff = rxb->size2; } else { *d = htobe64(pa | rxb->hwidx1); sd->moff = 0; } recycled: sd->nmbuf = 0; d++; sd++; if (__predict_false((++fl->pidx & 7) == 0)) { uint16_t pidx = fl->pidx >> 3; if (__predict_false(pidx == fl->sidx)) { fl->pidx = 0; pidx = 0; sd = fl->sdesc; d = fl->desc; } if (n < 8 || pidx == max_pidx) break; if (IDXDIFF(pidx, fl->dbidx, fl->sidx) >= 4) ring_fl_db(sc, fl); } } if ((fl->pidx >> 3) != fl->dbidx) ring_fl_db(sc, fl); return (FL_RUNNING_LOW(fl) && !(fl->flags & FL_STARVING)); } /* * Attempt to refill all starving freelists. */ static void refill_sfl(void *arg) { struct adapter *sc = arg; struct sge_fl *fl, *fl_temp; mtx_assert(&sc->sfl_lock, MA_OWNED); TAILQ_FOREACH_SAFE(fl, &sc->sfl, link, fl_temp) { FL_LOCK(fl); refill_fl(sc, fl, 64); if (FL_NOT_RUNNING_LOW(fl) || fl->flags & FL_DOOMED) { TAILQ_REMOVE(&sc->sfl, fl, link); fl->flags &= ~FL_STARVING; } FL_UNLOCK(fl); } if (!TAILQ_EMPTY(&sc->sfl)) callout_schedule(&sc->sfl_callout, hz / 5); } /* * Release the driver's reference on all buffers in the given freelist. Buffers * with kernel references cannot be freed and will prevent the driver from being * unloaded safely. */ void free_fl_buffers(struct adapter *sc, struct sge_fl *fl) { struct fl_sdesc *sd; struct cluster_metadata *clm; int i; sd = fl->sdesc; for (i = 0; i < fl->sidx * 8; i++, sd++) { if (sd->cl == NULL) continue; if (sd->nmbuf == 0) uma_zfree(sc->sge.rx_buf_info[sd->zidx].zone, sd->cl); else if (fl->flags & FL_BUF_PACKING) { clm = cl_metadata(sd); if (atomic_fetchadd_int(&clm->refcount, -1) == 1) { uma_zfree(sc->sge.rx_buf_info[sd->zidx].zone, sd->cl); counter_u64_add(extfree_rels, 1); } } sd->cl = NULL; } if (fl->flags & FL_BUF_RESUME) { m_freem(fl->m0); fl->flags &= ~FL_BUF_RESUME; } } static inline void get_pkt_gl(struct mbuf *m, struct sglist *gl) { int rc; M_ASSERTPKTHDR(m); sglist_reset(gl); rc = sglist_append_mbuf(gl, m); if (__predict_false(rc != 0)) { panic("%s: mbuf %p (%d segs) was vetted earlier but now fails " "with %d.", __func__, m, mbuf_nsegs(m), rc); } KASSERT(gl->sg_nseg == mbuf_nsegs(m), ("%s: nsegs changed for mbuf %p from %d to %d", __func__, m, mbuf_nsegs(m), gl->sg_nseg)); #if 0 /* vm_wr not readily available here. */ KASSERT(gl->sg_nseg > 0 && gl->sg_nseg <= max_nsegs_allowed(m, vm_wr), ("%s: %d segments, should have been 1 <= nsegs <= %d", __func__, gl->sg_nseg, max_nsegs_allowed(m, vm_wr))); #endif } /* * len16 for a txpkt WR with a GL. Includes the firmware work request header. */ static inline u_int txpkt_len16(u_int nsegs, const u_int extra) { u_int n; MPASS(nsegs > 0); nsegs--; /* first segment is part of ulptx_sgl */ n = extra + sizeof(struct fw_eth_tx_pkt_wr) + sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1)); return (howmany(n, 16)); } /* * len16 for a txpkt_vm WR with a GL. Includes the firmware work * request header. */ static inline u_int txpkt_vm_len16(u_int nsegs, const u_int extra) { u_int n; MPASS(nsegs > 0); nsegs--; /* first segment is part of ulptx_sgl */ n = extra + sizeof(struct fw_eth_tx_pkt_vm_wr) + sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1)); return (howmany(n, 16)); } static inline void calculate_mbuf_len16(struct mbuf *m, bool vm_wr) { const int lso = sizeof(struct cpl_tx_pkt_lso_core); const int tnl_lso = sizeof(struct cpl_tx_tnl_lso); if (vm_wr) { if (needs_tso(m)) set_mbuf_len16(m, txpkt_vm_len16(mbuf_nsegs(m), lso)); else set_mbuf_len16(m, txpkt_vm_len16(mbuf_nsegs(m), 0)); return; } if (needs_tso(m)) { if (needs_vxlan_tso(m)) set_mbuf_len16(m, txpkt_len16(mbuf_nsegs(m), tnl_lso)); else set_mbuf_len16(m, txpkt_len16(mbuf_nsegs(m), lso)); } else set_mbuf_len16(m, txpkt_len16(mbuf_nsegs(m), 0)); } /* * len16 for a txpkts type 0 WR with a GL. Does not include the firmware work * request header. */ static inline u_int txpkts0_len16(u_int nsegs) { u_int n; MPASS(nsegs > 0); nsegs--; /* first segment is part of ulptx_sgl */ n = sizeof(struct ulp_txpkt) + sizeof(struct ulptx_idata) + sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1)); return (howmany(n, 16)); } /* * len16 for a txpkts type 1 WR with a GL. Does not include the firmware work * request header. */ static inline u_int txpkts1_len16(void) { u_int n; n = sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl); return (howmany(n, 16)); } static inline u_int imm_payload(u_int ndesc) { u_int n; n = ndesc * EQ_ESIZE - sizeof(struct fw_eth_tx_pkt_wr) - sizeof(struct cpl_tx_pkt_core); return (n); } static inline uint64_t csum_to_ctrl(struct adapter *sc, struct mbuf *m) { uint64_t ctrl; int csum_type, l2hlen, l3hlen; int x, y; static const int csum_types[3][2] = { {TX_CSUM_TCPIP, TX_CSUM_TCPIP6}, {TX_CSUM_UDPIP, TX_CSUM_UDPIP6}, {TX_CSUM_IP, 0} }; M_ASSERTPKTHDR(m); if (!needs_hwcsum(m)) return (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS); MPASS(m->m_pkthdr.l2hlen >= ETHER_HDR_LEN); MPASS(m->m_pkthdr.l3hlen >= sizeof(struct ip)); if (needs_vxlan_csum(m)) { MPASS(m->m_pkthdr.l4hlen > 0); MPASS(m->m_pkthdr.l5hlen > 0); MPASS(m->m_pkthdr.inner_l2hlen >= ETHER_HDR_LEN); MPASS(m->m_pkthdr.inner_l3hlen >= sizeof(struct ip)); l2hlen = m->m_pkthdr.l2hlen + m->m_pkthdr.l3hlen + m->m_pkthdr.l4hlen + m->m_pkthdr.l5hlen + m->m_pkthdr.inner_l2hlen - ETHER_HDR_LEN; l3hlen = m->m_pkthdr.inner_l3hlen; } else { l2hlen = m->m_pkthdr.l2hlen - ETHER_HDR_LEN; l3hlen = m->m_pkthdr.l3hlen; } ctrl = 0; if (!needs_l3_csum(m)) ctrl |= F_TXPKT_IPCSUM_DIS; if (m->m_pkthdr.csum_flags & (CSUM_IP_TCP | CSUM_INNER_IP_TCP | CSUM_IP6_TCP | CSUM_INNER_IP6_TCP)) x = 0; /* TCP */ else if (m->m_pkthdr.csum_flags & (CSUM_IP_UDP | CSUM_INNER_IP_UDP | CSUM_IP6_UDP | CSUM_INNER_IP6_UDP)) x = 1; /* UDP */ else x = 2; if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_IP_TCP | CSUM_IP_UDP | CSUM_INNER_IP | CSUM_INNER_IP_TCP | CSUM_INNER_IP_UDP)) y = 0; /* IPv4 */ else { MPASS(m->m_pkthdr.csum_flags & (CSUM_IP6_TCP | CSUM_IP6_UDP | CSUM_INNER_IP6_TCP | CSUM_INNER_IP6_UDP)); y = 1; /* IPv6 */ } /* * needs_hwcsum returned true earlier so there must be some kind of * checksum to calculate. */ csum_type = csum_types[x][y]; MPASS(csum_type != 0); if (csum_type == TX_CSUM_IP) ctrl |= F_TXPKT_L4CSUM_DIS; ctrl |= V_TXPKT_CSUM_TYPE(csum_type) | V_TXPKT_IPHDR_LEN(l3hlen); if (chip_id(sc) <= CHELSIO_T5) ctrl |= V_TXPKT_ETHHDR_LEN(l2hlen); else ctrl |= V_T6_TXPKT_ETHHDR_LEN(l2hlen); return (ctrl); } static inline void * write_lso_cpl(void *cpl, struct mbuf *m0) { struct cpl_tx_pkt_lso_core *lso; uint32_t ctrl; KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 && m0->m_pkthdr.l4hlen > 0, ("%s: mbuf %p needs TSO but missing header lengths", __func__, m0)); ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) | F_LSO_FIRST_SLICE | F_LSO_LAST_SLICE | V_LSO_ETHHDR_LEN((m0->m_pkthdr.l2hlen - ETHER_HDR_LEN) >> 2) | V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2) | V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2); if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr)) ctrl |= F_LSO_IPV6; lso = cpl; lso->lso_ctrl = htobe32(ctrl); lso->ipid_ofst = htobe16(0); lso->mss = htobe16(m0->m_pkthdr.tso_segsz); lso->seqno_offset = htobe32(0); lso->len = htobe32(m0->m_pkthdr.len); return (lso + 1); } static void * write_tnl_lso_cpl(void *cpl, struct mbuf *m0) { struct cpl_tx_tnl_lso *tnl_lso = cpl; uint32_t ctrl; KASSERT(m0->m_pkthdr.inner_l2hlen > 0 && m0->m_pkthdr.inner_l3hlen > 0 && m0->m_pkthdr.inner_l4hlen > 0 && m0->m_pkthdr.inner_l5hlen > 0, ("%s: mbuf %p needs VXLAN_TSO but missing inner header lengths", __func__, m0)); KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 && m0->m_pkthdr.l4hlen > 0 && m0->m_pkthdr.l5hlen > 0, ("%s: mbuf %p needs VXLAN_TSO but missing outer header lengths", __func__, m0)); /* Outer headers. */ ctrl = V_CPL_TX_TNL_LSO_OPCODE(CPL_TX_TNL_LSO) | F_CPL_TX_TNL_LSO_FIRST | F_CPL_TX_TNL_LSO_LAST | V_CPL_TX_TNL_LSO_ETHHDRLENOUT( (m0->m_pkthdr.l2hlen - ETHER_HDR_LEN) >> 2) | V_CPL_TX_TNL_LSO_IPHDRLENOUT(m0->m_pkthdr.l3hlen >> 2) | F_CPL_TX_TNL_LSO_IPLENSETOUT; if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr)) ctrl |= F_CPL_TX_TNL_LSO_IPV6OUT; else { ctrl |= F_CPL_TX_TNL_LSO_IPHDRCHKOUT | F_CPL_TX_TNL_LSO_IPIDINCOUT; } tnl_lso->op_to_IpIdSplitOut = htobe32(ctrl); tnl_lso->IpIdOffsetOut = 0; tnl_lso->UdpLenSetOut_to_TnlHdrLen = htobe16(F_CPL_TX_TNL_LSO_UDPCHKCLROUT | F_CPL_TX_TNL_LSO_UDPLENSETOUT | V_CPL_TX_TNL_LSO_TNLHDRLEN(m0->m_pkthdr.l2hlen + m0->m_pkthdr.l3hlen + m0->m_pkthdr.l4hlen + m0->m_pkthdr.l5hlen) | V_CPL_TX_TNL_LSO_TNLTYPE(TX_TNL_TYPE_VXLAN)); tnl_lso->r1 = 0; /* Inner headers. */ ctrl = V_CPL_TX_TNL_LSO_ETHHDRLEN( (m0->m_pkthdr.inner_l2hlen - ETHER_HDR_LEN) >> 2) | V_CPL_TX_TNL_LSO_IPHDRLEN(m0->m_pkthdr.inner_l3hlen >> 2) | V_CPL_TX_TNL_LSO_TCPHDRLEN(m0->m_pkthdr.inner_l4hlen >> 2); if (m0->m_pkthdr.inner_l3hlen == sizeof(struct ip6_hdr)) ctrl |= F_CPL_TX_TNL_LSO_IPV6; tnl_lso->Flow_to_TcpHdrLen = htobe32(ctrl); tnl_lso->IpIdOffset = 0; tnl_lso->IpIdSplit_to_Mss = htobe16(V_CPL_TX_TNL_LSO_MSS(m0->m_pkthdr.tso_segsz)); tnl_lso->TCPSeqOffset = 0; tnl_lso->EthLenOffset_Size = htobe32(V_CPL_TX_TNL_LSO_SIZE(m0->m_pkthdr.len)); return (tnl_lso + 1); } #define VM_TX_L2HDR_LEN 16 /* ethmacdst to vlantci */ /* * Write a VM txpkt WR for this packet to the hardware descriptors, update the * software descriptor, and advance the pidx. It is guaranteed that enough * descriptors are available. * * The return value is the # of hardware descriptors used. */ static u_int write_txpkt_vm_wr(struct adapter *sc, struct sge_txq *txq, struct mbuf *m0) { struct sge_eq *eq; struct fw_eth_tx_pkt_vm_wr *wr; struct tx_sdesc *txsd; struct cpl_tx_pkt_core *cpl; uint32_t ctrl; /* used in many unrelated places */ uint64_t ctrl1; int len16, ndesc, pktlen; caddr_t dst; TXQ_LOCK_ASSERT_OWNED(txq); M_ASSERTPKTHDR(m0); len16 = mbuf_len16(m0); pktlen = m0->m_pkthdr.len; ctrl = sizeof(struct cpl_tx_pkt_core); if (needs_tso(m0)) ctrl += sizeof(struct cpl_tx_pkt_lso_core); ndesc = tx_len16_to_desc(len16); /* Firmware work request header */ eq = &txq->eq; wr = (void *)&eq->desc[eq->pidx]; wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_VM_WR) | V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl)); ctrl = V_FW_WR_LEN16(len16); wr->equiq_to_len16 = htobe32(ctrl); wr->r3[0] = 0; wr->r3[1] = 0; /* * Copy over ethmacdst, ethmacsrc, ethtype, and vlantci. * vlantci is ignored unless the ethtype is 0x8100, so it's * simpler to always copy it rather than making it * conditional. Also, it seems that we do not have to set * vlantci or fake the ethtype when doing VLAN tag insertion. */ m_copydata(m0, 0, VM_TX_L2HDR_LEN, wr->ethmacdst); if (needs_tso(m0)) { cpl = write_lso_cpl(wr + 1, m0); txq->tso_wrs++; } else cpl = (void *)(wr + 1); /* Checksum offload */ ctrl1 = csum_to_ctrl(sc, m0); if (ctrl1 != (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS)) txq->txcsum++; /* some hardware assistance provided */ /* VLAN tag insertion */ if (needs_vlan_insertion(m0)) { ctrl1 |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag); txq->vlan_insertion++; } else if (sc->vlan_id) ctrl1 |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(sc->vlan_id); /* CPL header */ cpl->ctrl0 = txq->cpl_ctrl0; cpl->pack = 0; cpl->len = htobe16(pktlen); cpl->ctrl1 = htobe64(ctrl1); /* SGL */ dst = (void *)(cpl + 1); /* * A packet using TSO will use up an entire descriptor for the * firmware work request header, LSO CPL, and TX_PKT_XT CPL. * If this descriptor is the last descriptor in the ring, wrap * around to the front of the ring explicitly for the start of * the sgl. */ if (dst == (void *)&eq->desc[eq->sidx]) { dst = (void *)&eq->desc[0]; write_gl_to_txd(txq, m0, &dst, 0); } else write_gl_to_txd(txq, m0, &dst, eq->sidx - ndesc < eq->pidx); txq->sgl_wrs++; txq->txpkt_wrs++; txsd = &txq->sdesc[eq->pidx]; txsd->m = m0; txsd->desc_used = ndesc; return (ndesc); } /* * Write a raw WR to the hardware descriptors, update the software * descriptor, and advance the pidx. It is guaranteed that enough * descriptors are available. * * The return value is the # of hardware descriptors used. */ static u_int write_raw_wr(struct sge_txq *txq, void *wr, struct mbuf *m0, u_int available) { struct sge_eq *eq = &txq->eq; struct tx_sdesc *txsd; struct mbuf *m; caddr_t dst; int len16, ndesc; len16 = mbuf_len16(m0); ndesc = tx_len16_to_desc(len16); MPASS(ndesc <= available); dst = wr; for (m = m0; m != NULL; m = m->m_next) copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len); txq->raw_wrs++; txsd = &txq->sdesc[eq->pidx]; txsd->m = m0; txsd->desc_used = ndesc; return (ndesc); } /* * Write a txpkt WR for this packet to the hardware descriptors, update the * software descriptor, and advance the pidx. It is guaranteed that enough * descriptors are available. * * The return value is the # of hardware descriptors used. */ static u_int write_txpkt_wr(struct adapter *sc, struct sge_txq *txq, struct mbuf *m0, u_int available) { struct sge_eq *eq; struct fw_eth_tx_pkt_wr *wr; struct tx_sdesc *txsd; struct cpl_tx_pkt_core *cpl; uint32_t ctrl; /* used in many unrelated places */ uint64_t ctrl1; int len16, ndesc, pktlen, nsegs; caddr_t dst; TXQ_LOCK_ASSERT_OWNED(txq); M_ASSERTPKTHDR(m0); len16 = mbuf_len16(m0); nsegs = mbuf_nsegs(m0); pktlen = m0->m_pkthdr.len; ctrl = sizeof(struct cpl_tx_pkt_core); if (needs_tso(m0)) { if (needs_vxlan_tso(m0)) ctrl += sizeof(struct cpl_tx_tnl_lso); else ctrl += sizeof(struct cpl_tx_pkt_lso_core); } else if (!(mbuf_cflags(m0) & MC_NOMAP) && pktlen <= imm_payload(2) && available >= 2) { /* Immediate data. Recalculate len16 and set nsegs to 0. */ ctrl += pktlen; len16 = howmany(sizeof(struct fw_eth_tx_pkt_wr) + sizeof(struct cpl_tx_pkt_core) + pktlen, 16); nsegs = 0; } ndesc = tx_len16_to_desc(len16); MPASS(ndesc <= available); /* Firmware work request header */ eq = &txq->eq; wr = (void *)&eq->desc[eq->pidx]; wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_WR) | V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl)); ctrl = V_FW_WR_LEN16(len16); wr->equiq_to_len16 = htobe32(ctrl); wr->r3 = 0; if (needs_tso(m0)) { if (needs_vxlan_tso(m0)) { cpl = write_tnl_lso_cpl(wr + 1, m0); txq->vxlan_tso_wrs++; } else { cpl = write_lso_cpl(wr + 1, m0); txq->tso_wrs++; } } else cpl = (void *)(wr + 1); /* Checksum offload */ ctrl1 = csum_to_ctrl(sc, m0); if (ctrl1 != (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS)) { /* some hardware assistance provided */ if (needs_vxlan_csum(m0)) txq->vxlan_txcsum++; else txq->txcsum++; } /* VLAN tag insertion */ if (needs_vlan_insertion(m0)) { ctrl1 |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag); txq->vlan_insertion++; } /* CPL header */ cpl->ctrl0 = txq->cpl_ctrl0; cpl->pack = 0; cpl->len = htobe16(pktlen); cpl->ctrl1 = htobe64(ctrl1); /* SGL */ dst = (void *)(cpl + 1); if (__predict_false((uintptr_t)dst == (uintptr_t)&eq->desc[eq->sidx])) dst = (caddr_t)&eq->desc[0]; if (nsegs > 0) { write_gl_to_txd(txq, m0, &dst, eq->sidx - ndesc < eq->pidx); txq->sgl_wrs++; } else { struct mbuf *m; for (m = m0; m != NULL; m = m->m_next) { copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len); #ifdef INVARIANTS pktlen -= m->m_len; #endif } #ifdef INVARIANTS KASSERT(pktlen == 0, ("%s: %d bytes left.", __func__, pktlen)); #endif txq->imm_wrs++; } txq->txpkt_wrs++; txsd = &txq->sdesc[eq->pidx]; txsd->m = m0; txsd->desc_used = ndesc; return (ndesc); } static inline bool cmp_l2hdr(struct txpkts *txp, struct mbuf *m) { int len; MPASS(txp->npkt > 0); MPASS(m->m_len >= VM_TX_L2HDR_LEN); if (txp->ethtype == be16toh(ETHERTYPE_VLAN)) len = VM_TX_L2HDR_LEN; else len = sizeof(struct ether_header); return (memcmp(m->m_data, &txp->ethmacdst[0], len) != 0); } static inline void save_l2hdr(struct txpkts *txp, struct mbuf *m) { MPASS(m->m_len >= VM_TX_L2HDR_LEN); memcpy(&txp->ethmacdst[0], mtod(m, const void *), VM_TX_L2HDR_LEN); } static int add_to_txpkts_vf(struct adapter *sc, struct sge_txq *txq, struct mbuf *m, int avail, bool *send) { struct txpkts *txp = &txq->txp; /* Cannot have TSO and coalesce at the same time. */ if (cannot_use_txpkts(m)) { cannot_coalesce: *send = txp->npkt > 0; return (EINVAL); } /* VF allows coalescing of type 1 (1 GL) only */ if (mbuf_nsegs(m) > 1) goto cannot_coalesce; *send = false; if (txp->npkt > 0) { MPASS(tx_len16_to_desc(txp->len16) <= avail); MPASS(txp->npkt < txp->max_npkt); MPASS(txp->wr_type == 1); /* VF supports type 1 only */ if (tx_len16_to_desc(txp->len16 + txpkts1_len16()) > avail) { retry_after_send: *send = true; return (EAGAIN); } if (m->m_pkthdr.len + txp->plen > 65535) goto retry_after_send; if (cmp_l2hdr(txp, m)) goto retry_after_send; txp->len16 += txpkts1_len16(); txp->plen += m->m_pkthdr.len; txp->mb[txp->npkt++] = m; if (txp->npkt == txp->max_npkt) *send = true; } else { txp->len16 = howmany(sizeof(struct fw_eth_tx_pkts_vm_wr), 16) + txpkts1_len16(); if (tx_len16_to_desc(txp->len16) > avail) goto cannot_coalesce; txp->npkt = 1; txp->wr_type = 1; txp->plen = m->m_pkthdr.len; txp->mb[0] = m; save_l2hdr(txp, m); } return (0); } static int add_to_txpkts_pf(struct adapter *sc, struct sge_txq *txq, struct mbuf *m, int avail, bool *send) { struct txpkts *txp = &txq->txp; int nsegs; MPASS(!(sc->flags & IS_VF)); /* Cannot have TSO and coalesce at the same time. */ if (cannot_use_txpkts(m)) { cannot_coalesce: *send = txp->npkt > 0; return (EINVAL); } *send = false; nsegs = mbuf_nsegs(m); if (txp->npkt == 0) { if (m->m_pkthdr.len > 65535) goto cannot_coalesce; if (nsegs > 1) { txp->wr_type = 0; txp->len16 = howmany(sizeof(struct fw_eth_tx_pkts_wr), 16) + txpkts0_len16(nsegs); } else { txp->wr_type = 1; txp->len16 = howmany(sizeof(struct fw_eth_tx_pkts_wr), 16) + txpkts1_len16(); } if (tx_len16_to_desc(txp->len16) > avail) goto cannot_coalesce; txp->npkt = 1; txp->plen = m->m_pkthdr.len; txp->mb[0] = m; } else { MPASS(tx_len16_to_desc(txp->len16) <= avail); MPASS(txp->npkt < txp->max_npkt); if (m->m_pkthdr.len + txp->plen > 65535) { retry_after_send: *send = true; return (EAGAIN); } MPASS(txp->wr_type == 0 || txp->wr_type == 1); if (txp->wr_type == 0) { if (tx_len16_to_desc(txp->len16 + txpkts0_len16(nsegs)) > min(avail, SGE_MAX_WR_NDESC)) goto retry_after_send; txp->len16 += txpkts0_len16(nsegs); } else { if (nsegs != 1) goto retry_after_send; if (tx_len16_to_desc(txp->len16 + txpkts1_len16()) > avail) goto retry_after_send; txp->len16 += txpkts1_len16(); } txp->plen += m->m_pkthdr.len; txp->mb[txp->npkt++] = m; if (txp->npkt == txp->max_npkt) *send = true; } return (0); } /* * Write a txpkts WR for the packets in txp to the hardware descriptors, update * the software descriptor, and advance the pidx. It is guaranteed that enough * descriptors are available. * * The return value is the # of hardware descriptors used. */ static u_int write_txpkts_wr(struct adapter *sc, struct sge_txq *txq) { const struct txpkts *txp = &txq->txp; struct sge_eq *eq = &txq->eq; struct fw_eth_tx_pkts_wr *wr; struct tx_sdesc *txsd; struct cpl_tx_pkt_core *cpl; uint64_t ctrl1; int ndesc, i, checkwrap; struct mbuf *m, *last; void *flitp; TXQ_LOCK_ASSERT_OWNED(txq); MPASS(txp->npkt > 0); MPASS(txp->len16 <= howmany(SGE_MAX_WR_LEN, 16)); wr = (void *)&eq->desc[eq->pidx]; wr->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_WR)); wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(txp->len16)); wr->plen = htobe16(txp->plen); wr->npkt = txp->npkt; wr->r3 = 0; wr->type = txp->wr_type; flitp = wr + 1; /* * At this point we are 16B into a hardware descriptor. If checkwrap is * set then we know the WR is going to wrap around somewhere. We'll * check for that at appropriate points. */ ndesc = tx_len16_to_desc(txp->len16); last = NULL; checkwrap = eq->sidx - ndesc < eq->pidx; for (i = 0; i < txp->npkt; i++) { m = txp->mb[i]; if (txp->wr_type == 0) { struct ulp_txpkt *ulpmc; struct ulptx_idata *ulpsc; /* ULP master command */ ulpmc = flitp; ulpmc->cmd_dest = htobe32(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0) | V_ULP_TXPKT_FID(eq->iqid)); ulpmc->len = htobe32(txpkts0_len16(mbuf_nsegs(m))); /* ULP subcommand */ ulpsc = (void *)(ulpmc + 1); ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM) | F_ULP_TX_SC_MORE); ulpsc->len = htobe32(sizeof(struct cpl_tx_pkt_core)); cpl = (void *)(ulpsc + 1); if (checkwrap && (uintptr_t)cpl == (uintptr_t)&eq->desc[eq->sidx]) cpl = (void *)&eq->desc[0]; } else { cpl = flitp; } /* Checksum offload */ ctrl1 = csum_to_ctrl(sc, m); if (ctrl1 != (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS)) { /* some hardware assistance provided */ if (needs_vxlan_csum(m)) txq->vxlan_txcsum++; else txq->txcsum++; } /* VLAN tag insertion */ if (needs_vlan_insertion(m)) { ctrl1 |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m->m_pkthdr.ether_vtag); txq->vlan_insertion++; } /* CPL header */ cpl->ctrl0 = txq->cpl_ctrl0; cpl->pack = 0; cpl->len = htobe16(m->m_pkthdr.len); cpl->ctrl1 = htobe64(ctrl1); flitp = cpl + 1; if (checkwrap && (uintptr_t)flitp == (uintptr_t)&eq->desc[eq->sidx]) flitp = (void *)&eq->desc[0]; write_gl_to_txd(txq, m, (caddr_t *)(&flitp), checkwrap); if (last != NULL) last->m_nextpkt = m; last = m; } txq->sgl_wrs++; if (txp->wr_type == 0) { txq->txpkts0_pkts += txp->npkt; txq->txpkts0_wrs++; } else { txq->txpkts1_pkts += txp->npkt; txq->txpkts1_wrs++; } txsd = &txq->sdesc[eq->pidx]; txsd->m = txp->mb[0]; txsd->desc_used = ndesc; return (ndesc); } static u_int write_txpkts_vm_wr(struct adapter *sc, struct sge_txq *txq) { const struct txpkts *txp = &txq->txp; struct sge_eq *eq = &txq->eq; struct fw_eth_tx_pkts_vm_wr *wr; struct tx_sdesc *txsd; struct cpl_tx_pkt_core *cpl; uint64_t ctrl1; int ndesc, i; struct mbuf *m, *last; void *flitp; TXQ_LOCK_ASSERT_OWNED(txq); MPASS(txp->npkt > 0); MPASS(txp->wr_type == 1); /* VF supports type 1 only */ MPASS(txp->mb[0] != NULL); MPASS(txp->len16 <= howmany(SGE_MAX_WR_LEN, 16)); wr = (void *)&eq->desc[eq->pidx]; wr->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_VM_WR)); wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(txp->len16)); wr->r3 = 0; wr->plen = htobe16(txp->plen); wr->npkt = txp->npkt; wr->r4 = 0; memcpy(&wr->ethmacdst[0], &txp->ethmacdst[0], 16); flitp = wr + 1; /* * At this point we are 32B into a hardware descriptor. Each mbuf in * the WR will take 32B so we check for the end of the descriptor ring * before writing odd mbufs (mb[1], 3, 5, ..) */ ndesc = tx_len16_to_desc(txp->len16); last = NULL; for (i = 0; i < txp->npkt; i++) { m = txp->mb[i]; if (i & 1 && (uintptr_t)flitp == (uintptr_t)&eq->desc[eq->sidx]) flitp = &eq->desc[0]; cpl = flitp; /* Checksum offload */ ctrl1 = csum_to_ctrl(sc, m); if (ctrl1 != (F_TXPKT_IPCSUM_DIS | F_TXPKT_L4CSUM_DIS)) txq->txcsum++; /* some hardware assistance provided */ /* VLAN tag insertion */ if (needs_vlan_insertion(m)) { ctrl1 |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m->m_pkthdr.ether_vtag); txq->vlan_insertion++; } else if (sc->vlan_id) ctrl1 |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(sc->vlan_id); /* CPL header */ cpl->ctrl0 = txq->cpl_ctrl0; cpl->pack = 0; cpl->len = htobe16(m->m_pkthdr.len); cpl->ctrl1 = htobe64(ctrl1); flitp = cpl + 1; MPASS(mbuf_nsegs(m) == 1); write_gl_to_txd(txq, m, (caddr_t *)(&flitp), 0); if (last != NULL) last->m_nextpkt = m; last = m; } txq->sgl_wrs++; txq->txpkts1_pkts += txp->npkt; txq->txpkts1_wrs++; txsd = &txq->sdesc[eq->pidx]; txsd->m = txp->mb[0]; txsd->desc_used = ndesc; return (ndesc); } /* * If the SGL ends on an address that is not 16 byte aligned, this function will * add a 0 filled flit at the end. */ static void write_gl_to_txd(struct sge_txq *txq, struct mbuf *m, caddr_t *to, int checkwrap) { struct sge_eq *eq = &txq->eq; struct sglist *gl = txq->gl; struct sglist_seg *seg; __be64 *flitp, *wrap; struct ulptx_sgl *usgl; int i, nflits, nsegs; KASSERT(((uintptr_t)(*to) & 0xf) == 0, ("%s: SGL must start at a 16 byte boundary: %p", __func__, *to)); MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]); MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]); get_pkt_gl(m, gl); nsegs = gl->sg_nseg; MPASS(nsegs > 0); nflits = (3 * (nsegs - 1)) / 2 + ((nsegs - 1) & 1) + 2; flitp = (__be64 *)(*to); wrap = (__be64 *)(&eq->desc[eq->sidx]); seg = &gl->sg_segs[0]; usgl = (void *)flitp; /* * We start at a 16 byte boundary somewhere inside the tx descriptor * ring, so we're at least 16 bytes away from the status page. There is * no chance of a wrap around in the middle of usgl (which is 16 bytes). */ usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) | V_ULPTX_NSGE(nsegs)); usgl->len0 = htobe32(seg->ss_len); usgl->addr0 = htobe64(seg->ss_paddr); seg++; if (checkwrap == 0 || (uintptr_t)(flitp + nflits) <= (uintptr_t)wrap) { /* Won't wrap around at all */ for (i = 0; i < nsegs - 1; i++, seg++) { usgl->sge[i / 2].len[i & 1] = htobe32(seg->ss_len); usgl->sge[i / 2].addr[i & 1] = htobe64(seg->ss_paddr); } if (i & 1) usgl->sge[i / 2].len[1] = htobe32(0); flitp += nflits; } else { /* Will wrap somewhere in the rest of the SGL */ /* 2 flits already written, write the rest flit by flit */ flitp = (void *)(usgl + 1); for (i = 0; i < nflits - 2; i++) { if (flitp == wrap) flitp = (void *)eq->desc; *flitp++ = get_flit(seg, nsegs - 1, i); } } if (nflits & 1) { MPASS(((uintptr_t)flitp) & 0xf); *flitp++ = 0; } MPASS((((uintptr_t)flitp) & 0xf) == 0); if (__predict_false(flitp == wrap)) *to = (void *)eq->desc; else *to = (void *)flitp; } static inline void copy_to_txd(struct sge_eq *eq, caddr_t from, caddr_t *to, int len) { MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]); MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]); if (__predict_true((uintptr_t)(*to) + len <= (uintptr_t)&eq->desc[eq->sidx])) { bcopy(from, *to, len); (*to) += len; } else { int portion = (uintptr_t)&eq->desc[eq->sidx] - (uintptr_t)(*to); bcopy(from, *to, portion); from += portion; portion = len - portion; /* remaining */ bcopy(from, (void *)eq->desc, portion); (*to) = (caddr_t)eq->desc + portion; } } static inline void ring_eq_db(struct adapter *sc, struct sge_eq *eq, u_int n) { u_int db; MPASS(n > 0); db = eq->doorbells; if (n > 1) clrbit(&db, DOORBELL_WCWR); wmb(); switch (ffs(db) - 1) { case DOORBELL_UDB: *eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n)); break; case DOORBELL_WCWR: { volatile uint64_t *dst, *src; int i; /* * Queues whose 128B doorbell segment fits in the page do not * use relative qid (udb_qid is always 0). Only queues with * doorbell segments can do WCWR. */ KASSERT(eq->udb_qid == 0 && n == 1, ("%s: inappropriate doorbell (0x%x, %d, %d) for eq %p", __func__, eq->doorbells, n, eq->dbidx, eq)); dst = (volatile void *)((uintptr_t)eq->udb + UDBS_WR_OFFSET - UDBS_DB_OFFSET); i = eq->dbidx; src = (void *)&eq->desc[i]; while (src != (void *)&eq->desc[i + 1]) *dst++ = *src++; wmb(); break; } case DOORBELL_UDBWC: *eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n)); wmb(); break; case DOORBELL_KDB: t4_write_reg(sc, sc->sge_kdoorbell_reg, V_QID(eq->cntxt_id) | V_PIDX(n)); break; } IDXINCR(eq->dbidx, n, eq->sidx); } static inline u_int reclaimable_tx_desc(struct sge_eq *eq) { uint16_t hw_cidx; hw_cidx = read_hw_cidx(eq); return (IDXDIFF(hw_cidx, eq->cidx, eq->sidx)); } static inline u_int total_available_tx_desc(struct sge_eq *eq) { uint16_t hw_cidx, pidx; hw_cidx = read_hw_cidx(eq); pidx = eq->pidx; if (pidx == hw_cidx) return (eq->sidx - 1); else return (IDXDIFF(hw_cidx, pidx, eq->sidx) - 1); } static inline uint16_t read_hw_cidx(struct sge_eq *eq) { struct sge_qstat *spg = (void *)&eq->desc[eq->sidx]; uint16_t cidx = spg->cidx; /* stable snapshot */ return (be16toh(cidx)); } /* * Reclaim 'n' descriptors approximately. */ static u_int reclaim_tx_descs(struct sge_txq *txq, u_int n) { struct tx_sdesc *txsd; struct sge_eq *eq = &txq->eq; u_int can_reclaim, reclaimed; TXQ_LOCK_ASSERT_OWNED(txq); MPASS(n > 0); reclaimed = 0; can_reclaim = reclaimable_tx_desc(eq); while (can_reclaim && reclaimed < n) { int ndesc; struct mbuf *m, *nextpkt; txsd = &txq->sdesc[eq->cidx]; ndesc = txsd->desc_used; /* Firmware doesn't return "partial" credits. */ KASSERT(can_reclaim >= ndesc, ("%s: unexpected number of credits: %d, %d", __func__, can_reclaim, ndesc)); KASSERT(ndesc != 0, ("%s: descriptor with no credits: cidx %d", __func__, eq->cidx)); for (m = txsd->m; m != NULL; m = nextpkt) { nextpkt = m->m_nextpkt; m->m_nextpkt = NULL; m_freem(m); } reclaimed += ndesc; can_reclaim -= ndesc; IDXINCR(eq->cidx, ndesc, eq->sidx); } return (reclaimed); } static void tx_reclaim(void *arg, int n) { struct sge_txq *txq = arg; struct sge_eq *eq = &txq->eq; do { if (TXQ_TRYLOCK(txq) == 0) break; n = reclaim_tx_descs(txq, 32); if (eq->cidx == eq->pidx) eq->equeqidx = eq->pidx; TXQ_UNLOCK(txq); } while (n > 0); } static __be64 get_flit(struct sglist_seg *segs, int nsegs, int idx) { int i = (idx / 3) * 2; switch (idx % 3) { case 0: { uint64_t rc; rc = (uint64_t)segs[i].ss_len << 32; if (i + 1 < nsegs) rc |= (uint64_t)(segs[i + 1].ss_len); return (htobe64(rc)); } case 1: return (htobe64(segs[i].ss_paddr)); case 2: return (htobe64(segs[i + 1].ss_paddr)); } return (0); } static int find_refill_source(struct adapter *sc, int maxp, bool packing) { int i, zidx = -1; struct rx_buf_info *rxb = &sc->sge.rx_buf_info[0]; if (packing) { for (i = 0; i < SW_ZONE_SIZES; i++, rxb++) { if (rxb->hwidx2 == -1) continue; if (rxb->size1 < PAGE_SIZE && rxb->size1 < largest_rx_cluster) continue; if (rxb->size1 > largest_rx_cluster) break; MPASS(rxb->size1 - rxb->size2 >= CL_METADATA_SIZE); if (rxb->size2 >= maxp) return (i); zidx = i; } } else { for (i = 0; i < SW_ZONE_SIZES; i++, rxb++) { if (rxb->hwidx1 == -1) continue; if (rxb->size1 > largest_rx_cluster) break; if (rxb->size1 >= maxp) return (i); zidx = i; } } return (zidx); } static void add_fl_to_sfl(struct adapter *sc, struct sge_fl *fl) { mtx_lock(&sc->sfl_lock); FL_LOCK(fl); if ((fl->flags & FL_DOOMED) == 0) { fl->flags |= FL_STARVING; TAILQ_INSERT_TAIL(&sc->sfl, fl, link); callout_reset(&sc->sfl_callout, hz / 5, refill_sfl, sc); } FL_UNLOCK(fl); mtx_unlock(&sc->sfl_lock); } static void handle_wrq_egr_update(struct adapter *sc, struct sge_eq *eq) { struct sge_wrq *wrq = (void *)eq; atomic_readandclear_int(&eq->equiq); taskqueue_enqueue(sc->tq[eq->port_id], &wrq->wrq_tx_task); } static void handle_eth_egr_update(struct adapter *sc, struct sge_eq *eq) { struct sge_txq *txq = (void *)eq; MPASS(eq->type == EQ_ETH); atomic_readandclear_int(&eq->equiq); if (mp_ring_is_idle(txq->r)) taskqueue_enqueue(sc->tq[eq->port_id], &txq->tx_reclaim_task); else mp_ring_check_drainage(txq->r, 64); } static int handle_sge_egr_update(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) { const struct cpl_sge_egr_update *cpl = (const void *)(rss + 1); unsigned int qid = G_EGR_QID(ntohl(cpl->opcode_qid)); struct adapter *sc = iq->adapter; struct sge *s = &sc->sge; struct sge_eq *eq; static void (*h[])(struct adapter *, struct sge_eq *) = {NULL, &handle_wrq_egr_update, &handle_eth_egr_update, &handle_wrq_egr_update}; KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__, rss->opcode)); eq = s->eqmap[qid - s->eq_start - s->eq_base]; (*h[eq->type])(sc, eq); return (0); } /* handle_fw_msg works for both fw4_msg and fw6_msg because this is valid */ CTASSERT(offsetof(struct cpl_fw4_msg, data) == \ offsetof(struct cpl_fw6_msg, data)); static int handle_fw_msg(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) { struct adapter *sc = iq->adapter; const struct cpl_fw6_msg *cpl = (const void *)(rss + 1); KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__, rss->opcode)); if (cpl->type == FW_TYPE_RSSCPL || cpl->type == FW6_TYPE_RSSCPL) { const struct rss_header *rss2; rss2 = (const struct rss_header *)&cpl->data[0]; return (t4_cpl_handler[rss2->opcode](iq, rss2, m)); } return (t4_fw_msg_handler[cpl->type](sc, &cpl->data[0])); } /** * t4_handle_wrerr_rpl - process a FW work request error message * @adap: the adapter * @rpl: start of the FW message */ static int t4_handle_wrerr_rpl(struct adapter *adap, const __be64 *rpl) { u8 opcode = *(const u8 *)rpl; const struct fw_error_cmd *e = (const void *)rpl; unsigned int i; if (opcode != FW_ERROR_CMD) { log(LOG_ERR, "%s: Received WRERR_RPL message with opcode %#x\n", device_get_nameunit(adap->dev), opcode); return (EINVAL); } log(LOG_ERR, "%s: FW_ERROR (%s) ", device_get_nameunit(adap->dev), G_FW_ERROR_CMD_FATAL(be32toh(e->op_to_type)) ? "fatal" : "non-fatal"); switch (G_FW_ERROR_CMD_TYPE(be32toh(e->op_to_type))) { case FW_ERROR_TYPE_EXCEPTION: log(LOG_ERR, "exception info:\n"); for (i = 0; i < nitems(e->u.exception.info); i++) log(LOG_ERR, "%s%08x", i == 0 ? "\t" : " ", be32toh(e->u.exception.info[i])); log(LOG_ERR, "\n"); break; case FW_ERROR_TYPE_HWMODULE: log(LOG_ERR, "HW module regaddr %08x regval %08x\n", be32toh(e->u.hwmodule.regaddr), be32toh(e->u.hwmodule.regval)); break; case FW_ERROR_TYPE_WR: log(LOG_ERR, "WR cidx %d PF %d VF %d eqid %d hdr:\n", be16toh(e->u.wr.cidx), G_FW_ERROR_CMD_PFN(be16toh(e->u.wr.pfn_vfn)), G_FW_ERROR_CMD_VFN(be16toh(e->u.wr.pfn_vfn)), be32toh(e->u.wr.eqid)); for (i = 0; i < nitems(e->u.wr.wrhdr); i++) log(LOG_ERR, "%s%02x", i == 0 ? "\t" : " ", e->u.wr.wrhdr[i]); log(LOG_ERR, "\n"); break; case FW_ERROR_TYPE_ACL: log(LOG_ERR, "ACL cidx %d PF %d VF %d eqid %d %s", be16toh(e->u.acl.cidx), G_FW_ERROR_CMD_PFN(be16toh(e->u.acl.pfn_vfn)), G_FW_ERROR_CMD_VFN(be16toh(e->u.acl.pfn_vfn)), be32toh(e->u.acl.eqid), G_FW_ERROR_CMD_MV(be16toh(e->u.acl.mv_pkd)) ? "vlanid" : "MAC"); for (i = 0; i < nitems(e->u.acl.val); i++) log(LOG_ERR, " %02x", e->u.acl.val[i]); log(LOG_ERR, "\n"); break; default: log(LOG_ERR, "type %#x\n", G_FW_ERROR_CMD_TYPE(be32toh(e->op_to_type))); return (EINVAL); } return (0); } static inline bool bufidx_used(struct adapter *sc, int idx) { struct rx_buf_info *rxb = &sc->sge.rx_buf_info[0]; int i; for (i = 0; i < SW_ZONE_SIZES; i++, rxb++) { if (rxb->size1 > largest_rx_cluster) continue; if (rxb->hwidx1 == idx || rxb->hwidx2 == idx) return (true); } return (false); } static int sysctl_bufsizes(SYSCTL_HANDLER_ARGS) { struct adapter *sc = arg1; struct sge_params *sp = &sc->params.sge; int i, rc; struct sbuf sb; char c; sbuf_new(&sb, NULL, 128, SBUF_AUTOEXTEND); for (i = 0; i < SGE_FLBUF_SIZES; i++) { if (bufidx_used(sc, i)) c = '*'; else c = '\0'; sbuf_printf(&sb, "%u%c ", sp->sge_fl_buffer_size[i], c); } sbuf_trim(&sb); sbuf_finish(&sb); rc = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req); sbuf_delete(&sb); return (rc); } #ifdef RATELIMIT #if defined(INET) || defined(INET6) /* * len16 for a txpkt WR with a GL. Includes the firmware work request header. */ static inline u_int txpkt_eo_len16(u_int nsegs, u_int immhdrs, u_int tso) { u_int n; MPASS(immhdrs > 0); n = roundup2(sizeof(struct fw_eth_tx_eo_wr) + sizeof(struct cpl_tx_pkt_core) + immhdrs, 16); if (__predict_false(nsegs == 0)) goto done; nsegs--; /* first segment is part of ulptx_sgl */ n += sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1)); if (tso) n += sizeof(struct cpl_tx_pkt_lso_core); done: return (howmany(n, 16)); } #endif #define ETID_FLOWC_NPARAMS 6 #define ETID_FLOWC_LEN (roundup2((sizeof(struct fw_flowc_wr) + \ ETID_FLOWC_NPARAMS * sizeof(struct fw_flowc_mnemval)), 16)) #define ETID_FLOWC_LEN16 (howmany(ETID_FLOWC_LEN, 16)) #if defined(INET) || defined(INET6) static int send_etid_flowc_wr(struct cxgbe_rate_tag *cst, struct port_info *pi, struct vi_info *vi) { struct wrq_cookie cookie; u_int pfvf = pi->adapter->pf << S_FW_VIID_PFN; struct fw_flowc_wr *flowc; mtx_assert(&cst->lock, MA_OWNED); MPASS((cst->flags & (EO_FLOWC_PENDING | EO_FLOWC_RPL_PENDING)) == EO_FLOWC_PENDING); flowc = start_wrq_wr(&cst->eo_txq->wrq, ETID_FLOWC_LEN16, &cookie); if (__predict_false(flowc == NULL)) return (ENOMEM); bzero(flowc, ETID_FLOWC_LEN); flowc->op_to_nparams = htobe32(V_FW_WR_OP(FW_FLOWC_WR) | V_FW_FLOWC_WR_NPARAMS(ETID_FLOWC_NPARAMS) | V_FW_WR_COMPL(0)); flowc->flowid_len16 = htonl(V_FW_WR_LEN16(ETID_FLOWC_LEN16) | V_FW_WR_FLOWID(cst->etid)); flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN; flowc->mnemval[0].val = htobe32(pfvf); flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH; flowc->mnemval[1].val = htobe32(pi->tx_chan); flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT; flowc->mnemval[2].val = htobe32(pi->tx_chan); flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID; flowc->mnemval[3].val = htobe32(cst->iqid); flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_EOSTATE; flowc->mnemval[4].val = htobe32(FW_FLOWC_MNEM_EOSTATE_ESTABLISHED); flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS; flowc->mnemval[5].val = htobe32(cst->schedcl); commit_wrq_wr(&cst->eo_txq->wrq, flowc, &cookie); cst->flags &= ~EO_FLOWC_PENDING; cst->flags |= EO_FLOWC_RPL_PENDING; MPASS(cst->tx_credits >= ETID_FLOWC_LEN16); /* flowc is first WR. */ cst->tx_credits -= ETID_FLOWC_LEN16; return (0); } #endif #define ETID_FLUSH_LEN16 (howmany(sizeof (struct fw_flowc_wr), 16)) void send_etid_flush_wr(struct cxgbe_rate_tag *cst) { struct fw_flowc_wr *flowc; struct wrq_cookie cookie; mtx_assert(&cst->lock, MA_OWNED); flowc = start_wrq_wr(&cst->eo_txq->wrq, ETID_FLUSH_LEN16, &cookie); if (__predict_false(flowc == NULL)) CXGBE_UNIMPLEMENTED(__func__); bzero(flowc, ETID_FLUSH_LEN16 * 16); flowc->op_to_nparams = htobe32(V_FW_WR_OP(FW_FLOWC_WR) | V_FW_FLOWC_WR_NPARAMS(0) | F_FW_WR_COMPL); flowc->flowid_len16 = htobe32(V_FW_WR_LEN16(ETID_FLUSH_LEN16) | V_FW_WR_FLOWID(cst->etid)); commit_wrq_wr(&cst->eo_txq->wrq, flowc, &cookie); cst->flags |= EO_FLUSH_RPL_PENDING; MPASS(cst->tx_credits >= ETID_FLUSH_LEN16); cst->tx_credits -= ETID_FLUSH_LEN16; cst->ncompl++; } static void write_ethofld_wr(struct cxgbe_rate_tag *cst, struct fw_eth_tx_eo_wr *wr, struct mbuf *m0, int compl) { struct cpl_tx_pkt_core *cpl; uint64_t ctrl1; uint32_t ctrl; /* used in many unrelated places */ int len16, pktlen, nsegs, immhdrs; uintptr_t p; struct ulptx_sgl *usgl; struct sglist sg; struct sglist_seg segs[38]; /* XXX: find real limit. XXX: get off the stack */ mtx_assert(&cst->lock, MA_OWNED); M_ASSERTPKTHDR(m0); KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 && m0->m_pkthdr.l4hlen > 0, ("%s: ethofld mbuf %p is missing header lengths", __func__, m0)); len16 = mbuf_eo_len16(m0); nsegs = mbuf_eo_nsegs(m0); pktlen = m0->m_pkthdr.len; ctrl = sizeof(struct cpl_tx_pkt_core); if (needs_tso(m0)) ctrl += sizeof(struct cpl_tx_pkt_lso_core); immhdrs = m0->m_pkthdr.l2hlen + m0->m_pkthdr.l3hlen + m0->m_pkthdr.l4hlen; ctrl += immhdrs; wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_EO_WR) | V_FW_ETH_TX_EO_WR_IMMDLEN(ctrl) | V_FW_WR_COMPL(!!compl)); wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(len16) | V_FW_WR_FLOWID(cst->etid)); wr->r3 = 0; if (needs_outer_udp_csum(m0)) { wr->u.udpseg.type = FW_ETH_TX_EO_TYPE_UDPSEG; wr->u.udpseg.ethlen = m0->m_pkthdr.l2hlen; wr->u.udpseg.iplen = htobe16(m0->m_pkthdr.l3hlen); wr->u.udpseg.udplen = m0->m_pkthdr.l4hlen; wr->u.udpseg.rtplen = 0; wr->u.udpseg.r4 = 0; wr->u.udpseg.mss = htobe16(pktlen - immhdrs); wr->u.udpseg.schedpktsize = wr->u.udpseg.mss; wr->u.udpseg.plen = htobe32(pktlen - immhdrs); cpl = (void *)(wr + 1); } else { MPASS(needs_outer_tcp_csum(m0)); wr->u.tcpseg.type = FW_ETH_TX_EO_TYPE_TCPSEG; wr->u.tcpseg.ethlen = m0->m_pkthdr.l2hlen; wr->u.tcpseg.iplen = htobe16(m0->m_pkthdr.l3hlen); wr->u.tcpseg.tcplen = m0->m_pkthdr.l4hlen; wr->u.tcpseg.tsclk_tsoff = mbuf_eo_tsclk_tsoff(m0); wr->u.tcpseg.r4 = 0; wr->u.tcpseg.r5 = 0; wr->u.tcpseg.plen = htobe32(pktlen - immhdrs); if (needs_tso(m0)) { struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1); wr->u.tcpseg.mss = htobe16(m0->m_pkthdr.tso_segsz); ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) | F_LSO_FIRST_SLICE | F_LSO_LAST_SLICE | V_LSO_ETHHDR_LEN((m0->m_pkthdr.l2hlen - ETHER_HDR_LEN) >> 2) | V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2) | V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2); if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr)) ctrl |= F_LSO_IPV6; lso->lso_ctrl = htobe32(ctrl); lso->ipid_ofst = htobe16(0); lso->mss = htobe16(m0->m_pkthdr.tso_segsz); lso->seqno_offset = htobe32(0); lso->len = htobe32(pktlen); cpl = (void *)(lso + 1); } else { wr->u.tcpseg.mss = htobe16(0xffff); cpl = (void *)(wr + 1); } } /* Checksum offload must be requested for ethofld. */ MPASS(needs_outer_l4_csum(m0)); ctrl1 = csum_to_ctrl(cst->adapter, m0); /* VLAN tag insertion */ if (needs_vlan_insertion(m0)) { ctrl1 |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag); } /* CPL header */ cpl->ctrl0 = cst->ctrl0; cpl->pack = 0; cpl->len = htobe16(pktlen); cpl->ctrl1 = htobe64(ctrl1); /* Copy Ethernet, IP & TCP/UDP hdrs as immediate data */ p = (uintptr_t)(cpl + 1); m_copydata(m0, 0, immhdrs, (void *)p); /* SGL */ if (nsegs > 0) { int i, pad; /* zero-pad upto next 16Byte boundary, if not 16Byte aligned */ p += immhdrs; pad = 16 - (immhdrs & 0xf); bzero((void *)p, pad); usgl = (void *)(p + pad); usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) | V_ULPTX_NSGE(nsegs)); sglist_init(&sg, nitems(segs), segs); for (; m0 != NULL; m0 = m0->m_next) { if (__predict_false(m0->m_len == 0)) continue; if (immhdrs >= m0->m_len) { immhdrs -= m0->m_len; continue; } if (m0->m_flags & M_EXTPG) sglist_append_mbuf_epg(&sg, m0, mtod(m0, vm_offset_t), m0->m_len); else sglist_append(&sg, mtod(m0, char *) + immhdrs, m0->m_len - immhdrs); immhdrs = 0; } MPASS(sg.sg_nseg == nsegs); /* * Zero pad last 8B in case the WR doesn't end on a 16B * boundary. */ *(uint64_t *)((char *)wr + len16 * 16 - 8) = 0; usgl->len0 = htobe32(segs[0].ss_len); usgl->addr0 = htobe64(segs[0].ss_paddr); for (i = 0; i < nsegs - 1; i++) { usgl->sge[i / 2].len[i & 1] = htobe32(segs[i + 1].ss_len); usgl->sge[i / 2].addr[i & 1] = htobe64(segs[i + 1].ss_paddr); } if (i & 1) usgl->sge[i / 2].len[1] = htobe32(0); } } static void ethofld_tx(struct cxgbe_rate_tag *cst) { struct mbuf *m; struct wrq_cookie cookie; int next_credits, compl; struct fw_eth_tx_eo_wr *wr; mtx_assert(&cst->lock, MA_OWNED); while ((m = mbufq_first(&cst->pending_tx)) != NULL) { M_ASSERTPKTHDR(m); /* How many len16 credits do we need to send this mbuf. */ next_credits = mbuf_eo_len16(m); MPASS(next_credits > 0); if (next_credits > cst->tx_credits) { /* * Tx will make progress eventually because there is at * least one outstanding fw4_ack that will return * credits and kick the tx. */ MPASS(cst->ncompl > 0); return; } wr = start_wrq_wr(&cst->eo_txq->wrq, next_credits, &cookie); if (__predict_false(wr == NULL)) { /* XXX: wishful thinking, not a real assertion. */ MPASS(cst->ncompl > 0); return; } cst->tx_credits -= next_credits; cst->tx_nocompl += next_credits; compl = cst->ncompl == 0 || cst->tx_nocompl >= cst->tx_total / 2; ETHER_BPF_MTAP(cst->com.ifp, m); write_ethofld_wr(cst, wr, m, compl); commit_wrq_wr(&cst->eo_txq->wrq, wr, &cookie); if (compl) { cst->ncompl++; cst->tx_nocompl = 0; } (void) mbufq_dequeue(&cst->pending_tx); /* * Drop the mbuf's reference on the tag now rather * than waiting until m_freem(). This ensures that * cxgbe_rate_tag_free gets called when the inp drops * its reference on the tag and there are no more * mbufs in the pending_tx queue and can flush any * pending requests. Otherwise if the last mbuf * doesn't request a completion the etid will never be * released. */ m->m_pkthdr.snd_tag = NULL; m->m_pkthdr.csum_flags &= ~CSUM_SND_TAG; m_snd_tag_rele(&cst->com); mbufq_enqueue(&cst->pending_fwack, m); } } #if defined(INET) || defined(INET6) static int ethofld_transmit(if_t ifp, struct mbuf *m0) { struct cxgbe_rate_tag *cst; int rc; MPASS(m0->m_nextpkt == NULL); MPASS(m0->m_pkthdr.csum_flags & CSUM_SND_TAG); MPASS(m0->m_pkthdr.snd_tag != NULL); cst = mst_to_crt(m0->m_pkthdr.snd_tag); mtx_lock(&cst->lock); MPASS(cst->flags & EO_SND_TAG_REF); if (__predict_false(cst->flags & EO_FLOWC_PENDING)) { struct vi_info *vi = if_getsoftc(ifp); struct port_info *pi = vi->pi; struct adapter *sc = pi->adapter; const uint32_t rss_mask = vi->rss_size - 1; uint32_t rss_hash; cst->eo_txq = &sc->sge.ofld_txq[vi->first_ofld_txq]; if (M_HASHTYPE_ISHASH(m0)) rss_hash = m0->m_pkthdr.flowid; else rss_hash = arc4random(); /* We assume RSS hashing */ cst->iqid = vi->rss[rss_hash & rss_mask]; cst->eo_txq += rss_hash % vi->nofldtxq; rc = send_etid_flowc_wr(cst, pi, vi); if (rc != 0) goto done; } if (__predict_false(cst->plen + m0->m_pkthdr.len > eo_max_backlog)) { rc = ENOBUFS; goto done; } mbufq_enqueue(&cst->pending_tx, m0); cst->plen += m0->m_pkthdr.len; /* * Hold an extra reference on the tag while generating work * requests to ensure that we don't try to free the tag during * ethofld_tx() in case we are sending the final mbuf after * the inp was freed. */ m_snd_tag_ref(&cst->com); ethofld_tx(cst); mtx_unlock(&cst->lock); m_snd_tag_rele(&cst->com); return (0); done: mtx_unlock(&cst->lock); return (rc); } #endif static int ethofld_fw4_ack(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m0) { struct adapter *sc = iq->adapter; const struct cpl_fw4_ack *cpl = (const void *)(rss + 1); struct mbuf *m; u_int etid = G_CPL_FW4_ACK_FLOWID(be32toh(OPCODE_TID(cpl))); struct cxgbe_rate_tag *cst; uint8_t credits = cpl->credits; cst = lookup_etid(sc, etid); mtx_lock(&cst->lock); if (__predict_false(cst->flags & EO_FLOWC_RPL_PENDING)) { MPASS(credits >= ETID_FLOWC_LEN16); credits -= ETID_FLOWC_LEN16; cst->flags &= ~EO_FLOWC_RPL_PENDING; } KASSERT(cst->ncompl > 0, ("%s: etid %u (%p) wasn't expecting completion.", __func__, etid, cst)); cst->ncompl--; while (credits > 0) { m = mbufq_dequeue(&cst->pending_fwack); if (__predict_false(m == NULL)) { /* * The remaining credits are for the final flush that * was issued when the tag was freed by the kernel. */ MPASS((cst->flags & (EO_FLUSH_RPL_PENDING | EO_SND_TAG_REF)) == EO_FLUSH_RPL_PENDING); MPASS(credits == ETID_FLUSH_LEN16); MPASS(cst->tx_credits + cpl->credits == cst->tx_total); MPASS(cst->ncompl == 0); cst->flags &= ~EO_FLUSH_RPL_PENDING; cst->tx_credits += cpl->credits; cxgbe_rate_tag_free_locked(cst); return (0); /* cst is gone. */ } KASSERT(m != NULL, ("%s: too many credits (%u, %u)", __func__, cpl->credits, credits)); KASSERT(credits >= mbuf_eo_len16(m), ("%s: too few credits (%u, %u, %u)", __func__, cpl->credits, credits, mbuf_eo_len16(m))); credits -= mbuf_eo_len16(m); cst->plen -= m->m_pkthdr.len; m_freem(m); } cst->tx_credits += cpl->credits; MPASS(cst->tx_credits <= cst->tx_total); if (cst->flags & EO_SND_TAG_REF) { /* * As with ethofld_transmit(), hold an extra reference * so that the tag is stable across ethold_tx(). */ m_snd_tag_ref(&cst->com); m = mbufq_first(&cst->pending_tx); if (m != NULL && cst->tx_credits >= mbuf_eo_len16(m)) ethofld_tx(cst); mtx_unlock(&cst->lock); m_snd_tag_rele(&cst->com); } else { /* * There shouldn't be any pending packets if the tag * was freed by the kernel since any pending packet * should hold a reference to the tag. */ MPASS(mbufq_first(&cst->pending_tx) == NULL); mtx_unlock(&cst->lock); } return (0); } #endif